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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Mathematical models have come to play a key role in global pandemic preparedness and

outbreak response: helping to plan for disease burden, hospital capacity, and inform non-

pharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pan-

demic, with transmission models—and, by consequence, modelers—guiding global,

national, and local responses to SARS-CoV-2. However, these models have largely not

accounted for the social and structural factors, which lead to socioeconomic, racial, and

geographic health disparities. In this piece, we raise and attempt to clarify several questions

relating to this important gap in the research and practice of infectious disease modeling:

Why do epidemiologic models of emerging infections typically ignore known structural driv-

ers of disparate health outcomes? What have been the consequences of a framework

focused primarily on aggregate outcomes on infection equity? What should be done to

develop a more holistic approach to modeling-based decision-making during pandemics? In

this review, we evaluate potential historical and political explanations for the exclusion of

drivers of disparity in infectious disease models for emerging infections, which have often

been characterized as “equal opportunity infectors” despite ample evidence to the contrary.

We look to examples from other disease systems (HIV, STIs) and successes in including

social inequity in models of acute infection transmission as a blueprint for how social con-

nections, environmental, and structural factors can be integrated into a coherent, rigorous,

and interpretable modeling framework. We conclude by outlining principles to guide model-

ing of emerging infections in ways that represent the causes of inequity in infection as cen-

tral rather than peripheral mechanisms.
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Introduction

In March 2020, a prescient news item in Science proclaimed that infectious disease transmis-

sion models had taken on “life or death importance” [1] as tools in the fight against Severe

Acute Respiratory Syndrome Coronavirus 2 (SARSAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndromeCoronavirus2atitsfirstmentioninthesentenceInMarch2020; aprescientnewsiteminScienceproclaimed:::Pleasecorrectifnecessary:-CoV-2). Despite the pivotal role they have

played, most mechanistic models used to guide the global response to SARS-CoV-2 paid little

direct attention to the causes of the massive socioeconomic and racial inequities that have

characterized the pandemic in the United States and around the world [2–7]. This reflects the

absence of a theoretical and methodological framework needed to deploy equity-oriented

models with the same speed and rigor as those focused on understanding and forecasting pop-

ulation-level outcomes.

The challenges of maintaining equity and minimizing population-level risks in the face of

an emerging pathogen—particularly in highly unequal societies such as the US—has forced

infectious disease modelers to grapple with how transmission models can and should account

for social factors going forward [8,9]. Much of this work has focused on the use of detailed

information on mobility and individual behavior to make better predictions of epidemic tra-

jectories and estimates of model parameters. In broad strokes, they argue for more detailed

data collection and closer partnership with communities to ensure that models incorporate

local data and address real-world needs. While recent and ongoing innovations in the collec-

tion and analysis of high-resolution social network and mobility data [10] could be powerful

tools for highlighting and addressing infection inequality, this outcome is not guaranteed over

the long term. This piece explains why.

Here, we bridge key theoretical ideas from social epidemiology and infectious disease trans-

mission modeling. We plot a path forward in which innovation in the ability of models to

address inequity occurs in parallel—and at an equal pace—with other leaps forward in data

collection and analysis. We draw on examples most relevant to the US; however, the frame-

work articulated here can and should be extended to examine both global, between-country

inequities, as well as power relationships and social inequalities within low- and middle-

income countries (LMICsAU : PleasenotethatLMICsinthesentenceWedrawonexamplesmostrelevanttotheUS; however:::hasbeenexpandedtolow � andmiddle � incomecountries:Pleaseconfirmthattheexpandeddefinitioniscorrect:) and other wealthy countries. We advocate for an approach to infec-

tious disease modeling that explicitly includes overarching social factors, like socioeconomic

status (SES) [11], racism [12], segregation [13], and disability-, age-, and sexuality-related

stigma [14]—which put individuals and populations “at risk of risk” [15]. In doing this, we

draw on a wide and deep literature in social epidemiology, the social sciences, and applied sta-

tistics that has been deeply engaged with questions about the causal roles played by economic

inequality, racism, gender, and sexuality on health outcomes for decades. We do not in any

way eschew the use of detailed, high-resolution social data as a tool for combating infectious

disease. Instead, we worry that the power of these tools to prevent and ameliorate inequity

may be squandered if their use is not informed by key concepts from the vast literature on

health disparities in both infectious and noncommunicable disease. In turn, when social-struc-

