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Abstract

Eukaryotic genome sequencing and de novo assembly, once the exclusive domain of well-

funded international consortia, have become increasingly affordable, thus fitting the budgets

of individual research groups. Third-generation long-read DNA sequencing technologies

are increasingly used, providing extensive genomic toolkits that were once reserved for a

few select model organisms. Generating high-quality genome assemblies and annotations

for many aquatic species still presents significant challenges due to their large genome

sizes, complexity, and high chromosome numbers. Indeed, selecting the most appropriate

sequencing and software platforms and annotation pipelines for a new genome project can

be daunting because tools often only work in limited contexts. In genomics, generating a

high-quality genome assembly/annotation has become an indispensable tool for better

understanding the biology of any species. Herein, we state 12 steps to help researchers get

started in genome projects by presenting guidelines that are broadly applicable (to any spe-

cies), sustainable over time, and cover all aspects of genome assembly and annotation proj-

ects from start to finish. We review some commonly used approaches, including practical

methods to extract high-quality DNA and choices for the best sequencing platforms and

library preparations. In addition, we discuss the range of potential bioinformatics pipelines,

including structural and functional annotations (e.g., transposable elements and repetitive

sequences). This paper also includes information on how to build a wide community for a

genome project, the importance of data management, and how to make the data and results

Findable, Accessible, Interoperable, and Reusable (FAIR) by submitting them to a public

repository and sharing them with the research community.

Introduction

Genome projects employ state-of-the-art DNA sequencing, mapping, and computational tech-

nologies (including cross-disciplinary experimental designs) to expand our knowledge and
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understanding of molecular/cellular mechanisms, gene repertoires, genome architecture, and

evolution. The revolution in new sequencing technologies and computational developments

has allowed researchers to drive advances in genome assembly and annotation to make the

process better, faster, and cheaper with key model organisms [1,2].

Such technical advantages and established recommendations and strategies have been

widely applied in humans [3–6], terrestrial animals [7–12], and plants and crops [13–18].

Genomic applications in aquatic species that could be potentially important for aquaculture

are slower compared with human, livestock, and crops [19–21], compounded by larger diver-

sity, lack of reference genomes, and more novice aquaculture industries. Given that aquacul-

ture is the most rapidly expanding food sector, with the widest diversity of species cultured, it

is poised for rapid adoption of genomics applications as these become more accessible. For

any specific advice on application of genomics to aquaculture, please refer to previous works

[19–25].

Before genome sequencing, a must-have step involves RNA sequencing (RNA-seq) that has

provided significant insights into the biological functions [26–30]. RNA-seq plays a key role in

genome annotation [31–36] through the identification of protein-coding genes based on tran-

scriptome sequencing data and ab initio or homology-based prediction. However, the use of

RNA-seq for genome assembly is limited to genome scaffolding [37]. While RNA-seq is a pow-

erful technology that will likely remain a key asset in the biologist’s toolkit, recent single-mole-

cule mRNA sequencing approaches (e.g., Pacific Bioscience [PacBio] and Oxford Nanopore

Technology [ONT]) have provided significant improvements in gene and genome annotation,

making them appealing alternatives or complementary techniques for genome annotation

[38–40].

Restriction site–associated DNA sequencing and diversity array technology are cost-effec-

tive methods that mainly focus on the detection of loci and the segregation of variants or

genome-wide single nucleotide polymorphisms. The generation of genetic linkage maps has

been successfully applied to recognize key components in the sustainable production of aqua-

culture species [41,42]. These attempts have resulted in the emphasis of genomic evaluations/

selections or advanced selective breeding programs for desirable traits, such as growth, sex

determination, sex markers, and disease resistance [42]. While these inexpensive techniques

have been powerful tools for understanding the genetics of adaptation, recent studies have

indicated their limitations for genome scans because they will likely miss many loci under

selection, particularly for species with short linkage disequilibrium [43]. However, the wide-

spread use of whole-genome sequencing (WGS) allows the detection of a full range of common

and rare/hidden genetic variants of different types across almost entire genomes.

Many seminal biological discoveries in the 20th century were made using only a genetic

analysis of a few selected model organisms because they were readily available for genetic anal-

ysis [44]. However, a high-quality and well-annotated genome assembly is increasingly becom-

ing an essential tool for applied and basic research across many biological disciplines in the

21st century that can turn any organism into a model organism. Thus, securing more complete

and accurate reference genomes and annotations before analyzing post-genome studies such

as genome-wide association studies, structural variations, and posttranslational studies (meth-

ylation or histone modification) has become a cornerstone of modern genomics. Chromo-

some-level high-quality genomes (including structural and functional annotations) are

differentiated from draft genomes by their completeness (low number of gaps and ambiguous

Ns), low number of assembly errors, and a high percentage of sequences assembled into chro-

mosomes. Advances in next-generation sequencing (NGS) technologies and their analytical

tools have made assembling and annotating the genomic sequence of most organisms both

more feasible and affordable [33,45,46]. Table 1 shows recent chromosome-level genome
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assemblies and provides a rough estimate of the sequencing depth and costs for beginners to

achieve a chromosome-level genome assembly. For diploids, using a minimum 60× depth for

PacBio, ONT, 60× for Illumina (San Diego, California, United States of America), and 100×
for Hi-C data (Phase Genomics, Seattle, Washington, USA) (an extension of chromosome

conformation capture, 3C) is recommended. High-quality end-to-end genome assembly and

annotation of small eukaryotic (approximately 1 Gb diploid) and prokaryotic organisms have

been achievable with small-to-medium financial resources and limited time, labor, and skill

commitments. Nearly all eukaryotic genomes still represent a significant challenge for most

aquatic species that have large and complex genomes and no reference genomes.

Furthermore, the following fundamental questions should be addressed: Why are genome

projects or WGS necessary? What is the aim of a genome project? What kind of information is

the research community expected to gather? Even from the beginning of a genome project,

describing the expected end product, including project duration/budget, chromosome end-to-

end completion, genome browser, and research paper, is required. In particular, if budget is a

major obstacle, the best option to raise funds to support the genome project (e.g., industry or

government support) must be determined. In addition to the abovementioned limitations,

another essential element is bioinformatics, which has become a common denominator to

produce and use software that can be applied to biological data in different contexts. As big

data and multi-omics analyses are becoming mainstream, computational proficiency and liter-

acy are indispensable skills in a biologist’s toolkit in modern scientific society. All “omics”

studies require a certain degree of computational biology: The implementation of analyses

requires programming skills and knowledge of computer languages, while experimental design

and interpretation require a solid understanding of analytical approaches [47,48]. These could

Table 1. Summary of recently published chromosome-level genome assemblies in aquaculture species using long-read sequencesa,b.

Scientific name GS (Gb) Final output Input detail and depth (×) BAs Reference

AGS (Gb) FSN N50 (Mb) IM PacBio ONT 10xGC Hi-C (×)

Fish

Collichthys lucidus 0.83/DP 0.88 24 1.1 63 109 233 Sex determination genes and chromosomes [72]

Clupea harengus 0.81/DP 0.79 26 29.85 50 76 20 Chromosome rearrangement and spawning

time

[10]

Epinephelus akaara 1.11/DP 1.14 24 46.03 49 96 100 Chromosome-level reference genome [73]

Epinephelus
lanceolatus

1.07/DP 1.09 24 46.2 134 0.2 Innate immunity and growth [74]

Sebastes schlegelii 0.87/DP 0.81 24 3.85 132 66 189 Maternal reproductive system [75]

Lateolabrax maculatus 0.65/DP 0.67 24 22.34 321 109 Chromosome-level reference genome [41]

Oplegnathus fasciatus 0.78/DP 0.77 24 33.5 116 80 118 Chromosome-level reference genome [43]

Pelteobagrus
fulvidraco

0.72/DP 0.73 26 25.8 70 53 200 Chromosome-level reference genome [40]

