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Abstract

The analysis of single-cell genomics data presents several statistical challenges, and exten-

sive efforts have been made to produce methods for the analysis of this data that impute

missing values, address sampling issues and quantify and correct for noise. In spite of such

efforts, no consensus on best practices has been established and all current approaches

vary substantially based on the available data and empirical tests. The k-Nearest Neighbor

Graph (kNN-G) is often used to infer the identities of, and relationships between, cells and is

the basis of many widely used dimensionality-reduction and projection methods. The kNN-

G has also been the basis for imputation methods using, e.g., neighbor averaging and graph

diffusion. However, due to the lack of an agreed-upon optimal objective function for choos-

ing hyperparameters, these methods tend to oversmooth data, thereby resulting in a loss of

information with regard to cell identity and the specific gene-to-gene patterns underlying reg-

ulatory mechanisms. In this paper, we investigate the tuning of kNN- and diffusion-based

denoising methods with a novel non-stochastic method for optimally preserving biologically

relevant informative variance in single-cell data. The framework, Denoising Expression data

with a Weighted Affinity Kernel and Self-Supervision (DEWÄKSS), uses a self-supervised

technique to tune its parameters. We demonstrate that denoising with optimal parameters

selected by our objective function (i) is robust to preprocessing methods using data from

established benchmarks, (ii) disentangles cellular identity and maintains robust clusters

over dimension-reduction methods, (iii) maintains variance along several expression dimen-

sions, unlike previous heuristic-based methods that tend to oversmooth data variance, and

(iv) rarely involves diffusion but rather uses a fixed weighted kNN graph for denoising.

Together, these findings provide a new understanding of kNN- and diffusion-based denois-

ing methods. Code and example data for DEWÄKSS is available at https://gitlab.com/

Xparx/dewakss/-/tree/Tjarnberg2020branch.
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Author Summary

Single cell sequencing produces gene expression data which has many individual observa-

tions, but each individual cell is noisy and sparsely sampled. Existing denoising and impu-

tation methods are of varying complexity, and it is difficult to determine if an output is

optimally denoised. There are often no general criteria by which to choose model hyper-

parameters and users may need to supply unknown parameters such as noise distribu-

tions. Neighbor graphs are common in single cell expression analysis pipelines and are

frequently used in denoising applications. Data is averaged within a connected neighbor-

hood of the k-nearest neighbors for each observation to reduce noise. Denoising without

a clear objective criteria can result in data with too much averaging and where biological

information is lost. Many existing methods lack such an objective criteria and tend to

overly smooth data. We have developed and evaluated an objective function that can be

reliably minimized for optimally denoising single cell data on a graph, DEWÄKSS. The

DEWÄKSS objective function is derived from self supervised learning principles and

requires optimization over only a few parameters. DEWÄKSS performs robustly com-

pared to more complex algorithms and state of the art graph denoising methods.

1 Introduction

Single-cell RNA-seq (scRNA-seq) experimental methods measure gene expression in individ-

ual cells from heterogeneous samples. This allows identification of different cell subpopula-

tions, and has been extensively used to map developmental trajectories. scRNA-seq

experiments yield data with hundreds to hundreds of thousands of individual cell observa-

tions; however, the measured gene expression in each cell is noisy, due to undersampling

caused by the extremely low quantities of RNA present in any individual cell [1]. Many

computational applications have been developed that leverage the advantages of scRNA-seq

experiments [2–5]. Analysis has primarily focused on the interpretation of the cellular land-

scape; software suites incorporating customizable workflows have been developed to enable

this analysis [3, 6, 7]. Denoising computational approaches to mitigating the sparsity of single-

cell data (having few counts per cell) have corrected structural and sampling zeros [8], imputed

missing values [9–11], or corrected measured expression values [12–14]. The modeling and

motivational assumptions of these approaches vary and include cell-cell similarity, gene

covariance, and temporal/trajectory stability.

In any individual cell, some genes will not be detected [15]; genes that have been biologi-

cally silenced or repressed and genes that have low stochastic expression may have zero

expressed transcripts. Other genes have expressed transcripts in the cell but are measured as

zero due to the sampling depth. For some scRNA-seq experimental techniques, there is evi-

dence of zero inflation in measured expression levels [15], but newer droplet-based scRNA-

seq methods do not appear to have more zero expression measurements than expected by

chance [16]. Single-cell gene expression measurements are a function of transcript sampling

depth, which varies widely from technique to technique, stochastic noise in transcript abun-

dance within individual cells, and technical noise which affects genes of all expression levels.

Some single-cell denoising methods consider measured zeros to be sampling ‘dropouts’, and

only function to impute non-zero values in place of zero values; these bias corrections to low-

expression genes, suppressing variance for these genes by over-correcting zeros and failing to

denoise the data in a biologically relevant manner. Other methods are holistic, using the
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overall expression profile of all genes to guide denoising, including those which are highly

expressed.

The results of these denoising methods for scRNA-seq data vary considerably based on the

choice of hyperparameter values, and some methods require selection of an appropriate noise

model. Empirical determination of hyperparameter values and noise models may not result in

the most optimally denoised results. However, if we define an objective function that measures

the performance of our algorithm, we can find an optimal model by choosing hyperparameters

that maximize this objective. Self-supervision allows autoencoders to select model parameters

to optimally denoise data by using an objective function based on the loss after reconstruction

from a lower-dimensional manifold, and these methods have been applied to both genomics

in general [12] and single-cell data specifically [9, 17]. However, the self-supervision of an

autoencoder does not optimise for the choice of model hyperparameters, such as the loss func-

tion or the numbers of units and layers, and there is no principled way to tune these hyper-

parameters for a given dataset.

One of the most fundamental components of the single cell analysis framework is the k-

Nearest Neighbor Graph (kNN-G), which connects each cell to the k cells near it based on

the distance between their gene expression profiles. It is used to drive neighbor embedding

methods that show the global structure of the data in a low-dimensionality projection [18],

to detect communities or clusters of related cells [19, 20], and to establish trajectories

through network connections that represent changes over time [21–23]. kNN algorithms are

an attractive choice for denoising due to their simplicity, in the simplest case only a single

parameter needs to be chosen, but it is still difficult to select optimal model hyperpara-

meters, especially with regard to the use of prior knowledge to tune these algorithms [24].

