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Abstract

In this work, we show how the mechanical properties of the cellular microenvironment mod-

ulate the growth of tumour spheroids. Based on the composition of the extracellular matrix,

its stiffness and architecture can significantly vary, subsequently influencing cell movement

and tumour growth. However, it is still unclear exactly how both of these processes are regu-

lated by the matrix composition. Here, we present a centre-based computational model that

describes how collagen density, which modulates the steric hindrance properties of the

matrix, governs individual cell migration and, consequently, leads to the formation of multi-

cellular clusters of varying size. The model was calibrated using previously published

experimental data, replicating a set of experiments in which cells were seeded in collagen

matrices of different collagen densities, hence producing distinct mechanical properties. At

an initial stage, we tracked individual cell trajectories and speeds. Subsequently, the forma-

tion of multicellular clusters was also analysed by quantifying their size. Overall, the results

showed that our model could accurately replicate what was previously seen experimentally.

Specifically, we showed that cells seeded in matrices with low collagen density tended to

migrate more. Accordingly, cells strayed away from their original cluster and thus promoted

the formation of small structures. In contrast, we also showed that high collagen densities

hindered cell migration and produced multicellular clusters with increased volume. In conclu-

sion, this model not only establishes a relation between matrix density and individual cell

migration but also showcases how migration, or its inhibition, modulates tumour growth.

Author summary

Multicellular organisms are composed of cells found in a scaffold known as the extracellu-

lar matrix, which interacts with cells. There is still a need to understand how the proper-

ties of this matrix, namely, its mechanical properties, regulate the organization of cellular

systems. However, recent works have proven the relevance of the matrix, with a particular

emphasis in tumour biology studies. Furthermore, to accelerate and reduce the costs of

these studies, several computational frameworks have been presented to simulate the

collective behaviour of the matrix. Hence, in this work, we introduce a model based on
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experimental data, which highlights the role of the mechanical properties of the matrix in

individual and collective cell migration. We clearly show how the extracellular matrix

induces the formation of large tumour clusters. Moreover, the model that we present

accurately describes general trends of the experimental results used for model calibration;

the model also has the potential to be extended to study matrices with different properties

and different cell lines.

Introduction

The extracellular matrix (ECM) is the non-cellular component present in all tissues, which not

only serves as a physical scaffold that provides support to cells but also interacts with them and

mediates their biological functions [1, 2]. The ECM is mainly composed of water, proteins,

such as collagen, elastin and fibronectin, and polysaccharides, but the quantities at which

these components are present vary significantly based on the tissue. In fact, the characteristic

mechanical properties of tissues arise from the particular composition of their ECM [3, 4].

Interestingly, in recent years, more focus has been given to the interplay between the

mechanical properties of the cellular microenvironment and the emergent cell behaviour, as

more studies have revealed that cells sense and respond to these characteristics [5, 6]. Matrix

stiffness, which characterizes the matrix’s resistance to deformation in response to applied

forces, has been extensively studied as a regulator of biological processes [7–9], and cell motil-

ity in particular [10–13]. For instance, studies have shown that the matrix stiffness may influ-

ence the direction of both cell movement, directing the cells along stiffness gradients [12], and

cell speed, with stiffer matrices producing higher cell velocity values [13]. Nonetheless, the

majority of these works relate to 2D conditions and may not apply to 3D conditions.

In 3D configurations, stiffness values arise from structural changes that also affect the

matrix architecture, which regulates migration by itself [14]. Specifically, matrices with a

higher fibre density may be stiffer, but they also present smaller pore sizes, which regulate the

confinement levels. Confined microenvironments are commonly associated with restrained

cell motility, as cells become unable to squeeze through the matrix to continue moving [15].

Consequently, the complexity of 3D cultures makes it increasingly difficult to disassociate the

effects induced by matrix stiffness from those produced by the matrix architecture.

Taking into account that the nature and composition of the ECM are quite hard to replicate

in vitro, experimental studies conducted with 3D scaffolds have been helpful to improve the

understanding of how the ECM regulates 3D cell migration through simplified models [16–

19]. In particular, hydrogels mainly composed of collagen, the most abundant substance of

the natural ECM components [1], are commonly used in experimental settings. Among other

benefits, collagen matrices offer versatility and enable the possibility to produce matrices with

different mechanical properties based on their composition and preparation procedures [20].

For example, collagen concentrations can be altered or changes in pH can be implemented to

modify the different matrix properties [21].

Understanding cell motility and its dependence on the physical properties of the ECM is of

particular interest in cancer biology. The mechanical properties of the tumour microenviron-

ment differ from those found in normal tissues as a result of the tumour cells’ ability to sense

and modify their environment [2, 22, 23]. The invasion of surrounding tissues by tumour cells,

a process known as metastasis, represents a critical step in tumour development and leads to a

significant decrease in survival rates [22, 24]. Several previous studies have aimed to assess the

pathophysiological processes of primary tumours and explain how the mechanical properties
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of the ECM induce and guide metastasis [11, 25–27]. Nevertheless, a particular area of study

that has yet to be understood is related to metastatic colonization, i.e., how metastatic cells

adapt to survive in a new tissue [28].

Although the large majority of circulating tumour cells perish before they are able to pro-

duce a secondary tumour, some can invade new tissues and replicate [28, 29]. In the last few

years, studies have shown that this ability to survive and proliferate in new tissues depends not

only on cells but also on the biophysical microenvironment of the metastatic niche and the

cell-matrix interactions [30]. Thus, it is of high importance to understand and characterize

how tumour cells respond to different compositions of the microenvironment, to identify the

causes that may induce a more invasive phenotype and to develop therapeutic strategies that

hinder this behaviour [28, 31].