Shellfish

Sinonovacula
constricta

1.33/DP 1.22 19 65.93 148 148 136 123 154 Chromosome-level reference genome [76]

aThis table represents a selection of recent aquaculture genome works focusing on whole-genome assemblies using BioNano and/or Hi-C data (at least 1 technology

used) since 2018. In addition, the table does not include any pure TGS/SGS/hybrid genome assemblies without BioNano/Hi-C data, single-cell sequencing, or

transcriptomes. If the original report had no estimated input depth, this was calculated from the raw data. For the most recent global statistics, we highly recommend

visiting the associated GenBank BioProject.
bAGS, assembled genome size; BAs, biological applications; DP, diploid; FSN, final scaffold number (pseudochromosome number); GS, genome size; IM, Illumina

(combined paired-end [PE] and mate-pair [MP] reads); ONT, Oxford Nanopore Technology; PacBio, Pacific Bioscience; SGS, second-generation sequencing; TGS,

third-generation sequencing; 10xGC, 10x Genomics Chromium.

https://doi.org/10.1371/journal.pcbi.1008325.t001
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be daunting tasks for biologists who are unfamiliar with computational standards (e.g., codes,

pipelines, and system environments) and resources (e.g., SourceForge, Bitbucket, GitLab, and

GitHub). While academic cores, commercial services, and collaborations can aid in the imple-

mentation of analyses, the computational literacy required to design and interpret omics stud-

ies cannot simply be replaced or supplemented [47,48].

In the absence of a standard approach for genome projects, this paper aims to provide prac-

tical steps to facilitate project completion before embarking upon a genome assembly and

annotation project (mainly for eukaryotic genomes). The target audience is anyone entering

this field for the first time, particularly those who do not specialize in genomics research.

While we can strive to answer questions in a manner that considers the beginner’s perspective,

certain aspects (e.g., assembly algorithms and computer environments) might require further

reading for an in-depth understanding.

Step 1: Build a wide community for the project if possible

All genome projects have a common but monumental goal: sequencing the entire target

genome for a wide range of genomics applications. While genomics is a rich field, one of the

most prominent scientific objectives is probably securing the future of sustainable food sources

by harnessing the power of genomics (i.e., desirable traits) [19–21,23–25], particularly for agri-

culture. If the species of interest is distinct from the wild, cultured, or harvested, it necessitates

networking and building a scientific or stakeholder community to support the project. This usu-

ally requires a multi-institutional effort to both initiate and—more importantly—complete the

genome project and then interpret the vast quantities of sequencing information produced for

any given organism. As expected, WGS/genome projects’ infrastructure demands are particu-

larly high as varying interpretations may require facilities, personnel (skill intensive), and soft-

ware (knowledge intensive) that suit the needs of immediate analyses, ongoing reanalyses, and

the integration of genomic and other phenotype information (or desirable traits). Data storage,

maintenance, transfer, and analysis costs will also likely remain substantial and represent an

increasing proportion of overall sequencing costs in the future. Moreover, professional groups

(including students), expert panels, and field farmers acknowledge that there is a need for edu-

cational programs specific to WGS demands. Addressing these needs will likely require substan-

tial investment by agriculture production care systems. Thus, the real cost of WGS—including

ongoing maintenance—could be even higher. Despite these burdens, most genome projects

bring together leading researchers to work together and build large datasets of DNA from target

genomes, which has significantly benefited the research community. These efforts facilitate the

sharing of sequence data and help research advance. In particular, smaller research groups that

have less experience and are poorly equipped in areas including raw read sequencing and

assembly and annotation should consider the main features and steps outlined here via commu-

nity collaboration. In the case of funding for genome projects, applying for government grants

and receiving corporate sponsorships as a consortium could be considered potential solutions

as these avenues have been successful for humans, livestock (cow, pig, and sheep), crops (Arabi-

dopsis, rice, and tomato), and aquaculture (salmon, oyster tilapia, and prawn).

Step 2: Gather information about the target genome

Every genome sequencing, assembly, and annotation project is different due to each subject

genome’s distinctive properties. There are four fundamental aspects that must be considered

when embarking on a new genome project: the genome size, levels of ploidy and heterozygos-

ity, GC content, and complexity. These will directly affect the overall quality and cost of

genome sequencing, assembly, and annotation [14,49].
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How big is the genome? The genome size will greatly influence the amount of data that

must be ordered and analyzed. To assemble a genome, securing a certain number/amount of

sequences/depth/coverage (called reads) is the first step before proceeding with ordering

sequence data. To get an idea of the size and complexity of a genome, publicly available data-

bases for approximate genome sizes are accessible for fungi (http://www.zbi.ee/fungal-

genomesize), animals (http://www.genomesize.com), and plants (http://data.kew.org/cvalues).

Selecting a closely related species is a practical option if the information on a target species is

unavailable from a public database. Alternatively, the two widely used flow cytometry and k-

mer frequency distribution methods could provide reliable genome size estimates to predict

repeat content and heterozygosity rates. Flow cytometry is a fast, easy, and accurate system of

simultaneous multiparametric analysis for nuclear DNA content including a ploidy level that

isolates nuclei stained with a fluorescent dye [50,51]. K-mer frequency distribution, a pseudo-

normal/Poisson distribution around the mean coverage in the histogram of k-mer counts, is a

powerful and straightforward approach to use raw Illumina DNA shotgun reads to infer

genome size, data preprocessing for de Bruijn graph assembly methods (tune runtime parame-

ters for analysis tools), repeat detection, sequencing coverage estimation, measuring sequenc-

ing error rates, and heterozygosity [52,53]. It is highly recommended to use both flow

cytometry and k-mer methods—the gold standard for genome size measures when designing

genomic sequencing projects—because no single sequence-based method performs well for all

species, and they all tend to underestimate genome sizes [54]. Is it a diploid, polyploid, or

highly heterozygous hybrid species? If possible, it is better to use a single individual and

sequence a haploid, highly inbred diploid organism [20,23,55], or isogenic line [56] because

this will essentially minimize potential heterozygosity problems for genome assembly. While

most genome assemblers are haploid mode (some diploid-aware mode) to collapse allelic dif-

ferences into one consensus sequence, using complex polyploid or less inbred diploid genomes

can greatly increase the number of present alleles, which will likely result in a more fragmented

assembly or create uncertainties about the contigs’ homology [14,49]. If so, polyploid and

highly repetitive genomes may require 50% to 100% more sequence data than their diploid

counterparts [14].

Is there high/low GC content in a genomic region? Extremely low or high GC content in a

genomic region is particularly known to cause problems for second-generation sequencing

(SGS) technologies (also called short-read sequencing: mainly refer to Illumina sequencing),

resulting in low or no coverage in those regions [57]. While this can be compensated for by

increasing the coverage, we would recommend using third-generation sequencing (TGS) tech-

nologies (PacBio and ONT) that do not exhibit this bias [14,49].

How many repetitive sequences (or transposable elements) will likely be present in the

genome? The amount and distribution of repetitive sequences, potentially occurring at differ-

ent locations in the genome, can hugely influence genome assembly results, simply because

reads from these different repeats are very similar and the assemblers’ algorithms cannot dis-

tinguish them effectively. This may eventually lead to misassembly and misannotation. This is

particularly true for SGS reads and assemblies, and a high repeat content will often lead to a

fragmented assembly because the assemblers cannot effectively determine the correct assembly

of these regions and simply stop extending the contigs at the border of the repeats [58]. To

resolve the assembly of repeats (or if the subject genome has a high repeat content), using TGS

reads that are sufficiently long to include the unique sequences flanking the repeats is an effec-

tive strategy [14,49]. Thus, understanding the target genome and generating sufficient

sequence data/read coverage is a crucial starting point in a genome assembly and annotation

project.
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Step 3: Design the best experimental workflow

To meet the experimental goals and answer various biological questions, each application

must come with different experimental designs. Above all, the development of high-quality

chromosomally assigned reference genomes constitutes a key feature for understanding a spe-

cies’ genome architecture and is critical for the discovery of the genetic blueprints for biologi-

cally significant traits. Once the reference genome has been completed, follow-up post-

genome studies can be substantially completed with high accuracy.

