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Abstract

Combining information from multiple sources is a fundamental operation performed by

networks of neurons in the brain, whose general principles are still largely unknown. Experi-

mental evidence suggests that combination of inputs in cortex relies on nonlinear summa-

tion. Such nonlinearities are thought to be fundamental to perform complex computations.

However, these non-linearities are inconsistent with the balanced-state model, one of the

most popular models of cortical dynamics, which predicts networks have a linear response.

This linearity is obtained in the limit of very large recurrent coupling strength. We investigate

the stationary response of networks of spiking neurons as a function of coupling strength.

We show that, while a linear transfer function emerges at strong coupling, nonlinearities are

prominent at finite coupling, both at response onset and close to saturation. We derive a

general framework to classify nonlinear responses in these networks and discuss which

of them can be captured by rate models. This framework could help to understand the diver-

sity of non-linearities observed in cortical networks.

Author summary

Models of cortical networks are often studied in the strong coupling limit, where the so-

called balanced state emerges. Across a wide range of parameters, balanced state models

explain a number of ubiquitous properties of cortex, such as irregular neural firing. How-

ever, in the strong coupling limit, balanced state models show an unrealistic linear net-

work transfer function. We examined, in networks of spiking neurons, how nonlinearities

arise as network coupling strength is reduced to realistic levels. We examine closed-form

solutions that arise from mean-field analysis, and confirm results with numerical simula-

tions, to show that nonlinearities at response onset and saturation emerge as coupling

strength is reduced. Critically, for realistic parameter values, both types of nonlinearities

are observed at experimentally-observed firing rates. Thus, cortical network models with

moderate coupling strength can account for experimentally observed cortical response

nonlinearities.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008165 September 17, 2020 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sanzeni A, Histed MH, Brunel N (2020)

Response nonlinearities in networks of spiking

neurons. PLoS Comput Biol 16(9): e1008165.

https://doi.org/10.1371/journal.pcbi.1008165

Editor: Hermann Cuntz, Ernst-Strungmann-Institut,

GERMANY

Received: November 29, 2019

Accepted: July 19, 2020

Published: September 17, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: AS and MH were supported by the NIMH

Intramural Research Program and by NIH BRAIN

U01NS108683. NB was supported by NIH BRAIN

U01NS108683. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-8758-1810
http://orcid.org/0000-0001-8235-7908
http://orcid.org/0000-0002-2272-3248
https://doi.org/10.1371/journal.pcbi.1008165
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008165&domain=pdf&date_stamp=2020-09-29
https://doi.org/10.1371/journal.pcbi.1008165
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Introduction

The ability of the brain to perform complex functions relies on circuits combining inputs

from several sources to make decisions and drive behavior. The principles governing how

different inputs are combined in neuronal circuits have yet to be uncovered. One of the lead-

ing theoretical models for cortical dynamics and its dependence on inputs is the balanced

network model [1, 2]. In this model, a ‘balanced state’ in which excitation and inhibition

approximately cancel each other emerges dynamically, without fine tuning, in the strong

coupling limit. This model captures in a parsimonious fashion multiple aspects of cortex

dynamics. In particular, it leads to irregular firing [1–4], wide firing rate distributions [1–3,

5], and weak correlations [6] (but see [7–9]). These properties match experimental observa-

tions [6, 10–15] and seem to be universal features of strongly coupled units, as they emerge

in strongly coupled networks of binary units [1, 2], current-based spiking neurons [4, 5], and

conductance-based spiking neurons [16]; although the underlying operation mechanism

might differ [16]. Another feature of strongly coupled neural networks is the linearity of the

relationship between input rate and mean population response, i.e. of the network static

transfer function, which emerges even when the single neuron response is highly nonlinear

[1, 2, 4, 16]. This property, however, is problematic for different reasons. First, it limits the

possible computations implementable by such networks, as nonlinearities are fundamental

to perform computations, and layers of networks with linear transfer functions can only per-

form linear computations. Second, it implies that different inputs should be summed line-

arly; a prediction which is contradicted by experimental evidence in cortex. In fact, multiple

studies have found that neural responses to preferred stimuli are suppressed by contextual

stimuli at high contrast and enhanced at low contrast (e.g. [17–20]). Third, linear combina-

tion of inputs fails to predict responses to natural images starting from those measured with

elementary stimuli [21].

