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Abstract

Tick paralysis resulting from bites from Ixodes holocyclus and I. cornuatus is one of the lead-

ing causes of emergency veterinary admissions for companion animals in Australia, often

resulting in death if left untreated. Availability of timely information on periods of increased

risk can help modulate behaviors that reduce exposures to ticks and improve awareness of

owners for the need of lifesaving preventative ectoparasite treatment. Improved awareness

of clinicians and pet owners about temporal changes in tick paralysis risk can be assisted by

ecological forecasting frameworks that integrate environmental information into statistical

time series models. Using an 11-year time series of tick paralysis cases from veterinary clin-

ics in one of Australia’s hotspots for the paralysis tick Ixodes holocyclus, we asked whether

an ensemble model could accurately forecast clinical caseloads over near-term horizons.

We fit a series of statistical time series (ARIMA, GARCH) and generative models (Prophet,

Generalised Additive Model) using environmental variables as predictors, and then com-

bined forecasts into a weighted ensemble to minimise prediction interval error. Our results

indicate that variables related to temperature anomalies, levels of vegetation moisture and

the Southern Oscillation Index can be useful for predicting tick paralysis admissions. Our

model forecasted tick paralysis cases with exceptional accuracy while preserving epidemio-

logical interpretability, outperforming a field-leading benchmark Exponential Smoothing

model by reducing both point and prediction interval errors. Using online particle filtering to

assimilate new observations and adjust forecast distributions when new data became avail-

able, our model adapted to changing temporal conditions and provided further reduced fore-

cast errors. We expect our model pipeline to act as a platform for developing early warning

systems that can notify clinicians and pet owners about heightened risks of environmentally

driven veterinary conditions.
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Author summary

Tick-borne illnesses constitute a diverse group of debilitating conditions for pet dogs and

cats around the world. In Australia, thousands of domestic dogs are admitted to emer-

gency veterinary clinics due to tick paralysis each year. These admissions are highly sea-

sonal and may be associated with changing environmental conditions, suggesting models

that learn from environmental patterns to forecast the oncoming tick season could inform

pet owners and clinicians about changing risks. In this paper we use a series of statistical

forecasting models to analyse and predict tick paralysis admissions to veterinary clinics in

a tick paralysis hotspot in Queensland, Australia. Our approach is novel in that we com-

bine individual models into a superior ensemble that is trained to reduce forecast uncer-

tainty, giving more accurate estimates of what the coming tick season will look like. Our

model consistently outperforms a field-leading benchmark while uncovering important

patterns about environmental drivers of paralysis tick exposure, including changes to lev-

els of moist vegetation and maximum temperature. We also demonstrate how our model

can be used to automatically produce forecasts of tick paralysis admissions as new data

become available. This can have important implications for designing improved early

warning systems for tick-borne illness.

Introduction

Tick paralysis, caused by neurotoxins in the saliva of ixodid hard ticks (Family Ixodidae;

Genus Ixodes), is a life-threatening vector-borne disease affecting a range of vertebrates includ-

ing humans [1,2]. Dogs and cats are the most vulnerable and frequently parasitized domestic

host species, with paralysis tick envenomation in these animals requiring immediate veterinary

medical attention [3,4]. Symptoms of tick paralysis include loss of appetite, poor mobility, lack

of coordination and severe respiratory problems [5]. The condition is often fatal if untreated.

Prevention of paralysis tick bites relies on prophylactic acaricide drugs, equating to millions of

dollars spent by pet owners each year [6]. Reducing exposures to ticks is crucial to limit enven-

omation risk. This need is heightened by evidence that paralysis ticks can cause severe allergic

conditions in domestic animals and humans and can act as vectors for a suite of zoonotic path-

ogens (including Rickettsia, Orienta, Bartonella and Babesia species; [7,8]).

In Australia, paralysis caused by bites from Ixodes holocyclus and I. cornuatus is a leading

cause of emergency admissions for dogs, with tens of thousands of cases admitted each year

[9,10]. Both tick species are distributed along Australia’s east coast and are associated with wet

and humid habitats [11], though I. holocyclus is more widespread and more commonly impli-

cated in tick paralysis cases [8]. Paralysis tick distributions coincide with some of Australia’s

most populous urban centers, placing millions of pets at risk of tick paralysis each year. Despite

recent advances in veterinary emergency care and widespread use of preventative treatments

[10], avoidance of tick-prone areas during periods of heightened risk remains a key control

measure. Ecological studies have provided vital information on the life histories, distributions

and habitat preferences of Ixodes ticks in Australia [12–14]. Environmental measurements

such as temperature, vegetation structure or relative moisture can lead to better predictive

capacity and help uncover new insights into the epidemiology of vector-borne illnesses [15].

Modelling frameworks that combine this information with clinical data to forecast tick paraly-

sis burdens are now needed to improve awareness about changes in risk.

Identifying ways to improve forecasts of vector-borne conditions is necessary to bolster

awareness, manage resources and understand risk [16–18]. Because disentangling the
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processes that drives variation in a time series is often challenging, combining multiple fore-

casts can “hedge against the risk of selecting a mis-specified model” [19]. Studies from diverse

fields have shown that combining forecasts into weighted ensembles improves prediction [20–

25]. It is reasonable to assume that tick paralysis admissions are amenable to ensembles as

some aspects of clinical admissions should be highly predictable by simple forecast models

(e.g. strong seasonality in tick feeding patterns) while others call for models that learn from

key environmental covariates (e.g. associations with climate and vegetation conditions, depen-

dence on host population fluctuations). But selecting weights for combining forecasts into

ensembles is difficult. Machine learning approaches that treat the combination as a minimiza-

tion problem can overcome this hurdle, albeit at the potential cost of reduced interpretability

[19]. Bridging the gap between near-term prediction and paralysis tick prevention requires

studies that build ecologically relevant models and explore how their uncertainties can be

reduced to make forecasts more useful and interpretable.

