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Abstract

Several important aspects related to SARS-CoV-2 transmission are not well known due to a

lack of appropriate data. However, mathematical and computational tools can be used to

extract part of this information from the available data, like some hidden age-related charac-

teristics. In this paper, we present a method to investigate age-specific differences in trans-

mission parameters related to susceptibility to and infectiousness upon contracting SARS-

CoV-2 infection. More specifically, we use panel-based social contact data from diary-based

surveys conducted in Belgium combined with the next generation principle to infer the rela-

tive incidence and we compare this to real-life incidence data. Comparing these two allows

for the estimation of age-specific transmission parameters. Our analysis implies the suscep-

tibility in children to be around half of the susceptibility in adults, and even lower for very

young children (preschooler). However, the probability of adults and the elderly to contract

the infection is decreasing throughout the vaccination campaign, thereby modifying the pic-

ture over time.

Author summary

Basic transmission dynamic characteristics of SARS-CoV-2, such as the probability of

acquiring infection when exposed (“susceptibility”), and the probability of transmitting

infection when infected (“infectiousness”) may be age-dependent. We present a computa-

tional method to estimate these age-specific characteristics using Belgian social contact

and surveillance data. We found that children are less susceptible to infection than adults,

with the former experiencing 20% to 50% of the susceptibility in adults, while the infec-

tiousness is more difficult to discern. The force of infection (probability of acquiring
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infection per unit time) decreases over time for the oldest age groups first, following the

roll-out of the vaccination campaign which targeted the elderly first.

Introduction

Since the start of the COVID-19 pandemic, a new respiratory disease caused by the SARS-

CoV-2 coronavirus, many mathematical and statistical approaches have been considered to

identify transmission dynamics and characteristics of the virus. Some of those characteristics

are still not completely known due to the lack of appropriate data. However, these characteris-

tics are necessary in order to correctly inform public health policies as well as to develop more

advanced scientific tools like mathematical and computational models. Concerning COVID-

19, as for most infectious diseases, it quickly became apparent that some of the disease charac-

teristics are strongly age-dependent [1]. In particular, the susceptibility to SARS-CoV-2 infec-

tion as well as the infectiousness upon infection may be lower for children than for adults and

the elderly, as shown by many studies mostly based on statistical approaches on incidence data

[2–6]. Knowledge of such a difference could have an important impact on public health strate-

gies in terms of prioritization of vaccination or the choice of targeted non-pharmaceutical

interventions.

In this study, we propose a different method to estimate heterogeneous transmission

parameters related to relative susceptibility and infectiousness using derived information from

social contact data, and we illustrate this method using Belgian data. Social contact surveys [7]

coupled with the next generation principle [8, 9] have been used for years to estimate key epi-

demiological parameters such as the basic (and effective) reproduction number (i.e., the aver-

age number of new infections caused by a typical infected individual during their entire

infectious period in a (fully) susceptible population), relative incidence or differences in sus-

ceptibility [10]. The first large-scale social contact study, POLYMOD [11], collected social con-

tact patterns for eight European countries between May 2005 and September 2006. In 2020–

2021, social contact data has been collected in the so-called CoMix survey [12–15], initially in

the United Kingdom, The Netherlands and Belgium and afterwards extended to other Euro-

pean countries. Comix collected timely social contact information during the COVID-19

pandemic.

Social contact data can be used as a proxy to model SARS-CoV-2 transmission using the

so-called social contact hypothesis [16], which implies that the age-specific number of infec-

tious contacts is proportional to the self-reported age-specific number of social contacts by a

proportionality factor. This proportionality factor, often denoted by q, assumes that the proba-

bility of transmission is homogeneous across the different age classes. In the current paper, we

aim to disentangle and quantify the heterogeneous components of this proportionality factor

further [17], elucidating information on relative age-specific susceptibility and infectiousness.

Our approach is based on the method used by [10] to estimate susceptibility profiles for influ-

enza A/H1N1. However, we have refined the method to include a larger number of age catego-

ries and applied the methodology to SARS-CoV-2 transmission using a numerical approach.