Diffusion using a kNN-G is the process of averaging over an incrementally larger and larger

number of neighbors derived through shared neighbor connections. Looking at a single cell,

diffusing using one step means averaging over its neighbors, while a two-step diffusion

means averaging over the cells’ neighbors and their neighbors. One current method for

denoising based on kNN-G is MAGIC [14], which diffuses on the kNN-G and maps back to

gene expression of single genes. Another denoising approach smooths expression profiles by

combining gene expression of kNN-G connected cells [13, 25]. These methods heuristically

determine the number of neighbors used, which corresponds to the amount of smoothing

applied; this is a drawback when compared to methods that use an objective function that

minimizes a desired global objective function.

In this paper we propose using the noise2self self-supervision principle [26]. A method that

can be used to constructing an objective function which can be minimized and is self-super-

vised. With this principle in mind, we constructed an objective function to select kNN-G

denoising hyperparameters. This does not depend on an explicit noise model but on an invari-

ant and independent function of the features of the data. We apply this underlying principle to

optimally set parameters for denoising single-cell data in a framework called Denoising Expres-
sion data with a Weighted Affinity Kernel and Self-Supervision (DEWÄKSS), which incorpo-

rates a principled self-supervised objective function with weighted kNN-G averaging (Fig 1).

We evaluate DEWÄKSS using previously established data and benchmark tests, and compare

our self-supervised hyperparameter selection method to the state-of-the-art imputation meth-

ods MAGIC [5], DeepImpute [27], DrImpute [11] and SAVER [28]. We find that DEWÄKSS

performs at par with or better than other state-of-the-art methods, while providing a self-

supervised and hence easily searchable hyper-parameter space, greatly simplifying the applica-

tion of optimal denoising. We also find that diffusion, although conceptually attractive and

previously described as beneficial, is, in fact, not optimal for any method in any setting on any

dataset.
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2 Results

2.1 Benchmarking the DEWÄKSS algorithm

DEWÄKSS takes a normalized expression matrix and calculates a smoothed output expres-

sion matrix which has denoised gene expression for each cell. The DEWÄKSS expression

matrix will have decreased stochastic sampling noise; expression values, including zeros that

are likely the result of undersampling, will be weighted according to their sample-to-sample

context. We will test the effectiveness of diffusion and kNN-based (diffusion with step

size = 1) denoising methods that are tuned with DEWÄKSS objective function using four

separate cases.

Fig 1. The denoising process using DEWÄKSS. The procedure is as follows: (i) The PCA of the expression matrix X is computed. (ii) A cell-to-cell

similarity structure is inferred from a k-Nearest Neighbor Graph (kNN-G). (iii) An invariant and independent mapping function is constructed. (iv) The

objective function, with a defined optimum for denoising, minimizes the mean squared error (MSE) between the predicted weighted average of the

neighbor cells’ state and the observed cell state. DEWÄKSS tunes its objective function with two main input parameters, the number of PCs and the

number k of neighbors.

https://doi.org/10.1371/journal.pcbi.1008569.g001
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2.2 DEWÄKSS optimally groups cells and performs robustly, independent

of data normalization method

Before any denoising can occur, single-cell data generally must be normalized. Recent work

has established a benchmark for single-cell analysis methods which is broadly applicable to

normalization and denoising techniques [29]. We have therefore compared the performance

of DEWÄKSS to several previously-described denoising methods using two benchmark data-

sets that are generated with different methods. These artificially constructed RNA mixture

datasets have a known ground truth; RNAmix_CEL-seq2 is derived from the CEL-Seq2

method [30] and RNAmix_Sort-seq is derived from the SORT-seq method [31]. Within each

dataset, ‘cells’ that belong to the same group are samples that have the same proportions of

mRNA from three different cell lines. Any differences between ‘cells’ in the same group can

hence be attributed to technical noise.

Using a computational pipeline [32], we test the effect of normalization methods on denois-

ing techniques, with output scoring defined by a known ground truth (Fig 2). Normalization

methods are generally the same as previously tested [29], and include several bulk-RNA nor-

malization methods (TMM, logCPM, DESeq2), several single-cell-specific methods (scone,

Linnorm, scran), and a simple Freeman-Tukey transform (FTT). Overall, we find that

DEWÄKSS yields expression profiles with high within-group correlation (averaged over all

cells in the dataset) independent of the normalization method used, outperforming other

denoising methods in the majority of cases (Fig 2A). This is not due to high correlation

between cells in different groups (which could indicate oversmoothing), as cells of the same

type are strongly correlated and cells of different types are weakly correlated when plotted as a

heatmap (S1 Fig).

DEWÄKSS has three essential input hyperparameters: the number of principal compo-

nents (PCs) for initial data compression, the number of nearest neighbors to build the graph

embedding with (k), and the connection mode for edge weights (either normalized distances

or network density weighted connectivities). For this benchmark, the DEWÄKSS algorithm

has grid searched through a model hyperparameter space, testing connection mode {dis-

tances, connectivities}, number of neighbors {1, 2, . . ., 20, 30, 40, . . ., 150, 200}, and PCs {1,

2, . . ., 20, 30, 40, . . ., 150, 200}. Self-supervision selects optimal model hyperparameters by

minimization of mean squared error (MSE); for the RNAmix_Sort-seq dataset that has been

normalized by FTT, this is the normalized distance mode with 4 PCs and 80 neighbors (Fig

2B). The optimal selection of hyperparameters varies from dataset to dataset and by normali-

zation method (Table 1). In most cases, the optimal MSE is found for the parameters given

by normalized distances with between 50-130 neighbors and 3-13 PCs, but data which has

not been normalized has very different optimal model hyperparameters. In general, using

normalized distances as edge weights between neighbors outperforms using connectivities.

In all cases, the optimal number of diffusion iterations is 1 (no diffusion) given a specific set

of PCs and k, indicating that diffusion is not optimal on this data. The small number of PCs

and large value for optimal neighbors suggests that this dataset is simplistic with weak local

structure, which is a reasonable expectation given the artificial construction of the RNAmix

datasets. The MSE is scaled differently depending on the data normalization and should not

be compared between methods.

2.3 DEWÄKSS maintains cluster homogeneity and deconvolves cluster

structure comparably to state-of-the-art methods

To evaluate DEWÄKSS on higher-complexity data, we adapt the benchmark used by DeepIm-

pute [27], using a dataset which contains 33 annotated cell types in primary visual cortex cells
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from mice (GSE102827) [33]. We evaluate performance after preprocessing and denoising the

count data by defining experimental clusters using the Leiden algorithm [19], which tunes the

number of clusters based on merging and partitioning the kNN-G to find an optimal partition-

ing given the resolution parameter r. Differences between annotated cell types and experimen-

tal clusters are quantified by the Fowlkes-Mallows score. The silhouette score estimates the

relative within-cluster density of the annotated cell-type clusters compared to the closest anno-

tated neighbor-cluster distances—and is, therefore, independent of the cluster algorithm

choice—and evaluates the closeness of known cell identities through different data transforma-

tions. The silhouette score is separately calculated on two dimension-reduction projections, (i)

using 2 UMAP [18] components, and (ii) using PCA with the number of components used to

compute the kNN-G used in the Leiden and UMAP algorithms.