Different mechanisms have been proposed to explain how nonlinearities can be pro-

duced in networks of neurons. One possibility is that nonlinear network response are gener-

ated by short-term plasticity [22]. However, the degree to which synapses are facilitated or

depressed in vivo is not known. Moreover, it would be informative to understand whether

nonlinear computations can be produced in networks with linear synapses. It has been

pointed out that nonlinearities can be produced in rate models featuring a power-law trans-

fer function [23, 24]. In particular, it has been shown that these models can produce satu-

rated response while preserving contrast invariant tuning [23], and that these features are

reproducible in simulations of conductance-based neurons [23]. In the stabilized supra-

linear network model (or SSN [24]), power-law transfer functions have been used to explain

a variety of nonlinearities observed in cortex [25]. While these papers have been successful

in explaining experimental data, their relationship to more realistic networks of spiking

neurons is not fully understood. More generally, a theory of nonlinearities in networks of

spiking neurons, explaining under what conditions they can be generated and what are the

underlying mechanisms, is missing.

In this paper, we investigate analytically and numerically the response of networks of cur-

rent-based integrate-and-fire neurons as a function of coupling strength. We show that, while

a linear transfer function is obtained in the strong coupling limit, nonlinearities at response-

onset and at saturation appear as the coupling is decreased. We systematically characterize

how they are shaped by single neuron properties and network connectivity, and compare

them to nonlinearities observed in rate models with power-law transfer function. A prelimi-

nary version of these results has been presented as abstract in [26].
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Materials and methods

Networks of spiking neurons

We study a randomly connected network of excitatory and inhibitory leaky integrate-and-fire

neurons, using a theoretical framework that was developed in refs. [3, 4]. The network is com-

posed of N leaky integrate-and-fire (LIF) neurons, out of which NE are excitatory (E) and the

remaining NI = N − NE are inhibitory (I). The dynamics of the membrane potential of neuron

i (i = 1, . . ., N) obeys

ti
_ViðtÞ ¼ � ViðtÞ þ R IiðtÞ ; ð1Þ

where τi, R and Ii are the membrane time constant, the membrane resistance and the input

current of the neuron. The input current is generated by the sum of incoming spikes generated

by pre-synaptic neurons, which could be within or outside the network (external inputs); this

input is written as

R IiðtÞ ¼ ti
X

j

Jij
X

k

dðt � tkj � DÞ ; ð2Þ

where tkj is the k-th spike generated by pre-synaptic neuron j at time t − D, D is a synaptic

delay, and Jij is the synaptic efficacy from neuron j to neuron i. Every time the membrane

potential Vi reaches the firing threshold θ, neuron i emits a spike, its membrane potential is

set to a reset Vr, and stays at that value for a refractory period τrp; after this time the dynamics

continues as before. Assuming that connectivity is sparse, that a neuron receives a large fixed

number of presynaptic inputs from each presynaptic population, that each presynaptic spike

causes a small change in membrane potential (Jij/θ� 1), that temporal correlations in synaptic

inputs can be neglected, that all neurons in a given population are described by the same single

cell parameters, and that the network is in an asynchronous state in which all neurons fire at a

constant firing rate, one can use the diffusion approximation to compute the firing rate of neu-

rons in population A (A = E, I) [3, 27, 28]

nA ¼ trp þ tA
ffiffiffi
p
p
Z umax;A

umin;A

eu2

ð1þ erfðuÞÞdu

" #� 1

; ð3Þ

where umax,A and umin,A are the distance form threshold and reset of the mean input μA mea-

sured in units of noise σA, i.e.

umax;A ¼
y � mA

sA
; umin;A ¼

Vr � mA

sA
: ð4Þ

where means and variances are given by

mA ¼ tA½JAXKAXnAX þ JAEKAEnE � JAIKAInI� ;

s2
A ¼ tA½J

2
AXKXnAX þ J2

AEKAEnE þ J2
AIKAInI� :

ð5Þ

Here νAX are the average firing rates of neurons from outside the network providing inputs to

population A, while KAB and JAB are the number of connections and the synaptic efficacy from

population B (B = E, I and X for external) to population A. The right side of Eq (3) is some-

times referred to as the Ricciardi transfer function, or nonlinearity [27]. It relates the presynap-

tic input mean μ and noise σ of a neuron to its firing rate.