tural causes are excluded from transmission models, they cannot be used to examine how

structural remedies, like wealth transfers, universal healthcare, labor protections, antidiscrimi-

nation policy, and guaranteed housing might impact incidence and mortality rates. Finally,

our arguments in favor of this integration would be meaningless if mathematical models were

not themselves such powerful tools for addressing theoretical and empirical questions within

and outside of infectious disease epidemiology [16], and if we did not believe that the types of

models developed by infectious disease epidemiologists could also help to improve the state of

the art in social epidemiology and the social sciences [17,18].
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Understanding why equity has been left out of many models may show how

to bring it back in

The small number of models that directly account for inequities in infection reflects the lack of

a digestible framework for including sociostructural inequality as a first-class feature of trans-

mission models. The current moment provides an opportunity to close this gap. Coronavirus

Disease 2019 (COVIDAU : PleasenotethatCOVID � 19hasbeendefinedasCoronavirusDisease2019atitsfirstmentioninthesentenceCoronavirusDisease2019ðCOVID � 19Þhasincreasedawarenessofthe:::Pleasecorrectifnecessary:-19) has increased awareness of the fact that flesh-and-blood social ineq-

uities underlie the values of abstract model parameters. For example, Richardson and col-

leagues have argued that, in the US, the basic reproduction number, R0, must be understood

not only in terms of pathogen biology and individual behavior, but also of racialized structural

violence flowing from the legacy of slavery, which compels some to be exposed and allows oth-

ers to remain safe [19]. SimilarlyAU : PleasecheckandconfirmthattheeditstothesentenceSimilarly; thesocialepidemiologistDavidWilliamshasarguedthatherd:::didnotaltertheintendedthoughtofthesentence:, the social epidemiologist David Williams has argued that

herd immunity should be reconceptualized in explicitly social terms, which recognize that the

level of immunity from natural infection and vaccination is a function not only of pathogen

biology, but of the social and economic systems that propel transmission and health behavior

[20].

While structural inequity has been largely absent from models of acute respiratory infec-

tions (ARIs) such as SARS-CoV-2 and pandemic influenza, it has long been at the heart of

modeling work on HIV as well as a range of viral and bacterial sexually transmitted infections

(STIs). Because transmission of STIs is so closely related to interpersonal relationships and sex-

ual behaviors that have been highly stigmatized, the sociostructural factors that shape STI and

HIV transmission have been harder to ignore than for viral respiratory infections. As a result,

there is a vast literature examining inequities in HIV and STI infection using population- and

network-based transmission models [21–23]. By contrast, transmission of ARIs through the

air via respiratory droplets and aerosols makes the mapping of social relationships onto trans-

mission appear less straightforward. This is despite the fact that close relationships, such as

those among family members and cohabitants, are key modes of SARS-CoV-2 transmission

[24,25], and smaller-scale studies have demonstrated the role of individual-level patterns of

contact in influenza transmission [26]. This disconnect historically contributed to the errone-

ous, but pervasive, idea that ARIs are “equal opportunity infectors” [27] for which the structure

of social networks and systems of global and domestic inequality and oppression are less

important than for quintessentially social pathogens like HIV, STIs, and tuberculosis (TBAU : PleasenotethatTBhasbeendefinedastuberculosisatitsfirstmentioninthesentenceThisdisconnecthistoricallycontributedtotheerroneous; butpervasive; idea:::Pleasecorrectifnecessary:).

COVID-19 has dealt a severe blow to this idea, with key models directly integrating social net-

work [28] and mobility data [29], in some cases with infection inequality squarely in the cross-

hairs [30]. But it remains to be seen how we can capitalize on this momentum to make the

necessary, long-term changes to the modeling toolkit.

Doing this is critical, because the way we represent cause and effect in transmission models

has enormous implications for policy and practice. Transmission models let practitioners, pol-

icymakers, and researchers envision alternative futures that might be realized through inter-

vention, policy, and social action. When these models exclude sociostructural factors that

drive inequity—income, education, racial residential segregation—they preclude the ability to

explore the possibility of structural change as an epidemiological tool on par with nonpharma-

ceutical interventions (NPIs), vaccination, and testing. In the following sections, we outline an

“equity-forward” approach to transmission modeling that places the fundamental sociostruc-

tural causes of infection inequality on an equal level with the biological and behavioral features

of transmission. Our goal is to articulate a vision of socially informed modeling that is squarely

focused on understanding how imbalances in social power drive infection inequalities and

suggesting social and political remedies to these disparities. This work is inspired by the chal-

lenge laid out by the operations researcher Edward Kaplan who wrote that “the world is full of
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problems, but one has to work to structure them as such.” [31] What follows represents an

attempt to define the problem of social inequity in infection outcomes in terms that align with

the structure of infectious disease transmission models.