Fig 2. Benchmarking DEWÄKSS on a predefined benchmark test [29]. A) The average Pearson correlation coefficients between cells that are known to

be in the same group, calculated as in Tian et al. [29] for the RNAmix_CEL-seq2 and RNAmix_Sort-seq benchmark datasets. DEWÄKSS yields highly

correlated expression profiles for “cells” in the same group, robustly across different normalization methods. B) Self-supervised hyperparameter grid search

results (RNAmix_Sort-seq normalized by FTT). Neighbors are on the x-axis and PCs are colored. The optimal configuration neighbors are shown by the

dotted black line and PCs are shown by the solid black line. C) Optimization behavior using optimal PCs = 4 found in (B) for 5-200 neighbors. The lowest

prediction error for each diffusion trajectory (line) is marked by a circle with a green outline if it corresponds to the number of iterations in the optimal

configuration i = 1 or in black when the optimal number of iterations> 1. The optimal value is marked by a diamond. The number of diffusion steps

decreases as the number of neighbors increases. The number of diffusion steps is truncated to 9 steps. The prediction error decreases as the number of

neighbours increases from 5-80, and then increases.

https://doi.org/10.1371/journal.pcbi.1008569.g002
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We compare the results of DeepImpute, DEWÄKSS, MAGIC, DrImpute and SAVER to

count data that has been preprocessed but has otherwise not been denoised (pp). The prepro-

cessing is detailed in section 4.4, and, in short, consists of filtering and median normalizing the

data followed by a Freeman-Tukey transformation. DeepImpute [27] takes as input the raw

count data and needs to be preprocessed after, as above. MAGIC is run using the Seurat pipe-

line [3]. For this dataset, DEWÄKSS selects 100 PCs and 150 neighbors as optimal hyperpara-

meters (Fig 3A)). After denoising we evaluate the performance metrics with a range of

Table 1. Optimal hyperparameters selected by DEWÄKSS self-supervised objective function.

Normalization Dataset iteration mode neighbors pcs MSE

DESeq2 celseq2 1 distances 120 3 0.466

FTT celseq2 1 distances 90 5 0.878

Linnorm celseq2 1 distances 110 4 0.066

logCPM celseq2 1 distances 100 6 4.567

none celseq2 1 connectivities 14 120 4.428

scone celseq2 1 distances 120 4 0.445

scran celseq2 1 distances 130 3 0.484

TMM celseq2 1 distances 50 6 0.378

DESeq2 sortseq 1 distances 100 3 0.513

FTT sortseq 1 distances 80 4 1.127

Linnorm sortseq 1 distances 100 4 0.083

logCPM sortseq 1 distances 80 13 4.684

none sortseq 1 distances 10 17 5.321

scone sortseq 1 distances 100 4 0.484

scran sortseq 1 distances 120 3 0.536

TMM sortseq 1 distances 50 6 0.412

https://doi.org/10.1371/journal.pcbi.1008569.t001

Fig 3. Denoising celltype-annotated data from Hrvatin et al. [33] using metrics from Arisdakessian et al. [27]. The dataset contains 33 annotated

celltypes in 48267 cells. A) Optimal denoising of the expression data with DEWÄKSS requires 100 PCs and k = 150 neighbors. B) We benchmark six

different denoising pipelines: (i) in-house preprocessed (section 4.4), (pp), (ii) DeepImpute, (iii) DEWÄKSS, (iv) MAGIC, (v) DrImpute and (vi) SAVER.

To be able to run (v) and (vi) we down-sample the data to 10% of the annotated cells. After preprocessing & denoising, data is clustered with the Leiden

algorithm [19] using 300 PCs and 150 neighbors (resolution is set to r = 1 for DEWÄKSS, r = 2 for preprocessed (pp) and DeepImpute, r = 4 for DrImpute

and SAVER, and r = 0.5 for MAGIC). Algorithm performance is measured with the Fowlkes-Mallows metric and silhouette score on two representations of

the data, PCA and UMAP.

https://doi.org/10.1371/journal.pcbi.1008569.g003
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clustering and dimensionality reduction parameters to estimate the sensitivity of the perfor-

mance metrics (clustering and cell dispersion during projection) to the choices of these param-

eters (S2 Fig). Overall performance (as determined by MSE) is poor when using few

components (PCs) and a small number k of neighbors, which is similar to the default parame-

ters in many processing pipelines (S2(A) Fig). This underlines the importance of carefully con-

sidering the amount of variance to be used in the initial kNN-G construction.

Because the number of inferred clusters influences the Fowlkes-Mallows score, we also

adjust, by applying a factor, doubling, quadrupling or halving, the resolution parameter r of

the Leiden clustering algorithm to increase or decrease the number of clusters to be closer to

the number of annotated clusters (33). To be able to run DrImpute and SAVER we down-sam-

ple the dataset to 10% of the annotated cells including all 33 clusters before denoising using

4800 cells. r is increased from 1 to 2 for DeepImpute and pp, increased from 1 to 4 for DrIm-

pute and SAVER, and decreased from 1 to 0.5 for MAGIC. DEWÄKSS is not adjusted as the

number of clusters falls close to the number of annotated clusters by default.

2.4 Optimal kNN denoising does not involve diffusion

On all test datasets, we observed that the optimal configuration was found to have a single iter-

ation (no diffusion) but variable (dataset specific) optimal number of PCs and neighbors (Fig

2C). This observation extended to all normalization methods if parameter spaces with suffi-

cient numbers of neighbors were explored (Table 1). To determine if diffusion is improving

denoising for real-world data, we applied DEWÄKSS to seven published single-cell datasets.