This study aimed to develop and test a tick paralysis ensemble forecasting model which

integrates information from high-resolution environmental measurements to address the

need for improved prediction of paralysis tick burdens in domestic dogs. Our methodology

provides a framework for automated building and updating of forecast distributions that can

be adapted to a range of important veterinary vector-borne diseases of public health

importance.

Materials and methods

Ethical statement

Ethical clearance for use of these data was provided by the University of Queensland Human

Ethics Research Office (approval 2018000514).

Data on canine tick paralysis cases

Clinical records of paralysis tick cases in domestic pets were sourced from participating Green-

cross Veterinary clinics in the Sunshine Coast Local Government Area, Queensland, Australia

(Fig 1). The Sunshine Coast has one of Australia’s highest rates of domestic animal tick paraly-

sis, primarily due to its warm and wet subtropical climate and its high cover of moist shrub-

land vegetation [14]. We abstracted domestic animal tick paralysis cases from all five clinics

for the period 2007–2017, inclusive. Abstraction was performed by prioritizing cases that were

either confirmed or probable tick paralysis using a search strategy that examined patient histo-

ries, diagnoses and treatments for common variations of the following terms: “paralysis“,

“ataxia“, “paresis“, “uncoordination“, “incoordination“, “tick“, “Ixodes“, “anti serum“, “antise-

rum“, “anti-serum“, “TAS”. This strategy returned a total of 766 records of domestic animal

tick paralysis cases (77% were dogs). Some records were duplicates, which included animals

admitted multiple times within a short period. After removing duplicates, we retained 520

cases. Inspection of 100 randomly chosen records identified 80 confirmed (tick and/or tick

crater found, treated with tick antiserum), 15 probable (suspected paralysis but no tick or cra-

ter found, treated with tick antiserum) and five improbable records (e.g. vaccination, discussed

preventative treatment for tick paralysis). To allow for automated updating of record retrieval

for future forecasts, we retained all records and assumed our identification procedure had

~95% specificity.

Paralysis tick cases were binned into temporal periods to provide adequate sample sizes for

model cross-validation while still capturing the strong seasonality in admissions. To ensure

temporal units could be directly compared across years, we binned the data into half-months

(referred to as ‘fortnights’ herein) by splitting each calendar month into two evenly sized
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temporal periods (periodicity = 24). We used seasonal-trend decomposition based on Loess

smoothing (STL; [26]) to decompose the series into seasonal, trend and remainder compo-

nents (Fig 2). In an STL decomposition, the seasonal component is calculated by applying

Fig 1. Location of the study area. a) Location of the Sunshine Coast study area (blue coloured polygon) within the

approximate distribution of the paralysis tick Ixodes holocyclus in Queensland, Australia (yellow coloured region). The

approximate distribution is the output of a species distribution model trained on open access occurrence records

(Atlas of Living Australia, Global Biodiversity Information Facility) and is used here for illustrative purposes only. b)

Locations of participating veterinary clinics (cross symbols) within the Sunshine Coast. Colours represent human

population density as of 2018. The Queensland state polygon was accessed from the Australian Bureau of Statistics at

https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/

access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip.

https://doi.org/10.1371/journal.pcbi.1009874.g001

Fig 2. Seasonal-trend decomposition based on Loess smoothing of paralysis tick admissions. The raw time series

(shown in the data panel at the top) was decomposed into trend, seasonality and remainder components. Our unit of

analysis for two prediction models (ARIMAseasadj and GARCHseasadj) was the seasonally adjusted series, taken as the

sum of the trend and remainder. Remaining models used either the raw count data (GAMraw) or a log(x+1)
transformation of the raw data as the outcome (Prophetraw, and ETSraw). Bars in panels represent relative differences in

y-axis scales.

https://doi.org/10.1371/journal.pcbi.1009874.g002

PLOS COMPUTATIONAL BIOLOGY Near-term forecasting of tick paralysis admissions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009874 February 16, 2022 4 / 20

https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip
https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip
https://doi.org/10.1371/journal.pcbi.1009874.g001
https://doi.org/10.1371/journal.pcbi.1009874.g002
https://doi.org/10.1371/journal.pcbi.1009874


Loess smoothing to the seasonal sub-series, which in our case meant smoothing over the 24

fortnights. After seasonality was removed, the non-seasonal component was Loess smoothed

to find the trend, which represents the long-term progression of the series. The remainder

component is the residuals from the seasonal plus trend fit. Because our data demonstrated

consistent seasonality (Fig 2) that violates stationarity assumptions required by some time

series models, we fit some of our prediction models to the seasonally adjusted series (the sum

of the trend and the remainder components in Fig 2). A Dickey-Fuller test for whether the sea-

sonally adjusted series had a unit root (i.e. testing against the hypothesis that a series is not sta-

tionary) confirmed stationarity (t = -3.60, p = 0.04). The seasonally adjusted series was

therefore deemed appropriate for models such as the ARIMA and GARCH when attempting

to identify predictors of tick cases that were above or below the seasonal average.

Predictor variables

The distributions and activity levels of paralysis ticks are known to respond to local climate

and environmental conditions [11,27,28]. We extracted remote-sensed measurements for nine

variables that reflect variation in climate, vegetation, moisture and landcover, all of which can

impact paralysis tick ecology. Included variables were maximum temperature, minimum tem-

perature, evapotranspiration, total rainfall, the Normalized Difference Vegetation Index

(NDVI) and the proportions of the study area classified as shrubland or forest (sources, spatial

and temporal resolutions of predictors shown in Table 1). As paralysis ticks are hypothesized

to achieve high densities and increased activity in moist shrub habitats [11,29], we calculated a

‘moist vegetation’ variable to reflect increasing levels of moisture (more rainfall, less evapo-

transpiration) and the relative covers of shrub and forest:

moist vegetation ¼ rainfall � ð� 1 � evapotranspirationÞ � ðshrub cover þ forest coverÞ

Table 1. Sources, spatial and temporal resolutions of covariates used to calculate predictors.