While NGS is a useful tool for determining DNA sequences, certain parameters need to be

considered prior to running an NGS experiment, such as quality control, SGS versus TGS,

read length, read quality/error rate, number of reads, genome read coverage/depth, library

preparation, and downstream applications. Recent papers have provided useful recommenda-

tions and strategies to ensure the success of NGS experiments by selecting the correct prod-

ucts/technologies and methods for the project [14,59–61]. If money is no obstacle, using TGS

data (PacBio and ONT) and Hi-C data is recommended [14], which are also widely accepted

approaches for reaching a chromosome-level genome assembly (Table 1) for aquaculture or

any other species. While a hybrid approach using Illumina/10x Genomics Chromium

(10xGC) and Hi-C data has been proposed as a cost-effective method, this approach’s contigu-

ity could be lower than that of the combination of TGS data and Hi-C data [14].

Another important point to consider is whether genome assembly should be de novo or ref-

erence guided/assisted (Table 2). De novo assembly is the most widely adopted, but when com-

plete genomes of closely related species are available, reference-guided/assisted genome

assembly could be an attractive option because of its lower requirements for coverage data and

computational memory [14]. However, early works have warned against its applications in

genome assembly because the resultant assemblies may contain biases toward errors and chro-

mosomal rearrangements in the existing reference genome [62–64]. No matter which assembly

approaches and technologies are taken, genome assembly’s purpose is to construct a consensus

haploid or haploid-phased chromosome-level assembly. Most extensively used genome assem-

blers typically collapse the 2 sequences into 1 haploid consensus sequence and thus fail to cap-

ture the diploid nature of target organisms. While this has been a key challenge in the

bioinformatics and biology community, recent works have demonstrated the effectiveness of

generating accurate and complete haplotype-resolved assemblies for diploid and polyploid

species (Table 2). While we have provided a brief summary of commonly used tools (Table 2),

the comprehensive program list focused on TGS reads can be accessed at LRS-DB (https://

long-read-tools.org). Thus, selecting the appropriate tools and pipelines is important to

achieve accurate chromosome-scale assemblies in a timely manner by leveraging speed and

sensitivity in the contiguity and quality of genome assemblies.

Step 4: Choose the best sequencing platforms and library preparations

To sequence an organism’s entire genome (WGS), it must be prepared into a sample library

from high-quality genomic DNA. A library is a collection of randomly sized DNA fragments

that represent the sample input; its size can vary depending on the choice of sequencing tech-

nology. Sample library preparation for WGS is dependent on two considerations: (1) the

genome size of the target sample organism; and (2) the amount of sample available to be

sequenced. Given the vast range of library preparation products, we can only provide general

suggestions for library preparations. For more platform-specific library preparation and

sequencing guides, refer to the vendor’s products and/or services page. The recommended

procedure is to select the best and most cost-effective library preparation and sequencing tech-

nology after considering the given research goal and budget.
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The rapid adoption of WGS has been facilitated by the development of SGS and TGS tech-

nologies, which have dramatically reduced sequencing costs and simplified genome assembly.

It is possible to select short (Illumina, 454, SOLiD, and Ion Torrent), long (ONT and PacBio),

or a combination (hybrid) read. Comprehensive guidelines (including pros and cons) for

selecting the correct sequencing technology have been extensively described in previous works

[14,59,61,65]. Briefly, while SGS technologies can produce high-throughput, fast, cheap, and

highly accurate reads of lengths in the range 75 to 700 bp, they show limited ability to resolve

complex regions with repetitive or heterozygous sequences, which results in incomplete or

heavily fragmented genome assemblies. According to Illumina, widely used SGS technology—

the TruSeq PCR-free Library Preparation Kit—is ideal for any size of genome with a large sam-

ple input if there is 2 μg of genomic DNA available. However, the Nextera DNA Library Prep

Table 2. Commonly used tools and programs for genome assembly.

Name Official link Main feature

De novo genome assemblers for TGS reads

Falcon/HGAP https://pb-falcon.readthedocs.io/en/latest/# Diploid-aware mode including trim, correction, and consensus for PacBio reads

CANU https://github.com/marbl/canu A fork of the Celera Assembler including trim, correction, and consensus for TGS reads

SMARTdenovo https://github.com/ruanjue/smartdenovo De novo assembler including all-vs.-all raw read alignments without an error correction

stage for TGS reads

MECAT https://github.com/xiaochuanle/MECAT Ultrafast mapping, error correction, and de novo assembly tools for single-molecule

sequencing reads

Flye https://github.com/fenderglass/Flye A repeat graph mode including trim, correction, and consensus with polishing for TGS

reads

Shasta https://github.com/chanzuckerberg/shasta A run-length representation of ONT reads

De novo genome assemblers for SGS reads

ABySS2 https://github.com/bcgsc/abyss An assembler intended for SGS PE and linked-reads

AllPath-LG http://software.broadinstitute.org/allpaths-lg/blog/ Uses a unipath graph from the k-mer paths to collapse repeats

MEGAHIT https://github.com/voutcn/megahit An ultrafast and memory-efficient assembler for SGS reads

SOAPdenovo http://soap.genomics.org.cn De Bruijn graph assembler with an error correction stage

De novo genome assemblers for hybrid reads

MaSuRCA https://github.com/alekseyzimin/masurca An assembler combining the benefits of the de Bruijn and Overlap-Layout-Consensus

assembly approaches for SGS and TGS reads

Reference-guided/assistance assemblers

Ragout https://github.com/alekseyzimin/masurca Chromosome-level scaffolding

RaGOO https://github.com/malonge/RaGOO Pseudochromosome construction

RGAAT https://github.com/wushyer/RGAAT_v2 Genome assembly and annotation

Haplotype/phase assemblers

Falcon-Unzip https://pb-falcon.readthedocs.io/en/latest/index.

html

PacBio reads

Falcon-Phase https://github.com/phasegenomics/

FALCON-Phase

PacBio reads

Triobinning https://github.com/skoren/triobinningScripts ONT reads

Platanus-allee http://platanus.bio.titech.ac.jp/platanus2 SGS and TGS reads

WhatsHap https://bitbucket.org/whatshap/whatshap/src/

master/

SGS and TGS reads

IntegratedPhasing https://github.com/vibansal/IntegratedPhasing SGS and TGS reads

HaploConduct https://github.com/HaploConduct/HaploConduct SGS and TGS reads

HaplotypeAssembler

https://github.com/ComputationalGenomics/

HaplotypeAssembler

SGS and TGS reads

ONT, Oxford Nanopore Technology; PacBio, Pacific Bioscience; PE, paired-end; SGS, second-generation sequencing; TGS, third-generation sequencing.

https://doi.org/10.1371/journal.pcbi.1008325.t002
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Kit (Illumina) is perfect for large and complex genomes with a small sample input. Meanwhile,

the TruSeq Nano DNA Library Prep Kit (Illumina) is ideal for any size genome with a small

sample input if there is only 200 ng of genomic DNA available. However, the Nextera DNA

XT DNA Library Preparation Kit (Illumina) is perfect for small genomes, plasmids, and ampli-

cons. Additional Illumina library preparation methods and sequencing platforms for high

throughput have been extensively reviewed [66,67].

Meanwhile, TGS technologies can produce long single-molecule reads (averaging >30 kb)

with complete contiguity, facilitating assembly. However, long-read technologies suffer from

both high costs per base and high error rates. To overcome this disadvantage, the PacBio RS II

or SEQUEL system (Pacific Biosciences, Menlo Park, California, USA) has been released that

could generate 10 to 15 times more data than the original SEQUEL system with even more

accurate long reads (HiFi reads could be ABI Sanger quality up to 40 kb). According to PacBio,

the SMRTbell Template Prep Kit (Pacific Biosciences) with 20 to 40 kb template preparation

using BluePippin Size Selection is recommended for WGS [14,68]. For ONT, a combination of

ligation sequencing, PCR sequencing, and rapid sequencing has been optimized for WGS

[60,69]. In particular, the Rapid Sequencing Kit (SQK-RAD004) could produce even higher

read lengths and some reads could be>2 Mb [70].