Several studies have studied tumour cells seeded in 3D scaffolds to replicate the initial

stages of growth in avascular tumours [19], creating a setting that can also reflect the initial

stages of metastatic colonization in new tissue. There are several available techniques used to

produce multicellular structures from tumour cells [32]. Tumour spheroids, for example,

can be formed by growing tumour cells in solutions or non-adhesive substrates and can later

be introduced in 3D scaffolds [33]. However, individual cells may also be directly seeded in

3D matrices or microfluidic devices to understand how cells organize based on the matrix

characteristics [34, 35]. Despite these advances and the various available experimental

setups, it is still unclear how the mechanical properties of 3D scaffolds modulate tumour cell

behaviour.

On the one hand, it is well established that matrices of higher density suppress growth by

exerting compressive forces on cells, hence producing smaller tumours than those grown in

matrices with low densities [36–38]. Consequently, the tumour size tends to decrease as the

density of the matrix increases. In general, these experiments have used low-porosity matrices.

On the other hand, experimental studies have also shown that matrices with higher density

tend to limit cell movement as cells are unable to migrate through the matrix due to steric hin-

drance [10, 39–41]. In turn, this situation promotes individual cell migration in matrices com-

posed of lower collagen concentrations, causing cells to stray from their original cluster, which

can subsequently affect the tumour’s size [39, 42, 43].

We highlight the work presented in [39], which aimed to study tumour cells in a microflui-

dic setup to characterize how the collagen density of matrices affects cell organization and

tumour growth from single cells seeded in those matrices. Through the use of a microfluidic

experimental configuration, the authors were able to study single-cell migration, and the devel-

opment of multicellular structures, as two distinct processes. Interestingly, the authors con-

cluded that the effect of collagen density on cell migration was a key regulator in tumour

spheroid formation. Whereas the matrices with low concentrations of collagen enabled cells to

migrate more freely, the increased motility produced sparser and smaller clusters. In contrast,

the restrained motility of cells seeded in matrices of higher collagen density resulted in larger

spheroids. Accordingly, it can be stipulated that even though the invasive capability is low, cell

surveillance is enhanced by denser matrices, as cells aggregate and form stable structures that

evolve into secondary tumours [44, 45].

Despite the advances made regarding the experimental settings, there are still disadvan-

tages, such as increased costs and long time scales. Accordingly, to facilitate the study of some

of these biological issues, advances have been made in computational modelling to create mod-

els and simulation frameworks that can replicate experimental settings while overcoming

the disadvantages. Currently, multiple computer-based frameworks have been implemented

to study tumour cells and their interactions with the surrounding microenvironment, as

reviewed in more detail in [46, 47]. Furthermore, the implementation can rely on continuum
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[48], discrete [49], or hybrid approaches [50]. Nonetheless, the adequacy highly depends on

the subject of study.

Given these considerations, here, we present a model extension of the typical models devel-

oped in PhysiCell (an open-source modelling framework) in which the effect of the ECM den-

sity on cell motility and, consequently, on tumour growth is introduced [51]. We aimed to

build a model that was able to capture the general tendencies presented in [39] while still hav-

ing a low computational cost and flexibility to adapt to other experimental setups. Accordingly,

we used the previously published results in [39] to characterize how the collagen density of the

matrix restrains cell motility, without overfitting the model to the experimental data. Despite

the simplicity of our model, we still obtained an accurate depiction of how the density of the

matrix influences cell movement. Furthermore, at a multicellular level, our study replicates

how the cells’ ability to migrate modulates tumour growth, depending on the steric hindrance

properties of the ECM.

Materials and methods

Model design

In this study, we aimed to replicate the experimental results found in [39], namely, those

regarding the role of collagen concentration on cell motility and, consequently, on tumour

growth. The premise of this previous work was to seed individual cancer cells of a non-small

cell lung cancer (NSCLC) cell line in collagen matrices of varying concentrations and to assess

how the collagen density modulates cell behaviour. Specifically, [39] primarily introduced an

experimental setup that enabled the study of single-cell motility by tracking individual cell tra-

jectories for 24 hours and computing metrics such as the distance travelled by cells and their

effective and mean speeds.

Regarding the formation of multicellular structures, the authors followed the same experi-

mental procedures as mentioned above but allowed for cells to proliferate for seven days. In

this case, the cell motility metrics were not tracked, and the focus shifted to quantifying how

the tumour spheroid size evolved over time. Thus, cluster areas were tracked at time points of

1, 3, 5 and 7 days, and the obtained results were compared between the different matrix density

values. The authors also analysed how the cluster eccentricity, measured at day 7, may vary

according to the microenvironment. A schematic representation of the experimental condi-

tions is presented in Fig 1.

This experimental study resulted in two key conclusions. First, in regard to single-cell

migration, the results showed that the motility was hindered in matrices with high collagen

concentrations. In fact, as the collagen density increased, cells encountered more difficulties

moving through the ECM due to steric hindrance. Accordingly, cells became increasingly

more confined, leading to shorter travel distances and lower cell velocity values. Second, the

results showed that the collagen concentration also regulates tumour formation and growth,

mainly through its effect on individual cell migration. On the one hand, cells seeded in low-

density matrices disseminated through the matrix, forming small clusters. On the other hand,

when cell motility became hindered due to high collagen concentrations, large multicellular

structures started developing.

Our goal was to introduce the general trends and results on this topic published in [39]

through a tumour growth computational model. Namely, we aimed to develop a model that

enables users to define different collagen concentrations, analyse how matrix density restrains

motility and understand how this situation favours tumour growth. Accordingly, we based the

design of our model on reproducing the same setups as those seen experimentally and used

the published data to calibrate our model. Although the results of previous studies are at the
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core of our model, we sought to build a flexible framework that can be extended to other mod-

els and scenarios.

Computer-based modelling framework

The first step of the implementation process consisted of choosing an adequate modelling

framework in concordance with our main objective. Since we considered that mechanical

interactions should be regarded at the cellular level, a discrete model probably suits the prob-

lem better than a continuum approach would. However, even among discrete frameworks,

there are multiple possible modelling choices, such as centre-based and deformable cell models

[49]. The first assumes that cells are represented by their centre point, without accurately

accounting for cell geometry, while the latter can describe the cell shape at the cost of higher

complexity, which limits the number of cells that can be present for each simulation [52].