These estimates could serve to inform heterogeneous COVID-19 mathematical models relying

on social contact data, such as e.g. mechanistic models [18–21]. Social contact data are also

used in [22, 23] to derive heterogeneous contributions to SARS-CoV-2 transmission using an

approach based on the reproduction number. We go one step further using an approach based

on the relative incidence derived from the next generation principle.
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More specifically, we use the CoMix social contact data combined with daily incidence data

on the number of new confirmed COVID-19 cases in Belgium over the period December 2020

to May 2021 to estimate the proportionality factor and its heterogeneous unmeasured compo-

nents. We disentangle potential sources of heterogeneity in the acquisition of SARS-CoV-2

infection especially focusing on the comparison between children (infant, primary and sec-

ondary school) and adults. We also estimate the time evolution of the transmission parameters

for different adult age classes throughout the vaccination campaign as carried out in Belgium

showing an evolution of the proportionality factors over time. Then we present an illustration

of the utility of heterogeneous proportionality factors by comparing the reproduction number

estimated from the CoMix social contact data to the ones estimated from incidence of cases

and hospitalizations, respectively.

Results

Estimation of susceptibility and infectiousness through proportionality

factors

The proportionality factor is assumed to be age-specific and denoted by qij where i and j belong

to some age classes. qij could be further split into heterogeneous components:

qij ¼ ~q ai hj;

where:

• The vector (ai) represents age-specific differences in factors influencing transmission which

are specifically related to the susceptibility of individuals, including, but not limited to, direct

(immunological) susceptibility to infection upon exposure (e.g., due to age-specific heteroge-

neous risk behavior and/or compliance to non-pharmaceutical interventions not already

captured by contact frequency, natural susceptibility from previous infection, differences in

vaccination status, etc.). In order to distinguish it from direct susceptibility to infection, this

vector will be referred to as q-susceptibility.

• The vector (hj) describes age-specific differences in factors influencing transmission which

are specifically related to the infectiousness of individuals, including, but not limited to,

infectiousness after acquiring infection (e.g., due to differences in viral load upon exposure,

proportion of asymptomatic individuals, differences in vaccination status, mask wearing,

etc.). In order to distinguish it from infectiousness upon infection, this vector will be referred

to as q-infectiousness.

• The remaining global proportionality factor ~q captures any remaining residual effect and is

of no relevance when considering relative q-susceptibility or q-infectivity.

In the remainder of this paper, we will talk about susceptibility or infectiousness when con-

sidering immunological aspects of disease transmission, while we will add the prefix q when-

ever quantities can carry additional effects related to susceptible and infectious individuals in

order to avoid any ambiguity.

If we denote by w = (wj) a vector representing the relative incidence within age class j (usu-

ally normalized such that ∑j wj = 1) and by MT a matrix containing the social contact data

(whose components mji represent the average daily number of individuals of age j who have a

contact with a single individual of age i), then we have the following system:

~q diagðaiÞM
TdiagðhjÞw ¼ Rt w;
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where Rt represents the reproduction number. The core matrix of this system, K ¼ ~q diagðaiÞ
MTdiagðhjÞ is called the next generation matrix and gives the number of new infections in a

successive generation. Details concerning the construction of this matrix and the next genera-

tion principle can be found in Section Materials and methods.

Using our method, we compare the social contact matrix MT extracted from the CoMix

social contact survey in Belgium [12] and its derived relative incidence w to the incidence

obtained from real-life data in Belgium coming from PCR positive tests [24]. This method

allows for an estimation of either the relative q-susceptibility (ai) or relative q-infectiousness

(hj) by age class, while assuming that the other set of parameters is known from the literature

(i.e., holding one of the two vectors fixed). The chosen age groups are [0, 6) years, [6, 12) years,

[12, 18) years, [18, 30) years and subsequent 10-year age classes up to 80+ years in order to

account for the Belgian educational system. Due to the method, obtained results only have a

relative interpretation, hence we present them under the assumption of a mean susceptibility

of one for the first adult class [18, 30). The period of observation goes from 22 December 2020

to 26 May 2021 (and to 15 June 2021 for confirmed cases data). A detailed description of con-

sidered data, literature assumptions, fitting procedure and normalization method is presented

in Section Materials and methods.

