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Abstract

Deep neural networks (DNNs) have achieved state-of-the-art performance in identifying

gene regulatory sequences, but they have provided limited insight into the biology of regula-

tory elements due to the difficulty of interpreting the complex features they learn. Several

models of how combinatorial binding of transcription factors, i.e. the regulatory grammar,

drives enhancer activity have been proposed, ranging from the flexible TF billboard model to

the stringent enhanceosome model. However, there is limited knowledge of the prevalence

of these (or other) sequence architectures across enhancers. Here we perform several

hypothesis-driven analyses to explore the ability of DNNs to learn the regulatory grammar of

enhancers. We created synthetic datasets based on existing hypotheses about combinato-

rial transcription factor binding site (TFBS) patterns, including homotypic clusters, hetero-

typic clusters, and enhanceosomes, from real TF binding motifs from diverse TF families.

We then trained deep residual neural networks (ResNets) to model the sequences under a

range of scenarios that reflect real-world multi-label regulatory sequence prediction tasks.

We developed a gradient-based unsupervised clustering method to extract the patterns

learned by the ResNet models. We demonstrated that simulated regulatory grammars are

best learned in the penultimate layer of the ResNets, and the proposed method can accu-

rately retrieve the regulatory grammar even when there is heterogeneity in the enhancer cat-

egories and a large fraction of TFBS outside of the regulatory grammar. However, we also

identify common scenarios where ResNets fail to learn simulated regulatory grammars.

Finally, we applied the proposed method to mouse developmental enhancers and were able

to identify the components of a known heterotypic TF cluster. Our results provide a frame-

work for interpreting the regulatory rules learned by ResNets, and they demonstrate that the

ability and efficiency of ResNets in learning the regulatory grammar depends on the nature

of the prediction task.

Author summary

Gene regulatory sequences function through the combinatorial binding of transcription

factors (TFs). However, the specific binding combinations and patterns that specify
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regulatory activity in different cellular contexts (“regulatory grammars”) are poorly

understood. Deep neural networks (DNNs) have achieved state-of-the-art performance in

identifying regulatory DNA sequences active in different contexts, but they have provided

only limited biological insight due to the complexity of the statistical patterns they learn.

In this study, we explore the power and limitations of DNNs in learning regulatory gram-

mars through biologically motivated simulations. We simulated regulatory sequences

based on existing hypotheses about the structure of possible regulatory grammars and

trained DNNs to model these sequences under a range of scenarios that reflect real-world

regulatory sequence prediction tasks. We developed an unsupervised clustering method

to extract learned patterns from the trained DNNs and compare them to the simulated

grammars. We found that our method can successfully extract regulatory grammars when

they are learned by the DNN, but the ability of DNNs to learn regulatory grammars highly

depends on the nature of the prediction task. Finally, we show that our DNN approach

highlights a known heart regulatory grammar when applied to real mouse enhancer

sequences.

Introduction

Enhancers are genomic regions distal to promoters that regulate the dynamic spatiotemporal

patterns of gene expression required for the proper differentiation and development of multi-

cellular organisms [1–3]. As a result of their essential role, mutations that disrupt proper

enhancer activity can lead to diseases. Indeed, the majority of genetic variants associated with

complex disease in genome-wide association studies (GWAS) are non-protein coding, and

thought to influence disease by disrupting proper gene expression levels [4–6].

Enhancers function through the coordinated binding of transcription factors (TFs). Recent

advances in high-throughput sequencing techniques have greatly deepened our knowledge of

TF binding specifies [7–9]. However, identifying consensus TF binding motifs is not sufficient

for inferring TF binding. As shown in many ChIP-seq studies, TFs only bind to a small frac-

tion of all motif occurrences in the genome, and some binding sites do not contain the consen-

sus TF binding motif, indicating a necessity for additional features [10]. Indeed, many

additional features have been suggested to play a role in determining in vivo TF binding, such

as heterogeneity of a TF’s binding motif [11], local DNA properties [12], broader sequence

context and interposition dependence [13], cooperative binding of the TF with its partners

[14–17], and condition-specific chromatin context [15, 18, 19]. While both genomic and epi-

genomic features are important in determining the in vivo occupancy of a TF, recent studies

have suggested that the epigenome can be accurately predicted from genomic context [12, 20–

22], supporting the fundamental role of sequence in dictating the binding of TFs [23–27].

Therefore, it is critical to understand the sequence patterns underlying enhancer regulatory

functions and build sufficiently sophisticated models of enhancer sequence architecture.

Combinatorial binding of TFs, i.e., the regulatory “grammar” that combines TF “words”, is

thought to be essential in determining in vivo condition-specific binding [11, 13, 20, 28]. How-

ever, how enhancers integrate multiple TF inputs to direct precise patterns of gene expression

is not well understood. Most enhancers likely fall on a spectrum represented by two extreme

models of enhancer architecture: the enhanceosome model and the billboard model [29, 30].

The enhanceosome model proposes that enhancer activity is dependent on the cooperative

assembly of a set of TFs at enhancers. The cooperative assembly of an enhanceosome is based

on physical protein-protein interactions and highly constrained patterns of TF-DNA binding
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sites. The enhanceosome model does not tolerate shifts in the spacing, orientation, or ordering

of the binding sites, which can disrupt protein-protein interactions and cooperativity. This

model likely presents an extreme example because only very few enhancers are found under

such stringent constraints [31–35]. However, many examples of less extreme spatial con-

straints on paired TF-TF co-association and binding-site combinations are found in genome-

wide ChIP sequencing studies [36–38] and in vitro consecutive affinity-purification systematic

evolution of ligands by exponential enrichment (CAP-SELEX) studies. On the other end of the

spectrum is the billboard model, also known as the information display model [39, 40], which

hypothesizes that instead of functioning as a cooperative unit, enhancers work as an ensemble

of separate elements that independently affect gene expression. That is, the positioning of

binding sites within an enhancer is not subject to strict spacing, orientation, or ordering rules.

The TFs at billboard enhancers work together to direct precise patterns of gene expression, but

their function does not strongly depend on each other. For instance, the loss of a TF binding

may lead to change in the target gene expression, but will not cause the complete collapse of

enhancer function. The actual mechanisms by which multiple TFs assemble on enhancers are

likely a mixture of the two models. Indeed, a massively parallel reporter assay (MPRA) of syn-

thetic regulatory sequences suggested that while certain transcription factors act as direct driv-

ers of gene expression in homotypic clusters of binding sites, independent of spacing between

sites, others function only synergistically [41].

