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Abstract

Experiments on tumor spheroids have shown that compressive stress from their environ-

ment can reversibly decrease tumor expansion rates and final sizes. Stress release experi-

ments show that nonuniform anisotropic elastic stresses can be distributed throughout. The

elastic stresses are maintained by structural proteins and adhesive molecules, and can be

actively relaxed by a variety of biophysical processes. In this paper, we present a new con-

tinuum model to investigate how the growth-induced elastic stresses and active stress relax-

ation, in conjunction with cell size control feedback machinery, regulate the cell density and

stress distributions within growing tumors as well as the tumor sizes in the presence of exter-

nal physical confinement and gradients of growth-promoting chemical fields. We introduce

an adaptive reference map that relates the current position with the reference position but

adapts to the current position in the Eulerian frame (lab coordinates) via relaxation. This

type of stress relaxation is similar to but simpler than the classical Maxwell model of visco-

elasticity in its formulation. By fitting the model to experimental data from two independent

studies of tumor spheroid growth and their cell density distributions, treating the tumors as

incompressible, neo-Hookean elastic materials, we find that the rates of stress relaxation of

tumor tissues can be comparable to volumetric growth rates. Our study provides insight on

how the biophysical properties of the tumor and host microenvironment, mechanical feed-

back control and diffusion-limited differential growth act in concert to regulate spatial pat-

terns of stress and growth. When the tumor is stiffer than the host, our model predicts

tumors are more able to change their size and mechanical state autonomously, which may

help to explain why increased tumor stiffness is an established hallmark of malignant

tumors.

Author summary

The mechanical state of cells can modulate their growth and division dynamics via

mechanotransduction, which affects both the cell size distribution and the tissue size as
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a whole. Experiments on tumor spheroids have shown that compressive stress from

their environment can reversibly decrease tumor expansion rates and final sizes. Besides

external confinement and compression on the tumor border, a heterogeneous stress

field can be generated inside the tumor by nutrient-driven differential growth. Such

growth-induced mechanical stresses can be relaxed by tissue rearrangement, which hap-

pens during cell neighbor exchanges, cell divisions, and extracellular matrix renewal. In

this study, we have developed a continuum model that describes the above mechanical

interactions and the dynamics of tissue rearrangement explicitly. Motivated by pub-

lished experimental data, we consider mechanotransduction where the local compres-

sive stress slows down cell growth and cell size reduction limits cell division. We have

analyzed how external mechanical stimuli and internal processes influence the outcome

of cell-and-tissue sizes and spatial patterns of cell density and mechanical stress in grow-

ing tumors.

Introduction

The importance of mechanical forces in regulating cell behaviors during normal development

and homeostasis [1, 2], and in disease progression such as cancer [3–5], is now widely recog-

nized. In addition to driving cell movement and deformation, biophysical forces act via

mechanotransduction to regulate cell fates, division, and death rates [6–9]. Nevertheless, the

effects of tissue properties and mechanical stresses on cancer progression and treatment out-

comes are still not well understood. In vitro experiments on avascular tumor spheroids have

shown that changes in their mechanical environment can result in different tumor expansion

rates, stress distributions, final sizes [10–13], and altered cell density fields [13]. Further, it was

recently observed that the material properties of tissues and external mechanical compression

may play distinct roles in tumor growth [14]. In addition to mechanical compression from the

exterior environment, stresses within growing tumors can be generated by nutrient-driven dif-

ferential growth of cells as well as active contractility of cells [15]. The release of these stresses,

by cutting, slicing, or punch protocols [14, 16], can cause finite deformations at rates faster

than those of a typical cell cycle and these deformations can be used to estimate the residual

elastic stress. The elastic stresses are maintained by structural proteins and adhesive molecules

[17], and can be actively relaxed due to processes such as turnover/reassembly of structural

and adhesion molecules, cell re-arrangements, and oriented cell divisions [1] at timescales

spanning from minutes to hours [17, 18].

In this paper, we present a new continuum model in the laboratory (Eulerian) frame.

This approach facilitates the nonlinear coupling between finite-elastic stresses, which are

traditionally described using material coordinates (Lagrangian frame), and reaction-diffu-

sion equations that model tissue growth and the dynamics of cell substrates (e.g, oxygen and

nutrients), which are traditionally described in the Eulerian frame. We fit the model to

experimental data from two independent studies of tumor spheroid growth and perform

parametric studies around the fitted parameter regime. We investigate how a tumor spher-

oid modulates its size as a whole, as well as cell density and stress distribution via internal

stress relaxation in the context of external physical confinement and limited nutrient

diffusion in conjunction with feedback machineries on cell growth [19–21] and division