We tested on mouse bone marrow (BM) data [34], on human cell line epithelial-to-mesenchy-

mal transition (EMT) data [5], on Saccharomyces cerevisiae data from rich media (YPD) and

on Saccharomyces cerevisiae data after treatment with rapamycin (RAPA) [35], on mouse

visual cortex tissue (VisualCortex) data [33], on human embryonic forebrain tissue (hgForeb-

rainGlut) data and on mouse dentate gyrus granule neuron (DentateGyrus) data [36]. The BM

and EMT datasets are preprocessed following the vignette provided by the MAGIC package

[5] (section 4.5). The YPD, RAPA and VisualCortex datasets are preprocessed using the proce-

dure in section 4.4. The hgForebrainGlut and DentateGyrus datasets are preprocessed with the

velocyto [36] and SCANPY [4] python packages using the provided vignettes (section 4.6).

We run DEWÄKSS on these datasets (searching for hyperparameters using�equidistant

values in log space) to find the optimal configuration (S5 Fig). For the BM dataset we let the

algorithm run 20 diffusion steps to map out the objective function. For all other datasets we

use run2best, which finds the first minimum MSE during diffusion and then stops the search

(S6 Fig). All six real-world datasets result in optimal MSE when there is no diffusion (number

of iterations i = 1) (Table 2).

Table 2. Optimal configurations found by hyperparameter search on DEWÄKSS on seven real-world single-cell datasets.

Dataset iteration MSE mode neighbors PCs

BM [34] 1 0.311 distances 100 50

EMT [5] 1 0.222 distances 100 100

VisualCortex [33] 1 0.132 distances 150 100

YPD [35] 1 0.217 distances 150 50

RAPA [35] 1 0.261 distances 175 20

hgForebrainGlut [36] 1 0.106 distances 100 20

DentateGyrus [36] 1 0.055 distances 100 100

https://doi.org/10.1371/journal.pcbi.1008569.t002
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2.5 DEWÄKSS preserves data variance for downstream analysis

The main goal of denoising scRNA-seq data is to reduce the influence of noise and to reveal

biological variance. High dimensional biological data contains some variance which is due to

random noise and should be removed, and some variance that is due to biological differences

and should be retained. Removing noise is important for correct interpretation of patterns in

the data, but attenuating biological variation eliminates biological signal and can result in

biased analyses. Biological variance is not easily separable from technical noise, and denoising

methods risk oversmoothing, retaining only the strongest patterns (e.g. the first few principal

components of the data) while discarding informative minor variation. It is therefore critical

when tuning model parameters to have an objective function that takes into account the total

variance of the data structure.

We evaluate the effect that denoising has on data variance by comparing the singular value

structure of the denoised data for different methods, which represents the relative variance of

all dimensions. Although the optimal amount of variance and the number of components that

capture that variance is not known, we reason that comparing the relative variance in all

dimensions allow us to determine the extent to which a denoising method is smoothing the

data. Denoised data that requires fewer components to capture most (>90%) variance is more

smoothed. When most variance is compressed into a handful of principal components, fea-

tures within the data become collinear, more complex interactions between features disappear,

and only the strongest sources of variance are preserved. Some downstream analyses are likely

to be more sensitive to this oversmoothing than other analyses. For example, a clustering

approach may still effectively separate groups based on variance in only a few dimensions, but

regulatory inference may be substantially confounded or uninterpretable.

MAGIC [5] is currently among the most popular algorithms for denoising single-cell RNA-

seq data. It uses a heuristic for determining optimal smoothing; as published, it used ΔR2

between diffusion steps, but the most recent implementation has switched to Procrustes analy-

sis of the differences between diffusion steps. Neither approach has an objective way to deter-

mine optimal smoothing. In the absence of crossvalidation or some other external method that

prevents overfitting, we expect R2 to decrease until all data is averaged, i.e., to saturation, and a

Procrustes analysis should behave similarly. MAGIC addresses this by hard-coding a stopping

threshold which determines when the data is smoothed “enough”; because this threshold is

not data-dependent, it can result in highly distorted outputs [27, 35, 37].

If this threshold is converted to a model hyperparameter, it is still necessary to tune with

some external method as it has no lower bound for arbitrarily poor estimates.

We compare the effects of denoising using a heuristic as implemented in MAGIC [5], using

DEWÄKSS in its optimal configuration and using DEWÄKSS in an oversmoothing (non-opti-

mal) configuration for comparison. We also run this comparison for DeepImpute [27], DrIm-

pute [11] and SAVER [28] with default configurations. This comparison is performed on the

previously-described mouse BM, preprocessed using the approach described in [5]. We run

MAGIC with three sets of model parameters; the default parameters, default with early stop-

ping (the diffusion parameter t = 1), and with the decay parameter d = 30. For DEWÄKSS, we

scan a log-equidistant parameter range for the optimal configuration (S5(A) and S6(A) Figs)

and find that the optimal configuration uses normalized distances with number of neighbors

k = 100 and with number of principal components PCs = 50 for i = 1, giving MSE = 0.3107.

Diffusion iterations i increment until a minimum MSE is found. For the BM data, the MSE

generally decreases as the number of PCs increases. Beyond a certain point, however, continu-

ing to increase the number of PCs (to 500) increases the MSE. The optimal number of PCs, 50,

is small compared to the size of the data and suggests that some compression of the data is
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optimal before running the kNN algorithm. To oversmooth the data we extended the number

of iterations to run DEWÄKSS to i = 4, beyond the optimal number of iterations (Fig 4B). We

also used the molecular cross-validation (MCV) application of noise2self [38], implemented as

in S1 Section, to select the optimal number of PCs for denoising by DEWÄKSS. We found that

MCV selected fewer PCs for denoising compared to the DEWÄKSS objective function (S8 Fig;

13 PCs compared to 50 PCs).

To investigate how the variance structure of the data changes based on denoising we com-

pute the singular values (section 4.7) and determine the number of components needed to

explain 90% and 99% of the variance for each dataset after denoising (Fig 4A and S3 Fig). We

observe a striking difference between the oversmoothed data and the optimally denoised data.

With optimal denoising, 90% of the variance is captured by 259 components. Utilizing the

MCV method to select hyperparameters resulted in an intermediate amount of variance

retained after denoising when compared to the DEWÄKSS optimal and the DEWÄKSS over-

smoothed denoised data. Only 2 components are needed to capture 90% of the post-processing

variance when oversmoothing the data, showing that a substantial portion of the original

information content of the data is lost in this regime. DEWÄKSS oversmoothing is compara-

ble to the results of using MAGIC with default parameters, where 90% of the variance in the

post processed data can be captured with only 3 components. When using only one iterative

step and default parameters, MAGIC captures this amount of variance using 25 components.

