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Abstract

Sensory organs transmit information to downstream brain circuits using a neural code com-

prised of spikes from multiple neurons. According to the prominent efficient coding frame-

work, the properties of sensory populations have evolved to encode maximum information

about stimuli given biophysical constraints. How information coding depends on the way

sensory signals from multiple channels converge downstream is still unknown, especially in

the presence of noise which corrupts the signal at different points along the pathway. Here,

we calculated the optimal information transfer of a population of nonlinear neurons under

two scenarios. First, a lumped-coding channel where the information from different inputs

converges to a single channel, thus reducing the number of neurons. Second, an indepen-

dent-coding channel when different inputs contribute independent information without con-

vergence. In each case, we investigated information loss when the sensory signal was

corrupted by two sources of noise. We determined critical noise levels at which the optimal

number of distinct thresholds of individual neurons in the population changes. Comparing

our system to classical physical systems, these changes correspond to first- or second-

order phase transitions for the lumped- or the independent-coding channel, respectively.

We relate our theoretical predictions to coding in a population of auditory nerve fibers

recorded experimentally, and find signatures of efficient coding. Our results yield important

insights into the diverse coding strategies used by neural populations to optimally integrate

sensory stimuli in the presence of distinct sources of noise.

Author summary

Information about the external environment is processed by populations of sensory neu-

rons using a combinatorial neural code comprised of spikes from multiple neurons. In

many cases, this information has to be compressed before reaching downstream circuits

due to limitations on axonal transmission properties and the metabolic cost of firing. A

prominent theoretical framework known as efficient coding postulates that sensory popu-

lations transmit maximal information about sensory stimuli subject to metabolic con-

straints. Although used to successfully predict the shape of receptive fields in the insect
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and mammalian retina, this theory has often considered linear neurons or a single source

of noise. Here, we derived a framework for information transfer in populations of noisy

nonlinear neurons, specifically addressing the implications of the location of the noise

source, and the way the sensory stimulus converges downstream, on the efficiency of

information transfer. Our theoretical predictions support efficient coding in experimen-

tally recorded populations of auditory nerve fibers coding for sound intensity.

Introduction

Neurons in sensory organs encode information about the environment and transmit it to

downstream circuits in the brain. In many sensory systems, the sensory signal is not coded

merely by individual neurons but rather by the joint activity of populations of neurons, which

likely coordinate their responses to represent the stimulus as efficiently as possible. One signa-

ture of this efficient parallel coding might be the remarkably diverse response properties exhib-

ited by many first-order sensory neurons. In the visual pathway, for example, the first-order

sensory neurons are the retinal ganglion cells (RGCs) which send information to the thalamus

through the optic nerve. There exist around thirty different RGC types which encode different

visual features as characterized by the cells’ spatiotemporal receptive fields and nonlinear com-

putations [1–3]. Yet, there are also RGC types which in parallel encode a single stimulus fea-

ture differing in their firing thresholds [4–6], and hence provide parallel information streams.

Another example is the first synapse level of the auditory pathway, where each inner hair cell

transmits information about sound intensity to approximately ten to thirty different auditory

nerve fibers (ANFs) [7]. ANFs differ in several aspects of their responses, including spontane-

ous rates and firing thresholds [8]. However, each fiber receives exclusive input from only a

single inner hair cell. As in the retina, this results in a highly parallelized stream of sensory

information. Similarly, this parallel encoding of a single stimulus feature with a population of

neurons with different thresholds has been shown in olfactory receptor neurons [9], in mam-

malian touch receptors [10], and electro receptors of electric fish [11].

We asked whether the diverse response properties of a population of neurons encoding a

single stimulus feature are a consequence of the evolutionary pressure of the sensory system to

efficiently encode sensory stimuli. A powerful theoretical framework to address this question

is the efficient coding. This framework postulates that during evolution sensory systems have

optimized information encoding given biophysical and metabolic constraints. Predictions

from efficient coding are consistent with many properties of primary sensory neurons, includ-

ing center-surround receptive fields [12] and a split into ON and OFF pathways in the retina

[13, 14], as well as the input-output functions of neurons [15] and sensory adaptation to

changing stimulus statistics in the insect retina [16]. Applying the efficient coding framework

requires determining a set of constraints that are relevant for the sensory system in question.

Rather than investigating efficient coding in a specific sensory system, we sought to derive a

general theoretical framework that applies to multiple sensory systems focusing on two ques-

tions: first, how the source and size of noise affects the accuracy of information coding, and

second, how downstream signal convergence influences the optimality of information

transfer.

Noise is a ubiquitous phenomenon in biological information processing and corrupts signal

transmission at different processing stages (reviewed in [17]). The size [18–24] and source [25,

26] of noise can have distinct effects on signal encoding. For instance, previous studies have

shown that neural populations adopt a strategy of independent coding [5, 14, 25, 27–30] or
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decorrelation [12, 31–37] in conditions of low noise, and a strategy of redundant coding in the

presence of high noise [5, 12, 14, 25, 27–35, 37, 38]. For populations of neurons, redundant

coding can be interpreted as multiple neurons in the population, which acquire the same

response thresholds to average out uncertainties in stimulus representation due to noise.

When noise is negligible, the individual thresholds are expected to be distinct from each other,

which is in agreement with experimental data [5, 28, 30]. Therefore, the source and size of

noise have nontrivial influences on the encoding of sensory information.

Besides the source of noise, a second factor when maximizing information between stimu-

lus and response is how the stimulus converges downstream after it is encoded by the neural

population. For instance, it might be advantageous to compress sensory information before

reaching downstream circuits due to axonal transmission limitations and the metabolic cost of

firing of multiple neurons. Previous studies have assumed a framework in which the spiking

output of the neurons converges, or is lumped, into one single output variable [29, 30]. In con-

trast, other works have assumed a framework without signal convergence, i.e. where the signal

is encoded by the independent spiking output of each neuron in the population [5, 14, 25, 39].

Therefore, signal convergence also fundamentally influences optimal population coding.

Here, we investigated efficient stimulus coding in populations of more than two neurons as

a function of the source and size of noise, and the type of stimulus convergence, and generated

novel predictions about how these two aspects affect the optimal coding strategies of the neural

populations. In particular, we maximized Shannon’s mutual information between a one-

dimensional stimulus (a single stimulus feature) and the population’s response. Typically, the

efficient coding framework has been applied to populations of linear neurons, where the con-

tribution of the noise entropy term to the mutual information has been ignored, resulting in

degeneracies in the optimal solutions [12, 13, 37, 40]. We considered a nonlinear version of

efficient coding that includes two types of noise: additive input noise which corrupts the stim-

ulus before it enters a neuron’s nonlinearity and output noise implemented as spike generating

noise which affects the output of the nonlinearity. We found that the exact implementation

and source of noise can have fundamental implications for the conclusions arising from effi-

cient coding.

For biologically realistic intermediate sources of noise, the particular downstream conver-

gence of the sensory signal, either through lumping or independence, determines the number

of distinct population thresholds. In agreement with previous studies [5, 14, 25, 27–30], we

found that for low noise levels the optimal population thresholds are all distinct, while for high

noise levels all thresholds become identical. However, unlike other studies we found surprising

transitions from all thresholds being distinct at low noise to all thresholds being equal at high

noise, which happen through a set of bifurcations at critical noise levels. These bifurcations

resemble first- and second-order phase transitions in the case of the lumped and independent

output variables, respectively. We related these phase transitions to the curvature of the infor-

mation landscape, giving us insights into the optimal coding solutions and their relationship

to well-understood critical systems in physics. We also compared our theoretical predictions

to optimal coding of experimentally recorded auditory nerve fibers where we found signatures

of optimality.

Results

Theoretical framework

We studied a population of spiking neurons encoding a sensory stimulus under different noise

scenarios. A population of N neurons encodes a static, one-dimensional stimulus s drawn

from a stimulus distribution P(s) through the spike counts fk1; . . . kNg �~k emitted in a coding
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time window ΔT (Fig 1A). We considered different stimulus distributions, parametrized by

the generalized normal distribution [41], but here we primarily discuss the case of a Gaussian

stimulus distribution (see Methods). The mapping from the stimulus value s to the spike count

vector~k happens through a set of N nonlinear functions (tuning curves) {ν1(s), . . .νN(s)},
where νi(s) denotes the firing rate of the respective neuron i. Such a mapping can be imple-

mented by a variety of sensory systems, for instance, the retina which processes various visual

stimulus attributes, such as light intensity or contrast [42], the olfactory receptor neurons

which process a range of concentrations of a single odor [9, 39, 43, 44], or the auditory nerve

fibers (ANFs) which transmit information about sound pressure levels [45]. Here, we only

focus on optimizing one stage of this transformation, namely the nonlinearity which takes a fil-

tered stimulus s as input and converts it into action potentials~k. For example, if we assume

that our sensory system of interest is the population of ANFs, which are highly nonlinear pro-

cessing units [46], then s represents the stimulus value following preprocessing by the cochlea

and the inner hair cells.

We modeled the neurons’ tuning curves as binary, described by two firing rate levels {0,

νmax} with an individual threshold θi separating the stimuli into two firing rates. Thus, the

Fig 1. Stimulus encoding with a population of neurons in the presence of input and output noise. A. Framework:

A static stimulus s (top) is encoded by a population of spike counts {k1, . . .kN} (bottom) in a coding time window ΔT.

The stimulus is first corrupted by additive input noise z and then processed by a population of N binary nonlinearities

{ν1, . . .νN}. Stochastic spike generation based on Poisson output noise corrupts the signal again. Thresholds {θ1, . . ., θN}

of the nonlinearities are optimized such that the mutual information Im(k1, . . ., kN;s) between stimulus and spike

counts is maximized. Inset: Introducing additive input noise and a binary nonlinearity can be interpreted as having a

sigmoidal nonlinearity after the input noise is averaged, h. . .iz. Shallower nonlinearities result from higher input noise

levels. B. Two different scenarios of information transmission: In the independent-coding channel each neuron

contributes with its spike count to the coding of the stimulus, while in the lumped-coding channel all spike counts are

added into one scalar output variable that codes for the stimulus.

https://doi.org/10.1371/journal.pcbi.1008897.g001
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input-output functions of each neuron can be represented by νi(x) = νmaxΘ(θi − x), where Θ is

the Heaviside function. This simplification is justified by the fact that many sensory neurons

have been described with steep tuning curves that resemble binary neurons [16, 27, 36], and it

makes the problem mathematically traceable. We derived the number and values of distinct

thresholds in the population when the signal is corrupted by two sources of noise: input noise,

which affects the signal before the nonlinearity, and output noise, which affects the neuronal

outputs after the nonlinearity.