[22, 23].
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Methods

Tissue elasticity in an Eulerian frame

We formulate the elastic stresses using Eulerian coordinates. Instead of relating the reference

coordinate X of a material point to its current coordinate x at time t via a mapping x = χ(X, t),
as is done in a Lagrangian frame, we instead relate the reference and current coordinates using

a so-called reference map Y ≔ χ−1, which maps the current coordinate x of a material point to

its reference coordinate X = Y(x, t), e.g., [24, 25]. Assuming spherical symmetry (see S1 Text

for a fully 3D formulation), we denote the reference map as y(r, t), where y and r are the refer-

ence and current radial coordinates of a material point. Treating the tumor spheroid as an

incompressible, neo-Hookean elastic material the nondimensional elastic stresses can be writ-

ten as

srr ¼ ð
y
r
=
@y
@r
Þ

4=3
; syy ¼ ð

@y
@r
=
y
r
Þ

2=3
; s�� ¼ syy; ð1Þ

where we have nondimensionalized the stress using the shear modulus of the tumor tissue.

This approach can also be used for more general constitutive laws [26]. The total stress (Cau-

chy stress tensor) is σtot = σ − pI where p is the pressure. The tumor tissue is approximately

incompressible in its elastic response since most of its volume fraction is water. However, vol-

ume loss can occur against compression due to water efflux [13], which we will introduce

shortly. Further, time and space are nondimensionalized using the characteristic cell-cycle

time scale of τ = 1 day and a length scale of l = 1μm. See S1 Text for the full, nonsymmetric,

dimensional model and nondimensionalization.

Adaptive reference map and stress relaxation

We describe the relaxation of the elastic stresses in Eq (1) by introducing the relaxation rate β
that reflects how rapidly the reference coordinates adapt to the current coordinates:

@y
@t
þ v �

@y
@r
¼ bðr � yÞ ð2Þ

where v is the cell velocity and y(r, 0) = r, assuming the initial state is unstressed. When

β = 0, y satisfies @ty(r, t) + v(r, t)@ry(r, t) = 0, which means the reference coordinate of a

material point is unchanged along its trajectory [24, 25]. In the results, we will show a posi-

tive value of β (adaptation) is necessary to achieve mechanical equilibrium when the tumor

reaches its equilibrium size. Notice the dynamics of the displacement field u = r − y
becomes @tuþ v � @u

@r ¼ v � bu, which decays with a rate of β. This form of relaxation is one

of the key assumptions of the paper, because it determines how the growing body reorga-

nizes and the stress relaxes. Combining Eqs (1) and (2) yields a Maxwell-like viscoelastic

stress relaxation. This is similar in spirit to the approach used in [27] to model viscoelastic-

ity in the context of a model of the cell cytoskeleton. See S1 Text for more details. We note

that other forms of stress relaxation could be used, including traditional viscoelasticity

(e.g., [28, 29]), yield stress-triggered cell reorganization (e.g., [30]) or growth anisotropy

(e.g., [31, 32]).

Force balance inside the tumor

We model the tissue as an overdamped, incompressible, nonlinear elastic material so that at

any point in the tissue the velocity is proportional to the force. Using radial symmetry, the
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nondimensional system is:

av ¼ �
@p
@r
þ
@srr

@r
þ

2

r
ðsrr � syyÞ; ð3Þ

where α is the nondimensional friction (drag) coefficient and v is the radial velocity. We

denote the total radial and circumferential stresses by stot
rr ¼ srr � p and stot

yy
¼ syy � p,

respectively.

External compression

At the spheroid boundary r = R, we have the force balance relation

stot
rr ðR; tÞ ¼ srrðR; tÞ � pðR; tÞ ¼ � Fext; ð4Þ

where −Fext represents the result of external physical confinement from a surrounding solid

material, such as externally applied hydrostatic pressure, or surface tension. Assuming that the

spherical tissue grows within an incompressible neo-Hookean material, similar to the experi-

mental set-up in [10], the external compression at the tumor boundary can be written as a

function of the initial and current radius, R0 and R(t), respectively (see Section 1.3 in S1 Text):

Fext ¼
cH
2

5 �
R0ðR3

0
þ 4RðtÞ3Þ
RðtÞ4

 !

; ð5Þ

where cH is the shear modulus of the surrounding material relative to that of the tumor tissue.

Alternatively, if a hydrostatic pressure �p is applied, as in [12, 13], then Fext ¼ �p.

Cell density

We assume the nondimensional local cell proliferation rate is given by l
net
c ðr; tÞ ¼ lcðr; tÞc � lA;c,

where λc(r, t) is the rate of cell divisions, c is the concentration of a growth promoting bio-

chemical factor that represents the net effect of diffusible substances (e.g., oxygen, glucose) on

cell division, and λA,c is the rate of apoptosis. Henceforth, the growth promoting factor c is

referred to as nutrient.