In recent years, deep neural networks (DNNs) have achieved state-of-art prediction accura-

cies for many tasks in regulatory genomics, such as predicting splicing activity [42, 43], speci-

ficities of DNA- and RNA-binding proteins [44], transcription factor binding sites (TFBS)

[45–47], epigenetic marks [45, 46, 48, 49], enhancer activity [50, 51] and enhancer-promoter

interactions [52]. However, in spite of their superior performance, little biological knowledge

or mechanistic understanding has been gained from DNN models. In computer vision, the

interpretation of DNNs trained on image classification tasks demonstrate that high-level neu-

rons often learn increasingly complex patterns building on those learned by lower level neu-

rons [53–59]. DNNs trained on DNA sequences might behave similarly, with neurons in low

levels learning building blocks of the regulatory grammar, short TF motifs, and those in higher

levels learning the regulatory grammar itself, the combinatorial binding rules of TFs [46, 48,

60].

The majority of DNNs trained with genomic sequences use a convolution layer as a first

layer and then stack convolution or recurrent layers on top. A common approach to interpret

the features learned by such DNNs is to convert the first convolution layer neurons to position

weight matrices by counting nucleotide occurrences in the set of input sequences that activate

the neurons [44, 48, 60]. With the development of more advanced DNN visualization and

interpretation techniques in computer vision, many other DNN interpretation methods

emerged, such as occlusion [55], saliency maps [61], guided propagation [55], gradient ascent

[57]. Some of these techniques have been applied to visualize features learned by DNNs trained

with genomic sequences. For instance, a gradient-based approach, DeepLIFT, identified rele-

vant transcription factor motifs in the input sequences learned by a convolutional neural net-

work [56]. Saliency maps, gradient ascent and temporal output scores have been used to

visualize the sequence features learned by a DNN model for TFBS classification and found

informative TF motifs [62]. These studies demonstrate the power of DNNs in recognizing the

TF motifs in the input sequences. However, these studies focused only on the interpretation of

the output layer in models for predicting TFBS. Enhancers can be much more complex than

individual TFBS; they contain multiple binding sites in range of combinations and organiza-

tions. It is also unclear whether the intermediate layers of DNNs have the capability of learning
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increasingly complex rules of combinatorial TF binding from regulatory regions with many

TFs, such as enhancers.

Another substantial challenge in the development of methods to interpret DNNs applied to

regulatory sequences is our lack of knowledge of the combinatorial rules governing enhancer

function in different cell types. Beyond a few foundational examples used to propose possible

enhancer architectures, the constraints and interactions that drive enhancer function are

largely unknown. Thus, it is difficult to determine if a pattern learned by a neuron is “correct”

or biologically relevant. The generation of synthetic DNA sequences that reflect different con-

straints on regulatory element function has promise to help address these challenges and

enable evaluation of the ability of DNNs to learn different regulatory architectures and of algo-

rithms for reconstructing these patterns from the trained networks. Indeed, DeepResolve was

recently proposed to interpret the combinatorial logic from intermediate layers of DNNs, and

the ability of the neural network to learn the AND, OR, NOT and XOR of two short sequence

patterns was demonstrated in a synthetic dataset [63]. However, these simulated combinatorial

logics and sequence patterns were not biologically motivated and were simpler than most pro-

posed enhancer architectures.

Here, we develop a biologically motivated framework for simulating enhancer sequences

with different regulatory architectures, including homotypic clusters, heterotypic clusters,

and enhanceosomes, based on real TF motifs from diverse TF families. We then apply a

state-of-the-art variant of deep neural networks, residual neural network (ResNet) algo-

rithms, to classify these sequences. Compared to previous DNNs, ResNets have “skip” con-

nections between layers that enable the training of deeper network architectures We chose

ResNets over other DNNs, because of their deeper structures and state-of-the-art perfor-

mance in computer vision. We use this framework to investigate whether the intermediate

layers the networks learn the complex combinatorial TF architectures present in the simu-

lated regulatory grammars. In particular, we developed an unsupervised method for assign-

ing transcription factor binding sites to grammars based on the gradients assigned to their

nucleotides by intermediate layers of the neural network. We evaluate the efficiency in

extracting simulated regulatory grammars under a range of scenarios that mimic real-world

multi-label regulatory sequence prediction tasks, considering possible heterogeneity in the

output enhancer categories and fraction of TFBS not in the regulatory grammar. We dem-

onstrate that ResNets can accurately model simulated regulatory grammars in many multi-

label enhancer prediction tasks, even when there is heterogeneity in the output categories or

a large fraction of TFBS outside of regulatory grammar. We also identified scenarios where

the ResNet fails to learn an accurate representation of the regulatory grammar, including

using inappropriate sequences as negative training examples, considering output categories

differing in multiple sequence features, and having an overwhelming amount of TFBS out-

side of the regulatory grammar. Finally, we trained a ResNet on mouse developmental

enhancer sequences from 12 tissues and demonstrated that it identifies and clusters the

binding sites of the known heart heterotypic cluster consisting of TBX5, NKX2-5, and

GATA4 [64].

In summary, our work makes three main contributions: i) We provide a flexible tool for

simulating regulatory sequences based on biologically driven hypotheses about regulatory

grammars. ii) We develop and evaluate an algorithm for interpreting the regulatory grammar

from the intermediate layers of DNNs trained on enhancer DNA sequences. iii) We demon-

strate that the ability of DNNs to learn interpretable regulatory grammars is highly dependent

on the design of the prediction task.
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Results

A common task in regulatory sequence analysis is to predict enhancers’ activity in different

cellular contexts. Enhancers active in different cellular contexts may harbor unique sets of con-

text-specific TFBSs as well as similar sets of binding sites for broadly active transcription fac-

tors. To evaluate the performance of ResNets on modeling the regulatory grammar, we

performed a series of simulation analyses (Fig 1), which we designed with increasing complex-

ity that mimics challenges faced in analysis of real enhancers.

We first designed a set of 12 biologically motivated regulatory grammars consisting of

TFs from diverse families (Fig 1A). These include five homotypic clusters of the same TF,

five heterotypic clusters of different TFs, and two enhanceosomes of different TFs with

requirements on the spacing and orientation of their binding sites. Motivated by the fact

Fig 1. Pipeline for analyzing regulatory grammar learned by ResNet models trained on simulated regulatory sequences. (a) Regulatory sequence and negative

sequence simulation. We designed twelve regulatory grammars, including five homotypic clusters, five heterotypic clusters, and two enhanceosomes as prototypes

for simulated regulatory sequences. Then, to reflect that regulatory regions active in a cellular context may have multiple grammars, we defined twelve regulatory

sequence classes, each with two different grammars. Finally, we generated two sets of negative sequences: k-mer shuffled and TF shuffled versions of the simulated

positive sequences. (b) Classification tasks. ResNets are trained on simulated regulatory sequences and the negative sets in three increasingly realistic scenarios. (c)

Regulatory grammar reconstruction framework.

https://doi.org/10.1371/journal.pcbi.1008334.g001
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that enhancers active in a given cellular context likely consist of multiple types with differ-

ent grammars, we designed twelve “classes” of regulatory sequences. Each class contains a

different set of regulatory grammars, but the grammars can occur within multiple classes,

and TFs can occur within multiple grammars. The classes can be thought of as representing

the different enhancers active in a specific cellular context. Then, using these classes, we

simulated 30,000 enhancer sequences, which each contain a sequence that matches the pat-

tern defined by one of the classes (Methods). We also simulated three sets of non-enhancer

sequences to evaluate how the choice of negatives has an impact on what the model can

learn from the data. The three negative sets are: 1) no negatives, 2) k-mer matched nega-

tives, and 3) TF-shuffled negatives. We generated k-mer matched negatives with k = 1, 2, 4,

8, 12. We generated TF-shuffled negatives by randomly switching the positions of TFBSs in

the simulated enhancers to break the link between a TFBS and its associated regulatory

grammar.