Discrete models are known to have an increased level of complexity, usually associated with

higher computational costs [53]. Hence, researchers have developed hybrid continuum-dis-

crete models to reduce computational costs while still accounting for cell-level information.

Recently, PhysiCell [51] was presented as an open-source hybrid 3D cell simulator that models

the cellular environment through a combination of a continuum approach, which describes

Fig 1. Schematic representation of the experimental configurations. Using the same experimental conditions, consisting of a microfluidic

device in which cells were seeded in a collagen matrix, it was possible to characterize cell motility and cluster formation as two distinct

processes. The results recorded at day 1 provided the data used to define locomotive forces and, consequently, cell-matrix interactions.

Furthermore, the results from the 5th day of experiments were used to calibrate cell-cell interactions.

https://doi.org/10.1371/journal.pcbi.1008764.g001
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the chemical microenvironment and the mechanical behaviour of the matrix, and an agent-

based model that mimics the cells. For the continuum part of the model, an associated piece of

software, BioFVM [54], is used to solve reaction-diffusion equations, which, for several user-

defined substances, account for substance diffusion and decay, as well as the existence of both

bulk and cell-centred sources and sinks.

Based on PhysiCell’s advanced state of development, along with its flexibility to include

new user-defined modules, we have chosen to develop our model as an extension to this

framework. To do so, we relied on built-in functions that account for tracking the cell volume,

cell proliferation and cell death, and we extended the features that model cell motility and cell

mechanics. Moreover, we introduced the ECM, which the PhysiCell system did not include.

Thus, collagen was incorporated into the model as a non-diffusing substance that is defined by

its density. Subsequently, this value was used to compute cell-matrix interactions, as further

explained below. For the first approach, we assumed that the collagen density is uniform

throughout the domain and that cells do not remodel the matrix, so the collagen concentration

does not change over time. More details on the parameters used to implement the model are

presented in Table 1.

In addition, we modelled oxygen as a diffusing substance that degrades over time and that

is consumed by cells. Changes in the oxygen concentration, ρO2
, were modelled in accordance

with a reaction-diffusion equation:

dρO2

dt
¼ DO2

r2ρO2
� lO2

ρO2
�
X

cells;k

dðx � xkÞWkðUk;O2
ρO2
Þ in Ω ð1Þ

with Dirichlet boundary conditions in δ O. Here, DO2
is the oxygen diffusion coefficient and

lO2
is its decay rate. In addition, for a cell k, dðxÞ is the Dirac function, xk is the cell position,

Wk represents the cell volume and Uk;O2
is the cell consumption rate for oxygen. The parameter

values for this equation can be found in Table 1. Furthermore, we assume that cell volume

(Wk) changes through time and is defined by PhysiCell’s custom volume functions, which

are used as fully described in the original publication [51], and that allow the model to capture

the changes in cell volume upon cell duplication and cell death. In particular, cell volume is

assumed to start doubling once the cell enters the cell cycle, and it is halved when cells divide.

Furthermore, its value decreases until reaching zero when cells enter apoptosis.

Table 1. Reference parameter values for the model.

Symbol Parameter Value Unit References

r0
O2

Oxygen Initial Density 38.0 mmHg [51, 54]

DO2
Oxygen Diffusion Coefficient 1.0e5 μm2/min [51, 54]

lO2
Oxygen Decay Rate 0.1 1/min [51, 54]

Uk;O2
Oxygen Uptake Rate (per cell, k) 10.0 1/min [51, 54]

r0
Collagen Collagen Initial Concentration [2.5, 4.0, 6.0] mg/mL [39]

μ Drag Coefficient [7.96, 18.42, 39.15] Pa � s [55]

R Cell Radius 8.4 μm [51]

RA Maximum Cell Adhesion Distance 1.25R μm [51]

ccca Cell-Cell Adhesion Coefficient 7.2 - [51], estimated

cccr Cell-Cell Repulsion Coefficient 380 - [51], estimated

TKi67− Cell Quiescence Time 6.5 h [51], estimated

TKi67+ Cell Proliferation Time 15.5 h [51], estimated

rD Cell Death Rate 0.00319 1/h [51]

https://doi.org/10.1371/journal.pcbi.1008764.t001
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Additionally, through the use of built-in functions of the PhysiCell framework, we consid-

ered that oxygen shortage could lead to changes in the cells’ phenotype. In particular, we

assumed that low oxygen levels (up to 15 mmHg) can induce a decrease in cell proliferation

rates and promote cell death through necrosis. Since the experimental settings correspond to a

well-oxygenated environment, assuming conventional cell culture oxygen values as well as the

high permeability of PDMS-based microfluidic chips [56], and given that the cell concentra-

tion is not high, we consider that oxygen’s effect on spheroid formation can be disregarded.

Nonetheless, an extended study of the oxygen levels in our simulations is provided in S1

Appendix.

Regarding cell-matrix mechanical interactions, the cell positions were updated by comput-

ing the effect of cell-cell forces acting on each cell, as represented in Fig 2. Accordingly, consid-

ering a cell i interacting with some neighbouring cells, N ðiÞ, we can consider the equilibrium

equation taking the over-damped assumption:

0 �
X

j2N ðiÞ

ðFij
cca þ Fij

ccrÞ þ Fi
drag þ Fi

loc ð2Þ

where Fij
cca and Fij

ccr are cell-cell adhesive and repulsive forces, Fi
drag represents dissipative forces

Fig 2. (A)A simplified representation of the force diagram showing the cell-cell and cell-matrix interactions present in the model, as described

by Eq 2. The model considers cell-generated locomotive forces, drag forces imposed by the ECM, and cell-cell adhesion and repulsion of cells

that are inside an interaction radius. Although the model only accounts for the cell volume and not cell geometry, spherical geometry is

assumed. (B) Representation of the locomotive forces generator function modelled as 5 through an estimation of the inverse cumulative

distribution of experimental cell velocities. When fed uniformly distributed random values between 0 and 1, the represented function produced

a new set of values that followed the desired force distribution, as shown by the representative boxplot showcased as the output of this function.