Input noise. Before being processed by the nonlinearity, the stimulus s is corrupted by

additive noise z drawn from a distribution P(z). The size of input noise can be quantified by

the ratio of its variance hz2i � σ2 to the stimulus variance hs2i � s2
s . Without loss of generality,

we set s2
s ¼ 1 and thus σ2 alone stands for the size of input noise. The noise affects the stimulus

independently for each nonlinearity. We did not consider correlated noise since previous

work has shown that the case of correlated noise can be reduced to independent noise with

lower σ2 for a model of two neurons and Gaussian stimuli [25]. Higher-order correlations in

the case of more than two neurons might not be trivially reduced to non-correlated input

noise with smaller σ2; however, such investigations are beyond the scope of our paper. Simi-

larly to the stimulus distribution, we primarily examined the case with the noise drawn from a

Gaussian distribution, z� N(0, σ2), but we also considered other distributions (see Methods).

Since the input to the nonlinearities is x = s + z, the effective tuning curves, νi(s), can be

described to have sigmoidal shape (Fig 1A, inset). A larger input noise size, determined by the

variance of the noise σ2, corresponds to a shallower slope. In the remainder of the text, we use

the standard deviation σ to refer to the size of input noise.

Output noise. Output noise was implemented by generating output spikes stochastically;

here, each of the spike counts ki in a coding window ΔT was Poisson distributed. Large output

noise corresponds to the case when the product of νmax and ΔT is small; in this case the output

of a given cell i is often ki = 0 making it more difficult to distinguish whether the underlying

firing rate for that neuron is 0 and thus the stimulus is smaller than the threshold θi, or whether

the firing rate is νmax and the stimulus greater than θi. The output noise size can thus be quanti-

fied by the expected spike count for maximum firing rate, R≔ νmaxΔT, where small R means

high noise.

Within this framework, we maximized the mutual information between stimulus and out-

put spike counts, and optimized the number and values of distinct thresholds, {θi}, of the neu-

ronal nonlinearities, while varying the size of input and output noise (see Methods). We chose

the mutual information as the objective function to quantify the optimality of the encoding

because it does not rely on any specific assumptions of how this information should be

decoded, and presents an upper bound for any other efficiency measure [47]. In addition to

two noise sources, we further distinguish between two different scenarios previously consid-

ered in the literature for how the sensory signal converges after being processed by the popula-

tion of neurons (Fig 1B): (1) an independent-coding channel where a vector of spike counts

~k ¼ fkig generates a population code of the stimulus where each spike count independently

contributes to the total information [5, 14, 25], and (2) a lumped-coding channel where a scalar

output variable k = ∑i ki, obtained by summing the individual spike counts ki, codes for the

stimulus [29, 30].

The independent-coding channel transmits more information than the

lumped-coding channel

To understand how stimulus convergence influences information transmission in larger neu-

ral populations of more than two neurons, we compared the mutual information and optimal
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thresholds between the lumped- and independent-coding channel scenarios in the presence of

two noise sources.

To first gain intuition, we illustrate the case with vanishing input noise (σ = 0) and a popula-

tion with two neurons with thresholds θ1 < θ2, which divide the entire stimulus distribution

into three regions: Δ1: s< θ1, Δ2: θ1� s< θ2 and Δ3: s� θ2 (Fig 2, left). Here, we computed all

possible spike counts and corresponding “estimation probabilities,” Pðs 2 Dij
~kÞ, which

describe the probability of the stimulus being in each of the three regions {Δi}i={1,2,3} for a given

spike count~k (Fig 2). These vary as a function of output noise, and we considered three cases:

high, intermediate, and negligible output noise. First, in the limit of vanishing output noise

where R = νmaxΔT is very large, the information encoded by both channels is identical because

with optimal thresholds both reach capacity and transmit log2(3) bits of information (Fig 2A).

In particular, whenever the stimulus is larger than the threshold of a given cell, that cell will on

average fire R spikes. Since R!1, for that given cell the probability of having 0 spikes is

infinitesimal. This unambiguously determines the stimulus region {Δi} in which the stimulus

occurs. Hence, the estimation probabilities all become either 0 or 1, leading to identical output

entropy for both coding channels, and consequently identical mutual information with zero

noise entropy.

For intermediate output noise, the independent- and the lumped-coding channels have dis-

tinct estimation probabilities. Although in principle the number of emitted spikes can be any-

thing, let us consider the example where the total number of spikes is 1 (k1 + k2 = 1, Fig 2B).

We demonstrate that the lumped-coding channel loses information because knowledge about

the identity of which individual cell spiked is lost. For example, if the cell with higher threshold

θ2 fires a spike, this implies with certainty that the stimulus is greater than θ2. The lumped-cod-

ing channel fails to encode this information since in principle the spike could have been emit-

ted by the cell with lower threshold θ1. Thus, the estimation probabilities α0 and 1 − α0 for the

stimulus being below or above θ2, respectively, are nonzero. For the independent-coding

channel, however, the corresponding estimation probabilities α and 1 − α are nonzero if the

cell with the lower threshold θ1 fires a spike. Therefore, for the independent-coding channel

Fig 2. Schematic illustrating the dominance in information of the independent- over the lumped-coding channel. Here, we treat the case of

N = 2 cells, vanishing input noise (σ = 0) and A. vanishing output noise (R!1), B. intermediate output noise when the total number of spikes k =

k1 + k2 = 1, and C. high output noise (R! 0). Left: The relative positions of optimal thresholds of both the independent- (blue) and lumped-coding

(red) channels. Right: The stimulus “estimation probabilities” Pðs 2 Djj
~kÞ for the two different channels. Yellow shading shows where the noise

entropy is higher in the lumped-coding channel. α, α0, and β denote non-zero probability values (see text).

https://doi.org/10.1371/journal.pcbi.1008897.g002
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there are more cases in which the uncertainty is resolved, leading to higher mutual informa-

tion. As an example, for output noise of R = 2.5, the mutual information for the independent-

and lumped-coding channel is 1.30 and 1.01 bits, respectively (when the thresholds are

optimized).

For very high output noise, R! 0, the expected spike count of either of the cells is very

small, even when the stimulus is larger than the respective threshold with the resulting firing

rate νmax (Fig 2C). This means that most of the time the observed spike count of each cell is 0,

rarely 1, and never 2—the probability of observing more than one spike is infinitesimal. In this

high noise regime, the optimal solution for both the independent- and lumped-coding chan-

nels is to make both thresholds identical, i.e. θ1 = θ2. Therefore, the intermediate regime Δ2

does not exist and the two possibilities of having a spike from either cell are equivalent. Thus,

if the observed spike count is 1, then there is no possibility of error for either channel. Simi-

larly, if the observed spike count is 0, the two different estimation probabilities are the same

for both channels, namely β and 1 − β for the stimulus being above or below θ1,2, respectively.

This results in identical mutual information between stimulus and response for both channels.

Equipped with this intuition, we computed the maximal mutual information by optimizing

thresholds for the lumped- and independent-coding channels for a population of three neu-

rons where we varied both the input and output noise continuously (Fig 3A and 3B). We again

found that the independent-coding channel overall transmits more information than the

Fig 3. Maximized mutual information for the lumped- and independent-coding channels for a population of three neurons. A. Information of the

independent-coding channel for different combinations of output noise R and input noise σ. Contours indicate constant information. B. Information of

the lumped-coding channel. C. Absolute information difference between the two coding channels. D. Information ratio between the two coding

channels. Both C and D show a region of intermediate output noise where the independent-coding channel substantially outperforms the lumped-

coding channel. E. Information difference depending on input noise σ for various levels of output noise R, corresponding to vertical slices from C. We

also include the special case of zero output noise, R!1. F. Information difference depending on output noise R for various levels of input noise σ,

corresponding to horizontal slices from C.

https://doi.org/10.1371/journal.pcbi.1008897.g003
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lumped-coding channel. Additionally, we found that the increase of information with smaller

output noise (higher R) saturates faster in the case of the independent-coding channel, as can

be seen by the flattening of the contour lines as R increases (compare Fig 3A and 3B). The opti-

mal thresholds that lead to these values of maximal mutual information are shown in Fig 4 and

described in the next section.

We quantified the ratio and the absolute difference in information transmission between

the two channels (Fig 3C and 3D). For all finite input and output noise levels, the indepen-

dent-coding channel outperforms the lumped-coding channel since the contribution of each

neuron to the overall spike count provides additional information about the stimulus that is

lost by summing all the spike counts through lumping. The information loss is the largest at

intermediate levels of output noise and low levels of input noise; for instance, at R� 2.5 and σ
� 0 the independent-coding channel transmits up to 40% more information than the lumped-

coding channel (Fig 3D).

To best visualize these differences, we fixed one source of noise and varied the other. In the

special case of zero output noise (R!1), the two channels transmit almost the same infor-

mation. For finite output noise R, the information loss in the lumped-coding channel relative

to the independent-coding channel monotonically decreases as a function of the input noise, σ
(Fig 3E). The difference in information transmitted by the independent- and lumped-coding

channels as a function of the output noise R for fixed input noise σ demonstrates that the infor-

mation loss due to lumping is a non-monotonic function of output noise R (Fig 3F), with the

largest loss occurring in the biologically realistic range of intermediate noise [36, 48]. This

non-monotonicity can be explained by the fact that in the limit of very large or very small out-

put noise the lumped-coding channel transmits as much information as the independent-cod-

ing channel (Figs 2, 3E and 3F).

In summary, we found that in the presence of both input and output noise, the lumped-

coding channel transmits less information than the independent-coding channel, and we can

intuitively understand these trade-offs in a small population of two neurons.

Optimal thresholds for the independent- and lumped-coding channels

We computed the optimal population thresholds at which the spiking output of the popula-

tions achieves maximal information about the stimulus. We first discuss the case with three

neurons. For both the independent- and lumped-coding channel, the optimal number of dis-

tinct thresholds in the population depends on the source and level of noise (Fig 4). When both

sources of noise are negligible, the optimal number of thresholds is three, representing a fully

diverse population where all thresholds are distinct. However, when both input and output

noise are high, the optimal number of thresholds in the population is one, representing a fully

redundant population where all thresholds are identical. The most interesting cases arise at

intermediate input and output noise levels, where we found two distinct optimal thresholds.

To gain a better understanding of the transition between different threshold regimes as a func-

tion of noise, we fixed one level of noise and examined the thresholds as a function of the other

noise level.