Variable (unit) Source Spatial

resolution

Temporal

resolution

Maximum temperature (˚C) Queensland Long Paddock SILO database of

Australian climate data1
5km Daily

Minimum temperature (˚C) Queensland Long Paddock SILO database of

Australian climate data1
5km Daily

Total rainfall (˚C) Queensland Long Paddock SILO database of

Australian climate data1
5km Daily

Evapotranspiration (ETo) Queensland Long Paddock SILO database of

Australian climate data1
5km Daily

Southern Oscillation Index (SOI; unitless) Queensland Long Paddock database of Southern

Oscillation Index data2
Global Daily

Normalized Difference Vegetation Index (NDVI; unitless) Australian Bureau of Meteorology3 27km Monthly

Proportional cover of shrubland (landcover categories 120, 121, 122; %) The European Union’s Earth Observation

Programme4
300m Yearly

Proportional cover of open or dense forest (landcover categories 40, 50, 60,

61, 62, 71, 72, 80, 81, 82, 90; %)

The European Union’s Earth Observation

Programme4
300m Yearly

1 Accessed at: https://www.longpaddock.qld.gov.au/silo/ [31,32]
2 Accessed at: https://www.longpaddock.qld.gov.au/soi/soi-data-files/ [32]
3 Accessed at: http://www.bom.gov.au/climate/austmaps/about-ndvi-maps.shtml
4 Derived from global landcover maps: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview

https://doi.org/10.1371/journal.pcbi.1009874.t001
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We used an Australian Statistical Area Level 2 shapefile obtained from the Australian

Bureau of Statistics (https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.

001July%202016?OpenDocument) to extract raster variables for the Sunshine Coast. For all

environmental rasters, we first calculated average values for the entire Sunshine Coast study

area. We then calculated quarterly (3-month periods: Jan–March, April–June, July–Sep and

Oct–Dec) anomalies (referred to herein as variableQ-anomaly) as additional predictors to

describe how conditions compared to long-term averages for that same period. To capture

remaining variability in rainfall, we included fortnightly averages of the Southern Oscillation

Index (SOI), an index representing differences in barometric pressures over Tahiti and Dar-

win, Australia [30]. The SOI is commonly used to assess the strength of the El Niño Southern

Oscillation, a major climate force that accounts for nearly 25% of Queensland’s annual rainfall

variability and is suggested to be a useful indicator of vector-borne disease infection [17].

Our full set of predictor variables was: moist vegetation, moist vegetationQ-anomaly, maxi-

mum temperature, maximum temperatureQ-anomaly, minimum temperature, minimum tem-

peratureQ-anomaly, NDVI, NDVIQ-anomaly and SOI. All predictors were aggregated as

fortnightly means across the Sunshine Coast study area. Pairwise collinearities revealed strong

positive correlations (Pearson correlation > 0.70) between minimum temperature and maxi-

mum temperature, and between NDVI and NDVIQ-anomaly. We therefore removed minimum

temperature and NDVI from the candidate set. Lags of remaining predictors were generated

to span between 1–6 fortnights (2–12 weeks) to prioritize forecasts at horizons that would

allow practitioners time to make informed decisions. For each predictor, we selected the lag

that showed the strongest cross-correlation with the seasonally adjusted series for inclusion in

model testing. Predictors were scaled to unit variance prior to modelling.

Modelling framework

We followed a sequential process to train an ensemble model to forecast tick paralysis

admissions (Fig 3). The first step involved training individual predictor models on either

the seasonally adjusted or raw outcome series. The models we implement were chosen

because they make different assumptions about time series evolution, can incorporate both

seasonality and effects of predictors and because quantification of forecast uncertainty is

straightforward. However, our choice of candidate models does not by any means repre-

sent an exhaustive set, and we acknowledge that there are many other potentially useful

models for analysing timeseries and generating forecast distributions. All models were

trained on 85% of the data (225 fortnight observations representing the training set and

covering the 2007–2015 tick seasons) and their forecasts evaluated on the remaining 15%

(39 observations, including the final two tick seasons). Next, we combined forecasts from

these models into a weighted ensemble to minimize out-of-sample prediction interval

error for the 2016 period. We then used this weighted ensemble to forecast the 2017 tick

season and compared it to forecasts from a field-leading benchmark model. Finally, we

simulated a real-world scenario in which ensemble and benchmark models were re-cali-

brated to incoming data to adjust forecasts and used a rolling window to compare predic-

tion errors (Fig 3). Each step is explained in detail in the following sections. Interested

readers can refer to S1 Table in the Supporting Information for details about predictor

model assumptions.

Modelling seasonally adjusted tick paralysis admissions. Our first prediction task was

to model the seasonally adjusted series. We trialed two models that make different assump-

tions about relationships between predictors and the outcome. Gaussian error distributions

were assumed for both models.
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ARIMAseasadj model. The first predictor model was an Autoregressive Integrated Moving

Average (ARIMA) model. ARIMA models assume the outcome series is stationary so that the

autocorrelation coefficients that control how past values predict future values can be applied

uniformly throughout the series. We identified environmental predictors and ARIMA param-

eters (order and moving average coefficients) using a grid search of all candidate models

including up to five covariates (we limited the number of predictors to five so that the total

number of parameters was not so large as to risk overfitting or overparameterization). For

each combination of predictors, we identified the best ARIMA parameters using the “auto.

arima” function in the forecast R package [33], which optimizes fit by heuristically searching

over possible differencing, order and moving average parameters. The final ARIMAseasadj

model was selected by finding the ARIMA parameters and predictor set that minimized in-

sample Bayesian Information Criterion.