(C) Schematic representation of the implemented workflow to model cell-generated locomotive forces (considering no cell-cell interactions). At

an average of 20 simulated minutes, cells are allowed to change their velocity both in magnitude and direction. Accordingly, at those time

points, we generated a new cell-generated force value through the inverse sampling method. The output of this function was subsequently

incorporated into the equation of motion, given by Eq 4, producing three different velocity distributions, each corresponding to a matrix density

value.

https://doi.org/10.1371/journal.pcbi.1008764.g002
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(such as fluid drag and matrix adhesion) and Fi
loc is the net locomotive force. We assume that

cell-matrix forces can be described through Eq 3:

Fi
drag ¼ � mvi ð3Þ

where vi is the cell velocity and μ represents the drag coefficient. The mechanical properties of

the collagen matrices used in [39] have been characterized in a previous publication [55]

through rheological analysis. In this particular study, the authors characterized the viscoelastic

properties of collagen matrices using a stress-controlled rheometer and showed that the

dynamic viscosity, which measures the material’s resistance to flow, increases with collagen

density. Hence, we expect cells to undergo increased difficulty when migrating in denser, and

consequently more viscous, matrices.

Taking this expectation into account, we consider that the drag coefficient, μ, can be esti-

mated using the data provided in [55]. Specifically, for each collagen density, we defined μ as

the mean value for the measured dynamic viscosity values, as presented in Table 1. The viscos-

ity values were considered to be uniform throughout the domain since we assumed that, as a

first approach, the collagen density was also uniform.

Accordingly, the equilibrium equation was simplified to Eq 4.

vi ¼
1

m

X

j2N ðiÞ

ðFij
cca þ Fij

ccrÞ þ Fi
loc

 !

ð4Þ

which indicates that apart from the effect introduced by the ECM (which here is assumed to be

a constant value), the cell velocity is only dependent on cell-cell interactions as well as the loco-

motive forces generated by the cell, both of which we need to characterize.

[39] presents two experimental configurations that refer to single-cell and multicellular

studies. In regard to the individual cell motility studies, it is stated that cell-cell forces do not

have a significant effect on cell trajectories, as the cells have enough space to migrate without

interacting with each other. Taking this idea into consideration, we assumed Fcca and Fccr in

Eq 3 to be zero and considered that cell-generated and drag forces are dominant in this config-

uration. As mentioned previously, we considered drag forces to be represented by a constant

value for each of the collagen concentrations. Therefore, we stipulated that by replicating this

experimental setup (Setup 1), we could use the corresponding results to characterize the cell-

generated locomotive forces.

Additionally, [39] introduces a second experimental setup that builds upon the previously

described configuration. In this case, cells were allowed to proliferate for seven days, which

enabled the development of relevant cell-cell interactions. Nonetheless, we postulate that cell-

cell interactions do not significantly affect cell-generated forces. Instead, we believe that the

cell motility in this configuration is a result of the cell-generated forces described by the previ-

ous setup, drag forces and cell-cell interactions. Accordingly, we replicated the new experi-

mental conditions and calibrated cell-cell interactions to predict tumour growth.

We discuss both setups in more detail in the following subsections, and a summarized over-

view is presented in Fig 2.

Defining cell-generated locomotive forces

The first set of simulations aimed to define how single cells migrate in 3D space and to assess

whether the model can capture the effect that the collagen concentration has on migration.

Experimentally, cell trajectories and cell speeds were tracked for a period of 24 hours, with the

results showing that the collagen density reduces cell motility. We considered a single cell for
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each simulation, taking into account that we do not consider cell-cell interactions to affect cell

motility. We tracked this cell’s trajectory and recorded spatial data at the same time points as

those considered in the experiments (i.e., every 20 minutes).

To meet the requirements of this study, namely, avoiding cell-cell interactions, we consider

that cells cannot duplicate. Moreover, given that the expected lifetime of the cells surpasses

these 24 hours, cells were programmed not to enter cell death. This simulation setting was

used to run 80 replicates for each of the matrix density values, resulting in a similar number of

data points to those obtained experimentally.

Regarding cell-generated locomotive forces, the results in [39] show that there is a diversity

of behaviours in cell motility, as seen by the non-uniform distribution of cell velocities. Using

the simple setting previously described, Eq 4 shows that the velocity at which cells move

depends solely on the viscosity of the collagen matrix, μ, and the locomotive forces generated

by the cells. Given that we assume that this viscosity is uniform for each collagen concentration

and given by a constant μ, it becomes apparent that the heterogeneity in behaviour should

come from the locomotive forces. Thus, we defined that the distribution of forces should

resemble the distribution of velocities, which was experimentally characterized. A schematic

representation of this simulation setup and a summarized overview of our workflow to define

cell-generated forces is present in Fig 3A.

Accordingly, we developed the model so that, at an average of 20 min, cells may change

their motility, both in direction and in magnitude. Regarding the latter change, we needed to

create a function that generated random values following the force distribution that, in turn,

would produce the velocity distributions measured in the experiments. We chose to solve this

problem through the inverse transform sampling method, which is generally used to obtain

random values from any probability distribution. Through this method, the inverse cumulative

distribution is computed, and by feeding this function uniformly random numbers between 0

and 1, it will output a range of values that follows the distribution that we aim to model. Fig 2B

presents a representation of how the inverse cumulative function is used to obtain a value dis-

tribution of choice by taking a range of values x, which follow a uniform distribution between

0 and 1.