Next, we designed three increasingly complex scenarios for modeling enhancers based on

real-world regulatory sequence prediction tasks using the sequences generated from the simu-

lated regulatory grammars (Fig 1B). The first scenario is multi-class classification where each

output neuron corresponds to one regulatory class. The second scenario is heterogenous mul-

tilabel classification where each output neuron corresponds to a mix of sequences from differ-

ent regulatory classes. We designed this scenario because it is likely in real enhancer analysis.

Enhancers active in one tissue may represent different cell types or cell states present in the

sample, and thus belong to different regulatory classes. The third scenario is noisy heteroge-

nous multilabel classification where we added TF binding sites that are not in any grammar

into the simulation. This reflects that it is likely that the majority of TF binding sites in an

enhancer are not in any regulatory grammar.

We then trained ResNet models for each of these scenarios against three choices of nega-

tives. Finally, we interpreted the grammar learned by the model using a saliency-map-based

method for TF binding site clustering and compared the ability of the ResNet to learn simu-

lated regulatory grammars under each scenario.

ResNet trained on simulated regulatory sequences and TF-shuffled

negatives accurately captures simulated regulatory grammars

To explore whether the ResNet model can learn the regulatory grammar, we started with a

multi-class classification task based on simulated regulatory sequences from 12 classes and TF-

shuffled negative sequences (Methods; S1 Table and S2 Tables). We trained a classifier to pre-

dict the class of the sequence, either not a regulatory sequence or member of one of the regula-

tory sequence classes. By constructing the prediction task with TF matched negative

sequences, the neural network is forced not only to learn the individual TF motifs, but also

learn the combinatorial patterns between the TFs.

The ResNet model accurately predicts the class label of input DNA sequences with near per-

fect performance: average area under the ROC curve (auROC) of 0.999 and average area under

the precision-recall curve (auPR) of 0.982. We then analyzed what features were learned by cal-

culating saliency maps (Methods) of input sequences with respect to each neuron in the penul-

timate layer (the dense layer immediately before the output layer). We found that neurons in

the penultimate layer detect the location of the simulated TFBS. For instance, when we com-

pute the saliency map of a class 6 simulated regulatory sequence with respect to neuron 1 in

the penultimate layer, the TFBSs have higher absolute saliency value compared to other loca-

tions in the sequence, indicating the higher importance of those nucleotides to the activation

of neuron 1 (Fig 2A and 2B).
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Fig 2. ResNet trained on simulated regulatory sequences and TF-shuffled negatives accurately models the regulatory grammar. (a) Example saliency

map for a simulated regulatory sequence from class 6. Class 6 sequences harbor instances of homotypic cluster 3 and heterotypic cluster 3. The saliency map

shown is computed with respect to neuron 1 in the penultimate layer. The red dashed lines show simulated TFBSs in their respective regulatory grammars.

(b) The saliency values of the binding sites of each TF in a specific regulatory grammar with respect to neuron 1 in the penultimate layer. (c) Heatmap of the

median saliency value of the binding sites of each TF in a specific regulatory grammar (x axis) across neurons of the penultimate layer (y axis). The order of

x and y axis labels are determined by hierarchical clustering. The color bars on the side indicate the group label assigned by hierarchical clustering. (d)

Actual labels of simulated regulatory grammar of the TFBS overlaid on t-SNE visualization of TFBS saliency values across neurons. Correct prediction of the

regulatory grammar for a TF (the predicted label agrees with the actual label) is represented by a dot. Incorrect prediction of the regulatory grammar of a TF

is indicated by an “x”. (e) The sensitivity (TP/(TP+FN)) of the regulatory grammar predictions.

https://doi.org/10.1371/journal.pcbi.1008334.g002
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Next, we visualized the features learned by neuron 1 of the penultimate layer by plotting the

mean saliency value of a 10 bp window from the start of each TF binding site using 240

sequences from all simulated regulatory sequence classes (Fig 2B). For example, the TFBSs

from heterotypic cluster 3 have elevated gradients compared to TFBSs from other simulated

regulatory grammars. This suggests that neuron 1 of the penultimate layer detects TFBSs from

heterotypic cluster 3. We then took the median saliency values of TFBSs in a specific regulatory

grammar and generated a matrix with rows of neurons and columns of each TF. As shown in

Fig 2B, although TFBSs from heterotypic cluster 3 have elevated saliency values, those values

are not always at the same level. For example, FOXA1 binding sites have lower median saliency

value than the other three TFs in the grammar. Therefore, we scaled the matrix column-wise

to identify which TF is most learned by which neuron. We plotted the scaled matrix as a heat-

map with hierarchical clustering (Method; Fig 2C). We found that: (i) TFBSs from the same

regulatory grammar have elevated gradients together and therefore are clustered; (ii) neurons

of the penultimate layer can “multi-task”, that is, one neuron can detect one or more regula-

tory grammars. For instance, neuron 25 in the penultimate layer learned both heterotypic clus-

ter 2 and 5. This suggests that the penultimate layer captured the simulated regulatory

grammars.

In the above analyses, we used the simulation information to group TFBSs by their TF

motifs and regulatory grammar and demonstrated that neuron activation patterns for each

regulatory grammar are different. However, in real enhancer analysis, we do not have access to

this information. Therefore, we need to evaluate whether we can reconstruct the regulatory

grammar solely based on the saliency values of TFBSs. To test this, we performed unsupervised

clustering of TFBSs based on their saliency values with respect to the neurons in the penulti-

mate layer. More specifically, we performed a k-means clustering (k = 12) of TFBSs from 240

sequences using their saliency values with respect to each neuron of the penultimate layer and

visualized it with t-SNE (Fig 2D). Each TFBS has a predicted clustering label that is assigned

by the k-means clustering algorithm and a true regulatory grammar. We used majority voting

to determine the predicted regulatory grammar for a cluster. For instance, the majority of clus-

ter 1 is from heterotypic cluster 1, so we assign heterotypic cluster 1 as the predicted regulatory

grammar for all TFBS in cluster 1. We then calculate the accuracy and sensitivity of the regula-

tory grammar reconstruction by comparing the predicted regulatory grammar and the true

regulatory grammar. On average, 85.1% of TFBS are correctly classified (Fig 2E), and homoty-

pic clusters are generally learned better (sensitivity > 0.97) than heterotypic clusters and

enhanceosomes.