In most cases the MAGIC algorithm generates shallow variance structures with a few compo-

nents needed to express nearly all of the variance. The variance structure can differ greatly

Fig 4. Mouse bone marrow (BM) data denoising. A) The numbers of principal components needed to explain 99% and 90% of the variance in the data for

different hyperparameter values for DEWÄKSS and MAGIC. DEWÄKSS is run with optimal parameters (k = 100, PCs = 50, i = iminMSE), with

oversmoothed parameters (k = 100, PCs = 50, i = iminMSE), with robust parameters (k = 10, PCs = 13 selected using MCV as in S1 Section, i = iminMSE), and

as X base, where normalized expression values are used instead of PCs with (k = 100, i = iminMSE). MAGIC is run with defaults (d = 15, PCs = 100, k = 15),

with early stopping t1 (t = 1), and with d30 (d = 30). B) Expression of erythroid marker gene Klf1, myeloid marker Mpo, and stem cell marker Ifitm1 in

DEWÄKSS optimal and DEWÄKSS oversmoothed data. The MSE increases in each iteration. C) The objective function output as a function of diffusion

steps for the optimal number of PCs = 50. The minimum MSE is found for 100 neighbors and 1 diffusion step, i.e., using only the selected 100 neighbors.

https://doi.org/10.1371/journal.pcbi.1008569.g004
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depending on the hyperparameters chosen for DEWÄKSS, and poor parameter selection

results in shallow variance structures. However, the objective function automatically identifies

an optimal configuration such that we expect to keep the relevant variance. For SAVER the

first component capture almost all the variance while the 21 subsequent components capture

the remaining variance implying that SAVER compress the data significantly. For DeepImpute

and DrImpute the opposite is the case that the 99% of the variance are captured by over 80% of

the components implying that these methods maintains a more flat distribution of the data

over the components.

We can see the consequence of oversmoothing when plotting the expression of the ery-

throid marker Klf1, the myeloid marker Mpo, and the stem cell marker Ifitm1 (Fig 4C). Very

few individual cells express both Klf1 and Mpo in the optimally-denoised data, but the over-

smoothed data implies that there is a smooth continuous transition from high Klf1 expression,

through co-expression of Klf1, Mpo, and Ifitm1 markers, to high Mpo expression. Although

the difference in MSE is not large (Δ MSE< 0.0175) between these two denoised datasets, the

resulting biological interpretation differs a great deal, and likely highlights a spurious relation-

ship in the oversmoothed case.

We run a similar analysis on the EMT data comparing DEWÄKSS and MAGIC (S4 Fig)

and find identical effects.

2.6 DEWÄKSS improves recovery of differentially expressed genes

Biological analysis of gene expression data often requires determining differentially expressed

genes (DEGs) between groups of cells. We evaluate the effect of denoising on discovery of

DEGs by comparing DEGs from a subset of cells with genetic perturbations [35] to the equiva-

lent bulk microarray data [39]. Eleven different gene deletion strains are compared to a wild-

type control. Five of these gene deletion strains have few DEGs versus six strains with lots of

DEGs; gene deletion strains with more than 63 DEGs (1% of genes in the yeast genome) in the

bulk data are considered to have lots of DEGs. DEGs from the single-cell data are determined

by wilcoxon rank sum test with Benjamini/Hochberg correction α = 0.01.

Most methods increase DEG recovery from single-cell data compared to preprocessing

alone (Fig 5), with SAVER performing the best and DEWÄKSS in second. However, perfor-

mance on test subsets with few DEGs is generally low for all methods (S9 Fig), although these

results may be less reliable due to the large effect of single DEGs on performance metrics.

2.7 DEWÄKSS scales to large single-cell data sets

Single-cell data sets are continuing to grow in scale, and therefore denoising algorithm perfor-

mance is an important consideration. We have benchmarked several denoising methods on a

standard laptop (details in 4.9) in order to evaluate speed and scalability. The size of the data-

sets measured are detailed in S1 Table. We find that in our desktop-scale test, DEWÄKSS is

able to analyze the largest data set (64.8k cells x 18.1k genes) in a reasonable time (Fig 6),

although DeepImpute and MAGIC are faster. Other methods are not able to run to completion

in the larger data sets with the computational resources provided for this test.

3 Discussion

In this paper we have introduced a novel objective function, based on noise2self [26], and

applied it to self-supervised parameter tuning of weighted k-nearest neighbors (kNN) and dif-

fusion-based denoising. The resulting algorithm, DEWÄKSS, is specifically designed to

denoise single-cell expression data. The objective function has a global objective that can be

minimized, removing the need to use often unreliable heuristics to select model parameters,
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which is a drawback to many current single-cell denoising methods. We demonstrate that this

framework accurately denoises data by benchmarking against previously established methods,

and find that it is robust to choice of normalisation method (Section 2.2).

Due to the difficulty in establishing a ground truth for most real-world single-cell data,

denoising algorithms are frequently tested on synthetic or artificial data. Maintaining biologi-

cal variance is a crucial aspect of denoising; common downstream applications such as cell

type identification, differential gene expression, marker identification, and regulatory network

inference rely on biological variance to function. We therefore believe that it is necessary to

extensively test on experimental data (a notable strength of Dijk et al. [5] is testing on real-

world data). On larger datasets with higher complexity, DEWÄKSS performs well in terms of

deconvolving cell types. We find that in general, the amount of variance included when clus-

tering the data has a large impact on the performance of all methods tested, and that

DEWÄKSS outperforms other denoising algorithms in this area. While it is still an open ques-

tion how much variance should be used to project and cluster single-cell data, it is clear that it

is an essential component of accurate interpretation.

To investigate the properties of our method we run the algorithm on seven different pub-

lished single-cell gene expression datasets. In all cases, the optimal denoising configuration (as

determined by the objective function) uses the closest neighborhood, and is not improved by

diffusion on the kNN graph. Diffusion causes a decrease in denoising performance, compressing

almost all of the variance into a handful of dimensions. This may have some advantages for visu-

alizing high-dimensional gene expression data, but most non-visualization analyses are impaired

by the loss of variance. We also find that the number of neighbors k and the number of principal

components to use tend to be large compared to the default parameters of other methods and

conventions used in computational pipelines. In general, there is an advantage to the inclusion

Fig 5. Differentially expressed genes (DEGs) between bulk and single cell data. Top panel is the delta AUROC for

single-cell DEGs ordered by adjusted p-value for each separate deletion strain. Bottom panel is the delta Jaccard index

between bulk DEGs and single cell DEGs at FDR = 0.01. Preprocessed is count normalized and log-transformed with

no denoising method. Delta is taken between denoised and preprocessed. All computed metrics can be found in S2

Table.

https://doi.org/10.1371/journal.pcbi.1008569.g005
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of more principal components than called for by common rules of thumb, like using the knee in

an explained variance vs number of components plot. However, including an arbitrary number

of principal components is not ideal, as excess principal components do decrease performance.