Henceforth, we created a force generator function by estimating an inverse cumulative den-

sity function from the experimental cumulative density distribution, which ultimately resulted

in Eq 5:

FlocðxÞ ¼ 1:56x3 þ 3:27x2 þ 0:07xþ 0:06 ð5Þ

It must be noted that, as stated previously, our objective was to capture the general tendencies

seen experimentally and not to single-handily replicate the experimental data on a small scale.

Hence, we chose to estimate a general curve based on the three available empirical cumulative

cell velocity distributions presented in [39] (for the different collagen concentrations), so that

it could provide good results for all collagen densities, rather than fit the model to each curve.

Subsequently, we iteratively changed its coefficients based on the obtained velocity distribu-

tions, so that the results resembled those seen experimentally. An extensive study on how

these parameters may influence our results can be found in S2 Appendix. Furthermore, this

analysis also includes an overview of how the model may respond to other density distribution

functions.

Finally, to compute the direction of these forces, it was assumed that the cells adopted a

completely random walk. Therefore, every time the velocity of a cell i was updated, a unit vec-

tor that defines a random direction, ei, was computed. Afterwards, this value was multiplied by
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the magnitude value given by Eq 5, thus defining Fi
loc:

Fi
loc ¼ Flocei ð6Þ

Similar to what was done experimentally, we computed the mean cell velocity by taking the

average value of cell velocities, calculated as the distance travelled between time points, divided

by the recording time. Additionally, we computed effective cell velocities as the distance

between the initial and final positions of the cell, divided by the time of the simulation.

Defining cell-cell interactions

Cell-cell interactions are characterized by potential functions as in [51] and are regulated by

adhesion and repulsion coefficients, Ccca and Cccr, respectively (see Table 1). In particular,

Fig 3. Schematic representation of the simulated conditions. (A) Representation of the single-cell migration simulation setup,

which consisted of tracking the positions of an individual cell during 24 hours to calibrate cell-generated locomotive forces. Due to

the short duration of the simulations, cell death and proliferation were both neglected. We used spatial data to compute the cell’s

average and effective velocities, which were compared to the experimental data. Based on this analysis, we iteratively changed the

parameters of the locomotive force generator function, given by Eq 5, until the results were consistent with the experimental data.

(B) Representation of the second simulated setup, which aimed to define cell-cell interactions by assessing the development of

multicellular clusters for seven days. Unlike Setup 1, cell death and proliferation were considered in this setup. We computed

cluster area values at days 1, 3 and 5 of simulation by classifying the cells through a clustering algorithm and compared these data

to the experimental results. Similar to what we did in Setup 1, we iteratively ran simulations to approximate our model to the

experimental data, this time focusing on the parameters that modulate cell-cell interactions, namely, cell-cell adhesion and cell-cell

repulsion.

https://doi.org/10.1371/journal.pcbi.1008764.g003
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adhesion and repulsion forces between two cells i and j, separated by a distance of (xi − xj), rep-

resented as r, are given by Eqs 7 and 8:

Fij
cca ¼ Cccar�ðrÞ ð7Þ

Fij
ccr ¼ CccrrcðrÞ ð8Þ

for whichrϕ andrψ, respectively, can be written as:

r�ðrÞ ¼
1 �

jrj
RA

� �2
r
jrj if jrj � RA

0; otherwise

8
><

>:
ð9Þ

rcðrÞ ¼
� 1 �

jrj
R

� �2 r
jrj if jrj � R

0; otherwise

8
<

:
ð10Þ

where RA represents the maximum distance between two cells at which adhesion forces are

present, and R is the maximum distance for which repulsion forces are present. R is, simulta-

neously, the radius of a single cell. Below these values, interaction forces between cells are

assumed to be null.

Hence, as presented in Fig 3B, we aimed to calibrate these cell-cell interaction parameters

by analysing the formation of multicellular clusters, and their subsequent growth, as depicted

by the experimental quantification of cell area values. Accordingly, we placed nine initial cells

in the domain at a distance that would enable individual cluster growth, without promoting

the junction of two different clusters, as this was not observed experimentally. Unlike the pre-

viously described setup, cells were allowed to proliferate and undergo apoptosis. Specifically, it

was considered that cells could either be in a quiescent or a proliferative state, which would

correspond to Ki67- and Ki67+, respectively [57]. Taking into account the cell state for a cell i,
represented as Si, the probability of the cell in a Ki67- phase entering a Ki67+ phase in a time

interval [t, t + Δt] can be given by:

ProbðSiðt þ DtÞ ¼ Ki67þ jSiðtÞ ¼ Ki67� Þ ¼ 1 � e�
1

TKi67�
Dt
�

Dt
TKi67�

ð11Þ

where Tki67- represents the time spent in the Ki67- state. Similarly, the probability of a prolifer-

ative cell to enter a quiescent state is:

ProbðSiðt þ DtÞ ¼ Ki67 � jSiðtÞ ¼ Ki67þÞ ¼ 1 � e�
1

TKi67þ
Dt
�

Dt
TKi67þ

ð12Þ

Regarding cell death for both states, the probability of a cell entering apoptosis, represented

by a state D, is given by the death rate, rD, as described in Eq 13:

ProbðSiðt þ DtÞ ¼ DjSiðtÞ ¼ Ki67 � =þÞ ¼ 1 � e� rDDt � rDDt ð13Þ

The time steps (Δt) used in our simulations are coherent to those originally used in the Phy-

siCell framework [51]. Accordingly, the time step used for cell processes such as described

above, namely cell death and cell cycle, is in the order of minutes (6 min), whereas the time

steps used for the diffusion and mechanical analyses are, respectively, 0.01 and 0.1 min.

For this setup, simulations were run for seven simulated days and recorded at time points

of 24 hours, with a total of 10 replicates for each matrix density value. At time points of 24, 72
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and 120 hours, cells were classified into clusters. Experimentally, the results were obtained

through a manual classification procedure, using an image-based piece of software. Several

microscopy images were taken, representing different slices of the microchip height. Subse-

quently, the subregion that better captured the area of the clusters was chosen and used as

input for a classification algorithm. The authors selected the multicellular clusters’ approxi-

mate locations in the images of interest, and the algorithm identified the regions of interest

and computed the cluster area by fitting a circle to the detected structure.