We found that the number of distinct thresholds in the population generally decreases with

increasing input or output noise through a set of bifurcations. We call the noise levels at which

these bifurcations in the thresholds appear critical noise levels. We found that for the lumped-

coding channel threshold bifurcations occur at lower noise levels compared to the indepen-

dent-coding channel. This result makes intuitive sense because lumping multiple information

pathways into a single coding channel reduces the possible values of the encoding variable and

increases the noise entropy, and therefore acts like an additional noise source.
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For the independent-coding channel (Fig 4A), the thresholds become distinct from each

other gradually, in the sense that the differences between the optimal thresholds change con-

tinuously, both as a function of output noise when the input noise level is fixed (Fig 4B) and

also as a function of input noise when the output noise level is fixed (Fig 4C). In the case when

one source of noise is zero, these bifurcations represent the transition from all optimal thresh-

olds being distinct directly to the state where all optimal thresholds are identical, without an

intermediate state where two thresholds are the same (Fig 4D and 4E). For instance, in the

absence of input noise (σ = 0), the population’s thresholds are all distinct from each other for

all finite ranges of output noise except when R! 0 (Fig 4D). In the absence of output noise (R
!1), there is a critical value σcrit > 0 at which the population transitions directly from all

Fig 4. Optimal thresholds for the independent- and lumped-coding channels. Optimal thresholds for the independent-coding channel (A-E)

compared to the lumped-coding channel (F-J) for a population of three neurons. A. The optimal number of distinct thresholds depends on input noise

σ and output noise R. B. The optimal thresholds as a function of output noise for a fixed value of input noise (σ = 0.4). C. The optimal thresholds as a

function of input noise for a fixed value of output noise (R = 1). D. The optimal thresholds as a function of output noise in the limit of no input noise (σ
= 0). E. The optimal thresholds as a function of input noise in the limit of vanishing output noise (R!1). F-J. As (A-E) but for the lumped-coding

channel. Intermediate noise levels where bifurcations occur in (G,H) take smaller values of R and σ in the lumped- that in the independent-coding

channel since lumping itself acts like a source of noise (G: σ = 0.1, H: R = 9).

https://doi.org/10.1371/journal.pcbi.1008897.g004
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thresholds being distinct to all thresholds being equal (Fig 4E). Note that for all these bifurca-

tions the threshold differences change continuously, i.e. there are no jumps of optimal thresh-

old values with varying noise.

Surprisingly, we found a small range of input noise, 0.54< σ< 0.6, for which we observed

a non-monotonic change in the number of optimal thresholds when varying the output noise

R (S1 Fig). A similar result has been observed when optimizing Fisher information—a differ-

ent, local measure for information—in a population of bell-shaped tuning curves in a model of

optimal coding of interaural time differences in the auditory brain stem [28].

In comparison, for the lumped-coding channel, the bifurcations occur as the threshold dif-

ferences at critical noise values change abruptly, or discontinuously, when one noise source

varies and the other remains fixed (Fig 4G and 4H). Here, the system has an intermediate

number of thresholds for a large range of noise values, and the transition from one to three dis-

tinct thresholds is not simultaneous as either noise vanishes. Rather, the discontinuous thresh-

old jumps at each bifurcation become continuous in the absence of input noise (Fig 4I), as

normally seen for the independent-coding channel, or partly continuous in the absence of out-

put noise (Fig 4J). These two scenarios agree with two previous studies, where a lumped-cod-

ing channel was studied with only output noise [30], or with only input noise [29]. Our results

are also consistent with previous studies for small populations of two neurons and only one

source of noise [5, 14, 27], large populations with only output noise [39] and two-neuron pop-

ulations with multiple noise sources [25]. We show that similar patterns of how the number of

distinct thresholds evolve as a function of two different noise sources for the independent-

lumped-coding channels also hold for larger neural populations (S2 Fig).

Taken together, our theory derives different configurations of optimal thresholds in popula-

tions of more than two noisy neurons that depend on how the sensory stimulus is combined to

produce spiking output and the location of the noise that corrupts the signal.

Optimal threshold differences represent order parameters in phase

transitions

The characteristic bifurcations of the optimal thresholds at critical noise levels suggest the

occurrence of phase transitions encountered in a variety of physical systems. In physics, a

phase transition is defined by non-analytic behavior of the free energy—usually a discontinuity

of its first or second derivative—and can be characterized by an order parameter [49]. For

example, a phase transition occurs when the order parameter—which could among others be

the density difference at the liquid-vapor critical point, or magnetization of a ferromagnetic

material—changes abruptly from zero to non-zero values with an external parameter, such as

pressure or temperature. Similarly, in chemistry, the order parameter that changes abruptly

from zero to non-zero with temperature is the solubility of liquid mixtures.

Guided by this characterization, we sought to relate the qualitative differences in optimal

thresholds of the independent- vs. lumped-coding channel with two noise sources to phase

transition phenomena (Fig 4). We illustrate the results for a population with three neurons,

and thus have two order parameters which are the two threshold differences, θ2 − θ1 and θ3 −
θ2. To determine whether a phase transition occurs, we computed the first and second deriva-

tives of the mutual information with respect to a given noise parameter (Fig 5). Using the

Ehrenfest classification of phase transitions [50], a discontinuity in the first (second) derivative

with respect to the noise implies a first- (second-) order phase transition.

We found that the orders of the phase transitions always correspond to the discontinuity of

the threshold differences—being the order parameters—when noise varied. For continuous

threshold bifurcations, there was a discontinuity in the second derivative with respect to
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output noise, thus corresponding to a second-order phase transition (Fig 5A). All phase transi-

tions for the independent-coding channel were continuous and thus of second-order also with

respect to input noise (Fig 5B). This result is in agreement with a previous study which also

found a second-order phase transition in a population of two neurons in the presence of only

input noise [5]; we extended this result to populations of more than two neurons and with

more than one noise source. We next investigated phase transitions in the lumped-coding

channel.

For discontinuous threshold bifurcations we observed a discontinuity in the first derivative

with respect to output noise and thus a phase transition of first-order (Fig 5C). This is almost

always the case for the lumped-coding channel, also with respect to input noise (Fig 5D). An

exception to this is when one noise source vanishes, e.g. input noise (Fig 4I) or output noise

(Fig 4J), for which the phase transitions are of second-order (S3 Fig).

Continuous phase transitions from different physical systems often behave very similarly

around critical points (e.g. the Ising model at critical temperature or the liquid-gas transition

at the critical point in the temperature-pressure plane [49]). This phenomenon is known as

universality and the universality class to which a system belongs can be characterized by critical

exponents [49]. For example, the critical exponent β classically describes how the the order

Fig 5. Threshold differences as phase transitions with respect to both noise sources. A. Optimal thresholds for the

independent-coding channel depending on output noise R. Insets: The first derivative of the mutual information as a

function of noise is continuous, while the second derivative is discontinuous at the critical noise values where the

thresholds separate, implying a second-order phase transition. B. As in A, but with respect to input noise σ. C. Optimal

thresholds as in A but for the lumped-coding channel. The first derivative is discontinuous at the critical noise values

where the thresholds separate, implying a first-order phase transition. D. As in C but with respect to input noise σ.

https://doi.org/10.1371/journal.pcbi.1008897.g005
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parameter behaves for small temperature changes close to (but below) the critical temperature.

In our system with mutual information and noise, β describes the behavior of threshold differ-

ences for noise values slightly smaller than critical noise values σc, Rc, i.e. Dy / jðs � scÞ=scj
bs

or Dy / jðR � RcÞ=Rcj
bR , respectively (S4(A) and S4(B) Fig). We obtained critical exponents

for both noises sources by fitting a monomial to the positive part of the threshold differences

depending on one noise value, while treating the other noise value as a parameter that we var-

ied (Table 1). Similarly, we fitted the critical exponents for the eigenvalues which approach

zero at critical noise values. Since the eigenvalues have finite values on both sides around the

critical noise values, we separately fitted critical exponents for each side; for e.g. for the output

noise R, we fitted jlj / jðR � RcÞ=Rcj
�R;l for R< Rc and jlj / ððR � RcÞ=RcÞ

�R;r for R> Rc
(S4(C) and S4(D) Fig; Table 1, l denotes the left, and r the right side). Hence, the critical expo-

nent for the eigenvalues is approximately 1, while for the threshold differences as order param-

eters it is approximately 0.5, the value predicted by the mean field theory for all continuous

phase transitions [51]. Since mean-field theory ignores statistical fluctuations, in most physical

systems the measured exponents are different than the ones predicted by theory, and are

referred to as “anomalous” exponents [49]. In our model, the mutual information already

takes into account statistical fluctuations, and appears to be an analytic function of the thresh-

olds (see Fig 6B and 6C). Therefore, we do not expect an analogous mechanism that would

lead to anomalous scaling exponents. Our results extend previous theoretical work which con-

sidered a population of two neurons with only input noise and already reported a critical expo-

nent close to 0.5 [5].

Together this shows that the threshold differences in the population of neurons represent

order parameters and determine the order of the observed phase transitions: discontinuous

threshold differences correspond to first-order phase transitions while continuous threshold

differences correspond to second-order phase transitions. We provide an extensive compari-

son between bifurcations of the optimal threshold values and phase transitions observed in sta-

tistical mechanical models in the Discussion.

Characteristic shape of the information landscape at critical noise levels

To gain a better understanding of the information landscape, especially at the critical noise val-

ues at which threshold bifurcations appear, we examined the Hessian matrix of the mutual

information, Im, with respect to the thresholds, @2 Im/(@θi@θj). The Hessian can be understood

as an extension of the second derivative to higher-dimensional functions. The eigenvalues of

the Hessian quantify the curvature of the information landscape in the direction of the respec-

tive eigenvectors, which themselves stand for the directions of principal curvatures in the

Table 1. Critical exponents as a function of the two noise sources. Critical exponents are obtained by fitting a mono-

mial to the threshold differences or eigenvalues near the critical noise values (l denotes the left, and r the right side) as a

function of each noise source (see S4 Fig).

Crit. exp. Definition Fitted value (mean ± SEM)

βσ Dy / jðs � scÞ=scj
bs ; s < sc 0.5027 ± 0.0018

βR Dy / jðR � RcÞ=Rcj
bR ;R > Rc

0.5018 ± 0.0023

ϕσ,l jlj / jðs � scÞ=scj
�s;l ; s < sc 1.0034 ± 0.0019

ϕσ,r jlj / ððs � scÞ=scÞ
�s;r ; s > sc 0.9977 ± 0.0005

ϕR,l jlj / jðR � RcÞ=Rcj
�R;l ;R < Rc

0.9967 ± 0.0015

ϕR,r jlj / ððR � RcÞ=RcÞ
�R;r ;R > Rc

1.0023 ± 0.0025

https://doi.org/10.1371/journal.pcbi.1008897.t001
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space defined by the thresholds. To gain intuition about the differences of the information

landscape between the independent- and lumped-coding channels, we considered a popula-

tion of two cells for which the landscape can be easily portrayed in two dimensions. However,

the theory extends naturally to populations with more neurons and information landscapes in

higher dimensions.