Comparing the use of a distance matrix versus the use of a connectivity matrix as a representa-

tion of the kNN-G shows that a distance matrix yields better results. The degree of similarity

between the expression profile of one cell to that of another cell is relevant for denoising, not

just whether cells are more or less similar than other cells’ expression profiles in the experiment.

Overall, the DEWÄKSS framework presented here has substantial advantages over heuristic

parameter selection. Heuristic-based denoising methods set hyperparameters without a clear

basis for effectiveness, often with opaque reasoning for choices. At best, this is likely to result

in sub-optimal denoising performance; at worst, it may result in data that is dominated by

oversmoothing effects, and which yields incorrect biological interpretations. Our objective

function-based method provides a rigorous way of choosing an effective configuration. The

difficulties of evaluating how to denoise single-cell data should not be underestimated. It is

vital that the effectiveness of single-cell processing methods be quantifiable, so that the

Fig 6. Computational performance of all tested method on selected datasets. Runtime (minutes) is plotted against the total number of values (cells �

genes) in the dataset, to account for differing numbers of genes in each data set. Complete results table is available in S1 Table.

https://doi.org/10.1371/journal.pcbi.1008569.g006

PLOS COMPUTATIONAL BIOLOGY Optimal tuning for denoising single cell genomics data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008569 January 7, 2021 13 / 22

https://doi.org/10.1371/journal.pcbi.1008569.g006
https://doi.org/10.1371/journal.pcbi.1008569


methods can be tuned for performance. We have chosen to use Euclidean distances for all

analysis, but DEWÄKSS can accept any graph derived with any distance metric to create the

kNN matrix. By constructing a denoising function that uses a k-nearest neighbors graph and is

consistent with the conditions laid out in noise2self, we have derived an easily-evaluated

method that can denoise single-cell data in a self-supervised manner. The DEWÄKSS objective

may also have applications to other graph-based algorithms.

4 Methods

We begin by presenting a review of the mathematical constraints on our denoising function.

We then present the core DEWÄKSS method and objective function. We end with descrip-

tions of our preparatory and preprocessing methods.

4.1 Fundamental principle of noise2self

Batson and Royer [26] present the approach noise2self and applied it for UMI counts as the

method Molecular Cross Validation (MCV) [38], in which they partition observed features

(in this case raw transcript counts) xi2J, J ¼ f1; . . . ; 2mg, into two groups {XJ, XJc} = {{x1,

. . ., xm}, {xm+1, . . ., x2m}} where the superscript c represents the complement set. The task is

then to find an invariant function gðxÞJ : R2m ! R2m that operates only on XJc and yields an

output x̂ whose entries at indices J are predictors of xJ. This function is independent of xJ;

some of the features of each datapoint are predicted using another independent set of fea-

tures of the same datapoint. MCV was implemented for reference (S1 Section) and for select-

ing a ‘robust’ set of PCs in section 2.5. MCV applied for PCA component selection optimally

selects linearly separable components that are informative and the data is constrained to that

sub-selection. S8 Fig. shows the recreated analysis done by Batson and Royer [26]. This prac-

tical implementation of the original noise2self principle does not employ a kNN graph and

is linear as oppose to the non-linearity of the graph appraoch.

4.2 Denoising expression data with a weighted affinity kernel and self-

supervision

In DEWÄKSS, as in other state-of-the-art methods, we start by computing a lower, d-dimen-

sional representation of the data using PCA. We then compute a connectivity or distance-

weighted kNN-G with u neighbors. Our approach is similar to that of MAGIC [5] but differs

in two key ways: (i) we use a self-supervised objective function for hyperparameter selection,

and (ii) we denoise on the expression values directly to avoid a loss of information/variance

that results from overreduction of dimensionality (reducing the data to a latent representation

with low rank or low dimensionality such that key biological variation is lost). To calculate the

kNN-G, we use the algorithm UMAP [18] and its implementation [40] and create a right-sto-

chastic matrix Md,u from the connectivity/distance matrix. In practice, any graph can be pro-

vided as input to DEWÄKSS for denoising. We use the UMAP neighbor algorithm due to its

versatility and speed, but alternative methods could be used here. The UMAP implementation

only uses the neighbour search algorithm if the number of cells is above 4096 by default and

otherwise computes all distances and picks the k closest ones.

Denoising using a normalized kNN-G M can be carried out through simple matrix multi-

plication

�X ¼ MX

�X2 ¼ M�X
ð1Þ
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and so on, where X is the expression matrix for z cells, with each column x�j containing the

expression values of a single gene j for each cell k 2 K = {1, . . ., z}, �X is X after one step of

denoising and �X2 is X after two diffusion steps of denoising. For a given gene j in a single

cell k, this equation calculates the weighted average influence of the expression value of the

same gene in each neighboring cell. The expression value �xkj is hence set to this weighted

sum:

�xkj ¼
Xz

k̂¼1

mkk̂ xk̂j ð2Þ

where mkk̂ is the kk̂-th element of M and
Pz

k̂¼1
mkk̂ ¼ 1.

In general, a Markov process can be forward-iterated as

M2 ¼ MM ð3Þ

for a two-step iteration, generalized to Mn for an n-step forward process. Denoising is then car-

ried out as follows:

�Xn ¼ MnX ð4Þ

In DEWÄKSS we implement a self-supervised procedure by noting that the operation in

Eq 4 is the application of an invariant function g(x)J on each entry of X if the diagonal ele-

ments of M at each step n are set to 0 (to enforce the independence noted in section 4.1). If

diagonal elements are not forced to zero the second step of the diffusion becomes self refer-

ential and enforces overfitting of the objective function (S7 Fig). Here J = {j}, so the expres-

sion value of a gene j in cell k is calculated using the expression values of j in all cells except

cell k. Eq 2 reduces to:

�xkj ¼
Xz

k̂ 6¼k

mkk̂ xk̂j: ð5Þ

That is, for each gene there is an invariant function over the expression values of the gene

across all cells.