However, we adapted this procedure to our data and decided to automate this process since

we needed to iteratively run simulations and obtain cluster metrics to assess how cell-cell inter-

actions could be calibrated to obtain better results. To obtain comparable data representations

to those presented in [39], we used the x and y coordinates of cells present in a height-defined

z-region. We only used a section of the z-axis to obtain a similar selection of cells to what

would be expected from a confocal microscopy analysis, disregarding cells that would be out

of focus. With this spatial data, we used an implementation of the density-based spatial cluster-

ing of applications with noise (DBSCAN) algorithm [58] to classify each cell into a cluster or

identify it as an outlier. In particular, we used the implementation offered by scikit-learn [59],

a publicly available Python module for machine learning algorithms. DBSCAN is a distance-

based algorithm that requires users to define the minimum number of cells in a spheroid and a

radius of interest. Consequently, we inferred these values, which are presented in Table 2,

from experimental observations. An extended sensitivity analysis of the effect of these parame-

ters on our results can be found in S2 Appendix.

Having defined the clusters, which were visually assessed to avoid misclassifications, the

area of each cluster was computed. Here, we aimed to replicate the procedure used in [39], in

which the cluster area is computed by calculating the area of the circle that best fits each clus-

ter. Accordingly, we started our analysis by calculating the centroid for each cluster, which we

defined by the average x and y coordinates of all the cells that formed the cluster. Subsequently,

we computed the distance of each cell to that point, which we used to estimate the radius of

the cluster by calculating their average value. Using the estimated cluster radius, we computed

the area for a circular geometry.

Last, after seven simulated days, we also computed cluster eccentricity by identifying an

equivalent ellipse with the same second-moments as the region defined by the cell centres of

each cluster. We calculated ellipse eccentricity as the ratio of the distance between the foci of

the ellipse and its major axis length, which we assumed to be representative of the cluster

eccentricity. In contrast to our previous strategy, we analysed the entire height of the domain,

as we observed that at this point of development, the geometry of the clusters did not signifi-

cantly change based on the selected subsection. Since the experimental eccentricity values con-

sidered only spheroids with an area larger than 1000 m2 and were obtained through a semi-

automatic classification algorithm, the computational results were also manually evaluated to

disregard clusters with small area values or that were misclassified by the automatic algorithm.

We remark that, in order to extend the model and replicate both setups, we have relied on

PhysiCell’s ability to scale and efficiently compute the dynamics of multiple substances and

cells. Likewise, although we built the additional functions to be in line with the standard

Table 2. Parameter values for the post-processing of results.

Parameter Values Unit References

z-Height of Interest [-48—48] μm Estimated

DBSCAN Radius 18 μm Estimated

DBSCAN Minimum Number of Cells 3 (2 at day one) - Estimated

https://doi.org/10.1371/journal.pcbi.1008764.t002
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PhysiCell features, we did not focus on reducing computational times and costs. However, it

must be stated that we have not experienced a substantial increase in computational times as a

result of our numerical implementations.

Results

Increasing values of ECM density hinder individual cell migration

As previously stated, this set of simulations aimed to define cell-generated forces and to evaluate

the model’s ability to qualitatively describe the effect of matrix density on individual cell migra-

tion. Regarding the locomotive force distribution, our modelling choice was heavily based upon

how the experimental observations showed that velocity values exhibited a positively skewed

distribution, a trend that is in concordance with previous studies, [11, 60]. In a biological sense,

this result indicates that cells are more likely to migrate at lower speeds. However, in a few

instances, cells may migrate at much higher velocities than the general trend seen for that set of

conditions. This result could also be indicative of a low motile fraction, but this is currently not

implemented in the model; i.e., all cells are programmed to migrate with similar behaviour.

Fig 4 shows that the model generally captures this non-uniform distribution of cell veloci-

ties quite well. As expected, the distribution does not apply to each of the density values specifi-

cally, since we used a general approximation, rather than a specific distribution for each

matrix density value. However, we show that good results can be achieved without the need

for an increased level of complexity. In addition, Fig 4 and Table 3 show that our simulation

results replicate the effect of high ECM density values on individual cell migration.

It can be seen that the cell trajectories become more contained as the collagen concentration

increases. Furthermore, the results show that both mean and effective cell velocities adopt

smaller values as matrices present higher density values. It is important to state that regarding

individual cell trajectories, the experimental results show that cells appear to spread out in a

horizontal direction. We stipulate that this behaviour is promoted by the alignment of the

collagen fibres, which is a result of the procedures used to fill out the microfluidic chips and

collagen polymerization and has been shown to regulate cell migration by promoting more

directed migration patterns [61]. In contrast, simulated cells adopt more random motility pat-

terns. However, this outcome is expected since we did not define a preferential direction of

migration, as our focus was studying cell movement in general and not replicating individual

cell trajectories. Nonetheless, considering that it has been shown that fibre alignment can affect

cell motility [61, 62], the model could be easily extended to consider directionality through Eq

6 by defining a preferential direction, rather than a random vector. In terms of distance trav-

elled, the computational and simulated results are similar.

We note that although these results are presented through 2D plots, cells migrate in 3D

space in both the simulated and experimental conditions. However, experimental quantifica-

tion was previously conducted using 2D imaging techniques, through confocal microscopy,

and these results were presented in the form of 2D plots in [39]. Accordingly, we followed the

same data processing procedures to facilitate the comparison between the experimental and

computational results. Thus, to better showcase the model’s ability to model 3D cell behaviour,

we have included a 3D animation as supporting information (see S1 Video).