The cell number density ρc (cell numbers per unit volume) should follow

@rc

@t
þ v

@rc

@r
þ
rc

r2

@ðr2vÞ
@r

¼ rcðlcc � lA;cÞ þ
1

r2

@

@r
Drcr

2 @rc

@r

� �

ð6Þ

where � Drc
@rc
@r models the cell number flux due to local cell neighbor exchanges. This term

can also be interpreted as a Darcy-type flow where D is the mobility and
@rc
@r is the potential gra-

dient. When l
net
c ðr; tÞ ¼ lcðr; tÞc � lA;c ¼

1

r2

@ðr2vÞ
@r , we have ρc� const. if the initial and bound-

ary conditions admit ρc = const. as solutions. In general, the rates of cell division and apoptosis

and the rates of cell volumetric growth and loss (introduced below) are not necessarily

matched.

Volumetric growth

We assume that the rate of local volume change is given by λnet(r, t) = λ(r, t)c − λA(r, t), where

λ(r, t) is the rate of volume increase (e.g., cell volume growth) and λA(r, t) = λA,c + λE(r, t) is the

rate of volume loss from cell apoptosis λA,c and the rate of water efflux λE(r, t). Considering

that the majority of its volume fraction is water, the tumor spheroid is incompressible such
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that l
net
ðr; tÞ ¼ 1

r2

@ðr2vÞ
@r . Thus the radial velocity v(r, t) is:

vðr; tÞ ¼
1

r2

Z r

0

ðlðZ; tÞc � lAðZ; tÞÞZ
2dZ; ð7Þ

and the tumor radius evolves via dR(t)/dt = v(R, t). As the tumor size changes, c can be mod-

eled as

cðr; tÞ ¼ ðRðtÞ sinhð
r
L
ÞÞ=ðr sinhð

RðtÞ
L
ÞÞ; ð8Þ

assuming the substrate diffuses in from the tissue boundary, with c(R(t), t) = 1, and is uptaken

at a constant rate by tumor cells. Here, L is the nondimensional diffusion length. Note that

c(R(t), t) could be a function of time, but we assume here that there is sufficient supply from

the microenvironment to maintain c(R(t), t) constant. See Section 1.3 in S1 Text for details.

Water efflux and mechanotransduction

In growing tumor spheroids, compressive stresses can inhibit cell proliferation (e.g., [12, 13])

as well as inducing water efflux [13]. Thus, we assume that local compressive stress induces

local cell water efflux (with rate λE) and inhibits cell volume growth (with rate λ). We model

the effect of compression on water flux and cell volume growth by

lEðr; tÞ ¼ DA

gAs
m � 1fs<0g

1þ gAs
m � 1fs<0g

; ð9Þ

and

lðr; tÞ ¼
l0

1þ gls
n � 1fs<0g

; ð10Þ

respectively, as Hill-type equations where λ0 is the base rate of cell volume growth, s ¼

ð2stot
yy
þ stot

rr Þ=3 is the invariant measure of the local total stress, γA and γλ are feedback

strengths, ΔA is the maximum rate of the water flux, m and n are positive even integers, and 1χ

denotes the characteristic function of the set χ. Eq (9) takes into the account of Michaelis-Men-

ten kinetics with a saturation effect when the local compressive stress becomes large in magni-

tude. The cell growth rate (Eq (10)) decreases from the baseline rate λ0 in response to the local

compressive stress. We assume that circumferential stresses stot
yy

dominate the invariant stress

measure σ because the stot
yy

represents stresses from two principal directions while radial stress

stot
rr accounts for only one. In the Results section, we validate this assumption (see Inhibition of

growth through external confinement). Therefore, we use stot
yy

rather than σ in Eqs (9) and (10)

hereafter. The water efflux process may require a detailed consideration of flux exchange with

the tumor interstitial space. For example, it is possible that the interstitial pressure and its asso-

ciated fluid flow can limit the water efflux process from cells. While a full poroelastic model

(e.g., [33]) would describe the mass and momentum interactions between the solid and liquid

phases in detail, we assume for simplicity that the solid and liquid volume fractions are con-

stant (and hence porosity), which limits the coupling between the solid and liquid compo-

nents. There may be flow in the interstitial fluid (which could be modeled by Darcy’s law) due

to mass uptake and production from cell growth, apoptosis, and water efflux but we assume

this flow is sufficiently small so as to limit its contribution to momentum balance in the solid

(e.g., see also [34]). Extensions of our approach to full poroelastic models will be considered in

the future.
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Both feedbacks on λ and λE can result in increased cell density ρc via Eq (6). When cell den-

sity is high, which means the local size of cells is small, cell division can be inhibited by multi-

ple mechanisms [22, 23]. We model this effect by

lcðr; tÞ ¼
l0

1þ gcjrc � 1j
l
� 1frc>1g

ð11Þ

where γc is the feedback strength and l is the Hill-coefficient. We assume that the base rate of

cell division is the same as the base rate of cell volume growth λ0. That is, without compression,

the rate of cell division and the rate of cell volume growth are matched.

