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Abstract

PNCK, or CAMK1b, is an understudied kinase of the calcium-calmodulin dependent kinase

family which recently has been identified as a marker of cancer progression and survival in

several large-scale multi-omics studies. The biology of PNCK and its relation to oncogene-

sis has also begun to be elucidated, with data suggesting various roles in DNA damage

response, cell cycle control, apoptosis and HIF-1-alpha related pathways. To further explore

PNCK as a clinical target, potent small-molecule molecular probes must be developed. Cur-

rently, there are no targeted small molecule inhibitors in pre-clinical or clinical studies for the

CAMK family. Additionally, there exists no experimentally derived crystal structure for

PNCK. We herein report a three-pronged chemical probe discovery campaign which utilized

homology modeling, machine learning, virtual screening and molecular dynamics to identify

small molecules with low-micromolar potency against PNCK activity from commercially

available compound libraries. We report the discovery of a hit-series for the first targeted

effort towards discovering PNCK inhibitors that will serve as the starting point for future

medicinal chemistry efforts for hit-to-lead optimization of potent chemical probes.

Author summary

Machine learning and virtual screening are powerful tools in the pharmacologist’s arsenal

for accelerating the process of drug discovery. When targeted lesser-known proteins, how-

ever, it is important to first develop a potent, selective chemical probe. The chemical

probe allows for pharmacological inhibition of protein activity to be used in addition to

genetic knock-down or knock-out assays for studying the biological function of your pro-

tein in interest. In a previous multi-omics study of patient tumors, we had identified

PNCK as a target of interest in kidney cancer. However, the function of PNCK is largely

unknown as it has been designated as an understudied kinase. As such, we utilized kinase

activity data for compounds known to target structurally similar kinases to develop

machine learning models to predict small molecule binding to PNCK. Additionally, we
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simply used shape screening to find compound similar in shape and electronics to ATP

when bound to the active site of PNCK in our multiple homology models. Using a combi-

nation of virtual methods, we were able to identify several hit compounds with favorable,

tractable scaffolds, to move forward in a hit-to-lead campaign to develop the first in class,

selective PNCK chemical probe. This work will lead to the elucidation of PNCKs function

in several cancer models and subsequently lead to the development of a novel drug.

Introduction

Understudied kinases, a designation assigned by the common-fund NIH project, Illuminating

the Druggable Genome (IDG), comprise 24% of the entire human kinome [1–3]. This number

reflects our collective gap in knowledge and reveals biases in research towards certain classes

or families of kinases. For instance, the CAMK family (Calcium Calmodulin Dependent

Kinase) is understudied as a whole, with no targeted small molecule inhibitors to CAMKs in

clinic or under clinical investigation despite an abundance of preclinical evidence suggesting

pervasive roles of CAMKs in disease progression [4–11]. Conversely, kinases of the TK (Tyro-

sine Kinase) family represent only 2% of the understudied kinases [1]. Understudied kinases

are denoted as such due to their lack of biological annotations, experimentally derived crystal

structures, potent small molecule inhibitors and bibliographic references [3]. Such dearth of

information presents significant hurdles to the discovery of novel drug targets and subse-

quently novel small molecule therapeutics. However, analysis of large-scale multi-omics data

has allowed for the identification and prioritization of understudied kinases whose expression

and activity may correlate with disease activity or disease prognosis. Using data from The Can-

cer Genome Atlas (TCGA), we have identified several CAMKs, in particular, PNCK

(CAMK1b), to be clinically relevant in several solid-tumor cancers [1,12]. Expression of

PNCK was on average 6-log2-fold greater in tumor samples compared to adjacent normal tis-

sue in clear cell renal cell carcinoma (ccRCC) patients. Further, high expression correlated sig-

nificantly with survival, tumor size and histological grade in all kidney cancer cohorts. We

have previously shown PNCK to play roles in angiogenesis, apoptosis, DNA damage and cell

cycle control pathways [13]. To further study the biological relevance of PNCK in vitro and

validate this kinase as a novel target, an AI-assisted chemical probe discovery campaign was

initiated.

Due to lack of chemical and biological data, machine learning models and homology mod-

els were generated to enrich libraries of over 7 million commercially available small-molecule

compounds to test for inhibitory activity against PNCK.

Materials and methods

Homology modeling

Protein models and homology models were generated using Prime (Schrödinger Release

2019–4: Prime, Schrödinger, LLC, New York, NY, 2020) [14]. For protein models, crystal

structures were imported into Prime by PDB ID (4FG7, 4FG8, 4FG9). Using Prime Protein

Preparation Wizard, missing loops and side chains were filled in, missing hydrogens were

added, and the protein underwent restrained energy minimization. Water molecules with less

than 3 contacts with the protein were removed. For homology modeling of PNCK, the canoni-

cal amino acid sequence was obtained from UniProt (Q6P2M8). All homology models under-

went loop refinement using serial loop sampling. For all models, extended molecular dynamic
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simulations (500ns-1us) were run to assess model validity and stability. All models contained

co-crystallized ligands and as such, ligands were manually removed and then re-docked into

the binding site to assess for model accuracy in predicting the experimentally derived binding

pose and residue contacts and interactions. Homology models were assessed using SWISS--

MODEL Structure Assessment tool [15,16] for structural reliability which generates a Mol-

Probity score of global structural assessment and Ramachandran plots to ascertain allowed

and disallowed dihedral angles of residues in comparison to resolved parent crystal structures.

Additionally, our generated homology models were compared to those predicted by Alpha

Fold via structural alignment and RMSD [17]. "[The MolProbity score] is a log-weighted com-

bination of the clashscore, percentage Ramachandran not favored and percentage bad side-

chain rotamers, giving one number that reflects the crystallographic resolution at which those

values would be expected. Therefore, a structure with a numerically lower MolProbity score

than its actual crystallographic resolution is, quality-wise, better than the average structure at

that resolution” [16]. Residue-by-residue overlay analysis and analysis of binding site interac-

tions between both models showed considerable overlap in structure and binding mode of

ATP. Variability existed mainly in the alpha-c loop. (Fig A in S1 File).

Docking Grid Generation

Receptor docking grids were generated for virtual screening with Glide Receptor Grid Genera-

tion (Schrödinger Release 2019–1: Glide, Schrödinger, LLC, New York, NY, 2019) and Open-

Eye’s Make_Receptor function [18] (OpenEye Scientific Software, Santa Fe, NM. http://www.

eyesopen.com.) All proteins were initially prepared using Schrödinger Protein Prep Wizard

prior to grid generation. Grids were then generated by using the co-crystallized ligand as the

centroid for docking similarly sized ligands. Therefore, de novo grids in the active sites did not

need to be created. Docking restrictions were made in the grid to ensure certain hydrogen-

bond interactions were maintained during docking, particularly interactions with the hinge

residues. Default settings were used in both OpenEye and Schrodinger grid generating

modalities.

Molecular Dynamics (MD) analyses

All-atom explicit solvent Molecular Dynamic (MD) simulations were run using the Desmond

GPU Accelerated suite of Schrodinger (Schrödinger Release 2019–1 Desmond Molecular

Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interopera-

bility Tools, Schrödinger, New York, NY, 2020.) Simulations used the multi-sim Desmond

implementation and the simulation times varied between 300ns and 3μs, with a maximum of

3000 frames and a recording interval of 1/1000th of the overall simulation time. NPT (Isother-

mal-Isobaric) ensemble was used for the simulation, which most accurately represents labora-

tory conditions at ambient temperature and pressure (300K and 1.01325 bar). System

boundary distances were specified as 10.0 Å in each dimension in an orthorhombic box and

each model system was relaxed before simulation for several nanoseconds. Systems were built

also using Desmond with the SPC solvent model and OPLS3e forcefield with an addition of

0.15 M NaCl to balance the charges. Simulations were computed across dedicated GPU cores.

Trajectories were clustered using default settings for the “Cluster Trajectory” function.

Machine learning and compound enrichment

3 unique virtual screening campaigns were used to prioritize commercially available com-

pounds to purchase for biochemical screening: A naïve Bayesian classifiers model, a neural net

model, and a Tanimoto color and shape screen. Our group has previously developed ligand-
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based Laplacien-modified Naïve Bayesian classifiers to predict small molecule kinase activity

trained on small molecule activity data across the entire human kinome [19]. A list of homolo-

gous proteins was obtained via Clustal Omega multiple sequence alignment tool using the pri-

mary sequence of the PNCK kinase domain obtained from Uniprot [20,21]. The top 31 results

had sequence identity homology which ranged from 70% to 30%, with annotated active com-

pounds with IC50s <100nM (AURKA, AURKB, AURKC, BRSK1, CAMK2D, CAMK2G,

CHEK2, DAPK3, FER, MAPKAPK2, MKNK2, MYLK, NUAK1, PDPK1, PLK4, PRKAA1,

PRKACA, PRKACB, PRKACG, PRKD1, PRKD2, PRKD3, PRKG2, PRKX, RPS6KA1,

RPS6KA2, RPS6KA3, RPS6KA5, SGK1, STK17A, TSSK1B). Amongst selected kinases, there

were 9,693 active small molecule compounds in the training set. The model was then tested

using over 7 million commercially available compounds from the eMolecules library. Com-

pound predictions from eMolecules were then scored based on their probability of binding to

said target kinase- using a score known as EstPGood. A probability cut-off of 0.1 was used to

enrich the virtual screening library. Additionally, compounds with multiple target predictions

were prioritized while those with only one target prediction were filtered out. Compounds

with a molecular weight <250 g/mol or>700 g/mol were also filtered. In total, 49,512 unique

compounds were prioritized for the first virtual screen.