Matrices with a lower collagen concentration produce smaller structures

due to cells’ ability to migrate

Similar to the experimental conclusions, the results of our simulations describe how tumour

size is affected by matrix density, as seen in Fig 5, which presents the cell positions in the 2D
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Fig 4. Experimental and simulated results for the individual migration setup. (A) Representation of relative cell trajectories for the experimental (top)

and computational (bottom) results. As the density of the collagen matrix increases, cells become more confined, resulting in reduced cell movement. (B)

Mean and effective cell velocities for cells seeded in matrices of varying collagen density. Both the experimental (left) and computational (right) results

indicate that as the density increases, cells travel shorter distances due to the restrictions imposed by the matrix and both the mean and effective speeds

decrease.

https://doi.org/10.1371/journal.pcbi.1008764.g004
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plane at the end of the fifth simulated day for each matrix density value. Coloured cells repre-

sent cells that belong to a cluster, with each colour corresponding to a different cell group, and

black cells represent outliers. From the figure, it becomes apparent that cells seeded in matrices

with high collagen density tend to be more confined and form clusters with higher area values

than those grown at low densities, in which barely any spheroids are present.

Table 3. Statistical data of the mean and effective cell velocities for different collagen concentrations for both experimental settings and computational simulations.

Vmean [μm/min] N median mean se

Concentration [mg/mL] Exp Comp Exp Comp Exp Comp Exp Comp

2.5 5181 5840 0.0922 0.1281 0.1696 0.1702 0.0020 0.0019

4.0 3807 5840 0.0537 0.0553 0.1040 0.0746 0.0023 0.0009

6.0 3837 5840 0.0392 0.0266 0.0630 0.0355 0.0023 0.0004

Veff [μm/min] N median mean se

Concentration [mg/mL] Exp Comp Exp Comp Exp Comp Exp Comp

2.5 82 80 0.0285 0.0390 0.0365 0.0421 0.0020 0.0026

4.0 57 80 0.0105 0.0182 0.0136 0.0185 0.0024 0.0010

6.0 60 80 0.0079 0.0082 0.0086 0.0086 0.0024 0.0004

https://doi.org/10.1371/journal.pcbi.1008764.t003

Fig 5. Representation of cell positions after five simulated days of tumour growth. 2D (top) and 3D (bottom) representations of the coordinates of cells

grown in matrices of different collagen concentrations after five days. For the 2D scatter plots, we selected only cells present in a defined height of interest

to remove cells that would otherwise be out of focus in microscopy images. A single replicate was chosen for each condition to produce these plots.

Different colours represent different clusters, whereas black cells are those considered outliers (i.e., they do not belong to any of the cell groups). The cluster

area increases with density, as cells stay closer to their original position. On the other hand, in low collagen density matrices (left), in which individual cell

migration is not limited, individual cells are seen to stray away, resulting in a large number of outliers and smaller, sparser tumours.

https://doi.org/10.1371/journal.pcbi.1008764.g005
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Accordingly, an interesting dichotomy between migration and tumour size can be

observed: for conditions where cell migration is allowed, the multicellular clusters experience

less growth, and vice-versa. Previous studies have proposed a possible explanation for the

interplay between migration and tumour growth through the “Go-or-Grow” mechanism,

which may depend partially on the physical constraints of the ECM [63, 64]. According to this

mechanism, migration and proliferation are temporally exclusive: migrating cells are not able

to proliferate, resulting in clusters of a smaller size. Nonetheless, it is still unclear whether these

two phenomena are not coincident in time [65]. Interestingly, our results suggest that there is

no need for such a mechanism under the studied conditions. There is a preference for migra-

tion over tumour growth, in terms of tumour area, in matrices where the density allows for

individual cell migration. However, we do not implement cell proliferation suppression in

migrating cells. Henceforth, we highlight the difference between tumour growth and cell pro-

liferation and recognize the effect of individual cell migration on the former, but not necessar-

ily on the latter.

Fig 6 depicts the time evolution of cluster areas for matrices of medium and high density at

days one, three and five and indicates that our model not only captures cluster area size after

five days of growth but can also describe the evolution of tumour size through time. Only val-

ues for medium and high densities are shown since the number of clusters with a significant

area in matrices of low density is not significant.

Finally, Fig 7 presents the results obtained for cluster eccentricity at seven days of simula-

tion. As a general trend, the clusters adopt a relatively round morphology, which is further

promoted in high-density matrices. Nonetheless, as cells become more able to migrate, the

eccentricity values are seen to increase since cells start to stray from the original cluster but,

Fig 6. Evolution of cluster area growth over five simulated days. Distribution of cluster areas at the end of days one, three and five for clusters grown in

matrices of medium and high collagen density (4.0 and 6.0 mg/mL, respectively), for the experiment (left) and computational (right) settings. These

distributions take into account data from all five replicates. Cells seeded in collagen matrices of low density (2.5 mg/mL) did not show significant

multicellular cluster formation and growth and hence were not represented. An increase in tumour size through time can be seen for both the medium

and high collagen concentrations, but larger densities induce the formation of clusters of larger areas.

https://doi.org/10.1371/journal.pcbi.1008764.g006
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ultimately, due to a decrease in cell speed, reconnect to the original structure as cells prolifer-

ate. Likewise, more elongated clusters start to appear, which may also be promoted by the

alignment of collagen fibres. Nevertheless, the model does not capture this property of the col-

lagen matrices, and the simulated cells adopt a random walk, which does not favor cluster

elongation in a determined direction, but rather leads to tumour expansion in all directions.

This is further promoted by the effect of cell-cell interactions, that may counteract individual

cell movement as cells move in different directions. Consequently, the model is currently not

able to predict a direct correlation between increased migration and strand-like morphology,

which has been shown experimentally. A possible strategy to try to simulate the formation of

elongated clusters would be to force directional motility instead of a random walk. Neverthe-

less, we think that, by itself, this is likely not sufficient for producing strand-like clusters, as all

cells would migrate in this direction. Hence, the clusters would be expected to move collec-

tively, and not to deform, which, in relative terms, would produce comparable results to those

presented here. Consequently, we believe that a leader-follower mechanism [66, 67] has to be

implemented so that only some cells migrate in a determined direction, pulling on neighbour

cells to force the cluster to grow in that direction.