Fig 6. Information landscape for the independent- and lumped-coding channels undergoes different phase transitions around critical noise

levels. A. Top: Optimal thresholds of the independent-coding channel for a population of two neurons as a function of output noise R. Bottom:

Corresponding eigenvalues of the Hessian of the information landscape with respect to thresholds. At the critical noise value Rcrit� 0.396 at which the

threshold bifurcation occurs (vertical dashed line) one eigenvalue approaches zero. B. Information landscape Im(θ1, θ2) for the three output noise levels

R indicated by arrows in A. Top: For R> Rcrit, there are two equal global maxima. Middle: At R = Rcrit, the eigenvectors of the Hessian are shown and

scaled by the corresponding eigenvalue (the eigenvector with the smaller eigenvalue,~v2, was artificially lengthened to show its direction). At the critical

noise value the information landscape locally takes the form of a ridge. Bottom: For R< Rcrit, there is one global maximum, meaning that the optimal

thresholds are equal (bottom). C. The mutual information as a function of the line x in (θ1, θ2) space connecting the two maxima in B. Top: For R>
Rcrit (low noise), there are two inflection points (dashed vertical lines) with zero curvature along the line x. The point with equal thresholds corresponds

to a local minimum. Middle: At R = Rcrit, the two maxima, the minimum, and the two inflection points merge into one point, thus the curvature is zero.

Bottom: For R< Rcrit, there is a single global maximum with a negative curvature. D. As in A but for a population with N = 3 neurons. E. As in A but

for the lumped-coding channel. Both the optimal thresholds and the eigenvalues show a discontinuity at the critical noise level. F. Information

landscape as in B for the lumped-coding channel and noise values indicated by arrows in E. Local optima are shown in cyan, global ones in red. G.

Similar to C for the lumped-coding channel. Here the abscissa denotes the (non-straight) path connecting the three optima in F. H. Illustration of

discontinuous threshold bifurcations, where the global maximum at θ1 6¼ θ2 at low noise (red, solid) becomes a local maximum for high noise (cyan,

solid), while θ1 = θ2 (dashed) becomes global. As their respective derivatives are different, there is a discontinuity in the first derivative when only taking

the global maximum into account (red lines), corresponding to a first-order phase transition.

https://doi.org/10.1371/journal.pcbi.1008897.g006
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We first considered the independent-coding channel for a fixed level of input noise, while

varying the output noise. At the critical noise level, Rcrit, where the thresholds bifurcate, one

eigenvalue of the Hessian decreases to zero (Fig 6A). The information landscape undergoes a

transformation around the critical noise levels, from one with two distinct maxima separated

by a local minimum at low noise, R> Rcrit (Fig 6B, top), where the population thresholds are

distinct, to one where there is a unique maximum at high noise, R< Rcrit, where the popula-

tion thresholds are identical (Fig 6B, bottom). For R> Rcrit, there are two inflection points

(Fig 6C, top), resulting in two different curvatures along the line that connects the two max-

ima. At the critical noise, R = Rcrit, the two maxima converge at the bifurcation point and the

two inflection points fuse together such that the curvature becomes zero (Fig 6C, middle). At

this point of convergence, the information landscape locally resembles a ridge, which extends

along one principal direction of curvature (Fig 6B, middle). The ridge is perpendicular to the

other principal direction, which stands for the direction of largest curvature. Finally, for R<
Rcrit, the information landscape has a single maximum with a negative curvature (Fig 6B and

6C, bottom).

We then examined the eigenvalues of the Hessian matrix for a larger population of size

N>2. We found that at each critical noise level where the thresholds bifurcate, at least one

eigenvalue of the Hessian matrix approaches zero. The number of zero eigenvalues—denoting

the number of dimensions along which the information does not change locally—is equal to

the number of thresholds participating in a bifurcation minus one. For N = 3, for example,

there are two critical noise values at which the thresholds bifurcate (Fig 6D, top). At one of

these critical values, three thresholds are involved and thus the number of eigenvalues

approaching zero is two, while at the other critical value only two thresholds are involved, and

thus the number of eigenvalues approaching zero is one (Fig 6D, bottom). Locally, threshold

combinations along the ridge of the information landscape achieve almost the same informa-

tion. This ridge is a manifold of dimension M − 1, where M is the number of thresholds

involved in the bifurcation. The manifold is locally given by

X

i j yi involved
in the bifurcation

n o
yi ¼ constant: ð1Þ

As a result, the ridge is oriented at exactly 45˚ with respect to all of the θ-directions participat-

ing in the bifurcation. For example, for M = 2 this manifold is a line, while for M = 3 it is a

plane. Following the same argument as for the population with N = 2 neurons (Fig 6C), it can

be shown that the curvature of the information landscape has to be zero in M − 1 principal

directions, thus M − 1 eigenvalues of the Hessian have to be zero when M thresholds partici-

pate in a bifurcation of continuous manner.

For the lumped-coding channel, the eigenvalues of the Hessian do not approach zero at the

critical noise levels where the thresholds split (Fig 6E). This is in agreement with the fact that

threshold bifurcations are in general discontinuous for the lumped-coding channel (see also

Fig 4G and 4H). An exception to this is the limiting case when one noise level is zero, where

the lumped-coding channel shows continuous bifurcations and thus second-order phase tran-

sitions (S3 Fig). At low output noise, R> Rcrit (Fig 6F and 6G, top), the information landscape

has two distinct global maxima corresponding to the optimal thresholds, θ1 and θ2. However,

the information landscape also has a local maximum at θ1 = θ2. As noise increases, this local

maximum decreases more slowly compared to the two global maxima, until at the critical

noise level Rcrit the three maxima become equal (Fig 6F and 6G, middle). As noise increases

further, R< Rcrit, the maximum at θ1 = θ2 becomes the single global maximum (Fig 6F and

6G, bottom). Therefore, the phase transition happens at the noise level where the local
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maximum becomes the global one. This is a first-order phase transition since at this critical

noise level the decrease of maximum information with noise changes abruptly, resulting in a

discontinuity in the first derivative (Fig 6H).

Our results show, that for finite noise, the shape of the information landscape for the inde-

pendent- and the lumped-coding channels can be uniquely related to the nature of the thresh-

old bifurcations (continuous for the independent-coding and discontinuous for the lumped-

coding channel), and thus to the order of the phase transition. The information landscape

takes a qualitatively different shape at the threshold bifurcations in each case, demonstrating

the emergence of a new threshold through splitting either through a gradual “breaking” of the

information ridge (Fig 6B and 6C), or through a discrete switching from a local information

maximum to the global maximum (Fig 6F–6H).

Thresholds in an auditory nerve fiber population resemble predictions

from optimal coding

Next, we sought to compare our theoretical predictions of optimal thresholds to experimen-

tally recorded thresholds of sensory populations to determine whether they are consistent with

optimal coding. Specifically, we considered recordings of auditory nerve fibers (ANFs) which

code for sound frequency and sound intensity. At the first synapse level of the auditory path-

way, each inner hair cell of the cochlea transmits information about sound intensity to approx-

imately ten to thirty different ANFs [7]. ANFs differ in several aspects of their responses,

including spontaneous rates and thresholds, with each ANF receiving input exclusively from

only a single inner hair cell [8]. We investigated the properties of experimentally recorded

ANF tuning curves in the mouse for the frequency that corresponds to the lowest threshold,

where the ANF is most sensitive [8]. Therefore, we ‘projected’ the neuronal code onto the

dimension of sound intensity and hence could build a model for the coding of sound intensi-

ties based on spike counts. As a population, ANF tuning curves resemble a sigmoid which

increases with sound intensity; the sigmoid can be described by a threshold, a dynamic coding

range also referred to as a gain, a spontaneous firing rate and a maximal firing rate (see

Methods, Fig 7A). Interestingly, ANF response curves with higher spontaneous firing rate

have been shown to have narrower dynamic ranges and higher thresholds [8] (Fig 7B). Given

the lack of convergence on stimulus channels, we investigated whether our theoretical frame-

work of the independent-coding (rather than the lumped-coding) channel with two sources of

noise before and after a nonlinearity can be applied to explain this relationship between spon-

taneous firing rate, dynamic range and firing threshold, testing the hypothesis that ANFs have

optimized their response properties to encode maximal information about the stimulus under

biological constraints.

To apply our population coding framework to this type of data would require measure-

ments of the entire population of ANFs. In the absence of such data, we decided to apply the

framework to a population of two representative neurons where each neuron can be described

by a sigmoidal response function, one with a high and the other with a lower spontaneous fir-

ing rate. This is computationally tractable and consistent with previous literature [8, 52]. To

obtain the two representative neurons, we proceeded as follows: first, we pooled the measured

tuning curves from the same ANF, and fitted each with our sigmoidal function (see Methods,

Fig 7A). This resulted in 148 tuning curves from 24 animals. Indeed, we confirmed that the

dynamic range is negatively correlated with the normalized spontaneous firing rate, as well as

positively correlated with the thresholds (S5 Fig). Then, we divided all the tuning curves into

two types based on their normalized spontaneous firing rate and dynamic range (see Methods)

[8, 52]. In particular, the ‘Type 1’ neuron had a higher spontaneous rate, a smaller dynamic
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range and a lower firing threshold, while the ‘Type 2’ neuron had a lower spontaneous rate, a

broader dynamic range and a higher firing threshold (Fig 7B and S5 Fig).