A second machine learning effort, a neural net-based approach, was also used which com-

piled data from the KKB (Kinase Knowledge Base) [22] and the eMolecules library of commer-

cially available compounds [23]. For the neural net machine learning predictions, 314 kinases

with 331,985 known active compounds were used for building the model. Compounds were

featurized with Deepchem and ECFP4 fingerprints with a size of 1024 bits. The dataset was

split randomly into 10% test, 10% verification and 80% training. There were 4 layers in a multi-

class tensorflow network with the first layer being the 1024-bit input layer, the second layer

having 2000 nodes, the third layer having 500 and the final layer being the output layer of 314

kinases. Prediction results came from the eMolecules library of compounds that were then pre-

dicted for their activity in this network and stored for later retrieval. The same homologous

kinases used in the Naïve Bayesian model were used to retrieve predictions from the neural

net. 289,008 unique compounds were identified as predictions to be used in the virtual screen.

Compounds were filtered with a probability cutoff of>0.1, compounds active toward >1

kinases, and with molecular weights ranging from 250-700g/mol.

A third approach took advantage of the binding poses of ATP in the active site of PNCK

homology models. A Tanimoto shape and color screen was employed using OpeneEye’s fas-

tROCS GPU implementation. Compounds were screened in Enamine, MolportDB and eMo-

lecules libraries. Libraries were prepared in OpenEye first using QUACPAC which involves

tautomer and protomer enumeration at physiological pH ranges. OMEGA was then used to

generate up to 150 conformers for each ligand. The eMolecules dataset was filtered before the

shape screen using the OpenEye “Lead-Like” filter, generating 1,169,867 unique compounds.

For Enamine, the advanced HTS screening library was used which contained 97,410 unique

compounds while MolportDB Screening Compound Library had 287,773 compounds. A Tani-

moto combination score cutoff of 0.5 (which is the sum of a color score and shape score) was

used to prioritize compounds for docking using HYBRID.

Ligand Library Preparation

Compounds selected for virtual screen were populated as SMILES in a comma-separated file

along with a unique identifier or catalog number obtained from the vendor. Using Pipeline

Pilot (BIOVIA Pipeline Pilot, Release 2018, San Diego: Dassault Systèmes), SMILES were

canonicalized and the file was transformed to a.SDF structure file to be used as input for
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LigPrep (Schrödinger Release 2019–3: LigPrep, Schrödinger, LLC, New York, NY, 2019) or

for OpenEye QUACPAC and OMEGA (OpenEye Scientific Software, Santa Fe, NM. http://

www.eyesopen.com). For large-scale virtual screens with over 100,000 compounds, OpenEye

Hybrid docking was utilized. Following enrichment by Hybrid Docking Score, smaller subsets

of ligands were then used to dock using Glide (Schrodinger) for further binding pose visualiza-

tion and MD simulations. Ligand libraries were obtained from Enamine’s Advanced HTS

library, MolportDB and eMolecules. The Enamine library was curated to have compounds

with molecular weights between 300 and 500g/mol. The MolPortDB had no molecular weight

filters, with compounds ranging from 150 to 750 g/mol. The eMolecule library was filtered

into screening subsets using both lead-like and drug-like filters provided by OpenEye because

the library was too large to screen as a whole. For ligand preparation, default settings were

used in both programs. Compounds to be used in OpenEye were prepared first using QUAC-

PAC which involves tautomer and protomer enumeration. OMEGA was then used to generate

up to 150 conformers for each ligand. For GLIDE docking, ligands were prepared using Lig-

Prep (Schrödinger Release 2021–1: LigPrep, Schrödinger, LLC, New York, NY, 2021) which

generates all conformers, tautomers and ionization states at physiologic pH ranges.

Ligand shape screen

Shape screens were conducted using fastROCS GPU (OpenEye Scientific Software, Santa Fe,

NM. http://www.eyesopen.com), which can screen millions of compounds in seconds. Struc-

ture files of ATP exported from docking models of PNCK were used as input for the screens.

A combined Tanimoto shape and color score was used to filter the most similar compounds in

eMolecules, MolportDB and Enamine prepared compound libraries.

Ligand docking

For large scale docking studies utilizing over 100,000 structures, OpenEye’s HYBRID Dock was

used. HYBRID docking was done in parallel on all PNCK grids in one job thus aggregation of

scores was not necessary as HYBRID only reports the highest scoring pose per compound per

grid. The top 25,000 docking poses were exported for final analysis. For smaller scale docking

jobs or confirmatory docking studies prior to MD simulation, Glide Docking was used (Schrö-

dinger Release 2019–1: Glide, Schrödinger, LLC, New York, NY, 2019). All default settings

were used. Glide standard precision docking (SP) was performed using 3D ligands generated

from LigPrep. Up to 25 poses were generated per ligand with the top 5 poses being selected for

output. Glide scores were exported for aggregation across various grids using Pipeline Pilot.

Compound storage and cataloging

All compounds were purchased as powders in quantities less than 5mg. Compounds were dis-

solved in various organic solvents (Methanol, Dichloromethane, ethyl acetate) and were ali-

quoted out in separate vials. Solvents were evaporated using a rotovap and high vacuum and

aliquoted powders were stored at -20C. Compounds were dissolved in DMSO to a concentra-

tion of 10mM prior to use in assays. Compounds were stored in DMSO at -80C no longer than

1 week. All purchased compounds were catalogued virtually using the Collaborative Drug Dis-

covery (CDD) Vault (https://www.collaborativedrug.com/).

Biochemical PNCK Inhibitor Screen

ADP-Glo Kinase Assay (V6930, Promega) was used to screen the first round of compounds

against PNCK. GST-tagged PNCK recombinant protein was purchased from Novus (NBP1-
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99886). Autocamtide-II (GenScript RP10271) was used as the peptide substrate. This peptide

was dissolved in water and prepared immediately prior to the assay. Calcium/Calmodulin 10X

(Abcam ab189137) solution was used to create a custom kinase buffer: 40mM Tris,pH 7.5;

20mM MgCl2; 0.1mg/ml BSA; 50μM DTT and Ca2+/Calmodulin solution (0.03μg/μl, Cal-

modulin, 1mM Tris,pH 7.3, 0.5mM CaCl2). The assay was run according to protocol using

25uM of ultra-pure ATP. A standard curve was generated per run which displayed the linear

range of luminescence at various ratios of ATP to ADP. A standard curve was then done to

determine the amount of protein needed to generate a signal in the linear range of the ATP

curve. 100ng of PNCK and 2ng of substrate was used per well in the 96-well plate format of

this assay. Compounds were screened at 10uM and incubated at RT for 1-2h. Plates were read

using the Clariostar Plus. Data was normalized to a DMSO and staurosporine controls.

Cell-based PNCK inhibitor Screen

The NanoBRET Target Engagement Intracellular Kinase Assay (Promega N2520) is a cell-based

binding screen which reads loss of BRET signal as a result of target binding. A PNCK Nano-lucif-

erase fusion vector plasmid was generated custom by Promega. The K-10 tracer was used for the

assay, as determined by Promega. The plasmid was maxiprepped by Genewiz for use in all future

assays. HEK293 cells were seeded in a T175 flask in DMEM with 10% FBS. The following day,

cells were counted to 10,000, resuspended in assay media (Optimem with no phenol red, 1%

FBS). Plasmid and transfection reagent (Fugene HD, Promega E2311) were added to the mixture

and cells were seeded in a white 96-well plate. After 20–24 hours, media was changed, and the

assay proceeded according to protocol. K10 tracer was added at the recommended concentration

of 1uM while compounds were initially screened at both 10uM and 1uM. Cells incubated with

compound at 37 degrees Celsius for a maximum of 2 hours before the plate was read using Clar-

iostar Plus. Data was normalized to Staurosporine and DMSO controls. For compounds selected

for further analysis, dose response curves were generated using the same testing protocol but at 8

different concentrations: 24uM, 12uM, 6uM, 3uM, 1.5uM, .75uM 0.375uM and 0.1875uM.

UM195 was tested with concentrations from 12uM to 0.09375. Similarly, compounds from the

analog by catalog analysis were tested at concentrations from 24uM to 0.1875uM.

Data analysis

Data analysis of ADP Kinase Glo results were carried out per the manufacturer’s instructions.