The same analysis approach can be applied to any layer of the neural network. We found

that the neural network built up its representation of the regulatory grammar by first learning

the individual TF motifs in the lower level neurons and gradually grouping TF motifs in the

same regulatory grammar together (S3 Fig).

Taken together, these results demonstrate that ResNet models can largely capture simulated

regulatory grammars if trained to perform a multi-class prediction with TF-shuffled negatives,

and that our unsupervised clustering method based on saliency maps is able to reconstruct the

regulatory grammar.

Regulatory grammar can be learned by the ResNet model without TF-

shuffled negatives

Although the ResNet model demonstrated the ability to capture the simulated regulatory

grammars when trained against TF-shuffled negatives, we cannot construct perfect TF-shuf-

fled negatives in the real-world, because the true TFs are not known. Indeed, in many
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applications, only the positive regulatory sequences [45, 46, 65] or k-mer shuffled negatives are

used for training machine learning models. Therefore, we tested whether the ResNet model

can learn the simulated regulatory grammar if trained with no negatives or k-mer shuffled

negatives.

We trained five models for multi-class classification against: no negatives, 1-mer shuffled

negatives, 4-mer shuffled negatives, 8-mer shuffled negatives, and 12-mer shuffled negatives.

Then, we evaluate their performance at predicting simulated regulatory sequences. The model

trained with 8-mer shuffled negatives achieved the highest accuracy at distinguishing TF-shuf-

fled negatives from simulated regulatory sequences (average auROC 0.998, auPR 0.957, Fig 3A).

To further explore the regulatory grammar learned by the ResNet model trained against

8-mer shuffled negatives, we calculated saliency maps over a set of input sequences (n = 240)

from each class of simulated regulatory sequences with respect to neurons in the penultimate

layer. We performed hierarchical clustering on the median saliency values for the binding sites

for each TF in a specific regulatory grammar as we did in the previous results section (S4 Fig).

We found that TFBS from the same regulatory grammar were grouped together. Next, we per-

formed k-means clustering (k = 12) of the TFBS from the 240 sequences and overlaid the clus-

tering label on the tSNE visualization (Fig 3B). We calculated the accuracy of predicted

regulatory grammar for each TF. The average grammar reconstruction accuracy of this model

is on par with the model trained against TF-shuffled negatives (85.3% vs. 85.1%).

These results suggest that the model trained against 8-mer shuffled negatives can learn a

good representation of the regulatory grammar and therefore 8-mer shuffled negatives can be

used as a substitute for TF-shuffled negatives in practice.

Regulatory grammar can be learned by the ResNet model in the presence of

heterogeneity in the regulatory sequences

A common task in regulatory sequence prediction is to identify sequences with a certain set of

functions, e.g., activity in different cellular contexts. However, it is likely that sequences with a

heterogeneous set of many grammars are active in each cellular context.

To mimic this type of heterogeneity, we performed a heterogenous multi-label classification

by pooling a number of simulated regulatory classes together as one heterogeneous class to

generate five heterogeneous classes (Methods; Fig 1B, S4 Table). We also allowed one regula-

tory class to be used in several heterogeneous classes. For example, in our simulation, regula-

tory sequences in heterogenous class 1 consist of regulatory class 1, 3, and 5. Regulatory class 1

sequences also belong to heterogenous class 5, and regulatory class 5 sequences also belong to

heterogenous class 4. This multi-function of a regulatory sequence class is often observed in

real-word regulatory sequences as many enhancers are active in more than one cellular

context.

We trained the ResNet model against k-mer shuffled negatives (k = 1, 4, 8, 12). Again, the

model trained against 8-mer shuffled negatives performed the best when evaluated against the

TF-shuffled negatives (average auROC 0.99, auPR 0.93, S5A Fig). We performed hierarchical

clustering (S5B Fig) and unsupervised clustering (Fig 4A and 4B) as we did in the previous sec-

tions. The model trained to predict the heterogenous classes can still learn the majority of the

regulatory grammars. The average accuracy of reconstructing regulatory grammar in this set-

ting is 89.2%, which is similar to that of the multi-class classifications against TF-shuffled nega-

tives (85.1%) and against k-mer shuffled negatives (85.3%).

These results suggest that the model trained on regulatory sequences with heterogenous

output categories can still largely capture the regulatory grammars that are essential for the

heterogenous multi-label classification.
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Regulatory grammar can be learned by ResNet when a large fraction of TFBSs

are not in grammars and there is heterogeneity in the regulatory sequences

In all previous prediction tasks, the simulated TFBSs in the input sequences are always in a reg-

ulatory grammar. However, in real regulatory sequences, it is likely that only a fraction of

Fig 3. ResNet trained on simulated regulatory sequences against 8-mer shuffled negatives accurately models the

regulatory grammar. (a) The performance of five different ResNet models trained on simulated regulatory sequences

against different k-mer shuffled negatives at predicting the regulatory class of the simulated regulatory sequences vs.

TFs-shuffled negatives test dataset. (b) Actual labels of simulated regulatory grammar of the TFBS overlaid on t-SNE

visualization of TFBS saliency values across neurons. (c) The sensitivity of predicted labels in (b) of the ResNet model

trained on the simulated regulatory sequences against 8-mer shuffled negatives.

https://doi.org/10.1371/journal.pcbi.1008334.g003
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TFBS are in regulatory grammars, while others are individual motifs scattered along the

sequence. To mimic this scenario, we simulated a set of regulatory sequences with 80% of

TFBSs randomly scattered in the sequence outside of any regulatory grammar and 20% of

TFBSs in regulatory grammar.

We trained a ResNet model on this 80% non-grammar TFBSs dataset with the five heterog-

enous classes as output categories against 8-mer shuffled negatives. We found that the TFBSs

outside of the regulatory grammars (single TFBS) have lower saliency values compared to the

TFs in simulated regulatory grammars (Fig 5A) except for those in enhanceosome 2.

Next, we performed unsupervised clustering analysis as in the previous sections (Fig 5B).

Although the TFBSs in regulatory grammars still cluster, many of the TFBSs outside of regula-

tory grammar overlap the TFBSs in regulatory grammars in t-SNE space. This makes identify-

ing the regulatory grammars challenging. To better reconstruct the regulatory grammar from

the unsupervised clustering analysis, we took advantage of the fact that the non-grammar

TFBSs have lower saliency values and only kept the TFBSs with top 10% sum of saliency values

across neurons in the penultimate layer. Intuitively, this filtering helps improve the reconstruc-

tion of regulatory grammar by only focusing on TFBSs with high influence on the prediction.