Combining data from both SGS and TGS in a “hybrid approach/assembly” can compensate

for the downsides of both approaches and is a cost-effective method because SGS data can cor-

rect errors in TGS reads [33,71–75]. Alternatively, the development of an advanced “hybrid”

approach, such as incorporating 10xGC data or medium-size single-molecule DNA fragment

selection and tagging before short-read sequencing, could be a practical strategy to increase

the continuity and accuracy of long reads [14]. While recent studies have highlighted the effi-

cacy and cost-effectiveness of 10xGC linked-reads in diploid aquatic species’ genomes [76–79],

the utility of this technology for complex and/or polyploid aquatic species is still being investi-

gated. According to 10xGC, the Chromium Genome Reagent Kit is ideal.

Regardless of the sequencing technology and approach (SGS, TGS, or hybrid), incomplete

and/or unfinished assemblies can still occur (e.g., those with gaps and fragments). Thus, addi-

tional techniques such as optical mapping (BioNano, San Diego, California, USA) and chro-

matin association (Hi-C) are highly recommended to facilitate contig joining and genome

assembly completion [46,80–83]. Use of the Hi-C method over BioNano has been observed in

aquaculture species (Table 1). The most widely used kit is the Proximo Hi-C Kit provided by

Phase Genomics (https://www.phasegenomics.com/hi-c-kits).

Step 5: Select the best possible DNA source and DNA extraction method

The extraction of high-quality DNA is the most important aspect of a successful genome proj-

ect. Given the potential breadth of aquaculture species, each with their own peculiarities,

extracted high-molecular-weight DNA should be free of contaminants either from the sub-

jected material itself or from the DNA extraction procedure (e.g., polysaccharides, proteogly-

cans, proteins, secondary metabolites, polyphenols/polyphenolics, humic acids, carbohydrates,

and pigments). While recent publications and commercial kits have provided valuable guid-

ance [84–86], DNA extraction methodologies can be explored and adapted along the lines pro-

vided by the literature. In general, the minimum DNA input is required for Illumina and

10xGC > 3 ng, PacBio > 20 μg, ONT> 1 μg, BioNano > 200 ng, and Dovetail > 5 μg [14].

Depending on the project budget and sequencing platform accessibility, SGS and/or TGS tech-

nologies can be considered; we recommend using TGS that can deliver DNA of average size

>25 kb. Certain species (e.g., mollusks containing high levels of polysaccharide) warrant more

careful planning than others. A modified low-salt cetyltrimethylammonium bromide
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extraction protocol has produced excellent quality DNA of high molecular weight that is free

from contaminants and shearing [87]. Other important considerations are the heterozygosity

rate, amplification, and presence of other tissues/organisms [14,49]. The heterozygosity rate

can be reduced using a single individual for extraction. However, certain organisms require a

pool of individuals to retrieve a sufficient amount of DNA, which will increase the genetic vari-

ability and lead to a more fragmented assembly. Attractive strategies include generating an

inbred line of individuals for low-heterozygosity pooled sequencing and/or sequencing of hap-

loid tissues as the foundation for filtering out paralogous sequence variants. These have been

successful for cost-effective WGS and for optimizing the precision of allele and haplotype fre-

quency estimates in aquaculture breeding [19,20,24,42,55]. When few cells are available, the

genomic DNA must be amplified before sequencing, but this can often result in uneven cover-

age due to artificial effects (chimeric and/or fused unrelated sequences). The introduction of

unwanted/unrelated organisms (e.g., contaminants and/or symbionts) and/or tissues (e.g.,

mitochondria and/or chloroplasts) should be minimized at the extraction and library prepara-

tion stages. This requires using tissue with a higher ratio of nuclear over organelle DNA

because this can lead to higher coverage of the nuclear genome in the sequences. Whichever

approach is adopted, there will be a need to refine the method to achieve several important

quality metrics for genome sequencing.

Care should be taken for quality parameters (e.g., the chemical purity and structural integ-

rity of DNA) and two recent works have made the recommendations outlined below for long-

read technologies [14,49]. Generally, the measurement/quantification of purified DNA should

be performed using both spectrophotometric and fluorescence-based methods (e.g., qubit).

Samples with optical density (OD260:OD280) ratios of 1.8 to 2.0 are usually free of protein con-

tamination. DNA concentrations at a 1:1 ratio (determined by spectrophotometry and

fluorimetry, respectively) are very good indicators of whether they will be sequenced effi-

ciently. To determine the integrity of DNA samples, contour-clamped homogeneous electric

field or pulsed-field gel electrophoresis is appropriate when used with TapeStation or Frag-

ment Analyzer (Agilent Technologies, Santa Clara, California, USA). Analyzing isolated DNA

in this manner also facilitates decisions regarding shearing DNA to attain an optimal size

range for sequencing. Thus, it is always worth investing time in getting high-quality DNA that

will result in high-quality data and assembly to save time and money.

Step 6: Check the computational resources and requirements

Installing open-source tools in one’s computational environment is not always either straight-

forward or trivial. It generally poses three potential problems: (1) the prerequisites of the tools

created by diverse developers employing diverse programming frameworks differ; (2) the

installation of various software items in one environment can lead to hard-to-resolve software

dependency conflicts; and (3) upon successful installation, maintaining the environment and

ensuring that all tools (including changes and updates) are working as expected remain diffi-

cult. Therefore, managing the data analysis environment becomes increasingly complex when

a project requires many tools for genomic data analysis. While addressing the importance of

the appropriate data and computing infrastructure to genome projects is difficult, the two fol-

lowing options (see Step 7: maximizing in-house workers or collaboration and outsourcing

from the service provider) can be considered.

Access to high-performance computing or cloud-based computing systems is crucial for

genome projects that require a large number of computing resources. As a general guide, the

successful assembly of a moderately sized diploid genome (approximately 1 Gb) using software

pipelines (Tables 1 and 2) requires a minimum computing resource of 96 physical central
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processing unit (CPU) cores, 1 TB of high-performance random-access memory (RAM), 3 TB of

local storage, and 10 TB of shared storage [14]. However, the guide is scalable based on the

amount of data, genome size, heterozygosity rate, and ploidy. Please note that runtimes, memory

requirements, number of CPUs, and computational costs will increase geometrically because

genome assembly is an all-by-all comparison. However, hard drive space to store raw and/or

intermediate data (e.g., storage space) will increase linearly as the total amount/depth of coverage

required does not dramatically change as genomes increase in size. In addition, the recommenda-

tions stated here will likely apply to larger and more complex genomes (e.g., crustaceans with

numerous chromosomes) but at a slower rate and with higher computing resources and costs

(obtaining more computing resources will increase costs). If participants’ or collaborators’ institu-

tions are equipped with large in-house high-performance computing resources, they will likely

have more direct access and practical assistance in their genome project. Otherwise, cloud-based

computing is a potential solution that has been widely emphasized in previous works including

easy-to-follow steps [88–90]. While cloud computing provides flexibility, competitive pricing, and

continually updated hardware and software, it still requires assistance from information technol-

ogy (IT) specialists to set up suitable cloud-based software. Thus, users should consider all possible

options (including their research budget) to achieve the best outcome.

Step 7: Choose the best computational design and pipeline

Optimizing a computational design and securing sufficient computer resources are essential

steps to succeed in a genome assembly and annotation project. In addition, computational

proficiency and literacy have become vital skills for biologists to design and interpret big data

analyses and multi-omics studies [48]. Given the vast range of computational tools and

requirements (different resource demands between assembly and annotation for each species),

general suggestions are provided on the computational aspect. However, when establishing the

best and most cost-effective computational design and requirement, it is important to consider

three options: (1) maximizing in-house workers or collaboration; (2) outsourcing from a ser-

vice provider; and (3) simulating data with different settings. Ultimately, the most suitable and

practical approach in methodological computational biology research is recommended

because there is no perfect computational design for genome assembly and annotation.