The Markov property guarantees the independence of the neighborhood graph from past

steps. At each step, we set diag M = 0 and renormalize to a right stochastic matrix. Let s be a

function that removes the diagonal elements of a matrix and then normalizes the resulting

matrix to a right stochastic matrix. Let m
ðd;u;nÞ
kk̂

be the kk̂-th element of M�n
d;u. Then

sðM�n
d;uÞ ¼ L� 1

d;u;nðM
�n
d;u � Vd;u;nÞ ð6Þ

for each n with

Vd;u;n ¼

m
ðd;u;nÞ
1;1

. .
.

mðd;u;nÞz;z

2

6
6
4

3

7
7
5 ð7Þ
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and

Ld;u;n ¼

P
k̂ 6¼1
m
ðd;u;nÞ
1;k̂

. .
.

P
k̂ 6¼z m

ðd;u;nÞ
z;k̂

2

6
6
6
4

3

7
7
7
5

ð8Þ

with the following notation:

M�2

d;u ¼ sðMd;uÞsðMd;uÞ

M�3

d;u ¼ sðM�2

d;uÞsðMd;uÞ:

ð9Þ

Eq 4 can be rewritten and incorporated into the mean square error minimization objective as

follows:

d�; u�; n� ¼ arg min
d;u;n

ksðM�n
d;uÞX � Xk ð10Þ

X� ¼ sðM �n�
d� ;u� ÞX ð11Þ

We use this equation to find n that denoises X� enough to best capture its underlying structure

while attenuating variation due to noise. To make sure we keep the invariant sets independent

we consider each step an independent Markov process and apply the function s(.) at each step.

4.3 Converting kNN to a right stochastic transition matrix

To allow for the use of UMAP distance metrics, DEWÄKSS uses the transformation on dis-

tances used in [5],

M ¼ e� ðD=�dÞ:a ð12Þ

where D is the matrix of distances between the gene expression profiles of different cells and �d
is the mean of the nonzero elements of D. A decay rate α is also used, and the . in the equation

indicates element-wise operation. This decay rate is applied on a connectivity matrix as C.α,

where C has elements c 2 [0, 1]. It should be noted that in [5], the decay rate is also applied

during the construction of the kNN-G to estimate distance thresholds and there may not be a

1-to-1 correspondence in the algorithms. To stabilize the denoising procedure, the final step

before normalizing to a right stochastic transition matrix is to symmetrize M so that

M ¼
M þM0

2

4.4 Preprocessing of scRNA-Seq expression data

We preprocess single cell RNA-seq datasets before applying denoising. Unless otherwise

stated, all datasets are preprocessed using the same steps if no guidelines were provided from

the dataset or publication source documents.

Preprocessing is carried out using the following steps: (i) Filtering cells by using only those

that have greater than a certain number of expressed genes and greater than a certain total cell

UMI count. This is done mainly by visual inspection, clipping 1 − 2% of the data—in practice,

removing the top and bottom 0.5 percentile of data points; (ii) Removing genes not expressed
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in more than n cells, with n� 10; (iii) Normalizing the counts of each cell so that each cell has

the same count value as the median cell count over the cell population; and (iv) applying the

Freeman-Tukey transform (FTT) [41] with an adjustment term −1 to preserve sparsity,

F~TTðxÞ ¼
ffiffiffi
x
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1
p

� 1 ð13Þ

The FTT stabilizes the variance of Poisson distributed data. Wagner et al. [13] showed that the

FTT is a good choice for single-cell data compared to the log-TPM and log-FPKM transforms

as it does not underestimate the relative variance of highly expressed genes and thus balances

the influence of lowly expressed gene variation. In other words, the relative variance of highly

expressed genes versus more lowly expressed genes should be preserved after transformation.

This is an essential property for inferring a relevant kNN-G.

We process all data with the help of the SCANPY framework [4]. DEWÄKSS can accept the

SCANPY AnnData object, a regular numpy array or a scipy sparse array as input.

4.5 Preprocessing for comparison with MAGIC

The BM dataset is preprocessed using the same approach as used by [5], as detailed here:

https://nbviewer.jupyter.org/github/KrishnaswamyLab/MAGIC/blob/master/python/

tutorial_notebooks/bonemarrow_tutorial.ipynb) The EMT dataset is preprocessed as detailed

here: https://nbviewer.jupyter.org/github/KrishnaswamyLab/magic/blob/master/python/

tutorial_notebooks/emt_tutorial.ipynb).

4.6 Preprocessing hgForebrainGlut and DentateGyrus data

The hgForebrainGlut and DentateGyrus datasets are preprocessed by replicating the process

provided by velocyto [36] here https://github.com/velocyto-team/velocyto-notebooks/blob/

master/python/hgForebrainGlutamatergic.ipynb and here https://github.com/velocyto-team/

velocyto-notebooks/blob/master/python/DentateGyrus.ipynb. The package SCANPY is used

to carry out the computations [4].

4.7 Preservation of variance and PCA computation

To estimate the variance structure of our expression matrix before and after denoising, we take

the standard normalization of each variable j in the data so that each observation k in column j
is

�xk;j ¼
xk;j � Ek xk;j

sðx;jÞ
ð14Þ

with Ek denoting expected value with respect to k and σ indicating standard deviation.

Computing the singular value decomposition, we get

�X ¼ USVT ð15Þ

The singular values are invariant to the transpose, meaning that they explain the variance in

the data independent of whether the data is projected onto cells or genes, and nonzero singular

values are bounded by min {m, n}. To estimate the rank of �X and the nonzero singular values

we use the cutoff from numpy [42]:

S � maxðSÞ �maxfm; ng � � ð16Þ

with � being the machine precision of a numpy float 32 type.
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The relative variance is then calculated as

Z2
i ¼

s2
iP
i s2

i
ð17Þ

The relative condition number of each singular value can be calculated as

jkij ¼
si

s ð18Þ

with s representing the minimum nonzero singular value defined by Eq 16.

4.8 Processing Tian et al. [29] benchmark data

In order to evaluate DEWÄKSS and existing methods in accordance with the benchmark anal-

ysis of Tian et al. [29], we use the R code provided in Tian et al. [43] to apply all normalization

methods that we can successfully run on the RNAmix_CEL-seq2 and RNAmix_Sort-seq data-

sets. We also apply our FTT-based preprocessing method on the data in Python and combine

the result with the other normalization results into a single data structure.

We then use the same codebase to run the denoising (imputation) methods in [29] on the

output of each of the normalization methods on each dataset. We transfer each of these out-

puts to Python, perform a hyperparameter search using DEWÄKSS on it and record the best

parameter configurations along with the corresponding mean squared error (MSE) in

Table 1. We apply DEWÄKSS on each normalized input using the optimal configuration for

that input and transfer the results back to R, combining them with the other denoising

results into a single data structure. Note that some normalization-imputation method com-

binations are not represented in our figures as we could not successfully run these using the

provided pipeline. We use the postprocessing and plotting scripts in [43] to generate plots

for our analysis.