For this two-neuron population where one neuron had a nonzero and the other zero spon-

taneous rate, we optimized the neuronal thresholds while maximizing the mutual information

between the stimulus and the population response. We used the level of input noise to modu-

late the neurons’ dynamic range (see Methods). Using dynamic ranges for the two neurons

chosen to match the two neuron types found in the data, we evaluated the mutual information

between stimulus and response for a range of firing thresholds (θ1 and θ2). We found that

the mutual information landscape is centrosymmetric, with a maximal value of 0.603 nats

achieved for two pairs of thresholds: (θ1, θ2) = {(−0.35, 0.55), (0.35, −0.55)} (Fig 7C, cyan sym-

bols). Of the two pairs, the second pair yields�20% higher mean firing rate (Fig 7D, cyan sym-

bols). Therefore, the information per spike is higher for the first pair (0.0425 vs. 0.0374 nats/

spike). When we overlaid the fitted thresholds from the data, we found that they lie remarkably

close to the optimal thresholds obtained from the theoretical analysis (Fig 7C and 7D, black

symbol). In particular, the maximum mutual information in our model is 0.603 nats, which is

only one percent higher from that achieved in the data, 0.597 nats. This suggests that the ANF

Fig 7. The tuning of auditory nerve fibers (ANFs) match predictions from optimal coding. A. The sigmoidal

function that we use to fit ANFs tuning curves. Spontaneous firing rate (r), maximal firing rate (rm), firing threshold

(θ), and the dynamic range (σ) are labelled on the curve. B. An example showing original data from ref. [8] and fitted

tuning curves. These two tuning curves come from the same mouse. C. Optimal configuration (cyan dots) in the

contour plot of mutual information. Black dot denotes the fitted thresholds from the data. D. Optimal configuration

(cyan dots) in the contour plot of average firing rate. Black dot denotes the fitted thresholds from the data.

https://doi.org/10.1371/journal.pcbi.1008897.g007
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population might be configured to maximize information per spike about a distribution of

frequencies.

We further explored how sensitive the optimization is to the chosen parameters of the sig-

moids of the two types of neurons, more specifically, the dynamic range and the spontaneous

rate. When both neurons are binary (no input noise) so that the sigmoids are infinitely steep

and have a narrow dynamic range, and the spontaneous rate in both neurons is zero, the con-

tour of the mutual information is both axisymmetric and centrosymmetric but the two pairs of

optimal thresholds yield identical mean firing rate (S6(A) Fig). Even when the neurons acquire

a finite gain (by increasing input noise) so that the dynamic range is broadened, as long as the

gain is the same, the information per spike for the two pairs of optimal thresholds remains

identical (S6(B) Fig). Either changing the spontaneous rate or the gain of one of the neurons

can break the symmetry in the information landscape, such that it loses its axisymmetry but

preserves its centrosymmetry, which is due to the symmetric distribution of stimuli s and the

low output noise. The symmetry breaking effect is much stronger when the gains of the two

neuron types are different (S6(C) Fig vs. S6(D) Fig) and combining both different gains and

non-zero spontaneous rates as in the data preserves the strong symmetry breaking (S6(E)–

S6(G) Fig). Intuitively, the neuron with the larger input noise and hence, lower gain, has a

threshold with a larger absolute value so that it is farther away from the mean of the stimulus

distribution and thus is less affected by the input noise (S6(H) Fig), just like what we found in

the data. Therefore, our model with binary neurons and two sources of noise can explain the

relationship among spontaneous rate, dynamic range, and thresholds in two types of ANFs in

the mouse by maximizing information per spike.

We also extended our framework to a population of three neurons to see if predictions

from this model are consistent with the ANF data. We now divided all the tuning curves into

three types based on their normalized spontaneous firing rate and dynamic range (see Meth-

ods and S7 Fig). Using this three-neuron population model, we computed the mutual informa-

tion between stimulus and response for a range of firing thresholds (θ1, θ2 and θ3) using

dynamic ranges and spontaneous rates for the three neurons chosen to match the three neuron

types found in the data (see Methods). We found that the maximum mutual information is

0.751 nats, which is only a few percent higher from that achieved when we further used the

thresholds extracted from the data, 0.730 nats. This suggests that the predictions of the

extended three-neuron model about the optimality of information transmission are also con-

sistent with the ANF data.

Discussion

We maximized the mutual information between stimulus and responses of a population of neu-

rons which encode a one-dimensional stimulus with a binary nonlinearity corrupted by two

different noise sources, specifically, additive input noise before the nonlinearity and Poisson

output noise after the nonlinearity. We compared two frameworks for stimulus convergence

commonly used in previous studies, specifically, encoding the stimulus with independent trans-

mission channels [5, 14, 25, 39] or lumping the channels into one effective channel [29, 30]. In

each scenario, we calculated the optimal thresholds of the population (Fig 4).

Lumping of information channels as a coding strategy with low cost

Unsurprisingly, increasing either input or output noise in the population, decreases the total

amount of transmitted information; but the independent-coding channel always encodes

more information than the lumped-coding channel, especially for biologically realistic, inter-

mediate output noise values (Fig 3). This occurs because lumping multiple information
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pathways into a single coding channel reduces the possible values of the encoding variable and

increases the noise entropy, thus introducing additional noise. Therefore, threshold bifurca-

tions in the lumped-coding channel occur at significantly lower critical noise levels compared

to the independent-coding channel (Fig 4).

Why would a biological system lump information transmission channels? A biological

upside of combining information from multiple streams into one effective channel could be

the reduction of neurons needed for information transmission, thus saving space and energy.

For example, the optic nerve has a strong incentive to reduce its total diameter since it crosses

through the retina and thus causes a blind spot. On the other hand, for a given constraint on

space and energy, it is favorable to have many thin, low-rate axons over fewer thick, high-rate

axons [53, 54], thus arguing against convergence. However, at least for the retina, an interme-

diate degree of convergence is probably the optimal solution. One would expect that this

degree of convergence depends on the location at the retina. At the fovea of a primate retina,

there is minimal convergence from photoreceptors to retinal ganglion cells compared to the

periphery [55]. This implies that a higher visual acuity is achieved by increasing information

transmission at the cost of energy and space. In contrast, there does not seem to be any conver-

gence in the early auditory pathway: At the first stage of the neural signaling process, one inner

hair cell diverges to 10 to 35 auditory nerve fibers [7]. This lack of convergence might be due

to the fact that, contrary to the retina, there is no pressure of having a thin ganglion. A recent

theoretical study suggests that convergence can compensate the information loss due to a non-

linear tuning curve with a small number of output states [56].

We only treated the extreme cases of full convergence—where all neurons are lumped into

a single channel—and no convergence. In principle, different combinations of partial conver-

gence, e.g. lumping three outputs into two channels, are also possible. Partial lumping is a

common strategy in sensory systems with different levels of convergence [57]. Furthermore,

we assumed no weighting of inputs during the lumping process. This is an oversimplification

since in neural circuits spikes from different presynaptic neurons could have a different impact

on the membrane potential of the postsynaptic neuron depending on the synaptic connection

strengths. These individual weights could also be optimized [30], which is beyond the scope of

our paper.

Optimal number of distinct thresholds as a function of noise

The number of distinct optimal thresholds decreases with increasing noise of either kind at

critical noise levels by successive bifurcations of the optimal thresholds (Fig 4). We mapped

these characteristic bifurcations of the optimal thresholds at critical noise levels to phase transi-

tions of different orders with order parameters being the threshold differences. At finite noise

levels, the lumped-coding channel undergoes discontinuous threshold bifurcations which cor-

respond to a first-order phase transition with respect to noise where the threshold differences

are the order parameters. In contrast, for the independent-coding channel, the threshold dif-

ferences change continuously and the phase transitions are of second-order.

Interestingly, for a range of noise parameters, we found a non-monotonic change in the

number of distinct optimal thresholds with noise levels (S1 Fig). A similar non-monotonicity

has also been reported under maximization of the Fisher information for neurons encoding

sound direction [28]. This happens because of how the different neurons tile their thresholds

to optimally encode the one-dimensional stimulus in the presence of multiple noise sources

which interact non-trivially. The biological implications of such a non-monotonic change in

the number of optimal thresholds as a function of noise are unclear. A related phenomenon in

physics is that of retrograde phenomena [58]. For example, in a mixture of liquids, a phase
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transition from liquid to gas, followed by another transition from gas to liquid, and then liquid

to gas again can be observed while increasing temperature [58].

Analogies and differences to phase transitions in statistical physics

Our results suggest that input and output noise influence the mutual information in a very

similar way to how temperature affects free energy in statistical models of physical systems

[49]; in that sense, both noise sources act as external parameters with respect to which the

phase transition occurs. As in classical physical systems, the order of our phase transitions can

be consistently linked to the continuity of the threshold differences: a continuous (discontinu-

ous) order parameter corresponds to a second (first) order phase transition. In statistical

models, the transition of an order parameter from zero to non-zero is accompanied by a spon-

taneous symmetry breaking of the system. Similarly, there is a symmetry breaking in our sys-

tem as optimal thresholds become unequal at critical noise levels and thus the statistical

equivalence of neurons breaks. For the case of continuous order parameters, i.e. optimal

threshold differences of the independent-coding channel, we found the critical exponents of

the order parameter to be 0.5—irrespective of the noise source. This value corresponds to the

mean-field theory of continuous phase transitions [51], which underscores the similarity of

our phase transitions to those of physical systems. Furthermore, we found the critical expo-

nents for eigenvalues of the Hessian matrix of the information landscape to be 1—for which

we have not established a direct correspondence in physical systems. As before, the source of

the noise has no impact on the critical exponents, which again highlights that additive input

noise and Poisson output noise have a similar influence. Previous work has also made the con-

nection between phase transitions and information theory, showing that the maximization of

the Fisher information is related to divergences in specific elements of the Fisher information

matrix observed in experimental networks of finite size [59]. Similarly to our work, while these

divergences occur at a critical point when the corresponding order parameter changes contin-

uously, they disappear at the critical point when the first derivative of the order parameter

diverges.

As in this previous work [59], we have more than one order parameter, specifically the

number of subsequent threshold differences which correspond to the number of neurons

minus one. Our scenario with three neurons shows similarities with a system with three mixed

liquids where the miscibility depends on the liquids’ relative concentration differences [60]. As

the temperature varies, the system undergoes phase transitions where the miscibility changes,

from having one phase in which all three liquids are mixable (similar to our scenario with

three identical thresholds), to two phases where in one phase two liquids are mixable but

which is separated from a second phase containing the third liquid (corresponding to two dis-

tinct thresholds in our neuronal population), to three phases where none of the liquids are

mixable with each other (corresponding to the case of all distinct thresholds).

Even though our phase transitions have similar properties to the ones from physical sys-

tems, there are some noteworthy differences. In statistical physics, phase transitions are char-

acterized by a non-analytic behavior of the moment-generating function, which is directly

related to the free energy [61, 62]. The moment-generating function is a sum of exponentials

(see S1 Text) and should thus be non-analytic only when the size of the system is infinitely

large, N!1. In our work, we characterize phase transitions by non-analytic behavior of the

maximized mutual information and find phase transitions for finite N, as small as two. Inter-

estingly, the moment-generating function in our case is a smooth function of the thresholds

and also—when the thresholds are not optimized but fixed—of both noises (see S8 Fig). How-

ever, in our case the moment-generating function becomes a non-analytic function of the
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noises when the optimized thresholds are used. Furthermore, in standard phase transitions the

order parameters are statistical quantities since they are the moments of a function, for exam-

ple, magnetization in the Ising model is the mean over spin directions. In contrast, our order

parameters are not statistical variables but are obtained by optimizing the mutual information.