Results

A tumor spheroid growing with stress relaxation

We first simulate numerically (see Section 1.3 in S1 Text for the algorithm and parameters),

the unconfined (free) growth of an initially unstressed tumor spheroid (Fext = 0). As seen in

Fig 1A the tumor radius increases over time and approaches a steady-state, which is indepen-

dent of the initial size or initial stress state (Fig B in S1 Text). Because of diffusion-limited

Fig 1. Time evolution of a freely growing tumor without external compression (A). The spatial distribution of net

volumetric growth rate (B), cell velocity (C), circumferential stresses (D), and cell density (E) at different times. See S1

Text for the list of parameters.

https://doi.org/10.1371/journal.pcbi.1009701.g001

PLOS COMPUTATIONAL BIOLOGY Stress generation, relaxation and size control in confined tumor growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009701 December 21, 2021 6 / 16

https://doi.org/10.1371/journal.pcbi.1009701.g001
https://doi.org/10.1371/journal.pcbi.1009701


nutrient transport, the net volume rate of change λnet(r, t) = λ(r, t)c(r, t) − λA(r, t) is spatially

varying (Fig 1B). At early times when the tumor is small, the volume increases all throughout

the tumor spheroid as nutrients are readily available. At later times, volume gain (due to cell

growth) dominates at the spheroid boundary and volume loss (due to cell apoptosis and water

efflux) dominates at the spheroid center (Fig 1B) where nutrient levels are low. Correspond-

ingly, cells move outward at early times but at late times, as in previous models (e.g., [12, 32,

35]), cells divide at the boundary and move inward to compensate for the loss of volume at the

center (Fig 1C), which may explain the presence of long-lasting apoptotic markers in the core

of the tumor spheroids. The total circumferential stresses stot
yy

are compressive throughout the

tumor spheroid at early times while at later times the stresses are compressive near the tumor

edge and tensile in the center (Fig 1D). Further, the stresses equilibrate as soon as the tumor

radius reaches equilibrium.

The spatial distribution of the circumferential stress at any given time t seems contradictory

to the experimental and theoretical results in [34, 36], which found compressive stresses in the

tumor interior and tensile stresses at the tumor boundary. In the experiments, these differ-

ences may be due to the specific tissue properties, external confinement of the implanted

tumors and the growth stage of the implanted tumor. Note that in Fig 1, the tumor is freely

growing and there is no external confinement. Differences between the theoretical results in

[34, 36] and ours may be due to the different model assumptions of the stress-dependent volu-

metric growth and loss. Our results are consistent with stress patterns observed in implanted

brain tumors in [14] except that we do not see tensile stresses near the tumor-host interface

since our tumor is not confined. As we will see below, when the tumor grows in a confined

region in our model, tensile stresses emerge at the tumor-host interface in the confining tissue

and stresses in the tumor interior can be compressive or tensile depending on the tissue

properties.

When the tumor reaches its equilibrium size R(t) = R1, one can derive y,r(R1) = β/(β +

λ(R1) − λA(R1)). This shows that (i) β = 0 (no relaxation) leads to a singularity in the elastic

strain and (ii) increasing β restores the proportionality between y(r, t) and r and thus decreases

the elastic energy (Fig C in S1 Text) and stress anisotropy (Fig D in S1 Text), which are both 0

when y(r, t) = r. Similar considerations hold at the tumor center. The cell density ρc(r, t) is

highest in regions near the tumor boundary (Fig 1E). This is due to the synergistic effect

among the rate of cell division l
net
c ðr; tÞ ¼ lcðr; tÞc � lA;cðr; tÞ, the rate of net local volume

gain λnet(r, t) = λ(r, t)c(r, t) − λA(r, t), and the local flux of cells. One can see from Eq (6) that

cell division tends to increase the cell density, while the local volume gain l
net
ðr; tÞ ¼ 1

r2

@ðr2vÞ
@r ¼

lðr; tÞcðr; tÞ � lAðr; tÞ tends to decrease the cell density. When this two rates match, the cell

density is uniform. However, when the compression near the tumor boundary slows down the

local volume gain via mechanotransduction and water efflux, the local division rate becomes

faster than that of the volume gain, which leads to an increase in cell number density. Notice

the advection v @rc
@r and local random neighbor exchange of cells 1

r2
@

@r Drcr2 @rc
@r

� �
can further

adjust the cell density distribution. In the central region with inward radial velocity v(r, t)< 0,

local cell density increases due to the advection of the cells. At the tumor center with v(0, t)� 0,

the random neighbor exchange of cells 1

r2
@

@r Drcr2 @rc
@r

� �
is necessary to describe local cell accu-

mulation. This higher-order derivative term allows us the implement the no-flux boundary

condition
@rc
@r ð0; tÞ ¼ 0 at the tumor center, which facilitates changes in cell density at the

tumor center according to the cell density in its neighborhood. Interestingly, we have found

the value of D does not visibly affect the result in the cell density distribution (see Fig E in S1

Text). Nevertheless, the effect from the cell flux is secondary to the competition between
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volume gain and cell proliferation rates (in this case), due to the high proliferative activity near

the free tumor boundary.