GARCHseasadj. Our second model was a Generalized Autoregressive Conditional Hetero-

skedasticity (GARCH) model. A GARCH is appropriate when volatility (sometimes referred

to as ‘jumpiness’) demonstrates an irregular pattern rather than being homogenous over time

[34]. When heteroskedasticity occurs, estimates of standard errors and prediction intervals

can be biased, impacting performance and inference. GARCH models consider volatility at a

given time to be conditional on the volatility at past time points, with changes in variance per-

sisting according to an autoregressive residual moving average structure. To detect whether

there was autocorrelation of volatility in the seasonally adjusted series, we fit an auto.arima()

model and plotted the autocorrelation function of the absolute residuals. This plot showed sig-

nificant autocorrelation of volatility up to a lag of two fortnights, justifying the use of the

Fig 3. Schematic representation of the sequential process used to train and interrogate the ensemble forecast for tick paralysis admissions on the

Sunshine Coast. ARIMA, Autoregressive Integrated Moving Average; GARCH; Generalized Autoregressive Conditional Heteroskedasticity; GAM,

Generalized Additive Model; ETS, exponential smoothing; MSIS, Mean Scaled Interval Score.

https://doi.org/10.1371/journal.pcbi.1009874.g003
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GARCH model as an appropriate alternative to the ARIMAseasadj. Our chosen model included

an ARIMA(0,2) process for the mean, a GARCH(0,2) process for the conditional variance (i.e.

both the mean and variance were influenced by two moving average lags) and terms capturing

linear additive effects of predictors. Rather than selecting among combinations of predictors as

above, we included all predictors simultaneously and placed regularized double exponential

priors (mean = 0, sd = 0.5) on their coefficients to capture our prior expectation that most

effects of regressors on the seasonally-adjusted series will be small. GARCH parameters were

estimated in a Bayesian framework using the No U-Turn Sampler algorithm in Stan [35]

through the R interface varstan [36]. Apart from the regression coefficient priors, all other pri-

ors were provided with default distributions. We sampled four chains for 1,000 samples each

and gathered 1,000 total samples from the posterior distribution.

Modelling raw tick paralysis admissions. We fit two predictor models using the raw tick

paralysis series as the outcome variable. This allowed us to determine whether models that can

simultaneously capture seasonal, trend and predictor effects performed better than models

trained on seasonally adjusted values.

GAMraw. We fit a Generalized Additive Model (GAM) to the admission count data (GAM-

raw) assuming admissions were random draws from an unknown Negative Binomial distribu-

tion. A Negative Binomial was chosen instead of a Poisson as the Negative Binomial is

appropriate for discrete outcomes when excess zeros are present and because our tick admission

data displayed discrepancies between the variance and the mean. The Negative Binomial distri-

bution is parameterized by an unknown rate λ and overdispersion parameter φ, where rate at

time t is λt = φ / (φ + μt). Using a log link, we modelled μ as an additive combination of smooth

functions while capitalizing on automatic variable selection using penalized smooths available in

themgcv R package [37]. We included the best lags for each of our covariates as cubic spline

smooths. Each smooth incorporated a Bayesian ’shrinkage’ prior (bs = ‘cs’ inmgcv notation) that

forced coefficients toward zero unless there was likelihood support for their inclusion. According

to Marra & Wood [38], this automatic variable selection “can both enhance model interpretabil-

ity and improve prediction accuracy”. We captured the nonlinear trend by including year as an

unpenalized cubic spline smooth term, and we included a cyclic cubic regression smooth (bs =

‘cc’ inmgcv notation) for the effect of fortnight to capture seasonality. A moving average auto-

correlation structure was used for the residuals. The number and placement of knots for all

smooths were automatically chosen using Generalized Cross-validation [39].

Prophetraw. Our final predictor model was the recently described Prophet model, a mod-

ular regression developed by Facebook analysts [40]. Prophet uses a decomposable regression

with three primary model components: trend, seasonality and additive linear terms capturing

effects of regressors. Gaussian error is used for the residual distribution. The trend is com-

posed of a piecewise linear growth rate that is regularised by a sparse Laplace prior controlling

the selection and ‘wiggliness’ of changepoints. Seasonality is represented using Fourier series

to provide a periodic model that can also be regularised by a Gaussian smoothing prior [40].

The nonlinear trend and seasonality components are therefore similar to smooth functions

used in GAMs. Prophet has been embraced by the forecasting community, with successful

applications in a range of disciplines including predictions of groundwater level [41], electrical

loads [42] and business cash flows [43]. Due to Prophet’s assumption of Gaussian error, we fit

the model to log(x + 1) transformed admissions and back-transformed forecasts to the discrete

scale. Given the large number of parameters to be estimated and the lack of options for regres-

sion coefficient regularisation, we only included five predictors in the Prophet model. The best

three predictors were chosen by testing each predictor on its own and finding the three that

minimized model deviance. We fit the model using the prophet R package (https://facebook.

github.io/prophet/), which uses Stan for Bayesian estimation. We used default values for all
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parameters apart from the trend changepoint shape prior, which we increased from the default

0.05 to 0.50 to allow greater flexibility in estimating nonlinear trends. As for the GARCHseasadj

model above, four chains of 1,000 samples each were run to estimate parameters and 1,000

samples were gathered from the posterior distribution.

Building a weighted predictor ensemble forecast. To generate forecasts on the outcome

scale for the ARIMAseasadj and GARCHseasadj, forecasts of seasonally adjusted counts were

added to seasonal forecasts from an exponential smoothing (ETS) model in which trend, sea-

sonality and error components were chosen automatically using the ‘ets’ function in the fore-
cast package (Fig 3; S1 Table). Forecasts from the GAMraw and Prophetraw were produced on

the raw scale. Our goal was to find a weighted ensemble of predictor forecasts that could mini-

mize uncertainty without sacrificing accuracy. We calculated weights that minimized the pre-

diction interval using the Mean Scaled Interval Score (MSIS) metric proposed by Gneiting and

Raftery [44]. The MSIS metric penalizes intervals that are excessively large and / or that do not

retain the true (observed) value:

MSIS ¼ U � Lð Þ þ
2

a
L � Yð Þ1 Y < L½ � þ

2

a
Y � Uð Þ1 Y > U½ �

Here,U and L represent a weighted average of upper and lower 95% intervals at a particular

horizon, Y represents the observation at that horizon, the significance level is α (set to 0.05) and

1 is an indicator function (returning a 1 if the evaluated expression is true and 0 otherwise). The

value of the equation increases when Y is outside the weighted interval due to the penalty terms

(i.e. one of the indicator functions will return a 1 when Y is not in the interval). We used nonlin-

ear gradient optimization [45] to minimize the MSIS function across the 2016 validation period.