Before embarking on any actual data analyses, the overall goals should first be defined by

understanding in-house workers and facilities because computational design requires exten-

sive learning of computer and biology knowledge, which is a great challenge for most wet lab

researchers/groups. If in-house workers and computer facilities are not ready to deliver suc-

cessful outcomes, cross-disciplinary collaborations (computer science, data science, bioinfor-

matics, and biology) could present great solutions. Initiating and successfully maintaining

cross-disciplinary collaborations can be challenging but are highly rewarding because the com-

bination of methods, data, and interdisciplinary expertise can achieve more than the sum of

the individual parts alone [91].

Alternatively, work can be outsourced to a service provider. Outsourcing has the following

benefits: (1) no need to hire more employees for computational design and analysis, which will

reduce labor costs; and (2) there are more talents available at well-equipped companies that

are very specialized in specific research fields. However, outsourcing also has the following dis-

advantages: (1) a lack of control as a contractor; (2) limited methods of communication (e.g.,

phone, e-mail, or online chat); and (3) the potential danger of poor quality work due to the

inability to optimize pipelines (e.g., parameters) and outcomes.

No matter which approach is taken, the essential part is to have firsthand experience to

select proper computational design and pipeline and to accurately interpret analyzed genome
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data. Due to its extensive range of analytical tools and application areas, employing an effective

simulator (from the quality of raw reads to assembly evaluation) has become an essential step

for benchmarking genomic and bioinformatics analyses [92–94]. In simulations, considering a

(very) large number of datasets is generally not a problem, except when the analysis of each

dataset is hugely computationally expensive (e.g., in the genome assembly stage). In practice,

one should generate and analyze as many datasets as computationally feasible before embrac-

ing real empirical studies, particularly before undertaking real assemblies. In large genome

assembly, simulating assemblies of down-sampled real data (e.g., 30× coverage/depth of

genome) would be very useful for selecting the best pipeline and parameters without requiring

too much computational time or cost. Ultimately, a simulation’s practical relevance depends

on the similarity between the considered simulation settings and the real datasets in the area of

application. The new method may be assessed in different ways depending on the context (e.g.,

by conducting simulations, applying the method to several real datasets, applying flexible

parameter settings, and checking the underlying assumptions in practical examples). There-

fore, simulations should not be limited to artificial datasets that correspond exactly to the

assumptions underlying the new method as this would favor the new method [61,95–98].

Step 8: Assemble the genome

Regardless of which pathway/strategy is chosen, the TGS approach is recommended over the

SGS or hybrid approaches. In general, using multiple programs at each stage to predict the

best assembly and annotation (Table 2) is also recommended because each approach and tool

has limitations based on the problems inherent in the different algorithms and assumptions

used. If the abovementioned steps (Steps 1–7) are met, the recommended flowchart and/or

guideline for genome assembly, annotation, maintenance, and community effort would be as

shown in Fig 1, which could be broadly applicable to any species. The rationale of each compu-

tational design, workflow, and decision tree is well described in Jung and colleagues [14],

Fig 1. Recommended flowchart for genome assembly and annotation. NGS, next-generation sequencing.

https://doi.org/10.1371/journal.pcbi.1008325.g001
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including the background information for each of their steps and the spectrum of available

analytical options. Following the workflow and decision tree described by Jung and colleagues,

the recommended tools herein are the TGS pipeline: PacBio/ONT read sequencing (remove

all contaminated DNA; plastids/bacterial contamination)! read quality assessment, evalua-

tion, and filtering! assembly! error correction and polishing using SGS reads! assess-

ment! chromosome-level assembly using BioNano and Hi-C data. Several recent assemblies

adopted from this pipeline (or similar) have shown notable improvements in the assembly of

intergenic spaces and centromeres [33,72]. A potential assembly outcome from the new

SEQUEL II (HiFi) reads would be even more promising (see Step 4) compared to its early ver-

sion SEQUEL. In the SGS pipeline, if the target is a diploid organism, starting from 10xGC

read sequencing over Illumina reads is ideal. Based on the results of the hybrid-based assem-

blies, the recommended pipeline starts from PacBio/ONT, and 10xGC read sequencing greatly

helps build a highly accurate contiguous genome [78]. However, all assembly approaches/

designs derived only from sequence reads will still contain misassemblies (inversions and

translocations), these are mainly caused by the inability of both sequencing and assembly

pipelines to cope with long tracts of repeat sequences or high levels of heterozygosity and poly-

ploidization. Thus, using BioNano and Hi-C data is highly recommended for reaching chro-

mosome-level assembly because these two methodologies/technologies can improve the

assembly quality by validating the integrity of the initial assembly, correcting misorientations,

and ordering the scaffolds.

Step 9: Check the assembly quality before annotation

In the shotgun sequencing era, assembling a new genome mostly relies on computational algo-

rithms and experimental designs (see Steps 6 and 7). The performance of such algorithms and

designs, read lengths, insertion size of sequencing libraries, read accuracy, and genome com-

plexity determines the accuracy and continuity of the genome assembly. Therefore, while esti-

mating assembly quality is an unpredictable and challenging task that requires several statistical

and biological validations, it remains an important step for a high-quality genome. Typically,

the quality assessment for draft assemblies is carried out via statistical measurements and align-

ment to a reference genome (if available) [99]. These include overall assembly size (determining

the match to the estimated genome size), measures of assembly contiguity (N50, NG50, NA50,

or NGA50; the number of contigs; contig length; and contig mean length), assembly likelihood

scores (calculated by aligning reads against each candidate assembly), and the completeness of

the genome assembly (Benchmarking Universal Single-Copy Orthologs [BUSCO] scores and/

or RNA-seq mapping) [100,101]. In computational biology, N50 is a widely used metric for

assessing an assembly’s contiguity, which is defined by the length of the shortest contig for

which longer and equal-length contigs cover at least 50% of the assembly. NG50 resembles N50

except for the metric, which relates to the genome size rather than the assembly size. NA50 and

NGA50 are analogous to N50 and NG50 where the contigs are replaced by blocks aligned to the

reference [99]. Thankfully, recent bioinformatics tools offer an automated pipeline to compute

and evaluate the new genome quickly and accurately in a practical setting [44,102,103].

Additional strong indicators of quality include agreement with data on quantitative trait

loci, expressed sequence tags (ESTs), fluorescent in situ hybridization experiments employing

bacterial artificial chromosome clones, and the genome assembly’s contiguity with a chromo-

some-level genetic map. If the initial assembly attempt is unsatisfactory, three specific areas

(contiguity, accuracy, and completeness) should be considered to determine the best path for-

ward to improve the new assembly’s quality [14]. Generally, the best way to address high con-

tig numbers with low average size is to acquire and incorporate more TGS or 10xGC (see Steps
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3 and 4: hybrid assembly approaches) reads. When attempting to increase assembly quality,

adding more and longer TGS reads tends to be more helpful for bridging existing contigs by

increasing the size of the average contig; then, subsequently adding further BioNano and Hi-C

data improves read accuracy and assemblies’ overall contiguity. Unfortunately, additional Bio-

Nano and Hi-C data without TGS reads are unlikely to help increase the assembly quality

because the data are usually ineffective at assisting hybrid assemblers span gaps between exist-

ing contigs [14]. To obtain a complete genome, applying LR_Gapcloser, a fast and memory-

efficient approach using long reads, would be an excellent choice to close gaps and improve

the contiguity of genome assemblies [104].

Step 10: Genome annotation

Unlike advanced and revolutionized genome sequencing and assembly, getting genome anno-

tation correct remains a challenge. Annotation is the process of identifying and describing

regions of biological interest within a genome (both functionally and structurally). While there

are various online annotation servers (Table 3), the intended use of the curated data needs to

be clearly defined after considering the two options addressed in Step 7 (maximizing in-house

workers/collaboration and outsourcing) because the gene-finding problem in eukaryotes is far

more difficult than that in prokaryotes such as bacteria. This procedure requires advanced bio-

informatics skills, pipelines, and computing resources and consists of three main steps: (1)

identifying noncoding regions; (2) identifying coding regions (called gene prediction); and (3)

attaching the biological information of these elements.