The estimated relative q-susceptibility for the whole period is presented in Fig 1 and implies

that very young children in age group [0, 6) are about 0.182 (95% percentile bootstrap-based

Fig 1. Estimated relative q-susceptibility. The estimation of q-susceptibility is performed by age class using the next generation principle under an

assumption on age-specific infectiousness (0.54, 0.55, 0.56, 0.59, 0.7, 0.76, 0.9, 0.99, 0.99, 0.99). The calibration is performed on CoMix waves 12 to 23

(observation period: 22 December 2020 to 15 June 2021). Dots represent means and bars represent 95% percentile (nonparametric) bootstrap-based

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009965.g001
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CI: 0.146–0.230) times as susceptible compared to the first adult age class [18, 30) with relative

susceptibility equal to 1 (95% CI: 0.829–1.252). Primary school students aged [6, 12) have a rel-

ative susceptibility of 0.550 (95% CI: 0.427–0.629) and secondary school students aged [12, 18)

a susceptibility of 0.603 (95% CI: 0.536–0.700). This shows an increasing q-susceptibility by

increasing age up to [18, 30) after which the relative q-susceptibility tends to decrease slightly.

Note, however, that this q-susceptibility captures not only differences in immunological sus-

ceptibility to infection and the rather low relative q-susceptibility in the [12, 18) age class could

therefore be influenced by (compliance to) non-pharmaceutical interventions, over and above

the age-specific contact frequencies.

The comparison of the relative incidence as estimated based on the positive PCR test data

and the CoMix social contact data is presented in Fig 2. The social contact data are presented

by waves starting with wave 12 on 22 December 2020 and an inter-survey wave interval of two

weeks for subsequent waves (cf. details in Table A of S1 Appendix). The nationally collected

data are represented in blue and the estimates coming from social contact data in two colors:

in green, the initial estimate with a homogeneous proportionality factor (i.e., with ai = 1 and

hj = 1 for all i, j) and in red, the estimate using heterogeneous q-susceptibility and infectious-

ness as presented in Fig 1. We clearly observe that estimates of the relative incidence under the

homogeneous proportionality factor assumption (green) are very different from the empirical

estimates (blue), especially for the young age groups. The relative incidence among adult age

classes is estimated relatively well up to a constant, but the relative incidence for children com-

ing from the homogeneous social contacts approach is clearly overestimated, except perhaps

during times of school closure (see, e.g., wave 19). This finding provides a clear indication

that SARS-CoV-2 transmission is different in children as compared to adults and that

Fig 2. Estimated relative incidence. In blue: relative incidence based on Belgian PCR data. In green: estimated relative incidence based on the next

generation principle under the assumption of a homogeneous proportionality factor. In red: estimated relative incidence based on the next generation

principle with an estimated age-specific q-susceptibility under the assumption on age-specific infectiousness as in Fig 1. Dots represent means and bars

represent 95% percentile (nonparametric) bootstrap-based confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009965.g002
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homogeneity assumptions should be avoided given that such assumptions could lead to erro-

neous projections.

The result of estimating the q-infectiousness for the whole period, is depicted in Fig 3. The

estimates also show a potential important heterogeneity concerning the proportionality factor

on the infectiousness side. However, this reverse exercise provides less accurate results, with

very large confidence intervals and some bootstrap estimates reaching zero, both being prob-

lematic when dealing with relative values. Those effects are the result of a lack of constraints

for q-infectiousness. Indeed, while it is impossible to reach zero susceptibility for a specific age

class when having at the same time non-zero incidence, it is technically allowed for age-specific

infectiousness to be zero as the observed incidence could result from transmission from other

age classes.

Exact estimates of the components of the q-susceptibility (ai) and q-infectiousness (hi) are

provided in Tables E and I of S1 Appendix. Additional estimates under the assumption of

homogeneity regarding infectiousness or susceptibility (i.e., estimating (ai) under hj = 1, 8j or

estimating (hj) under ai = 1, 8i) are also presented in Figs D and L of S1 Appendix together

with estimated values and the effect on the relative incidence. These additional estimates pro-

vide qualitatively similar results. Additional sensitivity analyses with regard to (hj) and (aj)
showed that the variation of q-susceptibility estimates under different assumptions is clearly

limited while sensitivity is greater concerning q-infectiousness estimates (see Figs B and C of

S1 Appendix).

Fig 3. Estimated relative q-infectiousness. The estimation of q-infectiousness is performed by age class using the next generation principle under an

assumption on age-specific susceptibility (0.4, 0.39, 0.38, 0.79, 0.86, 0.8, 0.82, 0.88, 0.74, 0.74). The calibration is performed on CoMix waves 12 to 23.