Results were represented as a percent decrease in activity. Data was normalized to staurospor-

ine (positive control) as 100% decrease and DMSO (negative control) as a 0% decrease. Data

for NanoBRET was analyzed by dividing the acceptor by the donor emission and dividing by

1000 to obtain raw millibret units (mBU). Background was subtracted using control emission

averages. Data was normalized to positive and negative controls of staurosporine and DMSO.

Concentration-response curves were plotted in GraphPad Prism 8 and IC50s were extrapo-

lated using non-linear fit with concentrations transformed to logarithmic scale. Baseline was

held constant and represented the average mBU of staurosporine controls while the top was

constrained to represent the average mBU of DMSO controls. Error bars on dose-response

curves represent standard deviations.

Results

Building and Assessing PNCK Homology Models

No experimentally derived crystal structure exists for PNCK. However, several related struc-

tures in the CAMK family have been resolved which could be used as a structural template to
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generate a homology model. To determine the CAMK member with greatest homology to

PNCK, the amino acid sequence of PNCK (isoform 1) was used in pBLAST (NCBI). PNCK

canonical amino acid sequence was obtained from Uniprot [20] (ID: Q6P2M8) and the kinase

domain is predicted to be from residues 15–270. CAMK1a was identified as the most homolo-

gous structure in the PDB with sequence identity of>70% in the kinase domain [24]. Three

individual iterations of CAMK1a structures were selected as templates. All structures con-

tained an N-terminal lobe of 5 anti-parallel beta-sheets and the canonical alpha-helix with a C-

terminal lobe composed of primarily alpha helices. All native CAMKs contain a C-terminal

region with auto-inhibitory and CaM binding sequences, assuming a helix-loop-helix struc-

ture [6,24–27]. CAMKIa (1–320) (PDB: 4FG9, 2.40 Å) represents a full-length version of the

calmodulin kinase with the regulatory auto-inhibitory domain intact. Therefore, this kinase

was experimentally shown to be inactive despite being co-crystallized with ATP in the active

site. PDB structures 4FG8 (1–305, 2.20 Å) and 4FG7 (1–293, 2.70 Å) are also co-crystallized

with ATP but represent two distinct forms of the kinase. 4FG8 is a truncated structure with no

calmodulin binding site, thus it is in an inactive state. 4FG7 has the entire regulatory domain

removed and thus represents a constitutively active form. It has been determined that the regu-

latory domain of CAMK1a inhibits kinase activity by interacting with the N-terminal lobe and

masks the Thr177 phosphorylation site, restraining the kinase in an inactive conformation

[24]. The regulatory domain, however, does not occlude nucleotide binding site, thus 4FG9

(1–320) is able to bind ATP. The activation loop still adopts an inactive conformation, with a

“DFG-up” like state whereby the phenylalanine is not completely rotated out of the binding

pocket, representative of a distinct inactive conformation [24,28]. 4FG8 (1–315) similarly

adopts an inactive conformation, with no magnesium detected in the active site. 4FG7 (1–293)

displays the structural elements of a kinase in active conformation, particularly the alpha-helix

displays interactions with its conserved glutamate, forming salt bridges with ATP. This struc-

ture has a true, active, “DFG-in” conformation. Conformational analyses of the DFG struc-

tures in our homology models with KinCore confirmed 4FG7, was indeed DFG-In while 4FG8

and 4FG9 were classified as “DFG-Intermediate” [29] (Fig B in S1 File). In all three ATP-

bound structures, the activation loop is largely disordered; contrasted with the Apo-structure,

whereby the activation segment adopts a helical formation. The use of three unique templates

of CAMK1a allowed for a broad sampling of conformational states in the virtual screen.

Each homology model was created using PRIME and included the entire protein with ATP

in the binding site (See Methods) (Fig 1A–1C). Loops were extensively refined, and the

Fig 1. PNCK Homology Models with ATP Docked. ATP is docked in the active site of each model (displayed in

yellow) with the hinge and gatekeeper residues colored in red. Compound UM195 is also overlayed in the active site of

each model (displayed in blue). A) 4FG7 Homology model with no CAM-binding site or auto-inhibitory domain. B)

4FG8 Homology Model with CAM-binding site (Green helix) and no autoinhibitory domain. C) 4FG9 Homology

model with full length PNCK including autoinhibitory domain and CAM-binding site (Green helix). D) Overlay of 5

representative poses extracted from the 500ns molecular dynamics (MD) simulation trajectory of the 4FG9 homology

model.

https://doi.org/10.1371/journal.pcbi.1010263.g001
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structure went through multiple rounds of energy minimization to produce the most stable

model. To determine if the model is valid, the co-crystallized ATP was removed from the bind-

ing site and was docked back in using Glide. A model was deemed valid if it accurately pre-

dicted the pose and binding mode which was present in the experimentally derived structure

within 1–2 Angstroms. The PDB structures all have a conserved interaction with the adenine

amino group and a glutamate or valine in the hinge. Additionally, there are hydrogen bonds

between the catalytic lysine (Lys44) to the gamma phosphate group and hydroxyl groups on

the sugar. For PNCK, the predicted hinge residues included Val93 and Glu91 with the gate-

keeper residue being Met90 and the catalytic lysine at Lys44. Models were finally evaluated for

stability through extended all-atom explicit water molecular dynamic (MD) simulations (Fig

C in S1 File). MD simulations were run using Desmond (GPU implementation) for 500ns

(see Methods). An analysis of the RMSD of the C-alpha backbone as a function of time was

used to assess overall structure integrity; as the change of RMSD approaches zero, the structure

“converges” to a local stable conformation. Each PNCK model converges at about 150-300ns

to an average RMSD of about 3–5 angstroms (S3 Fig). Models were additionally assessed using

SWISS-MODEL Structure Assessment to ensure MolProbity scores at or less than the resolu-

tion of the parent structures used to generate the homomlogy models and Ramachandran

allowed residue percentages greater than 90% (Fig D in S1 File and Table 1). Finally, struc-

tures were compared to those predicted by Alpha Fold via structural alignment and RMSD

(Table 2). To further increase the conformational space sampled during docking, the trajecto-

ries of the 500ns molecular dynamic simulations were clustered and 5 structurally diverse

poses for each of the three homology models were extracted (Fig 1D). Thus, in total, 15 unique

representations of PNCK were used in parallel for the virtual screening docking campaign.

Curating compound libraries for scalable Ligand-based Virtual screening

In total, three unique virtual screening campaigns were used to prioritize commercially avail-

able compounds for in vitro screening. Each combined a scalable ligand-based approach with

docking and molecular dynamics. Specifically, we used Naïve Bayesian classification models, a

multi-task deep neural network model [23], and 3D shape-based screening (Fig 2) (see

Methods).

Our group has previously developed ligand-based Laplacien-modified Naïve Bayesian clas-

sifiers to predict small molecule kinase activity. These models have also been used to predict

novel small molecule inhibitors of EGFR and BRD4 [19,30]. The predictors were trained on

small molecule activity data across the entire human kinome. Although there are no published

selective compounds that target PNCK, similarity amongst kinase binding sites and cross-

kinase activity of many kinase inhibitors facilitate the enrichment of PNCK inhibitors using

predictive models of the most similar kinases. A list of homologous kinase domains was

obtained by multiple sequence alignment with Clustal Omega using the primary sequence of

Table 1. SwissModel Structure Assessment.

Model MolProbity Score Ramachandran Favored % Ramachandran Outliers %

4FG7-Homology 1.39 93.31% 0.00%

4FG7 Parent 2.07 95.87% 0.00%

4FG8-Homology 1.35 92.44% 0.69%

4FG8 Parent 2.31 95.38% 0.00%

4FG9-Homology 1.66 93.38% 0.66%

4FG9 Parent 2.05 96.88% 0.00%

https://doi.org/10.1371/journal.pcbi.1010263.t001
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PNCK kinase domain obtained from Uniprot [20,21] (See Methods). Most of the homologous

kinases with sufficient small molecule data for high-quality predictors belonged to the CAMK

family, including DAPK3 and BRSK1; other kinases included PRKACA, AURKA and

AURKB. The model was then employed toward a dataset with over 7 million commercially

available compounds from the eMolecules library. In total, 44,736 unique compounds were

prioritized for the first virtual screen.

More recently, we developed a kinome-wide multi-task deep neural network classifier

trained on aggregated curated data from ChEMBL [31] and the KKB (Kinase Knowledge Base)

[22,23]. Overall, 331,985 known active compounds across 314 kinases were used for building

this model. Predictions were made for the entire eMolecules library. Similar to the previous

approach, compounds predicted active for homologous kinases were prioritized (See Meth-

ods). Aggregating the predictions, a total of 289,008 unique compounds were prioritized.

PRKACA was the kinase that was most represented, with 13,780 compounds predicted active.

A third approach took advantage of the three-dimensional predicted binding poses of ATP

in each of the active sites of the PNCK homology models. A Tanimoto shape and color screen

was employed using OpeneEye’s fastROCS (GPU implementation). Compounds from the

Enamine, MolDB and eMolecules libraries were screened after generating 3D conformers.