They might be related to the statistical moments of some function of neural activity or to a

function of the statistical moments of neural activity, however, we have not found such a

relationship.

Information loss at non-optimal thresholds

An important, but often neglected, question for optimal coding theories is how much worse

are suboptimal solutions in comparison to optimal ones in terms of information transmission.

In the independent-coding channel, near critical noise levels, the information landscape

becomes flat in the directions of principal curvature. This suggests that multiple threshold

combinations yield nearly identical information, a property of the neural population that is

closely related to the concept of “stiff vs. sloppy modeling”, whereby a system’s output is insen-

sitive to changes in “sloppy” directions of the parameter space, but very sensitive to changes in

“stiff” directions [63–66]. Hence, even population codes that utilize suboptimal thresholds

often achieve information very close to the maximal, and it is unclear whether such small

information differences could be measured experimentally. This also raises the question

whether a few percent more information about a stimulus realized by optimal codes could be

sufficiently beneficial for the performance of a sensory system to become a driving force dur-

ing evolution. It has been shown that mutations which have very small effects on evolutionary

fitness are fixated in a population with a probability almost irrespective of the mutation being

advantageous or deleterious [67, 68]. On the other hand, in certain sensory systems like the

retina, entire populations of retinal ganglion cells perform multiple functions [69, 70] or fulfill

different computations under different light conditions [71]. For such systems, there must be a

fundamental trade-off in performance, since such a system cannot be optimal at all functions

[72, 73]. The sloppiness of nearly-equivalent optimal thresholds that we observe near critical

noise levels should resolve when considering that neurons have multiple constraints and often

perform more than just one function or encode different stimulus features.

Assumptions in our model and comparison to other theoretical

frameworks

There are several modeling assumptions in our theoretical framework that make mathematical

treatment possible. First, we considered the encoding of a static stimulus, even though natural

stimuli have correlations in space and time. Previous studies have exploited their correlation

structure to explain various aspects of sensory coding, for example, the size and shape of recep-

tive fields of retinal ganglion cells [12, 13, 21, 33, 35, 38]. Since correlations in the stimulus are

thought to reduce effective noise values [38], by considering stimuli independent in time, we

likely underestimated effective noise levels.

Moreover, our coding framework assumed a one-dimensional stimulus; thus, it is appropri-

ate for explaining the number of the population’s distinct thresholds which encode a single
stimulus feature—this could be the contrast at a single spatial position on the retina (as found

to be coded by two different types of OFF retinal ganglion cells that encode the same linearly

filtered stimulus [5]), or sound intensity at a single frequency (as found to be coded by ANFs,

which get input from the same inner hair cell [8, 74]). Throughout this study we investigated

the encoding of a one-dimensional stimulus drawn from a Gaussian distribution; however,

natural stimulus distributions have a higher level of sparseness than the Gaussian distribution
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[75, 76]. Therefore, we also explored information maximization using the generalized normal

distribution allowing us to continuously vary the kurtosis—how heavy the tails are—of both

the stimulus and the input noise distributions. Our results remain qualitatively the same as for

the Gaussian distributions (S9 Fig).

Second, we modeled each neuron in the population solely with a binary nonlinearity. This

nonlinearity describes the tuning curve of the neuron as a function of a given stimulus feature.

In general, a tuning curve with respect to a stimulus feature is measured by reverse correlating

the stimulus variable with the output variable and fitting a linear-nonlinear model [77]. The

linear part of the model denotes the stimulus feature to which the neuron responds and the

nonlinear part represents the tuning curve. We did not incorporate the linear part in our

model but rather assumed that the input to the nonlinearity is already linearly preprocessed

because simultaneous optimization under different noise sources and stimulus convergence

would be mathematically intractable. We chose binary nonlinearities as they are theoretically

optimal under certain conditions of high (and biologically plausible) Poisson noise [25, 30,

78]. Importantly, however, under conditions of non-negligible input noise the optimal nonlin-

earity could be interpreted to acquire a finite slope thus making our analysis relevant also for

continuous nonlinearities with sigmoidal shape. This is consistent with neuronal recordings;

for example the steepness of the tuning curve of the H1 blowfly neuron increases with contrast,

and for high contrast—which corresponds to low noise—the tuning curve is almost binary

[16].

Third, we considered a constraint on the maximum expected spike count since the total

encoded information cannot be infinite. Such a constraint is motivated by a biophysical limit

of a neuron’s firing rate and the biological reality of a short reaction time. Instead, one could

constrain the mean spike count [5, 14, 26], which would be interpreted as a metabolic con-

straint. Maximum and mean rate constraints lead to qualitatively similar conclusions regard-

ing the optimal number thresholds, as shown in small populations of two neurons [5, 14].

Many previous studies make very similar assumptions but consider certain limiting scenar-

ios, for instance considering only one noise source [5, 29, 30, 39], studying a population with

only two neurons [5, 25, 39], or introducing an additional source of additive output noise [25].

Table 2 summarizes these studies with regards to the different optimization measures, con-

straints, information convergence strategies, sources of noise and neural population size.

While our results are in agreement with these previous studies in the specific limiting condi-

tions, we extend the optimal coding framework by mapping the full space of noise and stimu-

lus convergence thus linking and extending previous findings.

Table 2. Comparison of different studies with regards to the different optimization measures, constraints, information convergence strategies, sources of noise and

neuronal population size. MI stands for Mutual Information and MSE for Mean Square Error.

Study Optimality measure Constraint Lumped or indepedent Input or output noise # Neurons

Our study MI Maximum rate Both Both � 6

Brinkman et al., [25] MI and MSE Maximum rate Independent Both 2

Gjorgjieva et al., [14] MI and MSE Maximum and mean rate Independent Both 2

Kastner et al., [5] MI Mean rate Independent Input 2

Gjorgjieva et al., [39] MI and MSE Maximum rate Independent Output any

Nikitin et al., [30] MI Maximum rate Lumped Output 4

McDonnell et al., [29] MI Maximum rate Lumped Input 15

Bethge et al., [27] MSE Maximum rate Independent Output � 4

Harper and McAlpine [28] Fisher Info. Bell-shaped tuning curves Independent Output 200

https://doi.org/10.1371/journal.pcbi.1008897.t002
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Implications of our model

With these considerations, our coding model can be applied to a population of neurons coding

for a one-dimensional stimulus that could apply to any sensory system, including the coding

of sound intensity in auditory nerve fibers [8, 74], the coding of temperature in thermosensa-

tion by heat- and cold-activated ion channels [79, 80], the coding of vibration frequency by

mechanosensory neurons [81, 82] and the coding of contrast by retinal ganglion cells coding

for the same spatial location and visual feature with different thresholds [5]. Given the general-

ity of our theoretical framework, we studied two coding strategies commonly used in previous

studies and the contribution of two sources of noise without going into detail of the origins of

this noise. We found that low noise favors parallel encoding with different thresholds while

high noise favors equal thresholds. We applied and tested our framework on data from the

ANF, but our theory remains relevant for other sensory systems where the two sources of

noise can be distinguished and measured. For instance, in the mammalian retina multiple

sources of noise can be identified in the retinal circuits, including from the photoreceptors

[83–86] or at the bipolar cell output synapses [38, 87–89]. In the case that our model was

applied to coding by retinal ganglion cells at the same spatial locations and with the same

visual feature, these sources would all count as input noise. Their relative contributions could

change with ambient light level [90]. The output noise in this case would come after the thresh-

olding nonlinearity, and would likely correspond to noise expected from stochastic vesicle

release at synapses. This noise is often taken to follow Poisson statistics where the variance in

output scales with the output strength [91]. Applying the theory to a different experimental

system would depend on the specific circuitry of that system and the identification of noise

sources that enter the circuit at different points. Our results could then be used to make predic-

tions of the coding thresholds of a population of neurons as a function of the strength of each

noise source. The success of such applications would depend on the ability to extract the rele-

vant components of the neural circuit in question and to develop a mathematically tractable

description of its computations.

Conclusion

In sum, we considered an optimal coding framework with contributions from two sources of

noise and investigated information transmission under two differen scenarios of stimulus con-

vergence. Since we did not model a specific sensory system, but rather aimed to uncover gen-

eral principles of optimal coding solutions under the two sets of independent scenarios above

(noise and stimulus convergence), the sources of noise in our model do not directly corre-

spond to circuit elements, making direct comparison to experimental data difficult. However,

by applying our framework to coding by two types of ANFs in the mouse with a higher and

lower spontaneous rate, we found that their thresholds are close to the optimal ones when

maximizing information per spike. More importantly, we extended previous theoretical results

that considered specific limiting scenarios, in the process providing a unifying framework for

how different noise sources and the strategy of stimulus convergence influence information

transmission and number of distinct thresholds in populations of nonlinear neurons.

Methods

We assume that the stimulus s follows a Gaussian distribution with mean zero and variance s2
s :

PðsÞ � N ð0; s2
s Þ. It is encoded by the spike counts {ki} of N binary neurons i = {1, ‥, N} in a

given coding time window ΔT. Input noise z, PðzÞ � N ð0; s2
zÞ, is added to the stimulus before

the nonlinear processing, σ≔ σz/σs denotes the effective amount of input noise. For both the
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stimulus and the noise distribution, we also considered other distributions with different kur-

tosis. However, we did not find significant differences to the Gaussian distributions (S9 Fig).

We assume N binary nonlinearities νi(x) = νmaxΘ(x − θi) with the two firing rate levels νi = {0,

νmax} and a respective threshold θi. The input to each nonlinearity is the sum of stimulus and

input noise: x = s + z. Poisson output noise is implemented by assuming that the spike count ki
in the coding window ΔT follows the Poisson distribution, PðkijniÞ ¼ ðniDTÞ

ki=ki! e� niDT .

We denote the expected spike count of a neuron firing with its maximum firing rate νmax

by R≔ νmaxΔT. If R is small it means more output noise since even in the presence of maxi-

mum firing rate there are more occurrences of zero spikes and thus there is a higher ambiguity

about the real firing rate. The above implementation of output noise can be understood as a

constraint on the maximum firing rate level νmax while having a fixed coding window length

ΔT.