Dots represent means and bars represent 95% percentile (nonparametric) bootstrap-based confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009965.g003
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Time evolution of proportionality factors

Since proportionality factors capture several effects, they also capture time-dependent effects

such as the reduction in susceptibility and infectiousness as a result of the vaccination cam-

paign. In order to account for such a time evolution, we also performed the previous analysis

using groups of two consecutive CoMix waves instead of the full period. The decision to con-

sider two CoMix waves (28 days) together is motivated by the fact that a sufficiently long non-

holidays period is required as social contacts in children are of importance and the heterogene-

ity of the transmission concerning adult classes is partially constrained by infection reported

by children. Note that the gradual introduction of the alpha variant of concern might also

interfere.

Estimates of the time-dependent q-susceptibility relying on the same (time-invariant)

assumption with regard to the infectiousness vector are presented in Fig 4. A normalization of

the relative values was performed over the different waves such that the average of the esti-

mated factors for the age classes [0, 6), [6, 12) and [12, 18), i.e.
a1þa2þa3

3
, is assumed constant.

This choice is motivated by the fact that the vaccination campaign was not including children

during the entire study period, hence proportionality factors regarding susceptibility can be

expected to be more stable for these age classes (however still influenced by the evolution of

the proportion of susceptible individuals due to the ongoing epidemic). Thus, the results pro-

vide an estimate of the evolution of adults’ proportionality factors under an on average con-

stant assumption for children [0, 18). A second normalization (global scaling) is performed

Fig 4. Estimated relative q-susceptibility over time. The estimation of q-susceptibility is performed by age class and over time on groups of two

consecutive CoMix waves, corresponding to a period of 4 weeks, under an assumption on age-specific infectiousness (0.54, 0.55, 0.56, 0.59, 0.7, 0.76, 0.9,

0.99, 0.99, 0.99). Dots represent means and bars represent 95% percentile (nonparametric) bootstrap-based confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009965.g004
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under the assumption of a mean susceptibility of one for the first adult class [18, 30) for

wave 12.

As indicated previously concerning the estimation during the complete time-period, a

decreasing q-susceptibility is observed through adult age classes (see Fig 1), with the oldest age

class (80+) being the least susceptible among all adults aged 18 years or older. This is a priori in

contrast with usual assumptions regarding age-specific susceptibility to SARS-CoV-2 infection.

However, in Fig 4, we clearly observe the highest relative q-susceptibility in the 80+ age class for

the earliest waves as compared to all other age groups, or at least an equal q-susceptibility by

considering the lower side of the confidence interval. Moreover, the q-susceptibility in the oldest

age class decreases rapidly over time towards the lowest relative q-susceptibility equal to 0.446

(95% CI: 0.266–0.660) among the adult age groups. In general, the estimated q-susceptibility is

almost similar across the different adult classes during the first period with the exception of the

oldest class 80+ with an estimated relative q-susceptibility of 1.844 (95% CI: 0.920–3.127). Over-

all, q-susceptibility estimates of other age classes tend to decrease over time, albeit at a slower

pace and to a lesser extent. This is in line with the implementation of the vaccination policy in

Belgium, giving vaccination priority to residents of nursing homes (CoMix waves 13–16, see

schematic timeline in Fig A of S1 Appendix) and the elderly in the general population (CoMix

waves 18–21), while going gradually down from old to young throughout the study period.

Exact values of the estimates in Fig 4 are provided in Table F of S1 Appendix as well as

time-dependent q-susceptibility and q-infectiousness under the various constraints mentioned

above.

Time evolution of Rt using contact patterns

In order to check the utility and validity of the use of a heterogeneous proportionality factor,

we illustrate its application by determining the reproduction number Rt, or more specifically

the variation of the reproduction number over time, and comparing this evolution with Rt

directly estimated from confirmed cases/hospitalizations data.

In Fig 5, the variation of the reproduction number computed from the CoMix data is com-

pared to the reproduction number computed either from the number of cases [25] (panel a) or

Fig 5. Temporal reproduction number. Reproduction number estimated from the CoMix data using the next generation approach in comparison to

the reproduction number estimated from the number of confirmed cases (a) and from the number of hospitalizations (b). In green: estimated Rt under

the assumption of a homogeneous proportionality factor. In red: estimated Rt with the estimated age-specific q-susceptibility under the assumption on

age-specific infectiousness as in Figs 1 and 2. In blue: estimated Rt with the estimated temporal and age-specific q-susceptibility under the assumption

on age-specific infectiousness as in Fig 4. Dots represent means and bars represent 95% percentile (nonparametric) bootstrap-based confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1009965.g005
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from hospitalizations [24] (panel b). Clearly, specific choices of q-susceptibility and q-infec-

tiousness affect the computation and in Fig 5 we report results for the homogeneity scenario,

heterogeneity scenario (corresponding to Fig 1) and temporal heterogeneity scenario (corre-

sponding to Fig 4). A homogeneity assumption for q-infectiousness and q-susceptibility leads

to a poor agreement with the reproduction number estimated from both confirmed cases and

hospitalizations and is also characterized by a larger uncertainty. The use of the estimated het-

erogeneous reproduction factor agrees more with reality, with the use of temporal values is not

leading to a substantial improvement.