What are the goals of equity-forward transmission modeling?

Transmission models are often used to answer “what-if” questions from a perspective of

authority: What will happen if governments impose quarantines or mask-wearing orders?

How should national, state, or local public health authorities allocate scarce vaccines or target

outreach efforts to increase uptake? These questions lend themselves to a focus on predicting

the timing and spatial distribution of infection over short and long time horizons as a function

of a set of potential interventions that are proximal to individual-to-individual transmission,

such as mask-wearing, social distancing, testing, and vaccination. This type of modeling is

most relevant for informing a decision-maker who is anticipating, planning, and responding

to events in the near future [32], but may obscure the role of higher-order social structures in

enabling or constraining the ability of these types of “downstream” interventions to have the

desired effect [2]. Furthermore, it presupposes that the decisions of policymakers and other

authorities are the most important determinants of disease outcomes, potentially contributing

to the obscuring of sociostructural determinants as well as the ability of more bottom-up social

movements to directly impact infection outcomes.

For infectious disease models to be useful tools for addressing inequity, in addition to being

predictive or prognostic in nature, they also need to be diagnostic and forensic tools that can

characterize the causes of disparity in disease outcomes. Because the remedies to sociostruc-

tural inequities are not discrete, one-off interventions, but instead messy and protracted con-

tests over power, equity-forward models must provide evidence and ideas that can propel and

support efforts at social and political change.

Rather than a primary focus on predicting aggregate, population-level patterns (i.e., the

pace and timing of infection), an equity-forward modeling approach should be concerned

with characterizing who is likely to be infected and how the distribution of infection reflects

allocations of economic and social power at the population level. Accomplishing this requires

models that simultaneously accommodate social and biological mechanisms of interpersonal

dependence at levels higher than individual-to-individual interactions. For example, aggressive

COVID-19 lockdowns were enabled by the labor of healthcare, retail, delivery, and warehouse

workers who continued to provide goods and services to people who were able to remain at

home. As a result of economic exploitation and inadequate workplace safety, these workers

bore much of the brunt of early exposure, infection, and death. This means that lower rates of

exposure experienced by wealthier individuals and whites [33] resulted directly from economic

and racialized power imbalances. This pattern, dubbed the “inverse interdependent welfare

principle” by the sociologist Erik Olin Wright [34], has been applied to many problems in

social epidemiology [35] and has clear implications for understanding how policies and social

action that shift basic power dynamics can impact infection risks. For transmission models to

be faithful representations of the way infection risk occurs, characterizing this type of socio-

structural dependence needs to be treated with equal importance as faithfully representing the

rate of infection and the transitions between biological states an individual experiences follow-

ing infection.

Equity-forward models must address theoretical and applied questions

For transmission models to be effective in attacking infection inequalities, they must mecha-

nistically link social causes with biological outcomes. Doing this credibly necessitates
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developing relatively abstract models that let us explore basic questions around social causa-

tion, in addition to more concrete ones that can guide policy and social action using real-

world data. Theoretical models are essential for addressing questions about measurement of

the effects of the types of layered interventions associated with social policy measures on infec-

tion outcomes [36]: For example, comprehensive housing reform—clearly an issue related to

risks of infection [37–39] and inequity in infection outcomes [40]—includes financial tools

like housing vouchers, regulatory changes that provide enhanced protections against eviction

and foreclosure to renters and homeowners, and zoning modifications to allow for multifamily

home construction in residential areas, to name a few.

Beyond differences in the modality of intervention, the thoroughness of implementation of

social policies is likely to vary across jurisdictions, and the impact of financial assistance to

renters will vary as a function of local housing market conditions. And just as theoretical mod-

els have been critical for pushing the science of infectious disease epidemiology and ecology

forward by yielding insights into the population-level impacts of superspreading [41], the role

of birthrates and seasonal forcing in the transmission dynamics of vaccine-preventable dis-

eases [42], and the reflection of transmission in pathogen genomes [43], among many other

key questions, similar theoretical exploration is essential for building the foundations that

more-complex equity-forward models can be built upon.