Inhibition of growth through external confinement

In [10], it was shown that the growth capacity of tumor spheroids (human colon adenocarci-

noma, LS174T) in agarose gels decreases as the concentration of agarose is increased (Fig 2A

and A in S2 Text); the stiffness of the gels is positively correlated with the agarose concentra-

tion. However, tumors suspended in gels with lower growth rates regain their free-growth

capacity once the gels are removed (Fig 2E, symbols). We use our model to fit the experimental

data from tumors grown in free suspension (0% gel) and 0.7% and 1.0% agarose gels using the

same set of the tumor-associated parameters (which characterize the base rates and chemome-

chanical responses of LS174T) but different shear moduli of the gel (e.g., cH = 0 for 0% and

cH> 0 for the 0.7% and 1.0% gels). The experimental data consists of both tumor radius

(shown as symbols in Fig 2A), and average cell densities of compressed tumors as a ratio to

that of the free tumor (shown as vertical line segments denoting the mean and standard devia-

tions of experimental measurements in Fig 2D). Since [10] suggests that cells does not adjust

their rate of proliferation in response to the spatial confinement, we assume compressive

stresses increase local water efflux (γA, ΔA> 0 and γλ = 0). Then, using the same tumor-

associated parameters, we fit the other gel concentrations (Fig A in S2 Text) by changing only

cH. See S2 Text for details on the fitting process.

We find that the nondimensional relaxation rate β* 1, which suggests that a fully nonlin-

ear elastic model is needed to describe tumor biomechanics, rather than a fluid model or a lin-

ear elastic model. Such reduced models arise as limits of our model where β>> |λnet|. See S1

Text for limiting cases in different parameter regimes. The results are presented in Fig 2 (and

Fig A in S2 Text). There is good quantitative agreement between the model (curves) and

Fig 2. Fitting the model to data from [10] of tumor spheroids grown in free suspension (blue) and 0.7% (red) and 1.0% (brown) agarose gels

with (solid) and without (dashed) feedback from the elastic stress (A) and when stresses are released by removing the gels in a narrow interval

around the times reported in [10] (E). Bands show the results within 10% of the best fit with feedback in all panels. (B) and (C): The

distributions of stresses and net volume growth rates from the model. (D) and (F): Average cell density of tumors in (A) and (E) respectively.

The bars in (D) shows the experimental average density for 0.7% and 1.0% tumors, relative to the free tumor. See S2 Text for details.

https://doi.org/10.1371/journal.pcbi.1009701.g002

PLOS COMPUTATIONAL BIOLOGY Stress generation, relaxation and size control in confined tumor growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009701 December 21, 2021 8 / 16

https://doi.org/10.1371/journal.pcbi.1009701.g002
https://doi.org/10.1371/journal.pcbi.1009701


experiments (symbols) for the dynamics of the tumor spheroid radii (Fig 2A) where the bands

show the results using parameters for which the results are within 10% of the best fit, which

corresponds to β = 0.4 and c1:0%
H ¼ 1:8 and c0:7%

H ¼ 0:6 (see S2 Text for all the fitted parame-

ters). Fits to other gel concentrations are shown in Fig A in S2 Text. For the case of the 1.0%

gel at equilibrium, we predict the circumferential stress (stot
yy

) in the tumor at equilibrium is

compressive and quasi-uniform (Fig 2C). We find that the average elastic energy in the tumor

spheroid 3

4R3
1

R R1
0

W y; r; @y
@r

� �
r2dr decreases even though cH increases (Fig B in S2 Text), which

shows that stress and stiffness are not always positively correlated. This result is consistent

with the findings in [14]. Our results suggest that as cH increases, the stresses in the tumor

become mainly hydrostatic (see Fig B in S5 Text). When cH>> 1, it can be seen analytically

that the leading-order stress distribution is uniform and is given by the compression at the

boundary. As the agarose concentration of the gel is decreased, cH decreases and the stresses

are less compressive and less uniform (Fig 2B, solid curves). In the freely growing case, the

stress becomes tensile in the tumor interior and is compressive only at the spheroid boundary

similar to that observed in Fig 1D. In contrast, the stresses in the gel (dotted curves) are tensile,