Discussion

We have demonstrated in this paper that social contact data can be used to inform transmis-

sion parameters and to estimate age-specific characteristics of SARS-CoV-2 transmission.

More specifically, the next generation approach enables us to disentangle age-specific differ-

ences in transmission rates while relying on temporal changes in social contact behavior mea-

sured using consecutive waves of a social contact panel study. Clearly, SARS-CoV-2

transmission is partly influenced by age-specific differences in contact behavior, but impor-

tantly, additional age-specific factors related to susceptibility and infectiousness, in a broad

sense, are necessary to account for. We have shown that such factors imply a smaller suscepti-

bility for children as compared to adults, with the estimated susceptibility in children being

around half of the susceptibility in adults, and even less for very young children (Fig 1). This

result is in accordance with results obtained using CoMix social contact data in England but

using a calibration on the reproduction number instead of the next generation approach [22]

as well as in accordance with results obtained from more standard statistical methods [3–6].

With respect to that, we assessed the impact of assuming homogeneous transmission parame-

ters on the reproduction number, showing how (age-)heterogeneous parameters are necessary

to correctly align the reproduction number from the CoMix data and the reproduction num-

ber estimated from infections or hospitalizations. Moreover, our method is able to estimate

temporal transmission parameters and it shows a gradual decrease in susceptibility of adults in

line with the progression of the Belgian vaccination campaign (Fig 4). This decrease implies a

progressive change in the dynamics of the epidemic with largely unvaccinated childhood age

groups gradually becoming more important drivers of SARS-CoV-2 transmission than pre-

dominantly vaccinated adult age groups.

However, our method suffers from several limitations. A potential bias which needs to be

acknowledged is the use of PCR data which correspond to the observed relative incidence and

do not necessarily correspond to the true relative incidence as each age class is not necessarily

tested in the same way, even if we discard periods of strong variation in testing policy. Indeed,

even in the absence of a change in testing policy (cf. Table B of S1 Appendix), age-specific dif-

ferences in symptomatology, disease severity and the probability of developing symptoms

upon infection lead to different shares of symptomatic and asymptomatic cases to be detected.

Other approaches have also been investigated, for example using serological survey data

instead of PCR data, but this was not successful on Belgian data given the limited amount of

data and the poor synchronization between CoMix and serological survey periods. Moreover,

using serological data requires addressing the difficulty of waning humoral immunity against

SARS-CoV-2 infection. Despite the fact that we can infer q-susceptibility and q-infectiousness

from the observed PCR test data, we cannot further disentangle both components by estimat-

ing the aforementioned quantities simultaneously. By comparing the two separate approaches,

the estimation of the relative q-susceptibility seems most informative, since proportionality

factors are better constrained by the data (cf. also sensitivity analysis in Figs B and C of S1
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Appendix). More specifically, the estimated q-susceptibility was identifiable when fitting to

reported incidence data while q-infectiousness estimates were estimated to be zero for certain

age classes, which seems an artifact of the methodology (which could potentially be solved

by using external constraints on q-infectiousness to avoid reaching unrealistic low values of

transmission). Another limitation of the proposed method is that a further decomposition of

q-susceptibility (or q-infectiousness) in immunological susceptibility (infectiousness) and

other external factors relevant for transmission between susceptible and infectious persons is

difficult, at least without availability of relevant additional data thereon. Nonetheless, an assess-

ment and quantification of the (relative) q-susceptibility, q-infectiousness and the correspond-

ing relative incidence provides useful insights into heterogeneous SARS-CoV-2 transmission

dynamics.