ROCS (Rapid Overlay of Chemical Structures) is a powerful method for shape similarity and

pharmacophore screening which uses Gaussian overlay functions to measure both shape and

“color” similarity between compounds. ROCS utilizes both Tanimoto and Tvsersky functions

to score overlap similarities. Volume overlap generates a shape score while color Tanimoto

scores are derived from scoring similarities between electrostatic forces for functional atoms

or chemical groups. The eMolecules dataset was filtered before the shape screen using the

OpenEye “Lead-Like” filter, generating 1,169,867 unique compounds. For Enamine, the

advanced HTS screening library was used which contained 97,410 unique compounds while

MolportDB had 281,987 compounds. A Tanimoto combination score cutoff of 0.5 (which is

the sum of a color score and shape score), was used to prioritize compounds for docking using

HYBRID. 163,493 compounds with Tanimoto scores above 0.5 were docked. The top 25,000

scoring compounds from each dataset were then evaluated further.

Virtual screening campaign 1: Naïve Bayesian Classifiers and Docking

Compounds prioritized using the Laplacien modified Naïve Bayes models were prepared for

docking using Schrodinger LigPrep. Compounds were then docked using Glide [32] into each

of the 15 docking grids generated from the 3 homology models. Docking scores were then

aggregated across all 15 receptors (See Methods). The top Glide Scores and mean Glide scores

for each compound were used to rank and prioritize. As a reference, ATP received a glide aver-

age glide score of -8.59 kcal/mol. Docking scores for the machine-learning predicted com-

pounds had an average of -5.52 kcal/mol and a standard deviation of -0.83. The top 1% of

docking scores scored below (better than) -8.26 kcal/mol (Fig 3). Compounds were first clus-

tered using extended connectivity fingerprint methods with a radius of 6 (ECFP_6). Clusters

were then ranked using the average glide score and top clusters were evaluated individually

Table 2. Structural Alignment of Homology Models using AlphaFold.

Homology Model Alignment Score RMSD

4FG7 (1–293) 0.199 2.715 Å
4FG8 (1–308) 0.184 2.147 Å
4FG9 (1–308) 0.295 2.198 Å

https://doi.org/10.1371/journal.pcbi.1010263.t002
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Fig 2. Workflow of AI-Assisted PNCK Chemical Probe Study. Compounds from commercially available sources

totaled over 7 million (from eMolecules, Enamine and MolDB). Enrichment via machine learning and shape screening

led to over 358K compounds to be docked. Using the top docking scores and clustering scaffolds which scored

similarly, 64 compounds were selected to use in chemical screens. 16/64 compounds were considered “hits” (>50%

inhibition at 10 micromolar in the NanoBRET screen) and 5 of those were selected to further analysis and

improvement by SAR. The cycle of docking, MD and cell-based screening was repeated until compound binding was

improved both in silico and in vitro.

https://doi.org/10.1371/journal.pcbi.1010263.g002
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based on synthetic tractability of the scaffold, likely binding pose, and ability for derivatization.

One to two compounds from each cluster were then selected for purchase to test in in in vitro
screening. In total, 25 compounds were purchased from the eMolecules catalogue (S1 Table).

Among compounds selected for biochemical screening, the docking scores ranged from

-7.37 kcal/mol (UM_027) to -10.99 kcal/mol (UM_039) and molecular weights ranged from

315 (UM_019) to 410 (UM_027) g/mol. All compounds passed The REOS filter, (rapid elimi-

nation of swill) and PAIN filter screening (pan-assay interference) except for UM_036, as the

presence of a 1,3-diazinane-2,4,6-trione may react with reagents used in such screens. Com-

pounds UM_027, UM_029, UM_031, UM_034, and UM_039, all had at least one “Rule of

Three” violation, while none of the compounds were predicted to be exceptionally cell-perme-

able (Exceptional Cell permeability has a QPPCaCo score >500) [33]. In fact, 4 compounds

are predicted to be considered poorly cell permeable (QPPCaCo <25) (UM_021, UM_031,

UM_034 and UM_039) from QikProp analysis (S2 Table). Thus, compounds from this cohort

were more “drug like” (MW<500, cLogP<5, Molar Refractivity between 40–130) than “lead

like”.

Virtual screen campaign 2: MTDNN (Multi-task Deep Neural Net) and

Docking

As described above, MTDNN predictions were obtained using the same homologous kinases

as campaign and 289,008 unique compounds were identified as predictions to be used in the

virtual screen. Compounds were filtered with a probability cutoff of>0.5, activity to>1 kinase

and with molecular weights ranging from 250-700g/mol leading to a final docking library of

39,787 compounds. Although PRKACA was the most overrepresented kinase, distributions of

docking scores amongst the various kinase predictions did not vary significantly. The overall

distribution of docking scores was slightly different compared to the naïve Bayesian classifier

model, with the average docking scores shifting to -4.70 kcal/mol, with the best docking score

being -9.69 kcal/mol (Fig 3). In fact, many of the same scaffolds as in campaign 1 were simi-

larly identified in this method. For example, the cyclopropyl-pyrazole-carbonyl moiety in

UM_019 and UM_034 was present in many of the top clusters of the MTDNN campaign.

Additionally, the thieno [2,3-d] pyrimidine scaffold found in UM_027, UM_028, UM_033 and

UM_035 was also highly represented in these predictions campaign. Therefore, this method

Fig 3. Distribution of Docking Scores in Different Machine Learning Models. A) The naïve bayesian model and neural net model were both used to screen

for predictions of inhibitory compounds towards kinases homologous to PNCK in the eMolecules library. The distribution of docking scores was very similar

suggesting the neural net did not offer many new predictions. This was confirmed by manual inspection of clustered scaffolds B) vROCs shape screening and

HYBRID docking using OpenEYE was performed using three small molecule libraries. The composition of each library offered much more diversity and

subsequently was reflected in the distribution of docking scores, with eMolecules compounds scoring the best.

https://doi.org/10.1371/journal.pcbi.1010263.g003
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did not greatly increase the diversity of scaffolds, likely due to the fact that compounds were

screened again the same eMolecules library and the two machine learning methods did not

identity significantly different compounds. Therefore, no compounds identified from this

method were purchased for further analysis in biochemical or cell-based screens.

Virtual screen campaign 3: Tanimoto ROCS Shape Screen and Docking

By far, the greatest and most diverse docking results came from a third approach which simply

consisted of finding molecules that are of similar shape, size, and electronic configuration as

our computational model of ATP docked in the PNCK active site. Using fastROCS GPU of

OpenEye, millions of compounds from eMolecules, Enamine and MolDB were queried against

the 15 poses of ATP obtained from the molecular dynamic trajectories of the 3 PNCK homol-

ogy models (See Methods). All conformers and ionization states generated from the com-

pounds with Tanimoto combo scores>0.5 were then docked across all 15 receptors using

OpenEye Hybrid and the top 25,000 scoring representations across all docking models were

selected for further evaluation. Compounds were clustered using ECFP6 fingerprints as

described before and top scoring clusters were evaluated for synthetic tractability and binding

mode. As with the Naïve-Bayesian campaign, representative structures with unique scaffolds

from the top scoring clusters were purchased for analysis in in vitro screens. Significant differ-

ences were noted in distribution of Tanimoto and docking scores amongst the three databases.

Compounds from the eMolecules database had an average HYBRID docking score of -9.9

kcal/mol, followed by MolPortDB with an average of -8.56 kcal/mol and Enamine with an

average of -7.92 kcal/mol (Fig 3).

When comparing the three homology models for PNCK, docking results from the Tani-

moto screen using HYBRID show a strong preference for the 4FG9 grid (the inactive form of

PNCK), with the best docking scores from these compounds coming from poses of the auto-

inhibited state. Conversely, 42% of compounds selected from the Naïve Bayesian cohort

(UM_019-UM_039) scored best with GLIDE in the 4FG7, constitutively active PNCK model.

Target engagement assays

The 25 Compounds prioritized by Naive Bayesian classifiers and docking (Campaign 1) were

initially tested in a cell-free biochemical kinase activity screen, ADP Kinase Glo (See Meth-

ods). Six compounds were identified as hits (>50% inhibition of kinase activity at 10uM):

UM_026, UM_029, UM_032, UM_035, UM_038 and UM_039 (Fig E in S1 File). However, it

was determined that PNCK is not a highly active kinase and likely sub-optimal activity without

phosphorylation at Thr171 (equivalent of Thr177 on CAMK1a) [34,35]. Thus, significant

amounts of PNCK (>100ng per reaction) were needed to obtain signals in the linear range of

the standard curve to extrapolate kinase inhibitory activity. Therefore, NanoBRET target

engagement assay was used for future screens, including re-testing all compounds tested in the

ADP-Glo Kinase Screen. NanoBRET is more sensitive than the ADP-Glo and additionally

selects for compounds that are cell permeable (see Methods).