Note that the lack of temporal correlations in synaptic inputs imply both that synaptic time

constants are negligible, and that neurons fire with approximately Poissonian statistics [29].
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These temporal correlations have a quantitative but not qualitative effect on the single neuron

transfer function [30–34]. We also point out that all calculations of finite K and J effects in this

paper are done within the framework of the diffusion approximation, and therefore do not

include deviations from the diffusion approximation. However, mean field results obtained

with the diffusion approximation match quantitatively simulations of spiking neurons (e.g. see

comparison with network simulations in the results section). We also show, in the Supporting

Information (S2 Text), that the results obtained in this paper remain valid when the diffusion

approximation is relaxed and the shot-noise structure of the synaptic input is taken into

account.

Firing variability is quantified with the coefficient of variation (CV) of inter-spike intervals

(ISI), given by [4]

CV2 ¼ 2pt2n2

Z umax

umin

dueu2

Z u

� 1

dxex2

ð1þ erf ðxÞÞ2 ð6Þ

The network activity is found self-consistently from Eqs (3)–(5). As in [4] we investigated

two models: model A, in which all neurons have the same biophysical and input connectivity

properties, and model B, in which the excitatory and the inhibitory populations have different

properties.

Through the paper, we use the following parametrizations:

• In model A, we use JEE = JIE = J, JEX = JIX = gX J, JEI = JII = gJ, KEX = KEE = KIX = KIE = K and

KEI = KII = γK, so that the equations for means and variances become (note that in this

model the excitatory and inhibitory rates are equal, νE = νI = ν)

m ¼ tJK½nX þ ð1 � ggÞn� ;

s2 ¼ tJ2K½gXnX þ ð1þ g2gÞn� :
ð7Þ

where, without loss of generality, we have absorbed a factor gX in the external drive νX.

• In model B, we use JEX = gEX JEE, JIX = gIX JIE, JEI = gE JEE, JII = gI JIE, KEX = KEE, KIX = KIE and

KAI = γKAE. In this case, the equations for means and variances in both populations (A = E, I)
read

mA ¼ tAJAEKAE½nAX þ nE � gAgnI� ;

s2
A ¼ tAJ

2
AEKAE½gAXnAX þ nE þ g2

AgnI� :
ð8Þ

where we have again absorbed gAX in the external drive νAX. Moreover, we take inputs of

the form νAX = αA νX, where αE,I are fixed parameters while νX represents the intensity of the

input.

Throughout the paper, we use θ = 20mV, Vr = 10mV, τE = τI = 20ms, τrp = 2ms, and γ =

0.25. Note that the equations for the firing rates are independent on the synaptic delays D and

the total number of neurons N. We specify the values of these parameters at the end of the

results section, where our analytical results are compared with numerical simulations.

Rate models

In the last part of the results section, we analyzed which of the nonlinearities observed in spik-

ing networks emerge in rate models. We study this question using two specific rate models:

Ricciardi rate model: It is defined here using the single neuron transfer function of Eq (3),

assuming the noise amplitude is fixed. The f − μ curve of the A population is then defined
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as

fAðmÞ ¼ trp þ tA
ffiffiffi
p
p
Z ðy� mÞ=sA

ðVr � mÞ=sA

eu2

ð1þ erfðuÞÞ du
� �� 1

; ð9Þ

where σA is a fixed parameter. Once the f − μ curve has been fixed, rates in the network are

computed as above, i.e. a self-consistency condition is imposed which gives the mean input

currents μAs as a function of the external drive and recurrent interactions.

Supralinear Stabilized Network (SSN) rate model: In the SSN model, the f − μ curve is given

by a power-law

f ðmÞ ¼ k½m�n
þ
: ð10Þ

Rates are computed as for the Ricciardi rate model.