Materials and methods

Social contact data

Our study is based on Belgian social contact data collected within the CoMix survey [12, 13]

during the COVID-pandemic between December 2020 and May 2021. These data are stored,

processed and stratified by age by means of the online Socrates tool [13, 26, 27]. Participants

were asked to fill in a contact dairy including all contacts made during a specific day, reporting

the type of contact, location, and age of the contacted person, with a contact defined as an in-

person conversation of at least a few words, or a skin-to-skin contact. The CoMix survey was

repeatedly performed in different waves and different survey periods. More specifically, an ini-

tial survey period containing 8 waves was carried out between 4 March 2020 and 27 July 2020

targeting adults only. A second survey period, still ongoing in 2021, began on 11 November

2020 targeting participants of all ages. The waves are conducted with an interval of two weeks

(14 days). For more detailed information on the CoMix survey and the stratification process,

the reader is referred to [12, 13]. A detailed timetable of the CoMix waves and survey periods

is presented in Table A of S1 Appendix. A schematic timeline of CoMix waves according to

the evolution of the alpha variant of concern and vaccination campaign in Belgium is pre-

sented in Fig A of S1 Appendix.

We use the following notation. Ni denotes the number of individuals in the Belgian popula-

tion of age i according to Belgian demographic data [28] and integrated into the Socrates tool

[27]. In general, we use subscripts i as an index for the participant’s age, and j as an index for

the contacted person’s age. The following observable quantities (dependent on the wave cho-

sen) can be extracted from the survey:

• mij represents the average daily number of individuals of age j who are contacted by a partici-

pant of age i. The elements mij constitute a matrix M called social contact matrix.

• cij is the per capita contact rate per day for participants of age i with persons of age j in the

population. The elements cij constitute a matrix C called the contact rate matrix. This matrix

is related to the social contact matrix by the relation cij = mij/Nj.

In theory, due to the reciprocal nature of contacts, the total number of contacts between

members of two age classes, as reported by participants in each of the age groups, must be

equal, hence Nimij = NicijNj = NjcjiNi = Njmji, which is equivalent to the condition that the con-

tact rate matrix should be symmetric, i.e., cij = cji, 8i, j. The social contact matrix M respects

the relation Nimij = Njmji, but is in general not symmetric due to differences in Ni and Nj. In

practice, the observed total number of contacts Nimraw
ij and Njmraw

ji are not necessarily equal
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due to sampling bias, hence, we calculate the reciprocal social contact matrix by:

mij ¼
mraw

ij Ni þmraw
ji Nj

2Ni
�

All these notations and definitions are similar to those described in detail in [29], except

that the subscripts i and j and order of indices are inverted here such that the definition of the

social contact matrix M corresponds to the default output of the Socrates tool [27].

Next generation principle

The social contact hypothesis [16] implies that the age-specific number of infectious contacts is

proportional to the self-reported age-specific number of social contacts. There are two ways to

interpret empirical social contact survey data in light of this hypothesis: either survey partici-

pants can be infected by their infectious contacts or participants can infect their susceptible

contacts. Here, we consider the first interpretation as initial definition—since the CoMix sur-

vey did not specifically target infected persons, and symptomatic participants may have been

less likely to participate in the survey. However, we will show that the two interpretations lead

to the same mathematical result under the assumption of reciprocity of social contacts.

If we denote by wj the incidence within age class j over a short observation interval (e.g. cor-

responding to a wave period), then vj = wj/Nj is the risk of being infected during the observa-

tion interval for that age class (incidence rate or force of infection). The new generation of

infected people is given by:

w0i ¼
X

j

q Ni mij vj ¼
X

j

q mij
Ni

Nj
wj;

where q is a general proportionality factor completely defining the relationship between infec-

tion and contact events. The q-factor accommodates several effects such as susceptibility to

infection, infectiousness upon infection, duration of the infectious period, type and effective-

ness of contacts, seasonality, pre-existing natural and vaccine-induced immunity, etc.

The elements kij ¼ q mij
Ni
Nj
¼ qNicij define a matrix K called the next generation matrix (or

reproduction matrix) since kij represents the mean number of individuals of age i that are

infected through a single individual of age j during their entire infectious period (for which the

time between consecutive generations of infected individuals is chosen to be equal to the aver-

age duration of infectiousness).

Note that under the reciprocity assumption leading to a symmetric matrix C, the relation

Nimij = Njmji provides:

kij ¼ q mij
Ni

Nj
¼ q mji or K ¼ qMT;

corresponding to the second interpretation that survey participants (on the right side of the

transpose contact matrix MT) can directly infect their contacts (now on the left side) modulo

the proportionality factor. This expression relying on the transpose of the social contact matrix

obtained as a direct output of the Socrates tool, M, is chosen because of its better numerical

stability.