From the shape screen and docking campaign, compounds UM_194 to UM_244 were pri-

oritized for testing in the NanoBRET target engagement assay. All compounds chosen for

binding assays were analyzed for their putative binding mode by GLIDE docking and molecu-

lar dynamics (MD) simulations using the homology model for which it scored the highest. 55

compounds were initially tested in the NanoBRET assay, including compounds

UM_019-UM_039 from the first campaign. Compounds UM_192, UM_193 UM_242,

UM_243 and UM_244 were not cell permeable while UM_234 and UM_245 had poor aqueous

solubility, which was properly indicated by QikProp predictions. Additionally, UM_234 and
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UM_243 were flagged by the PAINS filter due to the presence of a thiophene structure and a

catechol structure, respectively. As such, these compounds were not subject to further analyses.

Compounds from each campaign were similar in physiochemical properties but compounds

from the Tanimoto shape screen were significantly more cell-permeable (Table 3). The Nano-

BRET screen was performed using two concentrations for compounds: 10μM and 1μM. Data

was normalized to DMSO and staurosporine controls (Fig 4). Hits were defined as having

greater than 50% inhibitory activity at 10μM. This assay confirmed actives and inactives that

were identified via ADP kinase GLO with the exception of UM_037. UM_037 was only shown

to inhibit ~31% of PNCK activity at 10uM in the ADP GLO assay. However, in the NanoBRET

screen, UM_037 was shown to be a potent binder at 10uM with 56% inhibition. Conversely,

top compounds in the ADP GLO assay failed in NanoBRET, likely due to poor cell-permeabil-

ity. In particular, UM_039 had 91% inhibition of kinase activity in the biochemical screen with

negligible activity in the cell-based screen. QPPCaco predictors from QikProp (Schrodinger)

score UM_039 at 8.374, which is predicts poor cell permeability.

The top compounds chosen for follow-up validation in concentration-response curves were

selected based on normalized percent inhibition at 10μM and 1μM, synthetic tractability and

kinase inhibitor scaffold diversity or novelty (UM_037, UM_195, UM_210, UM_213 &

UM_228). Concentration-response curves were generated for each compound using the

NanoBRET system at 8 concentrations ranging from 24μM to 0.175μM. Nonlinear curve

Table 3. Physiochemical Properties of Compounds From Each Virtual Campaign.

Property Naïve Bayesian average (+/ SD) Range Tanimoto average (+/ SD) Range

Molecular weight (g/mol) 368.203 (+/- 24.95) 315.329–410.54 343.52 (+/- 36.18) 262.28–420

Hydrogen-bond donors 2.095 (+/- 0.44) 1–3 1.093 (+/- 1.09) 0–4

Hydrogen-bond acceptors 6.557 (+/- 0.99) 5–8.5 6.509 (+/- 1.997) 2.8–12

QlogPo/Pw 2.707 (+/- 0.68) 1.664–4.226 2.336 (+/-1.23) -1.422–4.2

QPPCaco 88.334 (+/- 82.27) 8.93–320.013 674.537 (+/- 754.9) 9.677–3567.688

SASA 629.361 (+/- 44.1) 553.358–720.076 598.04 (+/- 42.38) 503.04–704.465

PSA 111.89 (+/- 17.91) 84.896–146.138 87.548 (+/- 25.61) 27.488–142.687

https://doi.org/10.1371/journal.pcbi.1010263.t003

Fig 4. Cell-Based Screening of Prioritized Compounds. All compounds from the naïve Bayesian model in addition

to compounds identified in the vROCs shape screen were tested in the cell-based target engagement assay, NanoBRET.

Compounds were tested at concentrations of 10μM and 1μM. Activity was reported as normalized percent inhibition

using DMSO and staurosporine as controls. Pan-CAMK inhibitor KN-62 was also used as a reference. Hits were

identified as compounds with at least 50% inhibition at 10uM.

https://doi.org/10.1371/journal.pcbi.1010263.g004
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fitting after log-transforming of the concentrations allowed for calculation of IC50s (Figs 5

and 6).

Physiochemical properties for compounds were predicted from 3D structures in Schro-

dinger using the QikProp tool. QLogPo/Pw is the predicted octanol/water partition coefficient

with higher, positive values representing increased hydrophobicity. QPPCaco is the predicted

apparent Caco-2 cell permeability in nm/sec. Caco-2 cells are a model for the gut-blood bar-

rier. QikProp predictions are for non-active transport; <25 is considered poor while >500 is

great. SASA is the total solvent accessible surface area (SASA) in square angstroms using a

probe with a 1.4 Å radius. PSA (polar surface area) represents the Van der Waals surface area

of polar nitrogen and oxygen atoms.

In conclusion, one top scaffold was identified from Naïve-Bayesian Classifier / docking

campaign while the other 4 were identified through the Tanimoto nucleotide ligand shape and

color screen & docking.

Structure Activity Relationship (SAR)–Analogue by catalogue

Each hit compound was studied again extensively to develop the most accurate binding

hypothesis based on classical binding poses kinase inhibitors. Using the most likely predictive

pose from initial docking studies (Fig 7) and MD simulations (Fig F-Z in S1 File), analogs

were identified to potentially maximize hydrogen bonding interactions in the binding pocket,

particularly at the hinge residues and to gain evidence for its true binding mode. Parent hit

compounds were queried in ChemSPACE to find analogs among billions of chemicals in

“REAL space” that had variation at one or more R-group sites (Fig F-Z in S1 File) [36]. Ana-

logs were then docked in the PNCK models to analyze any improvement in docking scores

based off additional hydrogen bond and hydrophobic interactions at the hinge, gatekeeper, or

catalytic lysine residues. Analog compounds with improvement in docking scores or with

modifications congruent with a structure-activity relationship hypothesis were ordered for

synthesis on demand. Several custom analogs were ordered for each initial hit (limited by

Fig 5. Dose-Response Curves for Top 5 Hit Compounds. A) UM_37, B) UM_195, C) UM_210, D) UM_213, E) UM_228.

https://doi.org/10.1371/journal.pcbi.1010263.g005
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commercial availability) and were tested again in the NanoBRET screen at 1μM and 10μM

(Fig 8). Compounds with at least 50% activity at 10μM were analyzed further with concentra-

tion-response curves to generate IC50 values (Fig 9). These data then allowed for preliminary

structure-activity relationships for each of the scaffolds.

UM_228, (6R)-2-(5-chlorothiophene-2-amido)-6-methyl-4,5,6,7-tetrahydro-1-benzothio-

phene-3-carboxamide: Molecular modeling of UM_228 led to several binding hypotheses. As

we prioritized poses with hydrogen bonds at the hinge, the predicted pose with the chlorine

atom solvent exposed, the thiophene group deep in the binding pocket and the amide group

positioned for hydrogen bonding with hinge residues Glu91 and Val93 was used for selecting

analogs. Additional poses reversed the orientation by 180 degrees with the methyl group being

solvent exposed and the chlorine participating in bonding interactions at the catalytic lysine.

In selecting analogs, various parts of the molecule were considered to determine which groups

of the scaffold were important for binding, determined by analyzing docking studies and MD

Fig 6. IC50s of Top 5 Hit Compounds.

https://doi.org/10.1371/journal.pcbi.1010263.g006
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simulations (Fig F-H in S1 File). The methyl group was removed in one analog or replaced

with bulkier groups to maximize hydrophobic interactions in the hinge. Chlorine was removed

or was replaced with various hydrogen bond donors or acceptors such as a nitro group or vari-

ous heterocycles. Docking studies of the analogs supported the hypothesis that the chlorine-

substituted thiophene was likely situated towards the hinge, as replacing this with a purine

Fig 7. 2D Representation of Predicted Binding Poses of Hit Compounds. A) UM_37, B) UM_195, C) UM_210, D) UM_213, E) UM_228 (Add info about

hinge resides).

https://doi.org/10.1371/journal.pcbi.1010263.g007

Fig 8. Cell-Based Screening of Analog Compounds. Analogs of the 5 hit compounds were identified from

ChemSpace and prioritized via docking and SAR hypothesis. Compounds were tested using the NanoBRET assay at

concentrations of 10 μM and 1 μM.

https://doi.org/10.1371/journal.pcbi.1010263.g008
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group as in UM_251 greatly improved docking scores with sustained interactions with Val93

(Fig I in S1 File). Molecular dynamics analyses of UM_251 in the 4FG9 model demonstrates

various hydrogen bond interactions along with significant mobility of the auto-inhibitory

domain to create a new binding pocket, with new interactions gained at Serine156 (Fig J in S1

File). In UM_252, thiophene in UM_228 is replaced with a fluorophenyl-pyrazole. Binding

hypotheses situate the fluorophenyl group in the hinge with sustained hydrophobic interactions

during molecular dynamic simulations while the pyrazole and amide groups participated in

multiple hydrogen bonds and water bridges to Val93 and Ser156; more than the parent com-

pound 228 (Fig K in S1 File). This was supported via NanoBRET assays with analogs UM_251

and UM_252 improving from the IC50 of UM_228 by one order of magnitude (Fig 8).