For given noise levels σ and R the goal is to find nonlinearities which optimally encode the

stimulus s with a vector of spike counts~k � fkig (independent-coding channel) or the lumped

spike count k = ∑ki (lumped-coding channel). Since we assume binary nonlinearities and keep

the two firing rates fixed, the only variables to optimize are the components of the threshold

vector~y≔ fy1; . . . ; yNg. As a measure for optimality for the independent- and lumped-coding

channels we choose the mutual information between stimulus s (input) and observed spike

count~k or k, respectively (output). The mutual information gives an upper bound on how

much information can on average be obtained about the input by observing the output. It is

given as the difference between output entropy Hð~kÞ and noise entropy Hð~kjsÞ [92]:

Imð~k; sÞ ¼ Hð~kÞ � Hð~kjsÞ ð2Þ

¼ �
X1

k1¼0

. . .
X1

kN¼0

Pð~kÞ log ðPð~kÞÞ þ
X1

k1¼0

. . .
X1

kN¼0

Z

s
ds PðsÞ Pð~kjsÞ log ðPð~kjsÞÞ ð3Þ

¼
X1

k1¼0

. . .
X1

kN¼0

Z

s
ds PðsÞ Pð~kjsÞ log

Pð~kjsÞ
R

s0ds0Pðs0ÞPð~kjs0Þ

 !

ð4Þ

where the input-output kernel Pð~kjsÞ is the probability of obtaining a certain vector of output

spikes for a given stimulus value. In the case of the lumped-coding channel the calculations are

the same, except that the spike count is now one-dimensional, i.e. we have Im(k; s) as the

mutual information and P(k|s) as the input-output kernel.

Independent-coding channel

In the case of the independent-coding channel, Pð~kjsÞ � Pðk1; . . . ; kN jsÞ can be expressed by

multiplying P(k1, . . ., kN|ν1, . . ., νN) and P(ν1, . . ., νN|s) and summing over all possible firing

rate states {0, νmax}:

Pð~kjsÞ ¼
X

n12f0;nmaxg

. . .
X

nN2f0;nmaxg

Pðk1; . . . ; kN jn1; . . . ; nNÞPðn1; . . . ; nN jsÞ ð5Þ

We assume no noise correlations and thus νi conditional on s are independent of each other:

Pðn1; . . . ; nN jsÞ ¼
Y

i

PðnijsÞ ð6Þ

Furthermore, all ki are independent of each other conditional on a set of firing rates {ν1, . . .,
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νN}, and every ki only depends on νj=i:

Pðk1; . . . ; kN jn1; . . . ; nNÞ ¼
Y

i

Pðkijn1; . . . ; nNÞ ¼
Y

i

PðkijniÞ ð7Þ

Taken together:

Pð~kjsÞ ¼
X

~n2f0;nmaxg
N

YN

i

PðkijniÞPðnijsÞ ¼
YN

i

X

ni2f0;nmaxg

PðkijniÞPðnijsÞ ð8Þ

P(ki|νi) follows a Poisson distribution and P(νi|s) denotes the probability of having a firing rate

of zero (or νmax) for a given stimulus s. Since the input noise fluctuations are on a much faster

time scale than the length of the coding window (over which the stimulus is assumed to be

constant), an averaging over z can be performed. Thus P(νi = 0|s) (or P(νi = νmax|s)) is given as

the probability that stimulus plus noise is smaller (or larger, respectively) than threshold θi,
which is the area under the noise distribution for which s + z< θi (or s + z� θi, respectively):

Pðni ¼ nmaxjsÞ ¼
Z 1

yi � s
dzPzðzÞ≕HiðsÞ; ð9Þ

Pðni ¼ 0jsÞ ¼
Z yi � s

� 1

dzPzðzÞ ¼ 1 � HiðsÞ: ð10Þ

Hi(s) can be viewed as the “effective” tuning curve that one would measure electrophysiolog-

cally (see also Fig 1, top right). It is the cumulative of the dichotomized noise distribution. If

the noise distribution is normally distributed with variance σ2, the effective tuning curve is

given by the complementary error function:

HiðsÞ ¼
1

2
erfc

yi � s
ffiffiffi
2
p

s

� �

: ð11Þ

Then one can calculate the mutual information by performing the summation over all output

variables k1, . . ., kN. The output noise is included since P(ki|νi) is Poisson distributed. Accord-

ing to the Poisson distribution, P(ki = 0|νi = νmax) = e−R. For each ki, all spike counts greater

than zero can be lumped into one state due to the fact that if there is one or more spikes emit-

ted, the firing rate can not be zero, i.e. P(ki> 0|νi> 0) = 0 for νi = {0, νmax}. This state is

denoted as 1 and from now on we have ki 2 {0, 1}. Thus P(ki = 1|νi = νmax) = 1 − P(ki = 0|νi =

νmax) = 1 − e−R. The mutual information can then be calculated as

Imð~k; sÞ ¼
X

k1 ;...;kN2f0;1g
N

Z

s
PsðsÞ

YN

i¼1

X

ni2f0;nmaxg

PðkijniÞPðnijsÞ log
. . .

R

s0ds0Pðs0Þ . . .

� �

ds ð12Þ

with

X

ni

Pðki ¼ 0jniÞPðnijsÞ ¼ ð1 � HiðsÞÞ þ e� RHiðsÞ≕QiðsÞ; ð13Þ

X

ni

Pðki ¼ 1jniÞPðnijsÞ ¼ ð1 � e� RÞHiðsÞ≕ SiðsÞ ð14Þ

where output noise is denoted as R≔ νmaxΔT. Taken together, the mutual information for the
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independent-coding channel is

Imð~k; sÞ ¼
X1

k1¼0

. . .
X1

kN¼0

Z

s
PsðsÞ

YN

i¼1

PkiðsÞ

 !

log
Q

iPkiðsÞR

s0ds0Pðs0Þ
Q

iPkiðs
0Þ

 !

ds ð15Þ

with

PkiðsÞ ¼

(QiðsÞ; for ki ¼ 0

SiðsÞ; for ki ¼ 1
ð16Þ

Lumped-coding channel

Next we turn to the calculation for the input-output kernel P(k|s) in the case of the lumped-

coding channel. For the case of only input input noise where Qi(s) = 1 −Hi(s) and Si(s) = Hi(s),
McDonnell et al. [29, 93] explained how P(k|s) can be calculated using a recursive formula. We

extended these calculations to additional Poisson output noise. We write P(k|s) as P(k|N, s)
and use the notation by McDonnell et al. [29, 93], for which

TN
k;s≔PðkjN; sÞ: ð17Þ

Furthermore, Pki|s,i is defined as the probability of cell i firing ki spikes in a coding window ΔT
when the stimulus is s. With that, one can express the probability of having k spikes with N
cells as the probability of having kN spikes by the N-th neuron multiplied by the probability of

having k − kN spikes by the other neurons and taking into account all possibilities of kN by

summing over kN:

TN
k;s ¼

Xk

kN¼0

PkN js;i¼N � T
N� 1

k� kN ;s ð18Þ

where

Pki js;i ¼
X

ni2f0;nmaxg

PðkijniÞPðnijsÞ ð19Þ

¼ Pðkijni ¼ 0ÞPðni ¼ 0jsÞ þ Pðkijni ¼ nmaxÞPðni ¼ nmaxjsÞ ð20Þ

¼

ð1 � HiðsÞÞ þ e� RHiðsÞ; for ki ¼ 0

ðRÞki

ki! e� R
HiðsÞ; for ki > 0

8
>><

>>:

ð21Þ

is the probability of cell i emitting ki spikes given stimulus s, and

TN
0;s ¼

YN

i¼1

P0js;i ¼ ð1 � HiðsÞÞ þ e� RHiðsÞ ¼
YN

i¼1

QiðsÞ ð22Þ

being the probability of having zero spikes with N cells, as well as

T1
k;s ¼ Pk1 js;i¼1 ð23Þ

being the probability of having k spikes with N = 1. Thus for every k = 0, 1, 2, . . . until an
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upper bound which is determined by the precision one wants to reach, TN
k;s is calculated for

every kN = 0, 1, . . .k by using the recursive formula in Eq 18. This is computationally very

expensive and thus we studied only populations with up to N = 3 neurons and expected maxi-

mum spike count of R = 10 (note that calculating just one P(k|s) for N = 3 and R = 10 requires

on the order of 50 000 evaluations of Eq 19). As with the independent-coding channel, input

noise σ is included in Hi(s) (see Eq 9) and the output noise level is denoted by R.

Our goal is to find the optimal thresholds~y which maximize mutual information for given

levels of input and output noise σ and R:

~y� ¼ argmax
~y

Imð~yjs;RÞ: ð24Þ

Optimization procedure

For the calculation of Eq 4 we performed the integration numerically for both the indepen-

dent- and the lumped-coding channel. For the independent-coding channel, this numerical

integration is the computationally most expensive part of calculating the mutual information.

We tested several numerical integration algorithms (Riemann, trapezoid, Romberg, Simpson,

and adaptive algorithms) which all lead to very similar results. We performed numerical opti-

mizations using the Nelder-Mead simplex algorithm implemented in the Scipy package [94]. It

is a local optimizer which does not rely on estimating the gradient. Gradient based optimizers

like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm rely on calculating or estimat-

ing the inverse of the Hessian matrix. For the independent-coding channel this becomes prob-

lematic around critical noise values where one eigenvalue of the Hessian approaches zero and

thus leads to large numerical imprecisions when inverting the Hessian. For the lumped-coding

channel this is unproblematic and for speed purposes we also used an adaptation of the BFGS

algorithm [95] implemented in Scipy. In order to spot possible local maxima—which are espe-

cially prevalent for large N—we applied a grid of initial conditions. After some trials it was

possible to estimate what form of initial conditions lead to local maxima in the N = 3 case.

Additionally, potential local maxima could in general be easily spotted and checked by consid-

ering the plots of optimal thresholds vs. noise.

The heavy numerical procedure limited our analysis to small population sizes with a maxi-

mum of three neurons in the case of the lumped-coding channel, and six neurons in the case

of the independent-coding channel.

Generalized normal distribution

The generalized normal distribution (GND) is given by [41]

PGNDðsÞ ¼
b

2aGð1=bÞ
e �

jsj
að Þ

b

ð25Þ

where Γ(z) is the gamma function given by

GðzÞ ¼
Z 1

0

xz� 1e� xdx: ð26Þ

The parameter β determines the kurtosis, particular values being β = 1 (for the Laplace distri-

bution), β = 2 (the standard normal distribution) and β!1 (the uniform distribution). The
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variance of the GND is

s2 ¼
a2Gð3=bÞ

Gð1=bÞ
: ð27Þ

The effective tuning curve of Eq 9 is in this case given as

HiðsÞ ¼
1

2
� signðyi � sÞ

g 1=b;
jyi � sj
a

� �b
 !