as the growth of the tumor stretches the surrounding gels circumferentially, with the maxi-

mum stress occurring at the spheroid boundary. This case is more like the situation in [36],

where there is a periphery layer with slower growth than the intratumor region. Increasing the

gel concentration, reduces the magnitude of the circumferential stresses outside the tumor

because even though cH increases, the smaller tumors displace the gel less. At equilibrium,

there is a net volume loss in the tumor center, which is balanced by volume gain at the bound-

ary (Fig 2C, solid curves). As seen in Figs 2 and A-D in S5 Text, the stress patterns in the

tumor and surrounding gel depend on the tissue stiffnesses, the tumor growth rates and stress

relaxation. Consistent with in vivo experimental results of orthotopically-implanted tumors in

mice [14], the stresses in the tumor center can be compressive or tensile (depending on tissue

properties) while tensile circumferential stresses occur at the slower-growing (e.g., gel) side of

the tumor-host interface. Because of the discontinuity in growth and stress relaxation between

the tumor and surrounding gel, the circumferential stresses are discontinuous at the tumor-

host interface. If continuity were imposed, as might be expected in vivo, there should be a

smooth transition of circumferential stress from compression to tension at the tumor-host

interface.

To examine the effect of water efflux, we also fit the data without considering feedback

from the elastic stress (γA = 0). In this case, the predicted radii (dashed curves in Fig 2A) also

provide a good fit of the data, but the stress distributions and net volume growth rates are

more heterogeneous when considering growth regulated by nutrient level alone (Fig 2B and

2C, dashed). Further, using the corrected Akaike information criterion (AICc) [37] suggests

the model with feedback provides a better fit to the experiment (see S2 Text). For the water-

efflux feedback function (Eq (9)), we have considered the effect of the circumferential stress

stot
yy

, reasoning that it dominates the mechanical state of the cells because it represents stresses

from two principal directions orthogonal to the radial direction. One could change stot
yy

to the

stress invariant ð2stot
yy
þ stot

rr Þ=3 and obtain similar results. See S2 Text and Fig C in S2 Text.

We calculate the average cell density in the tumor by 3

4R3
1

R R1
0
rcðr; tÞr2dr and plot this as a

function of time. The average density increases with time. For more constrained tumors with

increased gel stiffness, the average cell density increases, consistent with experimental data

(vertical line segments in Fig 2D). Additionally, our simulation reveals that the region with

largest cell density shifts towards the center of tumor (Fig 3A), indicating that tumor cells are

most packed inside due to the inward cell flow. In this case, the effect of cell flux on the local
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cell density becomes primary, because volume growth and proliferative activities slow down

due to globally elevated compression from the spatial confinement.

To model the gel-removal experiments from [10] (Fig 2E and 2F), we set cH = 0 in all the gel

cases and use the common set of fitted tumor-associated parameters (see S2 Text for details).

Again, there is good quantitative agreement between the numerics and experiments, which

both tend to recover the growth of the unconstrained spheroid. The average cell density also

recovers to the same level as in the free-boundary case. (Fig 2E and 2F) In addition, we also

show that the spatial distribution of the cell density reverse to the distribution in the free-

boundary case upon gel-removal, where the cell density near the tumor boundary becomes

higher again (compare Figs 3B with 1E).

We also use the data from [12, 13], where colon carcinoma tumor spheroids containing

mouse CT26 cell lines where grown under isotropic compression from an osmotically-induced

external pressure. As suggested by [12, 13], the compressive stresses reduce proliferation rates

without increasing apoptosis. Therefore, we fit our model with feedback on the proliferation

rate to data in Figure 1 in [13]. In this case, the tumor radius is determined by the sensitivity to

feedback from mechanical stresses (γλ) and pressure boundary condition (�p), in addition to

the volume loss rate λA and other parameters. We fit the experimental data in tumor radius

(shown as symbols in Fig 4A) and data of relative cell density, where the density in the com-

pressed tumor at tumor center is approximately 20% larger than that in the free tumor (see the

triangle (mean) with error bars in Fig A in S4 Text). Our fitting yields good quantitative agree-

ment between the model and experiments for the dynamics of the tumor spheroid radii (Fig

4A), as well as the cell density (Fig A in S4 Text). Similar to Fig 2B, the circumferential stress is

also compressive at the tumor boundary, and becomes tensile towards the tumor center. Both

the stress and the net volume growth are more uniform when feedback is considered. This can

be seen by comparing the solid curve (with feedback) and dashed curve (without feedback) in

Fig 4B and 4C.