Comparing to an Exponential Smoothing benchmark forecast. We compared forecasts

for the 2017 tick season from our ensemble model to those from a naïve baseline ETS model that

was trained to forecast log(x + 1) transformed paralysis tick admission counts. Exponential

smoothing is one of the most effective forecast algorithms across a range of applications as it cap-

tures error, seasonality and trend components in a state-space framework [46,47]. The ETS was

considered a competitive benchmark as such models that only extract information on trends,

seasonality and other components from historical values often do incredibly well in forecast

competitions, including those for vector-borne disease [18,48]. Comparisons between our

ensemble and the ETS benchmark allowed us to increase transparency regarding the perfor-

mance of our ensemble while providing valuable insights into the temporal periods and condi-

tions in which external predictors can inform better forecasts. Two approaches were used to

compare models. First, we calculated point prediction errors for the 2017 tick season using fore-

casts from models that were trained on all data up to March 2017 (immediately following the

end of the 2016 tick season). We then iteratively updated forecasts using a rolling window to

continually estimate forecast performances over near-term (2–12 weeks) and medium-term

(12–24 weeks) horizons. This involved re-training ensemble members on data up to mid-March

2017, producing weighted forecasts for both horizons, generating extended forecasts from the

re-trained benchmark and calculating prediction errors. The process was repeated by extending

the window forward in fortnightly intervals to scrutinize how each model would have performed

had it been re-trained on the most recent data available leading into the tick season.

Data assimilation using Sequential Monte Carlo particle filtering

Assimilation of new observations to adapt forecasts is an important step in automated forecast-

ing [49,50]. Particle filters are some of the most popular assimilation algorithms as they are

likelihood-based and can efficiently re-ground models to empirical data while exploring
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complex non-Gaussian distributions [51]. We used particle filtering for the two models that

were fitted to the seasonally adjusted series (ARIMAseasadj and GARCHseasadj) by iteratively

assimilating observations from the validation set, rather than recalibrating the models using all

data up to that point. This involved simulating a set of particles for each model, with each par-

ticle representing one possible forecast trajectory. Particles were propagated forward according

to estimated model equations, with the paths of all particles collectively formulating the prior

forecast distribution. When the next observation (the next fortnight of cases) was available, a

Monte Carlo step was run in which the log likelihood of that observation given each particle’s

unique proposal was calculated and used to weight the particles, where higher likelihoods lead

to higher weights. The prior forecast was then updated into a weighted posterior forecast. Par-

ticles more representative of the data generating process were therefore given more impor-

tance when adapting the forecast [52]. Following a Sequential Monte Carlo algorithm, the

assimilation process was repeated in the next timestep to update weights and adjust the fore-

cast. Particle weights were sequentially updated using a condensation algorithm that iteratively

multiplied a particle’s current likelihood by its previous likelihood [53]. To prevent particle

collapse, where a small number of particles makes up most of the weights, we used importance

sampling (resampling with replacement in proportion to weights) when effective sample size

fell below a threshold:

If
1

sumðweights2Þ

� �

<
N
2
; resample

During resampling, particles with high weights were more likely to be oversampled, while

those with low weights were likely to be removed. After resampling, particles were ‘mutated’

by allowing their trajectories to drift according to random walks with small Gaussian noise,

providing the models with flexibility to explore new parameter spaces. Weights were then reset

to 1 prior to the next iteration. We simulated 5,000 particles for each model and assimilated

observations using the same rolling window approach as above. The remaining models (i.e.

GAMraw and Prophetraw) were updated as above by retraining on the growing dataset to form

the particle filtered ensemble, which we compared to the re-trained ensemble and benchmark

models described above.

To further explore our ensemble’s capability, we assessed how the particle filter could

accommodate spatial variation in time series dynamics. We grouped veterinary clinics by geo-

graphical location (one group containing the two northernmost clinics, one group for the two

mid-latitude clinics and a third group for the single southernmost clinic; Fig 1). The three

datasets showed similar seasonalities but different trends, offering an opportunity to test the

particle filter’s adaptive capability without the need to parameterize a complex spatio-temporal

forecast model. The particle filter was adapted to each clinic-level series from the beginning of

2007. All parameter distributions from the ensemble model were retained for the clinic-level

particle filters with the exception of Gaussian error parameters, which were initialized sepa-

rately for each clinic-level series using estimates from ARIMA(1,0,1) models. Forecasts were

then compared to clinic-level ETS benchmarks as above. Data and R code to replicate ensem-

ble modelling and particle filtering steps for the aggregated timeseries is provided in Data S1.

Results

Temporal variation in tick paralysis admissions

Paralysis tick admissions tended to peak between September and November, though the range

of dates during which admissions were recorded varied across time with no apparent shift in

seasonality (Fig 2; S1 Fig). August showed the largest range of admissions, with a minimum of
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one (in the years 2010, 2011 and 2013) and a maximum of 14 admissions in the year 2017. The

largest numbers of admissions were generally in October (range = 4–21 per month), while Feb-

ruary–July showed minimal admissions (range = 0–5 per month; S1 Fig). The largest number

of admissions during a single fortnight was 11, recorded in October 2009 and in August 2017.

There was a decreasing trend through the most recent La Niña period (2010–2012), followed

by an increasing trend from 2014 (Fig 2).