4.9 Benchmarking computational performance

To benchmark the computational cost of DEWÄKSS we select data sets with varying number

of genes and cells from the previously used datasets adding [44] using DEWÄKSS default con-

figurations and similar preprocessing for all datasets. Data sets are filtered for expressed genes;

genes which are expressed in fewer than 30 cells are removed from the data set. Any gene

which does not have a minimum of 30 counts in at least one cell is also removed. For SAVER

and DeepImpute, data is provided directly as integer counts; for all other methods, the expres-

sion data is log(x+1) transformed. All methods are used with default configurations. The hard-

ware used is Memory: 31.1GiB, Processor: Intel Core i9-8950HK CPU @ 2.90GHz × 12,

Graphics: GeForce GTX 1050 Ti with Max-Q Design/PCIe/SSE2, OS type: Ubuntu 18.04

64-bit, Swap disk: 64GB. If the method requires a parameter for the number of processors to

use, it is set to 12, the maximum number of available cores.

Supporting information

S1 Section. Implementation of Molecular cross-validation [38].

(PDF)

S1 Table. Computational performance results for the tested methods.

(PDF)
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S2 Table. All metrics computed for benchmarking deferentially expressed genes (DEGs),

section 2.6. The Gold Standard (GS) is knockout strains collected from the bulk deleteome

data [39].

(PDF)

S1 Fig. Heatmaps of normalized and denoised data on the RNAmix_CEL-seq2 dataset

[29]. We use the R code provided in Tian et al. [43] to apply all normalization methods that we

can successfully run on the RNAmix_CEL-seq2 dataset. We also apply our FTT-based prepro-

cessing method on the data. We use the postprocessing and plotting scripts in [43] to generate

plots for our analysis.

(PDF)

S2 Fig. Denoising celltype annotated data from Hrvatin et al. [33]. The dataset contains 33

annotated celltypes in 48267 cells. a) Clustering performance metric computed against cell

type clusters. Clusters were inferred with the Leiden algorithm [19]. The number at the bottom

of each bar represents the inferred number of clusters. The Leiden algorithm’s resolution

parameter r was set to 0.5 for MAGIC, 2 for pp and DeepImpute and 4 for DrImpute and

SAVER to reduce or increase number of clusters, respectively, to comparative numbers given

the previously annotated clusters. b) Silhouette score computed on 2 UMAP components

using the 33 predefined cell type clusters. The input parameters to the umap algorithm is anno-

tated with x and y labels of each panels row and column. c) Silhouette score computed on a

varying numbers of PC components using the 33 predefined cell clusters. The number of PCs

used corresponds to the number on the upper edge of the graph.

(PDF)

S3 Fig. BM data [34]. Explained variance η2 for each component S (top row) and cumulative

sum of η2 for each component S (bottom row). Each colored line indicates the data denoised

with a specific set of parameters for the algorithms DEWÄKSS and MAGIC. X indicates the data

without denoising. MAGIC truncates the number of possible components to the number of PCs

used in the algorithm, which here equals 100. The right column only shows the first 100 compo-

nents for the respective η2 and cumsum(η2). MAGICd1 is removed from the top right-hand figure

because it compresses the other lines. The explained variance is computed through the singular

value decomposition and singular values lower than the numerical precision threshold are con-

sidered equal to 0 and removed. This threshold is determined by the criterion σi� σ1 × max(i, j)
× �, where i, j are the data dimensions and � is the machine precision (numpy matrix_rank).

(PDF)

S4 Fig. Epithelial-to-mesenchymal transition (EMT) data denoising. A) The numbers of

components needed to explain 99% and 90% of the variance in the data for different methods

and hyperparameter values. MAGIC is run with 3 settings: default, t1 = one iteration, and

“dewakss”, using the optimal configuration found by DEWÄKSS. DEWÄKSS is run with 4 dif-

ferent settings: (i) optimal, as found by iterating over a range of hyperparameters (panel B and

S6(B) Fig), (ii) oversmoothed, by running to i = 4 iterations, (iii) robust, i.e., using a different

set of hyperparameters (k = 100, PCs = 23 selected as in S1 Section, i = iminMSE) and (iv) X base

(k = 100, i = iminMSE), using normalized expression values instead of principal components as

input to the kNN-G algorithm. B) The lowest MSE over all iteration values as a function of

each DEWÄKSS parameter configuration, using connectivity graphs in the left plot and dis-

tances in the right plot. The lowest MSE configuration is found using distances with 100 PCs

and k = 100 neighbors.

(PDF)
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S5 Fig. Optimal hyperparameter search for single-cell datasets. The optimal number of PCs

and neighbors is independent of the number of diffusion steps.

(PDF)

S6 Fig. Optimal hyperparameter search for single-cell datasets. Each figure shows the algo-

rithm, using distances (top row) and connectivities (bottom row). Each panel is scaled to the

maximum number of observed iterations (x-axis) for any configuration run, with the objective

function value MSE on the y-axis. The colored lines indicate the number of PCs used as input

in the kNN-G distance computation. Each column corresponds to the initial number of neigh-

bors k used for constructing the kNN-G.

(PDF)

S7 Fig. Modified DEWÄKSS algorithm to not reset diagonal elements to 0 after each diffu-

sion run. This makes the objective function self referential and breaks the requirement setup

by the noise2self principle. At the second diffusion step it becomes possible for cells to start

influencing their own objective and therefore minimizes the objective function. This is akin to

overfitting where each datapoint is best predicted by itself. This would encourage fewer neigh-

bours as it will mirror the datapoint itself better. Note that diffusion turns out to be not needed

and the methods converge for large enough k of initial neighbours.

(PDF)

S8 Fig. Molecular cross validation (MCV) on Paul et al. [34]. MCV is here used to find opti-

mal number of PCs to linearly project the data into. MCV with PCA shows that a linear projec-

tion on the data is best described by 13 components.

(PDF)

S9 Fig. Differentially expressed genes (DEGs) between bulk and single cell data for deletion

strains with few DEGs (< 63, 1% of yeast genome). Top panel is delta AUROC between bulk

DEGs and single cell DEGs ordered by adjusted p-value. Bottom panel is delta Jaccard index

for single-cell DEGs at FDR = 0.01 for each separate deletion strain. preprocessed is count nor-

malized and log-transformed with no denoising method. Delta is taken between denoised and

preprocessed.

(PDF)
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