Recent works have described genome annotations well [13,105–109]. However, it is highly

recommended that beginners select automatic or semiautomatic annotation methods (includ-

ing the workflow and guideline in Fig 1) because manual annotation can be very time- and

labor-intensive and expensive. Note that while automatic procedures help accelerate the anno-

tation process, they decrease the confidence and reliability of the outcomes because results

from different servers and/or databases are often dissimilar [106,110,111]. Furthermore, auto-

matic annotation algorithms, frequently based on orthologs from distantly related model

organisms, cannot yet correctly identify all genes within a genome and manual annotation is

often necessary to obtain accurate gene models and gene sets [106,110,111]. Thus, a scheme to

obtain consensus annotations by integrating different results, a semiautomatic method, is in

demand because this could balance automatic and manual approaches, which would increase

the reliability of the annotation while accelerating the process [106,110,111]. In general, the

identification of noncoding regions includes small and long sequences including repetitive

and transposable elements (Fig 1 and Table 3). Despite an explosion of interest in noncoding

data and the massive volume of scientific data, selecting the best strategy to annotate and char-

acterize noncoding RNAs is a daunting task because of the strengths and weaknesses of each

computational and empirical approach [112]. After screening noncoding regions (e.g., repeat

masking and transposable elements), elements of the gene structure (e.g., introns, exons, cod-

ing sequences [CDSs], and start and end coordinates) can be predicted for coding regions.

Both ab initio and evidence-based prediction approaches are widely used as each approach

has pros and cons. While Augustus and SNAP are the most popular tools for ab initio predic-

tion, they still necessitate the information of the closely related gene and genome model for

screening against the newly sequenced genome. By contrast, evidence-based prediction usually

uses results obtained by aligning ESTs, protein sequences, and RNA-seq data (results are even

better with full-length Iso-Seq data from PacBio or ONT) to a genome assembly as external

evidence. Trained gene predictors (training with Augustus and SNAP to obtain more accurate

annotation results is highly recommended) can be used in MAKER, BRAKER, and StringTie
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Table 3. Commonly used genome annotation tools and programs.

Name Official link Main feature

Online pipeline

NCBI https://www.ncbi.nlm.nih.gov/genome/

annotation_euk/process/

Eukaryotic genome annotation. An automatic pipeline with flexibility and speed. Good for beginners

and easy to use.

https://www.ncbi.nlm.nih.gov/genome/

annotation_prok/standards/

Prokaryotic genome annotation. An automatic pipeline with flexibility and speed. Good for

beginners.

Ensembl http://ensemblgenomes.org/info/data/

annotation

https://asia.ensembl.org/info/genome/

genebuild/assembly.html

Genome annotation. An automatic pipeline for importing external data or using predictive

algorithms. Good for beginners and easy to use.

Annotation and prediction.

GenSAS https://www.gensas.org Integrates with JBrowse and Apollo. An automatic platform and pipeline for genome structural and

functional annotation. A user-friendly interactive portal that includes visualization and editing.

Good for beginners and easy to use.

GO FEAT http://computationalbiology.ufpa.br/gofeat/ Genome and transcriptome. A rapid automatic platform for functional annotation and enrichment.

A user-friendly portal that can export results in different output formats. Good for beginners and

easy to use.

Blast2GO https://www.blast2go.com Functional annotation. An automatic platform as a standalone application that has high throughput

and is interactive. A user-friendly program with easy start-up and low maintenance. Good for

beginners, but the pro version requires a commercial license.

AmiGO http://amigo.geneontology.org/amigo GO and GO enrichment analysis. A user-friendly web-based platform. Requires some configuration

of public databases with Perl, JavaScript, and Linux for the standalone application. A good web

resource for beginners, but local installation requires bioinformatics support.

eggNOG http://eggnogdb.embl.de/#/app/home Database of orthologous groups and functional annotation. An automatic platform and pipeline for

any genome that scales with speed and flexibility (15 and 2.5 times faster than BLAST and

InterProScan, respectively). Requires some configuration of public databases with various computer

languages for a standalone application. A good web resource for beginners, but local installation

requires bioinformatics support.

KAAS https://www.genome.jp/tools/kaas/ Ortholog assignment and pathway mapping. An automatic platform but has a limited number of

query sequences. A good web resource for beginners, but local installation requires bioinformatics

support.

Augustus http://bioinf.uni-greifswald.de/augustus/ Gene/genome structure and annotation using ab initio and transcript-based prediction. An

automatic platform and pipeline for eukaryotic genomes. Requires some configuration of public

databases with various computer languages and dependencies for a standalone application. A good

web resource for beginners, but local installation requires bioinformatics support.

GAAP http://GAAP.hallym.ac.kr A semiautomated genome assembly and annotation pipeline.

Command line interface

BRAKER https://github.com/Gaius-Augustus/BRAKER Gene/genome structure and annotation using a combination of GeneMark-ET, Augustus, and RNA-

seq evidence. A fully automated training platform for novel eukaryotic genomes. Requires 2 input

files: an RNA-seq alignment file in BAM format and a corresponding genome file in fasta format.

Good for intermediate and advanced users due to the requirement of several semi-unsupervised

pipelines and dependencies in local installation.

MAKER https://www.yandell-lab.org/software/maker.

html

Gene/genome structure and annotation pipeline. An easy-to-use semiautomatic pipeline for the de

novo annotation of newly sequenced genomes for updating existing annotations to reflect new

evidence or just to combine annotations, evidence, and quality control statistics for use with other

GMOD programs such as G/JBrowse, Chado, and Apollo. Good for intermediate and advanced users

due to the requirement of several semi-unsupervised pipelines and dependencies in local installation.

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/ Transcriptome assembly and differential expression analysis of RNA-seq. A semiautomatic pipeline

that includes TopHat (read mapping) and CummeRbund (visualization and exploration). Good for

intermediate and advanced users due to the requirement of several pipelines and dependencies in

local installation.

StringTie https://ccb.jhu.edu/software/stringtie/ A fast and highly efficient assembler of RNA-seq alignment that allows users to quantitate full-length

transcripts representing multiple splice variants for each gene locus. A semiautomatic pipeline using

a BAM alignment input file with RNA-seq read mappings (produced and converted by TopHat,

HISAT2, and Samtools). Good for intermediate and advanced users due to the requirement of

several pipelines and dependencies in local installation.

GLEAN https://sourceforge.net/projects/glean-gene/ An unsupervised learning system for gene structure prediction. A semiautomatic pipeline without

prior training. Lacks proper documentation and resources to run programs. Might be good for

advanced users due to the requirement of several pipelines and dependencies in local installation.

(Continued)
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Table 3. (Continued)

Name Official link Main feature

BLAST https://blast.ncbi.nlm.nih.gov A specialized algorithm to find regions of local similarity between sequences. A semiautomatic

pipeline for understanding biological sequences. A good web resource for beginners, but local

installation requires bioinformatics support.

Modeler https://evidencemodeler.github.io Software combining ab initio gene predictions and protein/transcript evidence into weighted

consensus gene structures. A semiautomatic pipeline with a flexible and intuitive framework for gene

structure annotation. Good for intermediate and advanced users due to the requirement of several

pipelines and dependencies in local installation.

GSNAP http://research-pub.gene.com/gmap A genomic mapping and alignment program for mRNA and ESTs. A semiautomatic pipeline for

gene structure annotation. Good for intermediate and advanced users due to the requirement of

several pipelines, configurations, and dependencies in local installation.

SNAP https://github.com/KorfLab/SNAP Semi-HMM-based nucleic acid parser gene prediction tool. A semiautomatic pipeline for gene

structure annotation. Good for intermediate and advanced users due to the requirement of several

pipelines, configurations, and dependencies in local installation.

TopHat https://ccb.jhu.edu/software/tophat/index.

shtml

A fast splice junction mapper for RNA-seq. A semiautomatic pipeline that includes Bowtie and

HISAT2 (read aligner). Good for intermediate and advanced users due to the requirement of several

pipelines and dependencies in local installation.