Predictor model performances and estimated covariate associations

The best-fitting ARIMAseasadj model was an ARIMA(0,1,2) that included two predictor vari-

ables (SOI and moist vegetationQ-anomaly; Table 2). In terms of prediction interval accuracy

across the 2016 horizon, the GARCHseasadj was the best-performing of the four ensemble

members. Optimized ensemble weights were 0.36 for the GARCHseasadj, ARIMA, 0.33 for the

GAMraw, 0.31 for the ARIMAseasadj and 0 for the Prophet model. Coefficient estimates revealed

several important environmental associations. Three models (GARCHseasadj, GAMraw and

Prophet) estimated a significant decrease in admissions with above average maximum temper-

atures during the previous month (lag 2 fortnights (4 weeks); Table 2). Note that GAMraw

effects are presented as F statistics that do not reveal the directionality of the effect, only how

‘nonlinear’ it is. Directionality can be interpreted by visualising partial effects plots in S2 Fig.

The ARIMAseasadj estimated that admissions significantly increased with increasing SOI

(2-fortnight (4-week) lag) while the Prophet model estimated a significant increase in admis-

sions with increasing values of the moist vegetation index (6-fortnight (12-week) lag; Table 2).

Performances of ensemble forecasts

The ensemble outperformed the ETS benchmark when forecasting the 2017 tick season (Fig 4).

Point errors for the ensemble had a median of 1.16 [Interquartile range (IQR): 0.48–2.08], lower

at nearly all 2017 timepoints than the benchmark (median: 1.19; IQR: 0.54–2.64; Fig 5). Rolling

MSIS interval errors were lower for the ensemble than the benchmark leading into the 2017 tick

season across both horizons, though the benchmark performed equally well in the near-term

when trained on all data up to the start of the season (September 2017; Fig 6). In the near-term,

both models performed better when predicting the non-tick season (trained to April–May

2017), followed by increases in error as horizons began to cover the upcoming tick season

(trained to June–July; Fig 6). As models gained access to observations from the tick season

(trained to August–September), near-term errors decreased. In contrast, medium-term errors

remained steady for both models through the year, with the predictor ensemble consistently out-

performing the benchmark (Fig 6). When using particle filtering to assimilate observations and

Table 2. Summary statistics for predictor coefficients. All predictors were scaled to unit variance prior to modelling. Significant effects are highlighted in bold. Note

that GAM F statistics only indicate the nonlinearity of the estimated smooth function, not the directionality of the effect. ARIMA, Autoregressive Integrated Moving Aver-

age; GARCH; Generalized Autoregressive Conditional Heteroskedasticity; GAM, Generalized Additive Model. SE, standard error; CI, Bayesian credible interval.

Predictor variable Lag time (fortnights;

weeks)

ARIMAseasadj coefficient

(SE)

GARCHseasadj coefficient

(CI)

GAMraw F statistic (p-

value)

Prophet coefficient

(CI)

Moist vegetation 6; 12 - 0.08 (-0.15, 0.38) 0.00 (1.00) 0.05 (0.01, 0.08)

Moist vegetationQ-anomaly 2; 4 0.02 (0.08) -0.12 (-0.33, 0.05) 0.00 (1.00) 0.01 (-0.03, 0.05)

Maximum temperature 5; 10 - -0.22 (-0.05, 0.36) 0.22 (0.25) -0.01 (-0.07, 0.06)

Maximum temperatureQ-

anomaly

2; 4 - -0.37 (-0.69, -0.01) 3.59 (0.03) -0.04 (-0.07, -0.02)

NDVIQ-anomaly 4; 8 - -0.11 (-0.54, 0.20) 0.00 (1.00) 0.01 (-0.04, 0.07)

Southern oscillation index 2; 4 0.11 (0.05) -0.04 (-0.25, 0.16) 0.00 (1.00) 0.01 (-0.01, 0.03)

https://doi.org/10.1371/journal.pcbi.1009874.t002
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update the ARIMAseasadj and GARCHseasadj models (orange shading in Fig 6), rather than re-

training all models on the growing dataset (blue shading in Fig 6), prediction intervals were fur-

ther reduced across both horizons. See S3 and S4 Figs in Supporting Information for visualisa-

tions of how the ARIMAseasadj and GARCHseasadj models adapted to incoming observations.

When adapting our model to clinic-level admissions, the particle filter again outperformed the

ETS benchmark for all three clinic-level datasets (S5–S8 Figs). This difference in performance

was most apparent for the northern and mid-latitude clinic series, while the southern clinic series

was similarly predicted by the benchmark up to the beginning of the tick season in August–Sep-

tember, after which the particle filter became superior (S8 Fig).

Discussion

Tick paralysis remains one of Australia’s most important domestic animal health conditions

[3,4,7]. Forecasts of tick paralysis cases that can guide public health awareness and clinical

Fig 4. Forecasts from competing models. Forecasts of paralysis tick admissions (observed counts shown as the black

line) generated by the predictor ensemble (blue shading) and the ETS benchmark model (purple shading). For both

forecasts, dark shading shows 80% and light shading shows 95% prediction intervals. Note the difference in scales of

the y-axes.

https://doi.org/10.1371/journal.pcbi.1009874.g004

Fig 5. Out-of-sample point prediction errors for the ensemble and ETS benchmark forecasts.

https://doi.org/10.1371/journal.pcbi.1009874.g005
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management strategies could be crucial for reducing burdens of this often-fatal condition.

Using a combination of statistical optimization and data assimilation methods, our ensemble

framework generates reliable forecasts of tick paralysis admissions at horizons that would be

appropriate for delivering early warnings to clinicians and pet owners in the Sunshine Coast.

We show that our model consistently outperforms a field-leading benchmark by reducing

both point and prediction interval errors, particularly when using particle filtering to automat-

ically adapt forecasts over time. Crucially, our ensemble combines attractive properties of dif-

ferent time series and generative algorithms while uncovering important inferences about

environmental drivers of paralysis tick exposure. We show that variables related to tempera-

ture anomalies, levels of moist vegetation and the Southern Oscillation Index show statistical

associations with tick paralysis admissions in the Sunshine Coast, a finding that will have

important implications for designing improved early warning systems.