Consistent to the trend in Fig 2D, the average cell density is higher in the more compressed

tumor (Fig 4D). Again, external extra compression shifts the region with higher cell density

Fig 3. Cell densities ρc in the constrained tumor in Fig 2. (A) The regions with largest cell density shifts towards the

tumor center, indicating cells are more packed inside the tumor. (B) After releasing the gel, the cell density recovers to

the same level in the unconstrained tumor. See S3 Text for the list of parameters.

https://doi.org/10.1371/journal.pcbi.1009701.g003

PLOS COMPUTATIONAL BIOLOGY Stress generation, relaxation and size control in confined tumor growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009701 December 21, 2021 10 / 16

https://doi.org/10.1371/journal.pcbi.1009701.g003
https://doi.org/10.1371/journal.pcbi.1009701


towards tumor center, as can be seen in Fig A in S4 Text. The tumor radius, the average cell

density, as well as the cell density distribution are all reversible upon the pressure removal (Fig

4E and 4F and Fig A in S4 Text).

Tumor size, stress and density patterns at equilibrium

Next, we perform a parametric study to investigate how the internal stress relaxation and

external spatial confinement influence the sizes of tumor spheroids, their stress distributions

and anisotropies. At equilibrium, tumor sizes decrease with cH and increase with β due to

external loading and internal relaxation, respectively (Fig 5A). The white dashed curve marks

the boundary between tumor spheroids with tensile (to the left) and compressive (to the right)

stresses at the spheroid center. When both cH and β increase, the stress is less elastic and more

hydrostatic (Fig 5B, spatial distributions in Figs A and B in S5 Text) and less anisotropic (Fig

5C, spatial distributions in Figs C and D in S5 Text). In addition, the stress distributions along

the tumor radii (Fig 5D) become more uniform and less sensitive to changes in β when cH
increases, since the stress are dominated by compression from the external loading. When β
and cH lie within the region marked by the dashed red curve in Fig 5A, the tumors are small

but their stress distributions can be heterogeneous (Fig 5D). Interestingly, the corresponding

dynamics of the spheroid radii are non-monotone as the stress equilibrates slowly towards the

steady-state (Fig E in S5 Text); we have not seen this in published data, however. Following

[38], we anticipate this could lead to a break in radial symmetry.

We also investigate how the stress relaxation and external spatial confinement affects the

magnitude and spatial distribution of cell density. At equilibrium, the average cell density

increases with external confinement, but decreases with stress relaxation (Fig 5E). As the exter-

nal confinement becomes stronger, cells are more packed near the tumor center (Fig 5F).

Discussion

We considered the influence of mechanical stress on rates of tumor tissue volume changes via

the the net effect between cell cycle in which the cell increases in size and the water efflux in

which the cell decreases in size. The cell cycle can respond to the mechanical stresses via the

shutting the transcriptional coactivators YAP and TAZ between the cytoplasm and the

nucleus. The translocation of YAP and TAZ proteins is known to respond to multiple inputs,

Fig 4. Fitting the model to data from [12, 13] of tumor spheroids grown free or with external pressure, with and

without (dashed) feedback from the elastic stress (A). External pressure is released at the time reported in [13] (E).

Bands show the results within 10% of the best fit with feedback in all panels. (B) and (C): The distributions of stresses

and net volume growth rates from the model. (D) and (F): Average cell density of tumors in (A) and (E) respectively.

See S4 Text for the list of parameters.

https://doi.org/10.1371/journal.pcbi.1009701.g004
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including the Hippo signaling pathway [39]. The water efflux has been suggested by [13] as the

explanation of the tumor spheroid shrinkage in response to external compression. By consid-

ering both effects, we found good agreement with experimental data from [10, 12, 13] where

the volumetric growth rates of tumor spheroids adjust as the level of external confinement [10]

or hydrostatic compression [12, 13] (presented in S4 Text) varies.

The stress patterns we find are also consistent qualitatively with in vivo experimental results

of orthotopically-implanted tumors in mice [14], where depending on the tissue properties,

the stresses in the tumor center can be compressive or tensile and are surrounded by a region

of compressive stress with tensile circumferential stresses appearing at the tumor-host inter-

face. However, in our model, the circumferential stresses are discontinuous at the tumor-host

interface because we have assumed that the growth and stress relaxation are discontinuous at

the tumor-gel interface. In vivo, where the tumor is surrounded by tissue and the tumor-host

interface consists of narrow region containing a mixture of tumor and host cells, we would

expect these growth and relaxation processes to be continuous, which would lead to smooth

but rapid transitions of circumferential stress from compression to tension at the tumor-host

interface as observed in vivo.