UM_213,3-[2-(2,3-dihydro-1H-indol-1-yl)-2-oxoethoxy]-6H,7H,8H,9H,10H,11H-cyclo-

hepta [c]chromen-6-one: All 3 docking models oriented UM_213 into the binding pocket of

PNCK with the pyrone carbonyl hydrogen bonding with Val93 and the cycloheptane ring

pointing towards either the solvent or towards to the gatekeeper, Met90. Additionally, there

were hydrogen bonds between Lys44 and Ser156 with the amide nitrogen and oxygen. Molec-

ular dynamic simulations supported hypothesis that these hydrogen bond interactions are

indeed sustained; and in this pose, UM_213 was very stable with an average RMSD of <1 Å
(Fig L-N in S1 File). Analogs were designed to assess the importance of the large hydrophobic

cycloheptane group and to optimize hydrogen bonding interactions at the opposite end of the

molecule, changing the indole group for an oxo-piperazine (UM_259) or an imidazolidine-

2,4-dione (UM_258) (Fig L in S1 File). Docking of analogs supported the hypothesis that the

chromenone-cycloheptanyl group fits in the binding pocket by the hinge and gatekeeper while

increased hydrogen bonding interactions could be observed via Val93, Lys44 and Ser156 with

additional bonds at Asp136 in the 4FG9 model for UM_259 (Fig O,P in S1 File). UM_259 was

experimentally determined to have a higher affinity for PNCK than the parent, UM_213.

UM_195, 5-[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanylpyrazine-2-carbonitrile:

While UM_195 was one of the most potent ligands as determined via the NanoBRET assay,

Fig 9. Dose Response Curves of Top Analog Compounds. A) UM_251, B) UM_252, C) UM_254, D) UM_259, E) UM_277, F) UM_280.

https://doi.org/10.1371/journal.pcbi.1010263.g009
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modeling of UM_195 proved to be the most difficult. Kinase inhibitors classically bind with

strong hydrogen bond interactions at the hinge. However, UM_195 docking poses in all 15

grids did not predict any such interactions. The naphthalene group was predicted to be deep

in the binding pocket with hydrophobic interactions at the gatekeeper residue (Fig 7). Some

hydrogen bonding to the oxadiazol, nitrile or pyrazine groups may occur with the catalytic lyi-

sine. Molecular dynamics interactions shifted the compound into the binding pocket so that

the nitrogen atoms on the oxadiazol interacted with Val93 of the hinge, leaving the nitrile

group solvent exposed (Fig Q,R in S1 File). Analogs replacing the naphthalene group with het-

erocycles containing hydrogen bond donors and acceptors were virtually screened. Addition-

ally, the nitrile group was replaced with various groups to improve hydrogen bonding

interactions with Ser156, Lys44, Ser27 (Fig S in S1 File). Docking of analogs, however, sup-

ported the initial binding hypothesis. Analogs tested (UM_242, UM_244, UM_245, UM_253,

UM_254) represented these changes. UM_254 proved to be the most potent analog (which

substituted the terminal nitrile group with a methoxy-ester) with an IC50 of 2.68uM. However,

molecular dynamics analysis of UM_254 in any of the three models did not predict stable

binding in the active site.

UM210, 6-chloro-2-[(quinolin-2-ylsulfanyl)methyl]-3,4-dihydroquinazolin-4-one: Initial

molecular modeling predicted that UM_210 binds to PNCK with hydrogen bonding interactions

to the hinge residue, Val93, via the chlorine atom on the fused pyrimidine heterocycle (Fig T,U in

S1 File). It was considered more likely that the chlorine residue is solvent exposed and the hetero-

cycle oxygen forming a hydrogen bond with either Lys44 or Val93. Indeed, molecular dynamics

simulations of UM_210 in both the 4FG8 and 4FG9 models situated the compound in the active

site with conserved hinge interactions at the pyrimidine scaffold, sustaining contacts with Val93

and Glu91. Analogs were selected for testing to assess the likely binding mode of the compound

(Fig V in S1 File). For example, the quinoline ring was changed to an indazole or pyridine group.

Additionally, the chlorine was removed to determine if this atom in this position contributed sig-

nificantly to binding. Docking of the analogs, however, supported another binding hypothesis

whereby the quinoline ring was situated deep in the binding pocket with the benzene ring extend-

ing into the gatekeeper region while the nitrogen on the quinoline participated in hydrogen bond-

ing with hinge residues. Analogs tested, UM_278, UM_279 and UM_280 did not demonstrate

significantly improved binding in NanoBRET assays.

UM_037, 1-(3-5H-[1,2,4] triazino [5,6-b]indol-3-ylsulfanylpropyl)-2,3-dihydro-1H-

1,3-benzodiazol-2-one: UM_037 was the highest scoring compound in every docking model of

PNCK. It was initially screened in ADP-KinaseGLO where it had minimal inhibitory activity.

However, it showed significant binding in NanoBRET with an IC50 of 8.79 uM. UM_037 con-

tains two fused heterocycle moieties, both of which are common structures among hinge-

interacting kinase inhibitors. The benzimidazolinone is predicted to be situated towards the

hinge with interactions between the nitrogen NH and carbonyl oxygen with the Val93 back-

bone. Molecular dynamics also suggested additional interactions of the benzimidazolinone

with Ser156 while the triazino group had hydrogen bonds with Lys44 and Ser156 and the

indole group interacted with Glu140 (Fig W,X in S1 File). Additionally, there is likely pi-

stacking interactions with these groups with Phe158. One model did orient the molecule in the

opposite direction, with the indole group making interactions at the hinge. To determine the

proper pose, analogs were designed that altered the triazino/indol group, including adding or

removing bulky groups or adding carbonyl groups to alter hydrogen bonding (Fig Y in S1

File). Molecular modeling of analogs supported the initial binding hypothesis whereby substi-

tuting the triazino-indol group for more flexible groups which retained hydrogen bonding

ability resulted in better docking results. Despite improvement in docking scores, the analogs

were not significantly better inhibitors of PNCK in vitro.
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Discussion

Computational methods are increasingly being employed in the preclinical hit discovery and

lead optimization process to assist in the identification, prioritization, and optimization of

active kinase inhibitor chemotypes. With the wide-spread availability of high-resolution crys-

tals structures, large-scale chemical databases, and a slew of virtual screening platforms, in sil-
ico methods have contributed to the discovery of many novel kinase inhibitors in recent years.

For example, several studies have used virtual screening to discover inhibitors for EGFR [154],

BCR-ABL [155], PI3K[156], AURKA [157] and PKC [158]. Even understudied kinases were

able to be “drugged” via the use of homology modeling and machine learning as in the case of

VEGFR2 (for which no crystal structure exists)[159]. Thus, there is strong precedent for the

successes of such computational pipelines to generate novel discoveries, which otherwise likely

would have taken much longer and at significantly higher cost [1]. The goal of such computa-

tional screening is the identification of chemically tractable starting points to use for medicinal

chemistry optimizations towards a potent molecular probe or preclinical drug candidate.

Computer aided drug discovery can result in a 1000-fold enrichment of hit discovery com-

pared to traditional screening methods. Whereby HTS is limited to hundreds of thousands to

a million compounds at enormous cost, a virtual screening campaign can readily screen tens

to hundreds of million and, more recently even billions of compounds to prioritize a small

subset of compounds to test in biochemical screens, dramatically increasing the likelihood of

obtaining starting points for lead optimization [157]. Typical hit rates from experimental HTS

can range between 0.01% and 0.14%, while hit rates for prospective virtual screen can be as

high as 50%[160]. Various rounds of enrichment, including applying certain structure filters

(PAINS, lead-like, drug-like), machine-learning predictions, 3D shape overlay, molecular

docking, and molecular dynamics, contribute to the improved success of computational drug

discovery efforts. There are two major methodologies for computer aided drug discovery:

structure-based methods and ligand-based methods [161]. Structure based methods are built

upon the foundation of an experimentally derived, high resolution crystal structure of the tar-

get protein and active site. Ligand based methods, conversely, are built upon the foundation of

a known ligand or ligands for a particular target. Due to the fact that this ambitious project

sought to drug an understudied kinase, there exists no crystal structure and no known exoge-

nous ligands to use a foundation. Thus, several methods from both structure-based and

ligand-based approaches were combined to produce a pipeline capable of predicting first-in-

class active PNCK inhibitors.