The stable seasonality in tick paralysis admissions on the Sunshine Coast revealed by our

study, with peak admissions between September and December, is supported by previous Aus-

tralian research that recorded peak abundance of questing Ixodes ticks during spring and early

summer [12,29]. The seasonality in domestic animal tick paralysis incidence in the East coast

of Australia has been documented in earlier studies, with estimates that up to 65.5% of cases

are reported from September to November [14,54]. The presence of stable seasonality in

admissions is an important property that lends itself well to forecasting approaches that

decompose the incidence time-series into seasonally adjusted components to identify environ-

mental predictors of exposure. Our results indicate a possible negative effect of higher maxi-

mum temperature during the previous month on tick paralysis admissions. This finding is

biologically plausible and in line with evidence that milder temperatures may be more condu-

cive to increasing paralysis tick abundances and / or domestic dog exposures to ticks

[11,27,55]. Our study also extends knowledge of tick paralysis dynamics in the study region by

uncovering a non-linear trend in admissions that reached a trough following major rain and

flooding events during the last La Niña phase (2010–2012) and began steadily rising afterward.

We postulate that while moist vegetation is important for the survival and proliferation of

Fig 6. Rolling prediction interval errors for the ETS benchmark, re-trained ensemble and particle filtered

ensemble. The benchmark (purple shading) and re-trained ensemble models (blue shading) were iteratively trained on

the full dataset as observations became available to simulate a scenario in which models are continually re-calibrated to

incoming data. The particle filter (orange shading) involved no retraining for the seasonally adjusted models

(ARIMAseasadj and GARCHseasadj), but instead used iterative assimilation of incoming observations via Sequential

Monte Carlo. Lines and shaded areas show trends and 99% confidence intervals estimated using cubic regression

splines.

https://doi.org/10.1371/journal.pcbi.1009874.g006
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paralysis ticks, extreme rain and floods can impact tick abundances by altering habitats and

reducing availabilities of vertebrate hosts. Indeed, previous research along the Danube River in

Austria found that tick abundances were massively reduced following flood events, a pattern

that the authors speculated was due to sediment influxes that indirectly influenced intermedi-

ate host availability [56]. It is also likely that during heavy rain and flooding events pet owners

are less likely to allow their pets outside the household, reducing dog exposures to tick-prone

environments, though this hypothesis requires testing.

There is a global need to develop decision-support tools that contribute to reduce commu-

nity exposure and health impacts of vector-borne diseases, including tick paralysis and several

tick-borne pathogens of public health significance [57,58]. Our ensemble model framework

used advances in statistical forecasting and dynamic systems modelling to generate reliable

forecasts of tick paralysis admissions at horizons that would be appropriate for delivering early

warnings to clinicians and pet owners in the Sunshine Coast. This finding supports previous

evidence that information regarding environmental covariates is useful for improving predic-

tion of tick paralysis cases [55,59]. However, forecasts of tick paralysis admissions are likely to

remain imperfect since clinical admissions due to tick paralysis are the result of many pro-

cesses for which data are difficult to obtain, including the relative abundance and activities of

dogs in tick-prone areas, microclimate and vegetation characteristics, wildlife distributions

and social determinants such as veterinary health care seeking behavior of owners [4,10,13].

Nevertheless, the utility of our ensemble model was further amplified when using particle fil-

tering, as opposed to model re-training, to adapt the forecast of tick paralysis incidence.

Despite the wide recognition that filtering systems are paramount for tackling advanced multi-

dimensional forecast problems such as weather prediction or moving object tracking

[49,51,60], they are rarely employed for studying ecological time series [50,61]. Our results

demonstrate that the particle filter produced by far the most accurate forecasts of the 2017 vali-

dation data across both horizons for the full dataset and for de-aggregated clinic-level datasets.

We postulate that this improvement resulted from the particle filter’s ability to break free from

model constraints such as Gaussian errors and linear trends. Understanding these improve-

ments was beyond our scope, however it is important to note that such investigation can be

carried out in a hypothesis-driven framework using forecast uncertainty analyses to improve

our understanding of the processes that drive ecological phenomena [50,62].

Several automated ecological forecasting frameworks exist, and we believe that our results

show that tick paralysis admissions are worthy of such a system. This is particularly important

given the lack of a monitoring system for Australian domestic animal health conditions. Aus-

tralia’s primary surveillance system for monitoring trends in companion animal tick paralysis

over the past decade has been the Virbac Disease WatchDog (http://www.diseasewatchdog.

org/). This passive system relied on clinicians around Australia to collate monthly cases and

input data into the database. While this platform was commendable and helped identify tick

paralysis risk factors [27], some drawbacks limited its utility as a warning system. Voluntary

reporting was poor and reduced substantially over time [54]. In fact, reporting rates were so

low that maintainers of the database concluded its records were likely not reflective of vector-

borne disease outbreaks. The system was closed in 2017.

Welch et al [63] outline four primary stages necessary to implement a dynamic manage-

ment tool: Acquisition, Prediction, Dissemination and Automation. While we focus primarily

on prediction, the data and models we use would facilitate an automated forecast and analysis

framework. For example, weather observations provided by LongPaddock (https://www.

longpaddock.qld.gov.au/silo/ [31,32]) are updated nightly (one day latency) with new data

from Australia’s Bureau of Meteorology, while the rapidly growing VetCompass Australia

database [64] collates clinical data from >300 veterinary clinics around Australia to facilitate
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near real-time updating of domestic animal health analyses / forecasts. Ready access to data

products, a version-controlled codebase with proper error logging, a reliance on particle filters

to assimilate new observations and access to high performance compute clusters to log model-

ling / analysis jobs could form a streamlined workflow that self-initiates at regular frequencies

to provide near-term updates on the progressing tick season. The design of a dynamic tick

paralysis forecast tool would require inputs from stakeholders on the dissemination aspect,

particularly to identify useful ways to visualize forecasts that overcome the common misper-

ceptions about probabilities and uncertainty [65].