We repeated the unsupervised clustering analysis on these filtered TFBSs (Fig 5C). We found

that nearly all TFBSs outside of regulatory grammars are filtered out (97.7%) and a smaller

Fig 4. Regulatory grammar can be learned by ResNet despite heterogeneity in the regulatory sequences. (a) Actual

labels of simulated regulatory grammar of the TFBS overlaid on t-SNE visualization of TFBS saliency values across

neurons. (b) The sensitivity of predicted labels in (a) across regulatory grammars.

https://doi.org/10.1371/journal.pcbi.1008334.g004
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fraction of TFBSs in regulatory grammars are filtered (59.3%). After filtering, the remaining

TFBSs are sufficient to reconstruct 11 of the 12 simulated regulatory grammars. The regulatory

grammar that we failed to reconstruct, enhanceosome 2, has the lowest sum of saliency values

across neurons in the penultimate layer (Fig 5A), suggesting that is was not important to learn

this grammar to obtain accurate predictions. The neural network may achieve accurate predic-

tions through elimination and therefore did not need to learn all 12 regulatory grammars.

These results suggest that even with only a small fraction of TFBSs in regulatory grammars

and heterogeneity in the output categories, we can still reconstruct most of the simulated regu-

latory grammars.

Regulatory grammar cannot be learned if multiple grammars are able to

distinguish one regulatory sequence class from another

As shown in Figs 4 and 5, some regulatory grammars, especially enhanceosome 2, are recon-

structed from ResNet model with limited accuracy. This suggests that the “essentiality” of a

regulatory grammar may influence the ability to reconstruct regulatory grammars from the

model. In other words, if a neural network can make accurate predictions without learning

certain regulatory grammars, then these non-essential regulatory grammars may not be

Fig 5. Regulatory grammar can be learned by ResNet when TFBSs are outside of regulatory grammars and there is heterogeneity in the regulatory

sequence categories. (a) Sum of saliency values for TFBSs in each regulatory grammar across neurons in penultimate layer. (b) Actual labels of simulated

regulatory grammar of the TFBS overlaid on t-SNE visualization of TFBS saliency values across neurons. (c) Actual labels of simulated regulatory

grammar of the TFBS filtered to only those in the top 10% sum of saliency values across neurons in penultimate layer overlaid on the t-SNE visualization.

(d) The sensitivity of predicted labels in (c) across regulatory grammars.

https://doi.org/10.1371/journal.pcbi.1008334.g005
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learned during training and therefore cannot be reconstructed from the resulting model. To

further investigate this hypothesis, we simulated three heterogenous regulatory classes

(Table 1) with non-overlapping subsets of regulatory grammars, so that multiple regulatory

grammars could distinguish one heterogenous regulatory class from another. Then we trained

the model against TF-shuffled negative sequences. By setting up the training this way, the

model has to distinguish sequences with TFBSs in regulatory grammars from those with

TFBSs not in regulatory grammars. However, the model does not need to learn all the regula-

tory grammars or distinguish one regulatory grammar from the other to make accurate

predictions.

As expected, the model performed well at distinguishing positives and negatives (average

auROC 0.995, auPR 0.978). However, when visualizing the saliency values of TFBSs of the neu-

rons in the penultimate layer, there is limited resolution to recover individual regulatory gram-

mars; multiple regulatory grammars have similar saliency profiles and overlap in the t-SNE

space (Fig 6A). This observation is consistent with our hypothesis that if there are multiple reg-

ulatory grammars that can distinguish one class of sequences from another, the neural network

will not learn to distinguish one regulatory grammar from another nor learn all the distinct

regulatory grammars.

For example, in Table 1, for Heterogeneous Regulatory Sequence Class 1, there are two types

of simulated enhancer sequences. Sequences in the first type have homotypic cluster 1 as well

as homotypic cluster 2. Because neither of these grammars are used in any other Heterogeneous
Regulatory Sequence Classes, the model would only need to learn one of homotypic cluster 1

and homotypic cluster 2 to tell that a sequence belongs to Heterogeneous Regulatory Sequence
Class 1. Fig 6B suggests that in our simulation, the model learned homotypic cluster 1. The

same logic can be applied to the second type of simulated sequence in Heterogeneous Regula-
tory Sequence Class 1. The model only needs to learn either homotypic cluster 4 or heterotypic

cluster 4. In our simulation, the model learned homotypic cluster 4 (Fig 6B). Moreover, the

model does not need to distinguish homotypic cluster 1 (in the first type sequences) from

homotypic cluster 4 (in the second type sequences). This is why we see TFBSs in homotypic

cluster 1 (gray) are clustered with homotypic cluster 4 (blue) in Fig 6A. Applying the same

logic to Heterogeneous Regulatory Sequence Class 3 explains why homotypic cluster 3 and het-

erotypic cluster 5 have higher importance than the other two grammars and are clustered

together (Fig 6B). Similarly, for Heterogeneous Regulatory Sequence Class 2, homotypic cluster

5 and heterotypic cluster 1 and 2 have higher importance than the other two grammars and

are clustered together.

This scenario is likely in many real enhancer classification tasks, especially when sequences

in one class are distinctly different from another with multiple predictive sequence patterns.

This would make reconstruction of full individual regulatory grammars challenging.

ResNet trained on mouse developmental enhancers identifies a known

heart heterotypic TF cluster

The lack of well-characterized regulatory grammars required us to develop and evaluate our

methods on simulated data. However, as a preliminary test of our approaches for regulatory

grammar identification on real enhancers, we applied our approach to enhancers from mouse

development (Fig 7A). We sought to test whether we could identify the transcription factors

TBX5, NKX2-5, and GATA4, which are known to function as a heterotypic cluster to coordi-

nately control gene expression during cardiac differentiation [64].

First, we trained a ResNet on mouse E14.5 developmental enhancers from 12 tissues,

including heart, limb, neural tube, kidney, embryonic facial prominence, liver, intestine, lung,
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stomach, forebrain, midbrain, and hindbrain [66], against 8-mer shuffled negatives (Methods).

The model achieved moderate accuracy for the different tissues (auROC 0.71–0.81, auPR 0.1–

0.38, S6 Fig). The moderate accuracy is partially due to the use of 8-mer shuffled sequences to

create a difficult negative set rather than a simpler negative set, since our goal was to encourage

the neural network to learn grammars rather than individual transcription factor motifs.

Next, we calculated saliency maps for the same set of sequences using the 8-mer shuffled

negative sequences as reference with respect to the neurons in the penultimate layer. We then

applied FIMO to identify TFBSs in the highest scoring 100 sequences for the heart enhancers.

We visualized with t-SNE the saliency profile of TBX5, NKX2-5, GATA4, and representative

TFs from each TF family (based on median motif counts within each TF family). To simplify

visualization and remove TFBS unlikely to be in a grammar, we focused on the TFBSs with the

top 30% sum of saliency values. This threshold removed low importance TFBSs, but kept

enough for the clustering analysis. Then, we applied k-means clustering (k = 2–12) to the

saliency map matrix (Fig 7B); k = 9 yielded the best silhouette score (S6C Fig). We then tested

for TFBSs enrichment in the clusters.