However, to be useful adjuncts to day-to-day social and political action, models and model-

ers also need to engage with concrete questions that relate to the types of crises that character-

ize emerging infections from Ebola to SARS-CoV-2 in the present era. For example, the

burden of COVID-19 infection and mortality in jails, prisons, and immigration detention

facilities in the US has resulted in modeling studies focused on the potential impact of decar-

ceration on the risk to incarcerated individuals and their communities [44,45]. But this focus

can be broadened to examine the impact of other specific legislative and administrative inter-

ventions on infectious disease transmission and infection inequities. For example, Nande and

colleagues used counterfactual simulation to estimate the number of COVID-19 cases pre-

vented by the Centers for Disease Control and Prevention’s (CDC’sAU : PleasenotethatCDChasbeendefinedasCentersforDiseaseControlandPreventionatitsfirstmentioninthesentenceForexample;Nandeandcolleaguesusedcounterfactualsimulationtoestimate:::Pleasecorrectifnecessary:) eviction moratorium dur-

ing Fall 2020 [46]. Such work is critical for building short- and long-term support for social

and political actions aimed at preventing the uptick in deaths associated with ending these pro-

tections [47].

Defining the key mechanisms and outcomes in an equity-forward
transmission model

We advocate for an adaptation of the fundamental-cause (FC) perspective on health inequity

to the problem of transmission. Link and Phelan define a fundamental social cause of health

inequity as a factor, like SES or racism [13], that puts individuals and populations “at risk of

risks” [15]. The FC approach focuses on how differentials in social power impact access to

the material and social resources—money, occupation, housing, medical care, education,

prestige—that structure risks of infection and death. There is nothing new in the idea that

social factors are causes of infection on par with biological ones. In the 1950s, the social med-

icine pioneers René and Jean-Baptiste Dubos referred to the Mycobacterium tuberculosis as a

necessary, but insufficient, precondition for TB infection, with social and occupational fac-

tors ultimately shaping exposure and susceptibility [48,49]. Similarly, public health historian

Samuel Kelton Roberts detailed how racial residential segregation drove TB infection and

mortality among African-Americans in 20th century Baltimore via impacts on housing,

workplace conditions, medical treatment, and public health policies [50]. These mechanisms

have been repeatedly articulated in narrative histories, risk-factor analyses, and mixed-
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methods studies of many infections including cholera [51], HIV [52,53], and malaria [54,55].

Clouston and colleagues found that while high-income US counties were the first to see an

introduction of SARS-CoV-2 infection, the pace of infection and mortality in these counties

quickly slowed through NPIs (e.g., work from home, school closures). Meanwhile, rates of

infection and death exploded in counties with lower-income and higher proportions of non-

white residents where NPIs were less feasible [2]. Given the ubiquity of the FC perspective in

explicit and implicit understandings of infectious disease risk, its absence from transmission

modeling is surprising.

We argue that the FC approach provides a useful set of principles that can be used to guide

both the goals and data collection necessary to build the foundations of equity-forward trans-

mission modeling. To conclude this essay, we outline 3 of the core concepts underlying FC

theory and highlight how they relate to the mechanisms of infectious disease transmission,

with an eye toward how they can be integrated into transmission models:

1. Social factors such as SES and racism are fundamental causes

of infection because they operate on multiple intervening

mechanisms that drive transmission, including housing,

occupation, healthcare, and others

The proximal factors that drive exposure and mortality risk are socially correlated: Individuals

in high-risk occupations are more likely to live in crowded conditions and have poor access to

acute and preventive care. Due to such racial residential and occupational segregation, individ-

uals sharing these risks are also more likely to have high rates of contact with each other, con-

centrating the impact of these differential risks within marginalized groups [56]. In Fig 1, we

illustrate the way high-level sociostructural determinants, like SES and racism, drive disparities

in infection outcomes though their impact on multiple intervening mechanisms. Transmission
models must not ignore the fact that these proximal drivers flow from upstream causes, lest they
may make overly optimistic projections of the impact of tweaks to individual proximal risk fac-
tors and underestimate the impact of higher-level social interventions that would improve multi-
ple downstream factors simultaneously.