We have also modeled the spatiotemporal dynamics of the cell density– the number of cells

per volume– in the growing tumor where the local cell density is increased by the cell division

rate, decreased (diluted) by the local volume growth, and further adjusted by the local cell flux

Fig 5. Contour plot of steady-state tumor radius (A), average elastic energy in the tumor at steady-state (B), stress

anisotropy at tumor boundary (C), averaged stress gradient in the tumor, (D), steady-state average density (E),

and location of maximum ρc relative to tumor boundary (F) as a function of β and cH. The dashed white line shows

the stot
yy
ð0Þ ¼ 0 contour. The dashed red line shows the region where the dynamics of the radius are non-monotone

(see Fig A in S5 Text). In (F), a value of 1 corresponds to the tumor boundary, while a value of 0 corresponds to the

tumor center. See the main text for more details.

https://doi.org/10.1371/journal.pcbi.1009701.g005

PLOS COMPUTATIONAL BIOLOGY Stress generation, relaxation and size control in confined tumor growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009701 December 21, 2021 12 / 16

https://doi.org/10.1371/journal.pcbi.1009701.g005
https://doi.org/10.1371/journal.pcbi.1009701


to due advection or random neighbor exchanges. To prevent division of very small cells, we

further consider that the division rate is decreased by local increases in cell density. Multiple

feedback machineries such as contact inhibition [22] and cell cycle checkpoints [23] may be

responsible for this negative feedback loop. By fitting the cell density data from [10, 13] simul-

taneously with the data of the volumetric growth rates, we found not only that the average cell

density increases with the strength of external compression or confinement, but also that the

location with the maximal cell density transits from the tumor boundary to the center.

To model the spatial temporal dynamics of the stresses in the tumor tissue, we have devel-

oped and applied a new model of stress relaxation using an Eulerian framework. At the macro-

scopic tissue level, we have coupled the rate of growth with diffusion-limited nutrient transport,

which results in differential accumulated growth. This is different from previous works that pre-

scribe the differential accumulated growth as spatial varying functions [38, 40] and is facilitated

by the full Eulerian framework. To relax the stress, we have introduced a relaxation rate β and

the resulting system is similar to but simpler than the classical Maxwell model of viscoelasticity.

The cytoskeletal and intercellular junction remodeling should affect β. For example, faster turn-

over/reassembly of these structural and adhesion molecules should increase β. By fitting spher-

oid data from these two independent studies using different tumor cell lines, we find the

relaxation rate β* 1 per day, which is comparable to the volumetric growth rate of the tumor.

Although we have not explicitly modeled the extracellular matrix in the growing tumor, we

note that the dynamics of matrix and cell-matrix interactions should also impact the stress accu-

mulation and relaxation. This is left to the future work. Our model predicts that feedback from

elastic stresses result in a more uniform spatial pattern of growth rates, which is analogous to

the spatial patterning of cell proliferation observed during development of the Drosophila wing

disc [19–21] where feedback from elastic stresses was also found to be important for this pattern

of growth. We found that when the compression from external confinement is non-negligible

compared to the internal compression generated by differential growth, the tumor spheroid

sizes and the stress distributions are not sensitive to changes in the material properties of the

spheroids. Further, the total stress is nearly uniform and is dominated by hydrostatic pressure.

We can also gain insight on tumor growth in vivo. When a tumor increases its instanta-

neous elasticity relative to the external confinement (e.g., decreasing cH), such tumors are

more able to change their size and mechanical state autonomously. This may explain why

increased tumor stiffness is an established hallmark in tumor malignancy [18, 41]. On one

hand, when cH is small, the tumor size as well as the average cell size (the inverse of cell den-

sity) can be increased by increasing the stress relaxation rate β. On the other hand when β is

small, the tumors have large elastic energy and anisotropy and the model predicts that the

dynamics of the tumor can be non-monotone, although we have not seen this observed in

published data. However, we anticipate that such tumors may be subject to morphological

instability, increasing local invasiveness. In summary, we suggest that when the tumor stiffness

dominates over the surrounding compressive stresses, then active relaxation—an effect from

lumping the turnover and deposition of intracellular cytoskeleton structures, intercellular

adhesion complexes, and extracellular matrices– can be used to leverage against local invasive-

ness and bulk expansion during tumor progression.

Conclusion

We have developed biomechanical model that accounts for the stress generation and relaxa-

tion in the growing tumor spheroid, and have considered the chemomechanical responses of

tumor tissue in regulating the size distribution of cells and the integrated size of the tissue. By

fitting the model to experimental data from two independent studies of tumor spheroid
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growth and their cell density distributions, treating the tumors as incompressible, neo-Hoo-

kean elastic materials, we find that the rates of stress relaxation of tumor tissues can be compa-

rable to volumetric growth rates. Our study provides insight on how the biophysical properties

of the tumor and host microenvironment, mechanical feedback control and diffusion-limited

differential growth act in concert to regulate spatial patterns of stress and growth. In particular,

when the tumor is stiffer than the host, our model predicts tumors are more able to change

their size and mechanical state autonomously, which may help to explain why increased tumor

stiffness is an established hallmark of malignant tumors.
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