The motifs for seven TFs are significantly enriched in cluster 4 (S5 Table), including the

heart heterotypic cluster TFs (TBX5, NKX2-5, and GATA4). All five TBX5 binding sites

(p = 9.1e-5, Fisher’s exact test), all three GATA4 binding sites (p = 0.00037), and three out of

five NKX2-5 binding sites (p = 0.029) are in cluster 4 (Fig 7B). This suggests that that ResNet

learned the heterotypic cluster. Furthermore, three of the additional TFBSs enriched in cluster

4—BRAC/TBXT (p = 0.00018), GATA3 (p = 0.024), TBX21 (p = 0.038)—have binding motifs

Table 1. Simulated heterogenous regulatory sequence classes with multiple regulatory grammars that can distinguish one class from another.

Regulatory grammars in sequence type 1 Regulatory grammars sequence type 2

Heterogeneous Regulatory Sequence Class 1 homotypic cluster 1, homotypic cluster 2 homotypic cluster 4, heterotypic cluster 4

Heterogeneous Regulatory Sequence Class 2 heterotypic cluster 1, heterotypic cluster 2 homotypic cluster 5, enhanceosome 1

Heterogeneous Regulatory Sequence Class 3 homotypic cluster 3, heterotypic cluster 3 heterotypic cluster 5, enhanceosome 2

https://doi.org/10.1371/journal.pcbi.1008334.t001

Fig 6. The ResNet model fails to learn the correct representation of individual grammars when there are multiple regulatory grammars that can

distinguish one heterogenous regulatory class from another. For this simulation, we created three heterogeneous regulatory sequence classes with no

overlap among their grammars (Table 1) and applied our interpretation approach. a) Actual labels of simulated regulatory grammars of the TF binding

sites overlaid on t-SNE visualization of TFBS saliency values across neurons. The TFBSs do not separate according to their grammars. b) Sum of saliency

values for TFBSs in each regulatory grammar across neurons in the penultimate layer.

https://doi.org/10.1371/journal.pcbi.1008334.g006
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very similar to members of the heterotypic cluster. GATA3 is the representative of the GATA

zinc-finger family that GATA4 belongs to, and the TBX21 and TBXT motifs are similar to

TBX5. This suggests that their enrichment reflects their similarity to components of the regula-

tory grammar. The final enriched motif, NR6A1 (p = 0.0033), has high similarity to retinoid X

receptor (RXR) motifs, and it is not clear if it is related to the heterotypic cluster.

These preliminary results demonstrate that our saliency map approach identifies the com-

ponents of a known regulatory grammar from deep neural networks trained on a complex real

enhancer dataset. However, further work is needed to enable comprehensive and reliable dis-

covery and validation of novel grammars.

Discussion

We trained a variant of DNNs, ResNets, to model sequences with simulated regulatory gram-

mars (combinatorial binding of TFs). Then we developed a gradient-based unsupervised clus-

tering approach to interpret the features learned by neurons in the intermediate layers of the

neural network. We found that ResNets can model the simulated regulatory grammars even

when there is heterogeneity in the regulatory sequences and a large fraction of TFBSs outside

of regulatory grammars. Finally, we trained a ResNet on mouse developmental enhancers and

were able to identify components of a known heterotypic cluster of TFs active in heart

development.

We also identified scenarios when the ResNet model failed to learn the regulatory grammar.

The networks strive to learn simple representations of the training data. As a result, the ResNet

models in our studies failed to learn the simulated regulatory grammar when there is a lack of

constraint in negative training samples or between the positive output categories. For instance,

we found that the choice of negative training samples influences the ability of the neural net-

work to learn regulatory grammar. The model trained against no negatives, short k-mer

Fig 7. ResNets identify known heart heterotypic cluster when trained on mouse enhancers. We trained a ResNet on developmental mouse enhancers

from 12 tissues identified from histone modifications (S6 Fig) and applied our saliency map approach to interpret the trained network. a) Pipeline for

identifying regulatory grammar in mouse developmental heart enhancers. b) t-SNE visualization of clustered TFBS saliency maps from top scoring heart

enhancer sequences. Clusters determined by k-means with k = 9 are indicated by color (S6C Fig). Instances of NKX2-5, TBX5, and GATA4 motifs are

labelled with shapes. These factors form an essential heterotypic cluster during heart development and are significantly enriched in cluster 4 (S5 Table).

https://doi.org/10.1371/journal.pcbi.1008334.g007
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shuffled negatives (k = 1, 2, 4, 6), or very long k-mer shuffled negatives (k = 12) did not learn

accurate representations of simulated regulatory grammars and often misclassified TF-shuffled

negatives as positives. The model trained against 8-mer shuffled negatives performed the best

when evaluated on the TF-shuffled negatives. This is because when shorter k-mers (k< = 6)

are used to generate the negative training samples, the neural network can distinguish the posi-

tives from negatives by learning the individual TF motifs, many of which are longer than 6 bp,

rather than learning the regulatory grammar of the TFs. With longer k-mers (k = 12), the rea-

son is likely that k-mers are not well shuffled in the negatives and very similar to the positives.

Indeed, the ResNet model trained against 12-mer shuffled negatives has lower accuracy (auPR

0.506). The 8-mer shuffled negative provides a sweet spot where the negatives are well shuffled

and the network is forced to learn the TF motifs and regulatory grammars. Another challeng-

ing situation occurs when there are multiple sequence features that can distinguish one output

category from another. Under this scenario, it is not necessary for the neural network to accu-

rately learn all the features nor distinguish one feature from another.

In addition to these scenarios, there is also another situation in which the ResNet model

failed to learn the regulatory grammar. When the majority of the TFBSs are not in a regulatory

grammar, the non-grammar TFBSs overlap those in regulatory grammars in the unsupervised

clustering analysis and make it impossible to recover the grammars. Fortunately, we could use

the observation that many of the TFBSs outside of regulatory grammars have low saliency val-

ues to filter out those TFBSs, and focus the unsupervised clustering analysis on TFBS with high

saliency values to improve the accuracy of grammar reconstruction. This gradient magnitude-

based filtering method may be less efficient when there is an overwhelmingly large number of

TFBSs outside of regulatory grammar and larger sample sizes might be needed to train the

neural network to better retrieve the regulatory grammars.

Large-scale evaluation of our approach on real data is not possible due to the small number

of known regulatory grammars. However, to begin to explore the performance of our

approach on real enhancer sequences, we demonstrated that it highlights members of a known

heterotypic cluster of three TFs (TBX5, GATA4, and NKX2-5) essential to mouse heart devel-

opment. This preliminary of analysis of mouse developmental enhancers is intended as a proof

of principle of the potential utility of our approach in identifying candidate regulatory gram-

mars. In the future, the same approach can be applied to enhancers in other cellular contexts

on a larger scale, but in the absence of additional known grammars, substantial work will be

needed to reconstruct and validate proposed grammars. We anticipate that this will require

integration of machine learning methods with high-throughput experimental strategies for

evaluating gene regulatory activity of DNA sequences with different binding site

combinations.