The process of this computational drug discovery project involves multiple essential com-

ponents. First, a reliable and highly predictive homology model of the target protein, PNCK,

needed to be built. As PNCK is an understudied kinase, there are no reported crystal structures

of this protein. However, structures of homologous kinases were readily available to use as a

structural template for building such a model. Multiple protein ensembles were evaluated to

most accurately and broadly sample the kinase conformational and energetic space. Second, a

library of ligands needed to be curated for use in a virtual screening campaign. The selection of

compounds to use in a screen is one of the largest contributors to success in hit identification

[160, 162]. Compound curation and selection determines the size of the screening library, the

scaffold diversity, and quality of positive and negative data [162]. Various computational

methods are employed to filter molecules for favorable factors that have been noted in various

large-scale studies of “drug-like” and “lead-like” properties. Most notable, “Rule of Five”[163]

or “Rule of Three”[164] filters select for compounds with desirable molecular weights, lipophi-

licity and hydrogen bond interactors. More sophisticated curation efforts involve the use of

pharmacophore searching, similarity screening, and AI-assisted machine learning. While it is
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impossible to sample the entirety of the chemical space, the use of several diverse, commer-

cially available databases is a reasonable starting point to identify active chemical structures as

these can be purchased off-the-shelf and tested rapidly. Here we used two distinct machine

learning algorithms to survey >7million compounds collectively in eMolecules, MolDB and

Enamine compound libraries. Through initial rounds of filtering based on predicted probabili-

ties of activities as well as physiochemical properties, the number of compounds chosen for

use in molecular docking studies was greatly reduced from millions to thousands. Following

molecular docking, compounds were scored, ranked and prioritized for further analysis. Com-

pounds were clustered using topological features to identify chemotypes that would be

enriched for potent binding and inhibition. Docking poses and binding hypotheses were eval-

uated manually for the top scoring compounds. Scaffolds were additionally manually curated

based on medicinal chemistry considerations, evaluating for synthetic tractability and prelimi-

nary ADMET properties or liabilities. Extended molecular dynamic simulations were run for

select protein-compound complexes to further refine predicted protein-ligand complexes and

to study the energetics of binding. Top compounds from each cluster were purchased for test-

ing in various binding assays or screens. Data from those screens informed the selection or

design of analogs (virtually or synthetically) which allowed for further rounds of preliminary

optimizations.

In conclusion, 1 top Scaffold was identified from Naïve-Bayesian classification followed by

docking while the other 4 were identified through the nucleotide shape and color screen fol-

lowed by docking. The docking scores could not be directly compared across the two methods

(GLIDE and HYBRID) due to varying algorithms and there was no clear correlation between

the scores, with each model ranking and prioritizing compounds differently. Few compounds

scored highly in both models, making it difficult to draw generalized conclusions. Interest-

ingly, all compounds preferably bound to the autoinhibited structure, 4FG9, and occupy a

space that is distinct from that of ATP; while still making interactions at the hinge and gate-

keeper residues. Further research on advanced compounds from these selected scaffolds, such

as x-ray crystallography, may indeed identify such compounds as type-II inhibitors. As all vir-

tual screening methods, docking scores should not be interpreted as relative binding free ener-

gies, but used as a tool for enrichment. UM_039 is the highest ranked kinase in campaign 1

and subsequently had the highest level of inhibitory activity in the ADP Glo assay. Conversely,

UM_228 and UM_195, two of the most potent scaffolds in the NanoBRET assay, rank quite

low when scored by GLIDE. For the HYBRID docking used in campaign 3, UM_195 is

amongst the top scoring compounds and subsequently is a top inhibitory scaffold. The overall

success of the entire campaign is therefore likely due to the combination of diverse methods

and compound libraries, which can result in synergies.

PNCK is an understudied kinase for which there currently exists no published crystal struc-

ture and no known exogenous ligands. However, using a combination of homology modeling,

machine learning and shape based virtual screening, we report a series of hit compounds with

inhibitory low molecular binding potency toward PNCK. While other compounds have

recently been reported to have activity against CAMK1b, they were part of a CAMK1D inhibi-

tor campaign with non-selective activity against the family of CAM Kinases [37]. None of the

compounds reported in this study, although commercially available, have any target annota-

tion data and thus have not been previously characterized as kinase inhibitors. The overall “hit

rate” of 27% is exceptionally high due to rounds of iterative enrichment using machine learn-

ing and shape-based scoring with molecular docking and molecular dynamics studies. Specifi-

cally, all the compounds discovered have IC50s in the low micromolar range and molecular

weights under 400 Daltons, making them a good starting point for hit-to-lead optimization.

Future goals are to evaluate the target specificity of these initial hit compounds in a kinome-
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wide screen, with particular focus on developing isoform specific inhibitors of PNCK (vs other

CAMK proteins). The most selective scaffold(s) will then be chosen for lead optimization

using medicinal chemistry. With preliminary SAR by catalog studies, we have improved the

IC50s of UM_228, UM_213 and UM_195. UM_251 and UM_252 are both analogs of

UM_228 with IC50s of 2.13 and 1.09 uM respectively- making them the most potent PNCK

inhibitors in the series. Additional rounds of optimizations will be needed to optimize their

activity while improving ADMET properties. In particular, we hope to replace all thioethers

with oxygen isosteres and eliminate any furan rings, which are known to be metabolic liabili-

ties. Once an isoform specific and potent chemical probe is generated, with an IC50 in the

nanomolar range, we will move forward for testing in cells and in animal models. Previous

work has been done to develop potent CAMK1D inhibitors. While the authors achieved speci-

ficity to CAMKs, they were unable to obtain isoform specificity.

Supporting information

S1 Table. List of Compounds with Screening Data.

(XLSX)

S2 Table. QikProp Properties of all Compounds.

(CSV)

S3 Table. Dose-Response Curve Data.

(XLSX)

S1 File. Fig A. Comparison of PNCK Schrödinger Prime homology model with AlphaFold

model shows some differences but similar orientation with key interactions well aligned. A)

PNCK Prime homology model (pink with bound ATP in yellow) aligned with AlphaFold

model (blue with bound ATP in grey) in Schrödinger Maestro v3.0.137 using Protein Structure

Alignment tool; shows considerable similarity in orientation of both the models; B) PNCK

binding site shows key interactions are fairly aligned between both Prime and AlphaFold mod-

els; C) Hinge residues (Glu 91, Leu 92, Val 93) show similar orientation and interactions with

ligand (ATP); D) DFG residues (Asp 157, Phe 158, Gly 159) show slight difference in orienta-

tion; E) Gatekeeper (Met 90) shows similar orientation; F) Key residue, Lys 44, shows similar

orientation and interaction with the ligand (ATP); G) Key residues Asn 141 shows slightly dif-

ferent orientation and makes interaction with ligand in AlphaFold model; H) α–c loop is

somewhat different among the two models; I) 2D interactions of PNCK AlphaFold model with

bound ATP; J) 2D interactions of PNCK Schrödinger Prime model with bound ATP. Fig B.

PNCK Shrödinger Prime homology model conformation identification using KinCoRe. Fig C.

Molecular Dynamics (MD) Analysis of 3 PNCK Homology Models. (A-C), Molecular

Dynamic RMSD analysis of protein (C-alpha) and ligand fit on protein (4FG7, 4FG8, 4FG9).

(D-F) Interaction Fraction of ATP to Residues in PNCK Active Site (4FG7, 4FG8, 4FG9). Fig

D. SwissModel Ramachandran Plots for PNCK Homology Models. A) 4FG7 Homology

Model, B) 4FG7 Original, C) 4FG8 Homology Model, D) 4FG8 Original, E) 4FG9 Homology

Model, F) 4FG9 Original. Fig E. ADP-Kinase GLO Results from Naïve Bayesian Classifier

Campaign. Fig F. UM_228 Binding Mode Hypothesis After MD, 4FG8 Model. A) 2D repre-

sentation, B) 3D Representation C) 3D Surface Representation of Binding Pocket. Fig G.

Molecular Dynamics Analysis of UM_228. A) Protein-Ligand RMSD plot of 500ns MD sim-

ulation as a function of time. B) Protein-Ligand Contact Interactions as Fraction of total MD

simulation time. C) Protein-Ligand Contact plot as function of time. Darker lines indicate

more contacts between the compound and residue. Fig H. Structure Activity Relationship

(SAR) Table for Analogs of UM_228. Fig I. 2D Binding Hypothesis of UM_228 Analogs.
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A) UM_251, B) UM_252. Fig J. Molecular Dynamics Analysis of UM_251. A) Protein-

Ligand RMSD plot of 500ns MD simulation as a function of time. B) Protein-Ligand Contact

Interactions as Fraction of total MD simulation time. C) Protein-Ligand Contact plot as func-

tion of time. Darker lines indicate more contacts between the compound and residue. Fig K.

Molecular Dynamics Analysis of UM_252. A) Protein-Ligand RMSD plot of 500ns MD sim-

ulation as a function of time. B) Protein-Ligand Contact Interactions as Fraction of total MD

simulation time. C) Protein-Ligand Contact plot as function of time. Darker lines indicate

more contacts between the compound and residue. Fig L. UM_213 Binding Mode Hypothe-

sis After MD, 4FG9 Model. A) 2D representation, B) 3D Representation C) 3D Surface Repre-

sentation of Binding Pocket. Fig M. Molecular Dynamics Analysis of UM_213. A) Protein-

Ligand RMSD plot of 500ns MD simulation as a function of time. B) Protein-Ligand Contact

Interactions as Fraction of total MD simulation time. C) Protein-Ligand Contact plot as func-

tion of time. Darker lines indicate more contacts between the compound and residue. Fig N.

Structure Activity Relationship (SAR) Table for Analogs of UM_213. Fig O. 2D Binding

Hypothesis of UM_213 Analog, UM_259. Fig P. Molecular Dynamics Analysis of UM_259.