Results

Two nonlinear regions in network response at finite coupling

The main goal of this paper is to characterize systematically the network transfer function, that

describes how the average E and I firing rates depend on external inputs to the network, and in

particular how this transfer function depends on network parameters. This transfer function is

well understood in two opposite limits (see Fig 1 for an illustration of these two limits):

1. In the strong coupling limit, excitatory and inhibitory mean inputs need to ‘balance’ in

both E and I neurons, for total inputs to remain finite, leading to a linear relationship

between output and input rates [1, 2]. This linear relationship can only hold provided spe-

cific inequalities on network parameters are satisfied (see below). Furthermore, this linear

relationship only holds in a limited range of inputs, since output firing rates must be

bounded between zero and a maximal value imposed by the refractory period. Therefore,

the network transfer function is piecewise linear, as shown in Fig 1A.

2. In the opposite weak coupling limit, the recurrent inputs become negligible compared to

external inputs. Therefore, the network transfer function becomes in this limit identical

to the single neuron transfer function, Eq (3). In the presence of fluctuations in external

inputs, this transfer function is expected to be generically sigmoidal (see Fig 1B), with a

supralinear region at low rates, in the so-called subthreshold, or fluctuation-driven regime,

while it is expected to become sublinear at higher rates, because of the refractory period

(e.g. [35]).

Here, and in the following (except when specified otherwise), we adopt a simple definition

of coupling strength as the product between the number of projections per neuron K and the

synaptic efficacy J. Other potential definitions include the slope of the neuronal f-μ curve, as it

can change the sensitivity of neurons to their presynaptic inputs. We discuss this feature in

more detail in the Supporting Information (see S3 Text).

Intuitively, we expect that varying coupling strength should lead to an interpolation

between the two extremes shown in Fig 1. In particular, we expect two non-linear regions, one

at low rates, one at high rates (shown as red circles in Fig 1A), whose size should decrease as

coupling strength increases, separated by a linear region, whose size should increase as cou-

pling strength increases. Furthermore, we would expect naively that the low rate region is

PLOS COMPUTATIONAL BIOLOGY Response nonlinearities in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008165 September 17, 2020 5 / 27

https://doi.org/10.1371/journal.pcbi.1008165


supralinear, while the high rate region is sublinear. In the following, we show that these naive

expectations are not necessarily true, since other behaviors are possible.

To get more insight into what controls response nonlinearities, we need to analyze the

equations that give the average population firing rates as a function of network parameters,

Eqs (3)–(5). Here, we start by considering model A, in which E and I neurons have identical

parameters, leading to a single equation describing the firing rates of both populations. The

solutions of this equation depend on the single neuron transfer function, Eq (3). In particular,

Eq (3) tells us that the mean firing rate is given as a function of two variables, umax = (θ − μ)/σ
and umin = (Vr − μ)/σ, that describe the distance of the mean inputs to neurons from threshold

and reset, respectively, in units of input noise σ.

The high input/high rate regime. When the mean inputs are far above threshold (umax

� − 1), neural firing is dominated by deterministic drift in the neuron membrane potential,

and noise has only a weak effect on firing. In this regime, we use the first order term in the

expansion

eu2

1þ erf uð Þð Þ ¼
1
ffiffiffi
p
p �

1

u
þ

1

2u3
� � �

� �

; ð11Þ

valid for large and negative u, to obtain a simplified expression of Eq (3),

1

n
¼ trp þ t log

umin

umax

� �

: ð12Þ

Eq (12), is the transfer function of a single neuron receiving deterministic input, as expected

from the fact that the mean input is far above threshold in units of the input noise. Higher

order terms in expansion (11) provide corrections due to membrane fluctuations. Eq (12)

shows that the relation between ν and νX in this regime is nonlinear. With the additional

assumption |(umax − umin)/umax|� 1 (which is equivalent to θ − Vr� μ − θ, a condition satis-

fied for μ sufficiently above threshold θ), we can expand Eq (12) and obtain a direct relation

between ν and νX

nX ¼ nth þ n gg � 1ð Þ þ �
1

1 � trpn

" #

ð13Þ

where � ¼
Y� Vr
KJ is the fraction of recurrent excitatory inputs that are needed to fire