While we demonstrate potential to interpret biologically relevant patterns learned by deep

neural network models in some realistic scenarios, our work has several caveats. First, the syn-

thetic dataset and proposed methods assume that combinatorial binding of TFs does not

change their motifs. However, this assumption is not always true. In vitro analyses of the com-

binatorial binding of pairs of TFs indicate that many pairs of TFs have different binding motifs

when they bind together compared to their consensus motifs [17]. Although there is nothing

preventing the neural network from learning such altered motifs, the unsupervised clustering

methods based on individual TFBS may have limited accuracy in identifying such altered

motifs. Second, we did not simulate noisy labels in the synthetic dataset which could occur in

the real regulatory sequence prediction tasks. The common methods of experimentally finding

enhancers, such as ChIP-seq on histone modifications, DNase-Seq, CAGE-seq, and MPRAs,

often produce mislabeled regulatory regions and vague region boundaries. This could be

improved in the future by integrating methods for learning from noisy labeled data.
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In summary, we demonstrated the power and limitations of deep convolutional neural net-

works at modeling regulatory grammars and provided a backpropagation gradient based

unsupervised learning approach to retrieve and interpret the patterns learned by inner layers

of the neural network. Our work indicates that DNNs can learn biologically relevant TFBS

combinations in certain settings with carefully defined training data; however, in many com-

mon scenarios, we should be cautious when interpreting the biological implications of features

learned by DNA-sequence-based DNNs. We anticipate that biologically informative machine-

learning-based interpretation of regulatory sequences can be further improved with better

annotated, less noisy training data and more sophisticated models.

Methods

Simulated sequence generation and analysis

Simulation of regulatory grammar. We used TF binding motifs from the HOCOMOCO

v11 database [67]. To make sure that the TF motifs are distinct and diverse, we select one TF

from each TF subfamily. This results in a set of 26 TFs (S1 Table). Then the selected TFs are

arranged into three types of regulatory grammar representing homotypic clusters, heterotypic

clusters, and enhanceosomes.

For the homotypic cluster, we simulated multiple non-overlapping occurrences (3–5) of the

same TF in a small window (120 bp) at random locations. For the heterotypic clusters, we sim-

ulated a set of four diverse TFs in a small window (120 bp) at random non-overlapping loca-

tions. Each TF occurs once in the heterotypic cluster. For the enhanceosome, we simulated a

set of four TFs in a small window with fixed order and spacing. Because it is possible in real

enhancers that the same TF factor is used in different regulatory grammars, we allow some of

TFs to occur in more than one grammar. We simulated five homotypic TF clusters, five het-

erotypic clusters and two enhanceosomes (S2 Table).

Simulation of regulatory sequences with different regulatory grammars. To mimic

common enhancer prediction tasks, such as predicting enhancers from different cellular con-

texts, we designed twelve regulatory sequence classes (S3 Table) with each regulatory sequence

class representing one type of enhancer (e.g., enhancers active in a given context). Sequences

in each class have two different regulatory grammars. Because it is possible that the same regu-

latory grammar is used in regulatory sequences in different cellular contexts, we allow one reg-

ulatory grammar occur in two different regulatory sequence classes. For instance, the first

regulatory sequence class has homotypic cluster 1 and heterotypic cluster 1, then the second

regulatory sequence class has heterotypic cluster 1 and homotypic cluster 2 and then the third

regulatory sequence class has homotypic cluster 2 and heterotypic cluster 3, etc. Next, we ran-

domly generated background DNA sequences of 3000 bp based on equal probability of A, G,

C, T and inserted 2–4 of each simulated regulatory grammar at random locations into these

background sequences based on the corresponding regulatory class.

Multiclass classification and heterogenous class classification. We performed two types

of classification: i) multiclass classification in which each output neuron represents a homoge-

nous set of regulatory sequences and ii) heterogenous class classification in which each output

neuron represents a heterogenous set of regulatory sequences. The heterogenous class classifi-

cation task assumes that in the real enhancer prediction tasks, enhancers in one category (e.g.,

specific cellular context) may have a heterogenous set of sequences harboring different sets of

regulatory grammars.

The multiclass classification task has twelve homogeneous output classes, each one corre-

sponding to sequences representing one regulatory sequence class. The heterogenous class

classification (S4 Table) has five heterogeneous output classes, each one corresponding to a
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subset of regulatory sequence classes. More specifically, heterogeneous class 1 has regulatory

sequence class 1, 3, and 5; heterogeneous class 2 has regulatory sequence class 2, 4, and 6; het-

erogeneous class 3 has regulatory sequence class 7, 9, and 11; heterogeneous class 4 has regula-

tory sequence class 5, 8, and 10; heterogeneous class 2 has regulatory sequence class 1, 6, and

12.

Negative sequences. We used three approaches to generate negatives when training the

classifiers: no negatives, k-mer shuffled negatives, and TF-shuffled negatives. For the k-mer

shuffled negative sequence set, we matched the frequency of k-mers (k = 1, 2, 4, 8, 12) in the

negatives to the simulated regulatory (positive) sequences. For the TF-shuffled sequence set,

we randomized the positions of TFBS in the simulated regulatory sequences to break the mem-

bership of TFs in regulatory grammars.

Model design and training. DNNs have achieved the state-of-art performance on regula-

tory sequence prediction [45, 46]. The integration of a convolution operation into standard

neural networks enables learning common patterns that occur at different spatial positions,

such as TF motifs in the DNA sequences. Here we use a residual deep convolutional neural

networks (ResNets), a variant of DNNs that allows connections between non-sequential layers

[68] to model the regulatory sequences. Each simulated DNA sequence is one-hot-encoded,

which is represented by a sequence length x 4 matrix with columns representing A, G, C and

T.

The basic layers in the network include a convolutional layer, batch normalization layer,

pooling layer, and fully connected layer. Every two convolutional layers are grouped into a

residual block where an identity shortcut connection adds the input to the residual block to

the output of the residual block. This additional identity mapping is an efficient way to deal

with vanished gradients that occur in neural networks with large depth and improves perfor-

mance in many scenarios. The batch normalization layers are added after the activation of

each residual block. Batch normalization [69] helps reduce the covariance shift of the hidden

unit and allows each layer of a neural network to learn more independently of other layers.