The recurrence relation of the next generation matrix K:

w00 ¼ Kw0 ¼ K2 w; w000 ¼ K3 w; � � �
tends to a stable distribution due to the Perron–Frobenius theorem [30], i.e.,

Rt w
� ¼ Kw� ¼ qMT w�;
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with Rt corresponding to the reproduction number of SARS-CoV-2 [31] which is defined as

the leading eigenvalue of the next generation matrix K. More specifically, estimation of the

reproduction number Rt and the relative incidence w can be done by computing the leading

eigenvalue and corresponding right-eigenvector of K. However, Rt depends on the proportion-

ality factor q, which might be unknown, but the relative incidence w is independent of q and

can therefore be directly extracted from the social contact data MT. The reproduction number

is initially the basic reproduction number R0, but switches to the effective reproduction num-

ber as long as social contact data evolve and the proportionality factor q captures the depletion

of susceptible. We emphasize here that the eigenvector w is only recovered up to a global con-

stant and therefore individual components wj have no meaning. What can be interpreted are

relative ratios such as wi/wj, providing an estimate of the relative incidence in age class i as

compared to the incidence in age class j. This vector is usually normalized such that ∑i wi = 1.

In the same way, the incidence rate vi can be recovered, in relative sense, as the leading left-

eigenvector of MT.

The switch from a homogeneous proportionality factor q to a heterogeneous qij is per-

formed by assuming:

qij ¼ ~q ai hj

where the vector (ai) acts on the susceptible side, the vector (hj) acts on the infectiousness side,

and ~q is a remaining global proportionality factor captures any residual effect. This remaining

factor has no influence on the computation of the relative incidence w. However, due to the

presence of ~q, the vectors (ai) and (hj) only have a relative interpretation.

The heterogeneous next generation matrix is defined as:

kij ¼ ~q ai mij
Ni

Nj
hj or K ¼ ~q diag aið ÞM

Tdiag hj

� �
:

We note that we are working here with a next generation matrix with small domain. There

also exists a next generation matrix with large domain taking explicitly into account the differ-

ent states of the disease and their duration for each age class [8]. However, the small domain

approach is appropriate here since we do not work with a dynamical system and heterogeneity

in disease duration is part of the effects captured by the proportionality factors.

Estimating relative q-susceptibility (ai) and q-infectiousness (hj) from

COVID-19 age-structured indicators

The vectors (ai) and (hj) have an important impact on the determination of the leading right

eigenvector in the system:

Kw� ¼ ~q diagðaiÞM
TdiagðhjÞw

� ¼ Rt w
�:

The obtained relative incidence w� can be compared with the normalized relative incidence ~w
estimated from the observed incidence data in Belgium. Using this approach, we are able to

determine q-susceptibility and q-infectiousness corresponding to SARS-CoV-2 transmission

in Belgium. However, (ai) and (hj) vectors cannot be estimated simultaneously in a unique

way from this process since there remains an indeterminacy [10, 17]. Nevertheless, the iden-

tifiability problem can be solved by imposing a constraint on one of the two vectors.

For this study, we choose each time a heterogeneous constraint coming from the literature

as well as a homogeneous constraint (whose results are only presented in S1 Appendix). The

heterogeneous constraints are defined from the following assumptions:
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• For the assumption on infectiousness hj (estimation of q-susceptibility parameters ai): We

consider the probability of an asymptomatic COVID-19 infection in case of SARS-CoV-2

exposure in the Belgian population to be

p ¼ ð0:94; 0:92; 0:90; 0:84; 0:61; 0:49; 0:21; 0:02; 0:02; 0:02Þ

as assumed in [19] using data from [2]. Assuming that the relative infectiousness of asymp-

tomatic versus symptomatic individuals is 0.51 [19], we obtain the following constraint:

ðhjÞ ¼ 0:51pþ 1ð1 � pÞ ¼ ð0:54; 0:55; 0:56; 0:59; 0:7; 0:76; 0:9; 0:99; 0:99; 0:99Þ:

• For the assumption on susceptibility ai (estimation of q-infectiousness parameters hj): The

assumption is taken from [1]:

ðaiÞ ¼ ð0:4; 0:39; 0:38; 0:79; 0:86; 0:8; 0:82; 0:88; 0:74; 0:74Þ:

Data and fitting procedure

We use Belgian data on daily incidence of COVID-19 confirmed by means of a positive PCR

test, as provided by the Belgian Institute for Public Health, Sciensano [24]. In order to reduce

testing biases, the period of study is restricted to a period with almost constant testing policy

(mandatory testing for both symptomatic cases and asymptomatic close contacts or red zone

travelers) and before biases are induced by the introduction of the EU Digital COVID Certifi-

cate, see [32] or Table A of S1 Appendix) for a summary). Since there is a delay between a

change in social contact behavior and its effect on the relative incidence, we consider PCR test

results for the period starting 7 days after the onset of a specific CoMix wave and lasting for 14

days thereafter.