The results of our study are based on a modelling framework which could be improved in

several ways. First, while we identified a single weighting scheme to reduce prediction interval

errors across the 2016 validation period, the weight calculation step could be turned into a

time-variant optimization problem if enough data is available to assess how well each ensemble

member performs in certain forecast horizons or under certain conditions. In this way, the

ensemble could be re-weighted over time to capture the inherent strengths of each ensemble

member during different periods of volatility or growth. Similar approaches have been used

successfully to forecast battery capacities and CO2 emissions [66,67]. Second, we chose our

predictor set as these variables were interpretable, they covered the entire temporal period of

our tick paralysis data and, crucially, they are all continuously updated and stored in secure

databases. Future iterations of our model could explore additional environmental and demo-

graphic predictors and could use time series feature engineering methods to uncover ways to

improve our model’s predictive capacity (i.e. by testing whether moving averages of predictors

could improve forecasts, for example). We also did not use any post-estimation correction of

estimated effect sizes as we were mainly interested in forecastability and less so on whether

effects were ‘significant’, but studies designed for inference that wish to focus more on inter-

pretation of estimated effects would need to consider post-estimation adjustments to account

for our heuristic model selection strategy. Finally, we were only able to test our model’s perfor-

mance using a single year of holdout data (2017). Future studies could continuously update

our model and compare it to competing models over time to inspect model failures and make

incremental improvements. This may be especially necessary when modelling tick paralysis or

tick densities in general, as it is not uncommon for tick-borne disease cases to demonstrate

2–3 years cycles driven by the population dynamics of ticks [68]. There are a range of models

that can incorporate multiple seasonalities, including the GAM and Prophet models we used

here, and future work should investigate whether inclusion of these cycles improves near-term

forecasts.

Despite these limitations, our results demonstrate the utility and the potential for our near-

term forecasting model to inform the public health management of tick paralysis in a high-risk

region. Our study sits within the growing field of near-term ecological forecasting [20,21,50]

by providing an example for how forecast systems can be developed to study not only compan-

ion animal tick paralysis but also with wider applicability to manage veterinary vector-borne

diseases more broadly.

Supporting information

S1 Fig. Boxplots of monthly tick paralysis admission counts to Sunshine Coast GreenCross

veterinary clinics across the study period (2007–2017).

(TIFF)

S2 Fig. GAMraw partial effect smooth function plots.

(TIFF)
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S3 Fig. ARIMA particle filter visualization. Forecasts of seasonally adjusted paralysis tick

admissions (truth shown as the black line) generated by the original ARIMAseasadj (blue shad-

ing) and the ARIMAseasadj following particle filtering assimilation of the first six months of

observations in the out-of-sample validation set (orange shading). For both forecasts, dark col-

oured shading shows 80% and light shading shows 95% prediction intervals.

(TIFF)

S4 Fig. GARCH Particle filter visualization. Forecasts of seasonally adjusted paralysis tick

admissions (the true observations are shown as the black line) generated by the original

GARCHseasadj (blue shading) and the GARCHseasadj following particle filtering assimilation of

the first six months of observations in the out-of-sample validation set (orange shading). For

both forecasts, dark coloured shading shows 80% and light shading shows 95% prediction

intervals.

(TIFF)

S5 Fig. STL decompositions for each of the three clinic-level paralysis tick admissions data-

sets. The trend components are centred (xcentre = x–mean(x)) to facilitate simpler comparisons

of their temporal dynamics.

(TIFF)

S6 Fig. Northern clinic rolling interval errors. Rolling prediction interval errors for the ETS

benchmark (purple shading) and particle filtered ensemble (orange shading) applied to paraly-

sis tick admissions for GreenCross clinics in the northern region. The benchmark model was

iteratively retrained on the full dataset as observations became available to simulate a scenario

in which models are continually re-calibrated to incoming data. The particle filter involved no

retraining for the seasonally adjusted models (ARIMAseasadj and GARCHseasadj), but instead

used iterative assimilation of incoming observations via Sequential Monte Carlo. Lines and

shaded areas show trends and 99% confidence intervals estimated using cubic regression

splines.

(TIFF)

S7 Fig. Mid-latitude clinic rolling interval errors. Rolling prediction interval errors for the

ETS benchmark (purple shading) and particle filtered ensemble (orange shading) applied to

paralysis tick admissions for the mid-latitude GreenCross clinics. The benchmark model was

iteratively retrained on the full dataset as observations became available to simulate a scenario

in which models are continually re-calibrated to incoming data. The particle filter involved no

retraining for the seasonally adjusted (ARIMAseasadj and GARCHseasadj), but instead used itera-

tive assimilation of incoming observations via Sequential Monte Carlo. Lines and shaded areas

show trends and 99% confidence intervals estimated using cubic regression splines.

(TIFF)

S8 Fig. Southern clinic rolling interval errors. Rolling prediction interval errors for the ETS

benchmark (purple shading) and particle filtered ensemble (orange shading) applied to paraly-

sis tick admissions for the GreenCross clinic in the southern region. The benchmark model

was iteratively retrained on the full dataset as observations became available to simulate a sce-

nario in which models are continually re-calibrated to incoming data. The particle filter

involved no retraining for the seasonally adjusted (ARIMAseasadj and GARCHseasadj), but

instead used iterative assimilation of incoming observations via Sequential Monte Carlo. Lines

and shaded areas show trends and 99% confidence intervals estimated using cubic regression

splines.

(TIFF)
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S1 Table. Assumptions of predictor models used to forecast paralysis tick admission cases

to Sunshine Coast veterinary clinics and build the ensemble forecast. ARIMA, Autoregres-

sive Integrated Moving Average; GARCH; Generalized Autoregressive Conditional Heteroske-

dasticity; GAM, Generalized Additive Model; ETS, exponential smoothing.

(DOCX)

S1 Data. Data and R code to replicate ensemble modelling and particle filtering and associ-

ated figures. Model results from this study are included in the Intermediate_outputs folder.

(RAR)
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