The pooling layers are added after each batch normalization layer. Finally, a dense (fully con-

nected) layer and an output layer are added at the top of the neural network. We used 4 resid-

ual blocks, each has two convolutional layers with 32 neurons. The final residual block is

connected to a dense layer with 32 neurons and then connected to output layer (S1 Fig). We

found the above neural network structure (ResNet) performed well in all of our simulation

tasks while a 3-layer convolutional neural network with alternating convolutional layers and

maxpooling layers cannot, suggesting the benefit of using a much deeper neural network at

modeling enhancer regulatory grammar.

We used rectified (ReLU) activation for all the residual blocks and sigmoid activation for

the output fully connected layer activation. We used binary cross-entropy as the loss function

and Adam [70] as the optimizer. We implemented the model using the keras library with Ten-

sorFlow as the backend [71].

Model interpretation and grammar reconstruction

Computing saliency values with respect to neurons. We considered two gradient calcu-

lating approaches for estimating the importance of each nucleotide in the input sequence with

respect to each neuron’s activation. The first is guided back-propagation in which we calcu-

lated the gradient of the neuron of interest with respect to the input through guided back-

propagation and then multiplied the gradient by input sequences. The second is calculating

the DeepLIFT score [56] of the neuron of interest with respect to the input using the DeepLIFT

algorithm implemented in SHAP [72] against the TF-shuffled negatives and then multiplying
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the DeepLIFT score by input sequences. We refer the resulting values from the above as

saliency values and the vector of saliency values for an input sequence as saliency map. We

found that the saliency maps calculated using DeepLIFT approach performed the better than

guided back-propagation (S2 Fig). Therefore, for all the main text results we present were cal-

culated with the DeepLIFT approach.

Analysis of TF saliency maps. To analyze which TFs are learned by a specific neuron, we

calculate the gradient of a TF binding site with respect to a neuron by averaging a 10 bp win-

dow from the start position of the TF binding site. Then, we visualize the distribution of

saliency values of the binding sites of each TF in a specific regulatory grammar with respect to

a neuron with box plot.

The median saliency values of the binding sites of each TF in a specific regulatory grammar

with respect to neurons is stored in a matrix with the shape of number of neurons by the num-

ber of TFs. This data matrix is first scaled by column to identify which neurons mostly detect

the TF and the scaled matrix is used to generate a heatmap. Then, we performed hierarchical

clustering with k = 12 (12 is the number of simulated regulatory grammars) or k = 13 (when

there are non-grammar TFBSs) for both neurons and TFs based on the same data matrix.

t-SNE and k-means clustering of TFBS. To reconstruct the regulatory grammar and

evaluate how accurately neurons in a layer capture the simulated regulatory grammar, we per-

formed a two-dimensional t-SNE and a k-means clustering (k = 12) of TFBS using their

saliency value profiles across neurons in a layer. To assign the name of regulatory grammar of

a predicted cluster, we used a majority vote, which is the majority of the true labels of regula-

tory grammar in that cluster. We visualize the k-means clustering by overlaying the predicted

regulatory grammar from k-means clustering on top of the t-SNE visualization. We evaluated

the performance at reconstructing the regulatory grammar by two metrics: the accuracy ((TP

+TN)/All) and the sensitivity (TP/(TP+FN)) of the regulatory grammar predictions.

Mouse developmental enhancer analysis

Mouse developmental enhancers and 8-mer shuffled negatives. We analyzed H3K27ac

and H3K4me1 peak files from mouse heart, limb, neural tube, kidney, embryonic facial promi-

nence, liver, intestine, lung, stomach, forebrain, midbrain, hindbrain at E14.5 [66]. We defined

enhancers as regions with the H3K27ac mark without the H3K4me1 mark. Then, we parti-

tioned mouse genome into 200 bp bins and annotated each bin as an enhancer in a tissue if

more than 50% if its base pairs overlap with an enhancer in that tissue. We kept all 634,087

bins that are active enhancers in at least one tissue. Enhancers may be longer than 200 bp and

including flanking regions often improves enhancer model accuracy [45]; thus, we added 250

bp flanking regions at each side of the 200 bp regions to create 700 bp regions. We then gener-

ated the same number of 8-mer shuffled negatives as enhancer regions using fasta-shuf-
fle-letters from the MEME suite. Finally, we one-hot encoded the enhancer regions and

8-mer shuffled negatives. This results in an input matrix of (1268174, 700, 4) and an output

matrix of (1268174, 12).

Model design and training. We used a similar residual neural network as those used for

the simulated data. However, given the larger size of the training data, we added an additional

residual block, used more neurons in each residual block convolutional layer (128, 256, 256,

512, 512), and used 1024 in the penultimate fully connected layer.

Supporting information

S1 Fig. The structure of the ResNet model.

(PNG)
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S2 Fig. The DeepLIFT score is better at reconstructing the regulatory grammar compared

to guided back-propagation gradient. a. True and predicted labels of simulated regulatory

grammar of the TF binding sites overlaid on t-SNE visualization. b. The sensitivity (TP/TP

+FN) of predicted labels of regulatory grammar using DeepLIFT score x Input or Guided

back-propagation gradient.

(PDF)

S3 Fig. The neural network learned individual TF binding motifs in the lower convolu-

tional layer and gradually build up its understanding of regulatory grammar in higher

level layers. a. Simulated TF motifs are learned by neurons in the third convolutional layer.

From left to right are four selected examples, neuron 9 learned the FOS motif; neuron 20

learned the COT2 motif; neuron 22 learned the P53 motif; neuron 25 learned ERR1 motif. b.

From layer 7 (third convolutional layer) to Layer 43 (the penultimate dense layer), the ResNet

model gradually learned the regulatory grammar. The correlation matrix of the saliency value

profiles of TFs in a specific regulatory grammar is plotted as the heatmap. In layer 7, TFs from

the same regulatory grammar are not clustered. In layer 37, TFs within the same regulatory

grammar begin to have a higher correlation. In layer 43, TFs within the same regulatory gram-

mar have near perfect correlation.

(PNG)

S4 Fig. ResNet model trained on simulated regulatory sequences and 8-mer shuffled nega-

tives. Heatmap of the median gradient of the binding sites of each TF in a specific regulatory

grammar (x axis) across neurons of the penultimate layer (y axis). The order of x and y axis

labels are determined by hierarchical clustering shown on side. The color bars indicate the

group label assigned by hierarchical clustering.

(PNG)

S5 Fig. The accuracy of ResNet model trained for heterogeneous multilabel classification

with no negatives or against k-mer shuffled negatives.

(PNG)

S6 Fig. The accuracy of ResNet model trained on mouse developmental enhancers from 12

tissues. a. ROC curve. b. PR curve. c. The silhouette score of k-means clustering with k from 3

to 10.

(PNG)

S1 Table. Transcription factor used in constructing regulatory grammars.

(PDF)

S2 Table. Simulated regulatory grammar.

(PDF)

S3 Table. Simulated regulatory classes.

(PDF)

S4 Table. Simulated heterogenous regulatory classes.

(PDF)

S5 Table. Enrichment of TF binding sites in cluster 4.

(CSV)
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