A) Protein-Ligand RMSD plot of 500ns MD simulation as a function of time. B) Protein-

Ligand Contact Interactions as Fraction of total MD simulation time. C) Protein-Ligand Con-

tact plot as function of time. Darker lines indicate more contacts between the compound and

residue. Fig Q. UM195 Binding Mode Hypothesis After MD, 4FG7 Model. A) 2D represen-

tation, B) 3D Representation C) 3D Surface Representation of Binding Pocket. Fig R. Molecu-

lar Dynamics Analysis of UM_195. A) Protein-Ligand RMSD plot of 500ns MD simulation

as a function of time. B) Protein-Ligand Contact Interactions as Fraction of total MD simula-

tion time. C) Protein-Ligand Contact plot as function of time. Darker lines indicate more con-

tacts between the compound and residue. Fig S. Structure Activity Relationship (SAR)

Table for Analogs of UM_195. Fig T. UM210 Binding Mode Hypothesis After MD, 4FG9

Model. A) 2D representation, B) 3D Representation C) 3D Surface Representation of Binding

Pocket. Fig U. Molecular Dynamics Analysis of UM_210. A) Protein-Ligand RMSD plot of

500ns MD simulation as a function of time. B) Protein-Ligand Contact Interactions as Frac-

tion of total MD simulation time. C) Protein-Ligand Contact plot as function of time. Darker

lines indicate more contacts between the compound and residue. Fig V. Structure Activity

Relationship (SAR) Table for Analogs of UM_210. Fig W. UM37 Binding Mode Hypothe-

sis After MD, 4FG8 Model. A) 2D representation, B) 3D Representation C) 3D Surface Repre-

sentation of Binding Pocket. Fig X. Molecular Dynamics Analysis of UM_37. A) Protein-

Ligand RMSD plot of 500ns MD simulation as a function of time. B) Protein-Ligand Contact

Interactions as Fraction of total MD simulation time. C) Protein-Ligand Contact plot as func-

tion of time. Darker lines indicate more contacts between the compound and residue. Fig Y.

Structure Activity Relationship (SAR) Table for Analogs of UM_37.

(PDF)
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23. Allen BK, Ayad NG, Schürer SC. Kinome-wide activity classification of small molecules by deep learn-

ing. bioRxiv. 2019.

24. Zha M, Zhong C, Ou Y, Han L, Wang J, Ding J. Crystal structures of human CaMKIalpha reveal insights

into the regulation mechanism of CaMKI. PLoS One. 2012; 7(9):e44828.

25. Wilmann M, Gautel M, Mayans O. Activation of calcium/calmodulin regulated kinases. Cell Mol Biol

(Noisy-le-grand). 2000; 46(5):883–94. PMID: 10976872

26. Gardner HP, Ha SI, Reynolds C, Chodosh LA. The caM kinase, Pnck, is spatially and temporally regu-

lated during murine mammary gland development and may identify an epithelial cell subtype involved in

breast cancer. Cancer Res. 2000; 60(19):5571–7. PMID: 11034105

27. Gardner HP, Rajan JV, Ha SI, Copeland NG, Gilbert DJ, Jenkins NA, et al. Cloning, characterization,

and chromosomal localization of Pnck, a Ca(2+)/calmodulin-dependent protein kinase. Genomics.

2000; 63(2):279–88. https://doi.org/10.1006/geno.1999.6091 PMID: 10673339

28. Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, et al. Conformational analysis of the

DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem.

2015; 58(1):466–79. https://doi.org/10.1021/jm501603h PMID: 25478866

29. Modi V, Dunbrack RL. Kincore: a web resource for structural classification of protein kinases and their

inhibitors. Nucleic Acids Res. 2022; 50(D1):D654–D64. https://doi.org/10.1093/nar/gkab920 PMID:

34643709

30. Schurer SC, Muskal SM. Kinome-wide activity modeling from diverse public high-quality data sets. J

Chem Inf Model. 2013; 53(1):27–38. https://doi.org/10.1021/ci300403k PMID: 23259810

31. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity data-

base: an update. Nucleic Acids Res. 2014; 42(Database issue):D1083–90. https://doi.org/10.1093/nar/

gkt1031 PMID: 24214965

32. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for

rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem.

2004; 47(7):1739–49. https://doi.org/10.1021/jm0306430 PMID: 15027865

33. Jorgensen WL, Duffy EM. Prediction of drug solubility from structure. Adv Drug Deliv Rev. 2002; 54

(3):355–66. https://doi.org/10.1016/s0169-409x(02)00008-x PMID: 11922952

34. Haribabu B, Hook SS, Selbert MA, Goldstein EG, Tomhave ED, Edelman AM, et al. Human calcium-

calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphoryla-

tion at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. EMBO J. 1995; 14

(15):3679–86. https://doi.org/10.1002/j.1460-2075.1995.tb00037.x PMID: 7641687

PLOS COMPUTATIONAL BIOLOGY Chemical probe discovery for dark kinase, PNCK

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010263 May 26, 2023 24 / 25

https://doi.org/10.1002/prot.10613
http://www.ncbi.nlm.nih.gov/pubmed/15048827
https://doi.org/10.1038/nprot.2008.197
http://www.ncbi.nlm.nih.gov/pubmed/19131951
https://doi.org/10.1107/S0907444909042073
http://www.ncbi.nlm.nih.gov/pubmed/20057044
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1007/s10822-012-9584-8
http://www.ncbi.nlm.nih.gov/pubmed/22669221
https://doi.org/10.1038/srep16924
http://www.ncbi.nlm.nih.gov/pubmed/26596901
https://doi.org/10.1093/nar/gkw1099
http://www.ncbi.nlm.nih.gov/pubmed/27899622
https://doi.org/10.1093/nar/gkq313
https://doi.org/10.1093/nar/gkq313
http://www.ncbi.nlm.nih.gov/pubmed/20439314
https://doi.org/10.1002/pro.355
http://www.ncbi.nlm.nih.gov/pubmed/20135687
http://www.ncbi.nlm.nih.gov/pubmed/10976872
http://www.ncbi.nlm.nih.gov/pubmed/11034105
https://doi.org/10.1006/geno.1999.6091
http://www.ncbi.nlm.nih.gov/pubmed/10673339
https://doi.org/10.1021/jm501603h
http://www.ncbi.nlm.nih.gov/pubmed/25478866
https://doi.org/10.1093/nar/gkab920
http://www.ncbi.nlm.nih.gov/pubmed/34643709
https://doi.org/10.1021/ci300403k
http://www.ncbi.nlm.nih.gov/pubmed/23259810
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1093/nar/gkt1031
http://www.ncbi.nlm.nih.gov/pubmed/24214965
https://doi.org/10.1021/jm0306430
http://www.ncbi.nlm.nih.gov/pubmed/15027865
https://doi.org/10.1016/s0169-409x%2802%2900008-x
http://www.ncbi.nlm.nih.gov/pubmed/11922952
https://doi.org/10.1002/j.1460-2075.1995.tb00037.x
http://www.ncbi.nlm.nih.gov/pubmed/7641687
https://doi.org/10.1371/journal.pcbi.1010263


35. Deb TB, Zuo AH, Wang Y, Barndt RJ, Cheema AK, Sengupta S, et al. Pnck induces ligand-independent

EGFR degradation by probable perturbation of the Hsp90 chaperone complex. Am J Physiol Cell Phy-

siol. 2011; 300(5):C1139–54. https://doi.org/10.1152/ajpcell.00167.2010 PMID: 21325639

36. Grygorenko OO, Radchenko DS, Dziuba I, Chuprina A, Gubina KE, Moroz YS. Generating Multibillion

Chemical Space of Readily Accessible Screening Compounds. iScience. 2020; 23(11):101681. https://

doi.org/10.1016/j.isci.2020.101681 PMID: 33145486

37. Fromont C, Atzori A, Kaur D, Hashmi L, Greco G, Cabanillas A, et al. Discovery of Highly Selective

Inhibitors of Calmodulin-Dependent Kinases That Restore Insulin Sensitivity in the Diet-Induced Obe-

sity in Vivo Mouse Model. J Med Chem. 2020; 63(13):6784–801. https://doi.org/10.1021/acs.

jmedchem.9b01803 PMID: 32433887

PLOS COMPUTATIONAL BIOLOGY Chemical probe discovery for dark kinase, PNCK

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010263 May 26, 2023 25 / 25

https://doi.org/10.1152/ajpcell.00167.2010
http://www.ncbi.nlm.nih.gov/pubmed/21325639
https://doi.org/10.1016/j.isci.2020.101681
https://doi.org/10.1016/j.isci.2020.101681
http://www.ncbi.nlm.nih.gov/pubmed/33145486
https://doi.org/10.1021/acs.jmedchem.9b01803
https://doi.org/10.1021/acs.jmedchem.9b01803
http://www.ncbi.nlm.nih.gov/pubmed/32433887
https://doi.org/10.1371/journal.pcbi.1010263