2. Protective NPIs, policies, and medical innovations reach more-

advantaged individuals first, and this access is the cause of

deprivation among lower-SES individuals and communities

The COVID-19 pandemic has exposed how NPIs such as social distancing are structured by

economic and racial advantage. In the context of an emerging infection, these effects may be

even more acute than with many noncommunicable diseases: While more-advantaged indi-

viduals wait out infection at home, the response evolves, clinical management of infection

improves, and case-fatality rates fall, allowing these groups to sidestep the worst effects almost

entirely, while minoritized and poorer groups take the brunt of infection and death [4,57].

Including mechanisms of social and economic dependence in exposure, i.e., the ways in which
one group’s increased exposure facilitates the decreased exposure of another is essential for trans-
mission models to be useful tools for identifying and mitigating inequity.

3. The same sociostructural factors drive inequity across multiple

infectious disease outcomes

The sociostructural factors that drive risks for one pathogen are likely to influence others,

resulting in syndemics of infection [58,59]. The immediate toll of COVID-19 mortality has
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disproportionately affected low-SES and minority communities. However, emerging evidence

suggests the risk of a “double jeopardy” effect: Those communities where hospital systems

were overwhelmed, already-insufficient primary care fell behind, and where children were

unable to keep up with routine immunizations, are now at risk of outbreaks of other vaccine-

preventable diseases, such as measles, pertussis, and others. In addition, risk factors for

COVID-19 strongly overlap with those for infections such as tuberculosis, influenza, fungal

infections such as coccidiomycosis [31AU : Pleasenotethattheoriginallysuperscriptnumber31inthesentenceInaddition; riskfactorsforCOVID � 19stronglyoverlapwith:::hasbeenchangedtoregulartextandlinkedtoreferencenumber31inthemainreferenceslist:Pleaseconfirmthatthisiscorrect:], HIV/STIs, and others. Vaccine hesitancy and poor

access to prevention and care also impact risk for multiple pathogens, and a higher prevalence

of comorbid noncommunicable diseases and coinfections dramatically increases risks for poor

outcomes including hospitalization and death. Consequently, models that account for potential
“knock-on” effects of one set of social causes on multiple disease outcomes—how the risks for
SARS-CoV-2 are related to risks for influenza, other ARIs, HIV, and other infections—are criti-
cally necessary to assess the full scope of damage associated with upstream inequities and to
anticipate emergent disease inequalities.

Fig 1. Illustration of the impact of fundamental causes on inequity in infection through multiple intervening

mechanisms and multiple outcomes. The figure illustrates key relationships between high-level fundamental causes of social

inequality (parallelograms) on risks of infection and disease progression (rectangles) via their impact on more-proximal risks

for exposure, severe disease upon infection and death (diamonds). Solid lines represent flows between disease states, while

dotted lines illustrate relationships between risk factors and their impacts on susceptibility to infection acquisition and the

rate of progression through escalating phases of disease severity. For visual clarity, only a subset of potential relationships is

illustrated. For example, racism impacts vulnerability and access to care directly as well as indirectly, and SES and wealth

often contributes to residential segregation. SES, socioeconomic status.

https://doi.org/10.1371/journal.pcbi.1009795.g001
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Conclusions

Deepening the integration between sociostructural and biological mechanisms in transmission

models is an urgent necessity. The challenge of this undertaking should not be understated

[60], nor should the substantial contributions of transmission modelers during the COVID-19

pandemic. We echo the argument made by Bertozzi and colleagues in the early days of the

pandemic [61]: Rather than stumbling over attempts at hyperrealism, transmission models

should focus on characterizing broad trends in inequity, the mechanisms that generate them,

and multilevel interventions that might work to ameliorate infection inequities. We also

should not pursue a single “correct” model that includes all these mechanisms and outcomes

at once. Instead, equity-forward models should be another element of the epidemiological

toolkit, alongside their forecasting and predictive counterparts.

The value of these models comes from their potential to force policymakers, practitioners,

and the public to envision alternative futures in which infection inequality is both easy to

anticipate and possible to prevent. We hope that models that include these mechanisms can be

tools for achieving the social herd immunity described by Williams and Cooper [20], but get-

ting there will require a sober reckoning of how far we currently are from it. Without models

that simultaneously speak the languages of transmission, evolution, and social stratification,

sociostructural changes that come from contesting power will once again be left out of the uni-

verse of possibilities that can be explored using transmission models. Including these mecha-

nisms does not guarantee a better outcome in the next crisis, but it does position models—and

modelers—to be ready to address questions of health justice early and often in the next crisis.
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