2Gð1=bÞ

ð28Þ

where γ(x, y) is the lower incomplete gamma function defined as

gðx; yÞ ¼
Z y

0

tx� 1e� tdt : ð29Þ

Local curvature of information landscape

To investigate the curvature of the information landscape, we numerically calculated the Hes-

sian matrix of the mutual information (using the Python package Numdifftools) at optimal

thresholds and performed eigendecomposition. The Hessian matrix is defined as

H ¼
@

2Im
@yi@yj

: ð30Þ

Its eigenvectors give the directions of principal curvatures and the respective eigenvalues quan-

tify the curvature in these directions.

Data fitting

We modeled ANF tuning curves as binary neurons, each neuron i with threshold θi so that if

the stimulus (here, sound intensity at a given frequency) is higher (lower) than θi, the firing

rate is rm,i (ri). Here ri denotes the spontaneous firing rate (SR) of the neuron, and rm,i denotes

its maximal firing rate. The addition of Gaussian input noise with mean 0 and standard devia-

tion σi transforms the effective tuning curve of the neuron into a sigmoid given by the equation

(Figs 1A & 7A):

niðsÞ ¼ ri þ ðrm;i � riÞHiðsÞ; ð31Þ

where Hi denotes the complementary error function (Eq 11). To analyze the experimentally

recorded ANF tuning curves from ref. [8], we first fit all the tuning curves with Eq 31. We used

the approach from Balasooriya et al. [96] to identify a single outlier in the distribution of nor-

malized SR, ri/rm,i. Upon removing the outlier, we pooled the measured tuning curves from

the same ANF, and fitted each with our sigmoidal function (Fig 7A). This resulted in 148 tun-

ing curves from 24 animals. To divide the tuning curves into two classes, since the distribu-

tions of normalized SR and the dynamic range are not center-symmetric, we calculated the

cumulative distribution functions, F(ri/rm,i) and F(σi) (S5 Fig).

Fðri=rm;iÞ ¼ Pðr=rm � ri=rm;iÞ; ð32Þ

FðsiÞ ¼ Pðs � siÞ: ð33Þ
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When F(ri/rm,i)> F(σi), neuron i was classified as ‘Type 1,’ characterized by a higher SR, a

smaller dynamic range and a lower firing threshold. Otherwise neuron i was classified as ‘Type

2,’ characterized by a lower SR, a broader dynamic range and a higher firing threshold (e.g.

Fig 7B).

After fitting, we extracted the average values of all parameters for each type. The ‘Type 1’

neuron had a high normalized SR (r1/rm = 0.159) and a dynamic range of σ1 = 0.337; while the

‘Type 2’ neuron had a very low normalized SR (r2/rm = 0.036) and a dynamic range of σ2 =

0.534. These dynamic ranges were normalized to the stimulus distribution of natural sound

frequencies used in the optimization, which is assumed to be a Gaussian distribution with

mean 30 dB and standard deviation of 12.5 dB [97]. The maximum expected spike count R—

the product of average maximal firing rate of the ANFs and the coding time window, ΔT = 50

ms—was 13.8.

For the model with three neurons, we divided the data into three types (S7 Fig). The ‘Type

1’ neuron had a normalized SR of r1/rm = 0.180 and a dynamic range of σ1 = 0.328, the ‘Type 2’

neuron had a normalized SR of r2/rm = 0.087 and a dynamic range of σ2 = 0.398, while the

‘Type 3’ neuron had a normalized SR of r3/rm = 0.019 and a dynamic range of σ3 = 0.571.

These dynamic ranges were again normalized to a Gaussian stimulus distribution with mean

30 dB and standard deviation of 12.5 dB [97].

Finding local maxima of mutual information for the three-neuron model

Calculation of the mutual information landscape for the three-neuron model is much more

computationally demanding compared to the two-neuron model. To find the information

maximum, we started from a coarse grid of thresholds for the three neurons, and first calcu-

lated the mutual information for all the points in the threshold grid. After selecting the thresh-

olds corresponding to the local maxima of the mutual information, we then zoomed in and

used a finer grid of thresholds around each local maximum. Next, we found the local maxima

in this new grid. We repeated this process until reaching the desired precision. Because of the

centrosymmetry of the information landscape, we can do the calculation in only half of the

space of thresholds.

Supporting information

S1 Fig. Non-monotonicity of the number of distinct optimal thresholds with output noise

level R. A. For N = 3 neurons there is a non-monotonicity of the number of distinct optimal

thresholds with output noise for a relatively small input noise parameter range (0.54 < σ< 0.6,

see Fig 4A). For high output noise (low R), first the upper two thresholds merge, before they

split again with decreasing output noise and for even lower output noise the middle threshold

merges with the lower threshold. B. For N = 6 neurons a similar transformation of thresholds

happens, where the two middle thresholds split with decreasing output noise, thus increasing

number of distinct optimal thresholds.

(PDF)

S2 Fig. Optimal thresholds for higher number of neurons in the case of the independent-

coding channel. A. Number of distinct optimal thresholds for N = 4 cells depending on input

noise σ and output noise R. B. As in A but for N = 6.

(PDF)

S3 Fig. Threshold differences as phase transitions in the limit of just one noise source. A.

Threshold bifurcations for the independent-coding channel with respect to input noise σ for

vanishing output noise. The derivatives of mutual information with respect to input noise
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indicate a second-order phase transition. B. As in A but for the lumped-coding channel. There

is a first-order phase transition for low noise (left inset) and a second-order phase transition

for high noise (right inset). C. The Independent-coding channel with vanishing input noise.

No phase transition is visible since the “bifurcation” happens in the limit of infinite output

noise. D. The Lumped-coding channel with vanishing input noise exhibits second-order phase

transitions.

(PDF)

S4 Fig. Critical exponents obtained from fitting threshold differences and eigenvalues in

proximity of critical noise values. A. Obtaining the critical exponent βσ by fitting a monomial

function to the threshold differences for input noise values slightly smaller than the critical

input noise value σc. B. As in A, the critical exponent βR is obtained by fitting output noise val-

ues slightly smaller than the critical output noise Rc. C,D. Similarly, one obtains the critical

exponents of the eigenvalues of the Hessian matrix of the information landscape, ϕl and ϕr, by

fitting the eigenvalues for both slightly smaller (ϕl) and slightly larger (ϕr) noise values than the

critical noise value.

(PDF)

S5 Fig. Analysis of auditory nerve tuning curves of mice divided into two types. A. Distri-

bution of normalized spontaneous firing rate (SR, r/rm). An outlier is identified and marked in

orange. B. Transforming normalized SR r/rm and dynamic range σ into cumulative distribu-

tion functions. C. A diagram showing the method to classify neurons into two types. D. Scatter

plot and linear fit between normalized SR r/rm and dynamic range σ. Black dots denote the

‘center of mass’ within each ‘type’, and the green dots show the values of example neurons in

Fig 7B. E. As in D but for the relationship between σ and threshold θ. Magenta dots and red

dots denote where mutual information is maximized, with corresponding σ1 and σ2 as the

black dots. Average firing rate corresponding to red dots are lower.

(PDF)

S6 Fig. Contour plots of mutual information and average firing rate, with different combi-

nation of σ1, σ2 and r1/rm (note, r2 = r1). In each panel, the left plot corresponds to mutual

information and the right one shows average firing rate. Cyan dots show optimal thresholds

(θ1, θ2) which maximize mutual information. Maximal spike count is set to R = 10 for every

panel. A. Both neurons have zero input noise σ1 = σ2 = 0, and zero spontaneous rate r1/rm = 0.

B. The two neurons have identical but nonzero input noise σ1 = σ2 = 0.25, and zero spontane-

ous rate r1/rm = 0. C. The two neurons have two different and nonzero input noise σ1 = 0.1, σ2

= 0.5, and zero spontaneous rate r1/rm = 0. D. Both neurons have zero input noise σ1 = σ2 = 0,

and nonzero spontaneous rate r1/rm = 0.2. E. The two neurons have identical but nonzero

input noise σ1 = σ2 = 0.25, and non-zero spontaneous rate r1/rm = 0.2. F. The two neurons have

two different and nonzero input noise σ1 = 0.1, σ2 = 0.5, and nonzero spontaneous rate r1/rm =

0.2. G. σ1 = 0.5, σ2 = 0.1, r1/rm = 0.2. H. The mechanism behind symmetry breaking of the

mutual information landscape. The case (left) where the neuron with the larger input noise

has a larger threshold located in the region where the stimulus rarely occurs is more efficient

than in the case (right) where the neuron with the larger input noise has a smaller threshold

near the stimulus mean where its dynamic range covers a large range of possible stimuli.

(PDF)

S7 Fig. Analysis of auditory nerve tuning curves of mice divided into three types. A. A dia-

gram showing the method to classify neurons into three types. B. Scatter plot and linear fit

between normalized spontaneous firing rate (SR, r/rm) and dynamic range σ. Black dots denote
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the ‘center of mass’ within each ‘type’. C. As in B but for the relationship between σ and thresh-

old θ.

(PDF)

S8 Fig. The moment generating function of the spike output vector~k is smooth for fixed

thresholds but not for optimized thresholds of both noise sources. A. The two components

(N = 2) of the moment-generating function ~Mð~tÞ for~t ¼ ð1; 1Þ (see S1 Text) depending on

input noise σ. Output noise value and threshold vector are fixed to R = 1 and~y ¼ ð� 0:5; 0:5Þ,

respectively. The first two derivatives show no discontinuities. B. As A but depending on R
with σ = 0.2. C. As A,B but depending on first threshold vector θ1. D,E. As A,B but with opti-

mized threshold vector for each noise value. The components of the moment-generating func-

tion show a bifurcation and the first derivatives show discontinuities.

(PDF)

S9 Fig. Number of distinct optimal thresholds when using input and noise distributions

different from Gaussian. Instead of a Gaussian stimulus and noise distribution we also used a

generalized normal distribution and varied the kurtosis (small βmeans high kurtosis, see Eq

25). A. Laplacian (having high kurtosis) as input distribution. B. Input distribution with low

kurtosis (similar to uniform). C. Laplace distribution as noise distribution. D. Noise distribu-

tion with low kurtosis.

(PDF)

S1 Text. The moment-generation function of the independent-coding channel for two neu-

rons.

(PDF)
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