Fig 1. Network transfer function in the strong and weak coupling limits. Network response in strongly coupled

networks (left) features linear regions separated by abrupt transitions (red circles). In the weak coupling limit, the

network transfer function becomes identical to the single cell transfer function. It is supralinear at low inputs, but then

becomes sublinear at high inputs.

https://doi.org/10.1371/journal.pcbi.1008165.g001

PLOS COMPUTATIONAL BIOLOGY Response nonlinearities in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008165 September 17, 2020 6 / 27

https://doi.org/10.1371/journal.pcbi.1008165.g001
https://doi.org/10.1371/journal.pcbi.1008165


simultaneously to drive the membrane from reset to threshold, and νth = θ/KJτ is the external

input needed to generate spikes in the absence of noise, respectively. Eq (13) shows explicitly

that the nonlinearity in this regime is generated by the presence of the refractory period τrp,
while the parameter � controls the deviation from the linear prediction.

In Fig 2 first row, we compare the prediction of Eq (13) with the numerically computed

solutions of Eqs (3)–(5) for various values of K. Numerical solutions of the mean-field equa-

tions show that our approximation gives a good description of the transfer function, capturing

the nonlinearity observed close to saturation. As expected from Eq (13), the width of the non-

linear region close to saturation expands as � increases. For instance, for K = 1, 000, we have

� = 0.05, and the deviations from linear behavior are already significant when the firing rate is

less than half its maximal value. On the other extreme, for the unrealistically high value

K = 100, 000, � = 0.0005 and the non-linear region becomes extremely small.

Fig 2. Types of nonlinearities in network response. (A) Network transfer function obtained solving numerically Eqs

(3)–(5) for different values of K (indicated on top of each column). (B) CV of interspike interval distribution obtained

solving numerically Eq (6) (red lines). (C,D) Plots as in A, B but zoomed in the region of response onset. In all panels,

dotted green lines correspond to the values at which umax = 1 and umax = − 1, i.e. they indicate the separation between

the different operating regimes mentioned in the main text. Firing nonlinearities at response onset and saturation are

captured by approximated forms (black dashed lines) obtained for umax� − 1 (Eq (13)) and umax� 1 (Eq (15)),

respectively. For umax� 0, the transfer function approaches the balanced-state solution (gray dashed lines, Eq (17)); in

the region − 1< umax< 1, the first order corrections are of order 1=
ffiffiffiffi
K
p

and become negligible as K increases. In the

suprathreshold regime (umax� − 1), the CV approaches zero, i.e. firing becomes regular, with a decay with input

strength captured by Eq 14 (dashed line). Parameters: J = 0.2 mV, g = 5.0, gX = 1.

https://doi.org/10.1371/journal.pcbi.1008165.g002
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Consistent with the idea that, for umax� − 1, firing is driven by deterministic drift, the CV

of the ISI is found to be smaller than one in the high input regime (see Fig 2 second row); with

a value that becomes smaller and smaller as νX increases. Using Eq (11), we derive a simplified

expression for the CV starting from Eq (6) given by

CV2 ¼
KJ2

ðY � V2Þ
2
ð1 � trpnÞ

3
ð1þ g2gÞ þ

Y � Vr

KJ
1

1 � trpn
þ
nth
n

" #

: ð14Þ

This expression captures the decay of the CV observed in Fig 2, and shows that, as the neural

firing rate ν approaches its maximum value, the CV goes to zero as 1 − τrpν.

Low input/low rate regime. For membrane potential far below threshold (umax� 1), fir-

ing is driven by large stochastic fluctuations, so that noise can no longer be neglected. In this

regime, in the simplified framework of model A, Eq (3) is well approximated by [4]

tn ¼
Y � m

s
ffiffiffi
p
p

� �

exp �
Y � m

s

� �2
 !

: ð15Þ

The transfer function obtained solving Eq (15) is nonlinear and provides a good description of

the response for small rates. Specifically, the response shows threshold like nonlinearities, with

threshold close to νth; we will characterize this in more detail in the following sections. Consis-

tent with the fact that firing is produced by large fluctuations, the response is highly irregular

(CV of order one or above) (see Fig 2 second and fourth row). Note that the CV depends non-

monotonically on input rate, as shown in [36].