Concerning social contact data, the initial CoMix survey waves (1 to 8) are discarded due to

a variable testing policy and lack of information regarding child-child contacts. The three sub-

sequent waves (9 to 11) are also discarded since, despite the introduction of measuring child-

child contacts, the information was collected using a different survey formulation. CoMix

waves 12 to 23 correspond to a period with constant testing policy, an identical survey design

as well as without vaccination in children, which implies that the results with regard to age

classes [0–6), [6–12) and [12–18) years are expected to be more stable. The start of wave 12

corresponds to 22 December 2020 when the vaccination campaign in adults has not been

started and the last wave considered corresponds to 26 May 2021, with PCR tests considered

up to 15 June 2021 (thus when vaccination of the oldest individuals in the Belgian population

was nearly completed).

The estimation of the parameters ai or hi is performed using the statistical software package

R. A minimum-distance estimation is performed using the Hellinger distance [33] (which is

suitable for distributions) between relative incidences w� and ~w. The optimization is done by

means of a random search numerical method [34], starting from an initial homogeneous prior

(ai = 1 or hi = 1, 8i = 1. . .10). The process uses a Gaussian random walk with steps of length

N ð0; 0:0052Þ
10

which are performed until no change in the distance is observed during 100

consecutive iterations. The sensitivity analysis is provided by repeating the process over 200

nonparametric bootstrap runs using the previous posterior as new prior. Uncertainty is quan-

tified using means and 95% percentile confidence intervals (i.e., 2.5% and 97.5% quantiles of

all bootstrap-based estimates).

Since q-susceptibility and q-infectiousness vectors represent relative values, a normalization

process should be chosen for the representation of the results. We choose here the following

(two-step) normalization process:
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• The average
a1þa2þa3

3
or

h1þh2þh3

3
of the estimated factors for the age classes [0,6), [6,12) and

[12,18) (children, no subject to vaccination during the complete period) is assumed to be

constant across all bootstrap runs and wave groups if applicable (i.e. all combinations of two

CoMix waves).

• The mean a4 or h4 (across the bootstrap runs) for the first adult age class [18, 30) is set to one.

This constraint is chosen because we mainly want to compare susceptibility and infectious-

ness of children versus adults while the age class [18, 30) is one of the most stable ones in the

bootstrapping process. Note that this second normalization step is only a global scaling, thus

conserving the confidence interval around one for the age class [18, 30).

Rt evolution from contact patterns

Via the next generation approach, the ratio of the eigenvalues of two next generation matrices

can be used to evaluate the relative reduction in the reproduction number. This can be done to

compare the temporal reproduction number derived from the CoMix survey with indepen-

dent evaluations of the reproduction number. We use as comparison the Rt computed from

the daily number of cases [25] and the daily number of hospitalizations [24]. In order to

account for the time delays associated with infections and hospitalizations (e.g. time to develop

symptoms, time to hospitalizations, etc.), the reproduction number computed from the

CoMix social contact data was shifted forward in time. A time shift of 7 (14) days is considered

when comparing Rt estimates with the reproduction number computed from the number of

confirmed cases (respectively hospitalizations). These time shifts are chosen in order to take

account of a mean delay between infection and (symptomatic) testing as well as an additional

delay between symptom onset and hospitalization [35]. As the reproduction number is known

up to the overall constant ~q, we fix the reproduction number for CoMix wave 12 to be equal to

the reproduction number computed from infections or hospitalizations. Uncertainty due to

sampling variability is estimated via 10000 nonparametric bootstraps.

Supporting information

S1 Appendix. Supplementary material. Presentation of the complete results with all figures

and tables containing values. Table A: Timetable of CoMix starting dates. Fig A. Schematic

timeline of CoMix waves. Table B: Timetable of Belgian testing policy. Figs. B and C. Sensitiv-

ity analysis of the method under different assumptions. Figs. D to S: Estimates of relative pro-

portionality factors and corresponding relative incidence under different assumptions.
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