We note that the computational results for cluster eccentricity are, overall, relatively

larger than those seen experimentally. Yet, we attribute this outcome to the intrinsic differ-

ences between the two datasets and the used algorithms for cluster classification, as we

observe the same trends in each setup. It must be taken into account that the experimental

measurements relied on semi-automatic imaging methods, which are pixel-based and, con-

sequently, have lower sensitivity to perturbations in cell coordinates. These small differences

can greatly influence the eccentricity values of clusters, especially when considering rounder

structures, as we explain in more detail in S2 Appendix. Furthermore, the experimental

methods focused more on the contours of the multicellular cluster, whereas we based our

computational results on the coordinates of the cells’ centres, without taking into account

cell geometry. Nonetheless, we consider that the model captures the dynamics of the experi-

mental setup.

Fig 7. Cluster eccentricity after 7 days of growth. Representation of the xy cell coordinates for the cells present in the entire height of the domain,

overlapped by the clusters’ equivalent ellipses and eccentricity values (left). Individual cells and clusters of small areas or areas that were manually evaluated

as having been misclassified by the clusterization algorithm are not represented. Clusters of cells grown in collagen matrices of high density are shown to

present smaller values of eccentricity (indicating a rounder morphology), while clusters grown in matrices with a lower collagen concentration adopt

slightly larger values, as cells migrate away from the cluster, producing more elongated morphologies. The distribution of eccentricity values for both

densities (right) further confirms this idea.

https://doi.org/10.1371/journal.pcbi.1008764.g007
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Conclusion

In this study, we present a centre-based model extension to simulate individual and collective

cell behaviour in which the regulatory effect of matrix density on cell migration and tumour

formation is introduced, using previously published experimental data [39], to calibrate the

model. Furthermore, we are able to qualitatively describe how an increase in matrix density

leads to smaller cell velocity values and how this, in turn, suppresses the invasion of single cells

from their original multicellular cluster, thus producing cell clusters of larger areas. In contrast,

lower density values enable cell migration, resulting in sparser and smaller tumours.

We show that this relationship between cluster size and individual cell migration, often

attributed to suppression in cell proliferation of migrating cells, can be achieved without

changing the rates of cell proliferation [63, 64]. Accordingly, our results align with other stud-

ies that do not consider motility and proliferation to be mutually exclusive as well as with the

idea that proliferative tumours can also be highly invasive [65].

We also introduce a representation of the distribution of cell-generated locomotive forces,

which are fitted to resemble the experimental results in [39]. Using this model, we can capture

the heterogeneity seen in cell behaviour in our data and other previously published experi-

ments [11, 60], with cells generally tending to travel at low velocities, with a few also travelling

at relatively high speeds. Since this model is fitted specifically to a set of experimental data

related to a specific cell line and conditions, we consider that the model may not accurately

describe experimental settings with different cell lines or different matrix density values. None-

theless, we believe that the model could be easily updated by fitting parameters to other experi-

mental results, while the main mechanisms should not need significant changes.

Regarding the limitations of our model, one of the shortcomings that we identified was its

simplified depiction of collagen matrices. On the one hand, the model disregards the fibrous

nature of collagen matrices and the effects that it may have on motion directionality, which

was not studied here. On the other hand, we assume that the collagen matrices are homoge-

neous materials, which is not completely accurate for these experimental settings, in which

there are local regions with higher and lower numbers of fibres [43, 55]. As a first approach,

we are currently choosing to characterize drag forces through the value of the mean dynamic

viscosity of the matrix for each collagen concentration. Nonetheless, we do know that viscosity

values vary according to a normal distribution [55]. Accordingly, we could have defined the

ECM not by constant viscosity values, but through this spatial distribution, which would pro-

vide us with a better description of matrix heterogeneity. However, instead, we considered the

ECM as a substance (i.e., collagen density) with constant mechanical properties, and we indi-

rectly evaluated the heterogeneity through the velocities measured in the experiments. Hence,

the impact of this simplification in our results is quite low.

Nonetheless, in the future, we could achieve a better representation of the heterogeneity of

collagen matrices through a model that might relate to a local collagen concentration with

local viscosity values. For instance, further characterization experiments could be conducted

to obtain more data, with which it would be possible to understand a more accurate descrip-

tion of this relationship. Moreover, it would be very useful to include the effects of matrix

secretion and degradation by cells, which we have not considered in this first work. In fact, it is

currently possible to simulate the cells’ capacity to secrete or degrade the surrounding ECM

through some of PhysiCell’s built-in functions. Therefore, through this model, we could also

study how the mechanical properties of the material are modulated by cells, as well as how this

effect regulates cell migration and tumour formation.

Finally, due to the centre-based nature of the model, it was not possible to gain a realistic

approximation of how cells may deform. However, for this particular study, we consider the
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decreased computational cost and the ability to simulate a high number of cells to be preferable

to a detailed representation of cell geometry.

In conclusion, we have shown the model’s potential to simulate and describe the formation

of tumour spheroids, integrating the biomechanical role of the matrix, which is mediated

by its collagen concentration. As a consequence, our approach can qualitatively predict both

individual cell behaviour in regard to cell motility and migration velocity, as well as pattern

formation in spheroids, within different collagen densities. In the future, we will strive to char-

acterize the local structural properties of the collagen hydrogels to create a more sophisticated

model that can predict the trajectory of every single cell and, consequently, the formation of

each spheroid. We expect that considering the real architecture of the matrix will provide

more quantitative predictions, but it will require a high computational cost. Therefore, it is

necessary to balance the potential benefits that a more accurate model can provide with the

high experimental and computational cost that it requires.
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