PASA https://github.com/PASApipeline/

PASApipeline/wiki

Program for assembling spliced alignments for genome annotation and gene structures. A

semiautomatic pipeline for gene structure annotation but useful for genome-guided and de novo

RNA-seq assemblies to generate a comprehensive transcript database. Good for intermediate and

advanced users due to the requirement of several pipelines and dependencies in local installation.

Evigan http://www.seas.upenn.edu/~strctlrn/evigan/

evigan.html

Predicts genes by integrating multiple evidence sources. An automated annotation program that

employs a Dynamic Bayesian Network. Model parameters are estimated by the Expectation–

Maximization algorithm, thus eliminating the need to curate training data. Good for intermediate

users due to the local installation requirement.

Noncoding RNAs

Ensembl https://asia.ensembl.org/info/genome/

genebuild/ncrna.html

Automatic annotation of noncoding genes but requires registration. A good web resource for

beginners.

LncFunTK http://sunlab.cpy.cuhk.edu.hk/lncfuntk/ Functional annotation of long noncoding RNAs. An easy-to-use automatic pipeline for newly

assembled genomes but requires several input files such as expression profiles (GTF format), TF

binding profiles (BED format), and miRNA-binding profiles. This is a good web resource for

beginners but might be better for intermediate and advanced users due to the requirement of several

input files, pipelines, configurations, and dependencies in local installation.

NONCODE http://www.noncode.org Database for noncoding RNAs except tRNAs and rRNAs. An automatic pipeline including 6 steps,

format normalization (BED or GTF), combination, filtering protein-coding RNA, information

retrieval, advanced annotation, and web presentation. This has a good user-friendly web interface for

beginners, but it might be better for intermediate and advanced users due to the requirement of

several pipelines, configurations, and dependencies in local installation.

deebBase http://rna.sysu.edu.cn/deepBase/ Small RNAs, lncRNAs, and circular RNAs

lncRNAdb https://rnacentral.org/expert-database/lncrnadb A database that provides comprehensive annotations of eukaryotic long noncoding RNAs. An easy-

to-use open public resource. An automatic pipeline for single sequences and a semiautomatic

pipeline for multiple sequences with bioinformatic scripts. This has a good user-friendly web

interface for beginners but it might be better for intermediate and advanced users due to the

requirement of several pipelines, configurations, and dependencies in local installation.

Repeat element

RepeatMasker http://repeatmasker.org A program to screen for interspersed repeats and low-complexity DNA sequences. A fast and

sensitive semiautomatic pipeline for assembled genomes. Good for intermediate and advanced users

due to the requirement of several databases, pipelines, and dependencies in local installation.

RepeatRunner http://www.yandell-lab.org/software/

repeatrunner.html

A CGL-based program that integrates RepeatMasker with blastx to identify repetitive elements. A

semiautomatic pipeline for assembled genomes. Good for intermediate and advanced users due to

the requirement of several databases, configurations, pipelines, and dependencies in local

installation.

RepBase http://www.girinst.org/repbase/update/index.

html

A database of prototypic sequences representing repetitive DNA from different eukaryotic species. A

semiautomatic pipeline for genome sequencing projects. This has a good user-friendly web interface

for beginners but it might be better for intermediate and advanced users due to the requirement of

several pipelines, configurations, and dependencies in local installation.

BAM, binary alignment map; BED, browser extensible data; ESTs, expressed sequence tags; GO, gene ontology; GTF, gene transfer format; HMM, hidden Markov

model; RNA-seq, RNA sequencing; TF, transcription factor.

https://doi.org/10.1371/journal.pcbi.1008325.t003
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(Fig 1 and Table 3). When extrinsic evidence from RNA-seq and protein homology informa-

tion is available, any program/pipeline could be useful for the de novo annotation of novel

genomes. In particular, if any RNA-seq data and a genome sequence are available, starting

from MAKER and BRAKER over StringTie would be a better choice for a first-time user

because MAKER and BRAKER include ab initio prediction (e.g., Augustus training) unlike

StringTie (evidence-based prediction only). However, MAKER could be a better choice for

updating existing annotations to reflect new evidence. If various gene prediction methods and

tools are used to derive the gene structure from a genome, combining these results to obtain

the single consensus gene structure via Evidence Modeler, GLEAN, Evigan, or GAAP is essen-

tial (Table 3). In particular, BRAKER, StringTie, PASA, and GAAP can update any gene struc-

ture annotation by correcting exon boundaries and adding untranslated regions and

alternatively spliced models based on assembled transcriptomic data. The evolutionary rapid

emergence of new genes (which quickly respond to changing selection pressures) could give

rise to orphan genes that might share no sequence homology to genes in closely related

genomes [113]. Combining the methods and results (especially MAKER, BRAKER and String-

Tie) could therefore prove effective in increasing the number and accuracy of annotation pre-

dictions assigned to orphan and any other young genes.

Subsequently, functional annotation—the process of attaching biological information to

gene or protein sequences—must be performed. This can be carried out through homology

search and gene ontology (GO) term mapping. To investigate gene function or predict evolu-

tionary associations, newly assembled sequences should be compared with gene sequences

with known functions to find sequences with high homology using BLAST, Cufflinks, TopHat,

GSNAP, Blast2GO/OmicsBox (referred to here as Blast2GO), and GAAP (Fig 1 and Table 3).

To label more diverse biological information, GO term mapping should be performed, which

allows information about gene-related terms and relations between genes to be stored in three

categories: biological processes, molecular functions, and cellular components. Mapping is the

process of retrieving GO terms associated with hits (mapping sequences) obtained via a previ-

ous homology search (mainly BLAST) that are accessible from AmiGO, Blast2GO, GO-FEAT,

and eggNOG-Mapper. Starting from Blast2GO would be a practical choice for a complete nov-

ice because it has more graphic user interface mode with explanations.

While Fig 1 and Table 3 provide a summary of useful tools with key features, it is highly rec-

ommended to be familiar with the regular update of public databases and pipelines. In addition,

understanding the performance and capability of various analysis from a detailed comparison

and instructions of common features of annotation tools could be a very important factor for a

successful genome annotation, structurally [7,111,114–117] and functionally [8,118–123].

Step 11: Build a searchable and sharable output format

Research papers and data products (researchers are usually required to submit raw sequencing

data to appropriate repositories such as Sequence Read Archive [SRA]) are key outcomes of

the scientific enterprise, including most successful genome projects. In addition, most geno-

mic projects/data potentially have value beyond their initial purpose but only if shared with

the scientific community, including refining assembly and annotation (see Step 12). In recent

years, genomic studies have involved complex datasets such that biologists have become “big

data practitioners” [124] because of improvements in high-throughput DNA sequencing and

cost reductions. As a result, genomic studies have become routine procedures, and there is

widespread demand for tools that can assist in the deliberative analytical review of genomic

information. What happens to the data after such projects end? In general, data or data man-

agement plans have become the central currency of science because open access, open data,
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and software are critical for advancing science and enabling collaboration across multiple

institutions and throughout the world and increasing public awareness [125]. For example,

when archiving sequencing data, repositories such as those run by the National Center for Bio-

technology Information (NCBI) and European Bioinformatics Institute (EBI) both provide

locations for data archiving and encourage a set of practices related to consistent data format-

ting and the inclusion of appropriate metadata. However, this is a difficult task for an individ-

ual research group due to the wide variety of data formats, dataset sizes, data complexity, data

use cases, ethical questions, and data collection/storage/sharing practices [124,126–128].

Despite its importance, major barriers remain to sharing data, software, and research products

throughout the scientific community because of the difficulties that interdisciplinary and/or

translational researchers face when engaging in collaborative research [124,125,127]. To this

end, recent works have provided principles that can be applied in genomic data/database proj-

ects, including data sharing and archiving via collaborations [124–128].

The following three fundamental questions on this topic should be considered: (1) Do you

want to share your data? (2) Do you have enough in-house expertise and infrastructure to

maintain and improve the data, including data storage space? (3) Do you want to form internal

and external collaborations to increase research productivity? While each research group has

different experiences and criteria in collaborations that included data sharing, engaging with

multisite collaborations is highly recommended to overcome more pitfalls, including open-

ended questions/concerns on genomic data. In addition, sharing open genomic data can easily

facilitate reproducibility and repeatability by reusing the same genomic data.

Step 12: Reach out to the community to refine the assembly and annotation

Dropping whole-genome shotgun sequencing costs and improvements in bioinformatics pipe-

lines and computer capabilities have resulted in the situation where a small lab can undertake

genome projects (assembly and annotation), and any organism can become a model species.

Ironically, the ease of sequencing and assembly presents another challenge for annotation:

contamination of the assembly itself, because errors in assembly can cause errors in the anno-

tation (structural and functional). In addition, it is important to ensure that methods are com-

putationally repeatable and reproducible because there have been numerous reports of

instability arising from a mere change of Linux platform, even when using the exact same ver-

sions of genomic analysis tools [49]. When including new data, it is also necessary to provide

software infrastructure to assist in genomic data updating. Hence, assembled genomes and

curated annotations should not and cannot be considered perfect, static, or “final products.”

Data must be maintained, refreshed, and updated to ensure their reuse and discovery.

Manual and continuous annotation is critical to achieving reliable gene models and ele-

ments; however, this process can be daunting and cost prohibitive for small research commu-

nities. While some genome consortia choose to manually review and edit sets via time- and

resource-intensive meetings that often require substantial expertise, this still provides opportu-

nities for community building, education, and training. In contrast, for small research groups,

it has been proposed that involving undergraduates in community genome annotation con-

sortiums can be mutually beneficial for both education and genomic resources [106]. Alterna-

tively, a collaborative approach using web portals such as Apollo, JBrowse, G-OnRamp

(Galaxy-based platform), and ORCAE [129–133] could be sufficiently robust and flexible to

enable the members of a group to work simultaneously or at different times to improve the

biological accuracy of annotation.

Despite any community-based participatory research approaches taken, the recruitment

and coordination of researchers are central to any research project due to the requirement of
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diverse expertise and collective learning. The ideal way would be to form a national/interna-

tional collaborative research partnership with diverse organizations [19,134–136]. Alterna-

tively, active promotion via social networks and/or web portal setup could be the most

effective way (e.g., Twitter, the Ensemble website, and blogs). Finally, build collective research

solidarity by attending conferences would be plausible. There have been previous successful

community efforts and involvement in plant (https://nbenth.com/annotator/index, https://

solgenomics.net, and https://www.helmholtz-muenchen.de/pgsb) and animal genome projects

(http://www.slimsuite.unsw.edu.au/servers/apollo.php, https://bovinegenome.elsiklab.

missouri.edu, http://www.gmgi.org/genomics-fish-shellfish, and https://www.sanger.ac.uk/

science/data/vertebrate-genomes-sequencing) using the Apollo instance with J Browsers

exhibits attractive and effective routes because it is always online, curators can log in whenever

they have time, and some minor revisions only require a few seconds (to confirm the gene

models). Others require up to 20 minutes to change (UTR boundaries and other structural

alterations).

After the initial setup, tasks include maintaining momentum and morale, according to the

recommendations described by Pedro and colleagues [137]. Participants bring their own expe-

riences and strengths into this effort. Availability of a training webinar (e.g., https://bit.ly/

3gauwn7 and https://bit.ly/36iNQds) would greatly help kick-start the process, alongside a

clear set of starting tasks (e.g., a list of genes/families or regions assigned to each curator) and

engagement by the community leader. The leader—an enthusiastic champion—can (1) drum

up support from their collaborators; (2) fuse community expertise with resources; (3) oversee

the project; and (4) act as a liaison between new members wanting to join, the infrastructure

provider, and existing annotators. Considering that the collective expertise within a group may

be extensive but diverse, it is necessary to standardize the curation for quality control of anno-

tations. To minimize any conflicts that may arise during the annotation process, it is important

(1) to have the initial training webinar by laying out clear rules and guidelines; (2) to select a

small subset of genes and ask a group of experienced curators to evaluate whether the decisions

taken in each case were uniform and sensible; (3) to record webinar training and comments

regarding consensus or disagreements for reporting back to the curation team and to edit the

tutorial and guidelines; (4) to address this by automated checks and controls (Apollo does not

allow this for now or makes it extremely difficult); and (5) to ask multiple reviewers to check

each region by reviewing the annotation history in Apollo (labor-intensive method).

Pooling the expertise, resources, and time of active communities could enable a wide range

of geographically distance members to participate in a common process, to share and validate

the identification of contradictions and the misrepresentation of data on the genomes [137].

After corrections, the datasets (manually verified gene sets) that emerge from these projects

can be used to improve the gene sets for closely related genomes and downstream analysis.

Dialog and collaboration between community members have an enormous impact. The result

of an entire community agreeing on and taking ownership of a single gene set is a major step-

ping-stone to accelerating the field. Handling the mammoth task of manual gene annotation

in the absence of dedicated funding or teams is a great challenge. However, our guidelines

could provide a manageable solution for the prospect of this approach becoming common-

place and will continue to engage in community-driven curation efforts.

Advice for new genomic users to select a basic assembly and annotation

pipeline

For a complete novice, our recommendation would be as below (not recommended starting

from Illumina only short reads assembly).
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(1) Pure long-read assembly: PacBio or ONT read sequencing (if combined, PacBio 40X and

ONT 25X, or 60X for a single platform)! CANU assembler (alternatively Flye)!

BUSCO assessment!Make a decision to add more sequencing data or proceed next step

(See Confirm and Refine in Fig 1)!Optional BioNano with RefAligner (still expensive

compared to Hi-C data)!Hi-C with 3D-DNA (alternatively HiRise or AllHiC)! Gap-

closing with LR_Gapcloser! Arrow with long-read (alternatively Racon) or Pilon pol-

isher with short-read! BUSCO assessment.

(2) Hybrid assembly: 10xGC read with Supernova! PacBio or ONT read with CANU (alter-

natively MaSuRCA)! The rest are same with “Pure-read assembly” from BUSCO assess-

ment to BUSCO assessment.

(3) Annotation: NCBI or EBI (a web-based automatic pipeline)! If not, proceed a semiauto-

matic pipeline starting from structural annotation! RepeatMasker! Ab initio Augustus

training with MAKER (alternatively BRAKER)! Evidence-based prediction (RNA-seq)

with MAKER (alternatively BRAKER)!Noncoding RNA prediction with NONCODE!

Functional annotation with Blast2GO (alternatively AmiGO)! Genome Browser.

Conclusions

There are no gold standards for genome assembly and annotation. However, the availability of

NGS data (particularly TGS data) and their analytical tools has enabled the sequencing of sev-

eral high-quality genomes of species of importance in aquaculture in recent years. Beginners

and small research groups still face challenges, because genome assembly and annotation are

usually complex analytical procedures (or pipelines) requiring interdisciplinary collaborations

(from biology to computer science) and hefty costs for refining/maintaining the genome. The

recommendations addressed here are broad guidelines that could be considered to avoid com-

mon pitfalls throughout the whole-genome assembly and annotation process. However, the

comprehensive features (e.g., advantages and disadvantages) of each step and/or technology

have not been extensively discussed.

Finally, newly emerging technologies and analytical tools could dramatically improve end-

to-end genome assemblies and annotations in the future by replacing the years-long efforts of

the past with rapid and low-cost solutions. Meanwhile, emphasis should be placed upon the

following: First, define the achievable research aim. Second, avoid the trap of trying to secure a

perfect/complete genome assembly and annotation, which could lead to a never-ending proj-

ect. Third, perform assembly and annotation to gain firsthand experience, including in bioin-

formatics. Fourth, seek internal and external help and advice from experts. Lastly, be open to

sharing genomic data to both increase research productivity and promote public awareness.
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