Intermediate linear region. Up to now, we have shown that network response is expected

to be nonlinear in the regions of rates corresponding to umax� − 1 and umax� 1; we will now

show that in the region between these two regimes the response is expected to be approxi-

mately linear. For fixed values of νX and ν, we can write umax = ω with ω constant of order one.

In this regime, neural firing is driven by input fluctuations if ω> 0, or a combination of deter-

ministic drift and fluctuations if ω< 0. The transfer function can be found iteratively for every

value of ν and νX as

nX ¼ nth þ ðgg � 1Þn �
o
ffiffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nX þ ð1þ g2gÞn

t

r

¼ nth þ ðgg � 1Þn �
o
ffiffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nth þ ggð1þ gÞn

t
�

o
ffiffiffiffi
K
p � � �ð Þ

s

:

ð16Þ

Eq (16) shows that, for ω = 0, the transfer function always matches the balanced-state solution

[1, 4]

n ¼
nX � nth
gg � 1

ð17Þ

For ω of order one, deviation from this solution are expected to be of order 1=
ffiffiffiffi
K
p

. To test this,

we plot in Fig 2 first row the balanced-state solution (gray dashed-lines): network responses

are found to be close to this solution, with a distance that decreases as K increases. The bal-

anced-state model [1] is characterized by a linear transfer function (given by Eq (17) with our

notation). Consistent with the fact that this model has been derived in the strong coupling

limit, we find that as K increases the network response converges to the balanced-state

solution.
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The above argument can be generalized for the more general case of model B. Using the

approximations derived above, we can deduce that nonlinearities in the network response will

appear any time that one or both populations have mean inputs far below threshold or above

threshold. Moreover, an approximately linear solution appears when both mean inputs are

close to threshold, with a scaling close to the one predicted by the balanced-state model up to

corrections of order 1=
ffiffiffiffi
K
p

. In the following sections we systematically classify these nonline-

arities as a function of the network parameters.

Saturation nonlinearities

In this section, we use a perturbative approach to characterize saturation nonlinearities, first in

model A and then in model B. We find that a key role is played by linear solutions obtained in

the strong coupling limit, i.e. balanced-solutions, which serves as a starting point for the per-

turbative expansion, and by the coupling strength, which determines the amplitude of the

deviation from linear response.

Model A. We start our analysis of saturation nonlinearities by computing numerically

responses in the mean field theory, i.e. solving Eqs (3)–(5), for different parameter values. The

network response, for mean input μ above threshold, depends on g, K, and J; it depends only

weakly on gX since, in this regime, responses depend weakly on noise amplitude. Results of the

numerical analysis are shown in Fig 3. Note that in this figure input firing rates are rescaled so

that the balanced limit is the same regardless of the parameters. The transfer function shows a

sublinear scaling as the network rate approaches saturation (Fig 3A–3C), but nonlinear effects

are seen at low rates, especially for small K; the CV decreases monotonically for sufficiently

large inputs (Fig 3D–3E). To understand the generality of these results, we turn to the approxi-

mated expressions of Eqs (13) and (14).

As shown in Fig 3A–3C, solutions of Eq (13) capture the observed nonlinearities across

input strength and parameter values. Surprisingly, they provide a good approximation of the

network transfer function also for |umax|� 1, i.e. beyond the range of validity of Eq (13). These

results suggest that Eq (13) can be used to understand nonlinearities in the whole range of

activity levels above response onset.

To classify possible nonlinear responses, we solve Eq (13) using a perturbative expansion

in �,

n ¼ n0 þ �n1 þ � � � ð18Þ

The zeroth order solutions are found taking � = 0 (strong coupling limit) in Eq (13); there are

two such solutions:

n0 ¼
nX � nth
gg � 1

; and n0 ¼
1

trp
ð19Þ

The first solution corresponds to the balanced-state solution of Eq (17) while the second solu-

tion corresponds to saturated activity, with firing at maximum rate.

Using the balanced-state solution in the � expansion, we get

n0 ¼
nX � nth
gg � 1

; n1 ¼ �
n0

ðgg � 1Þð1 � trpn0Þ
: ð20Þ

In the inhibition dominated regime (gγ> 1), which is thought to underlie cortical dynamics

[4], the first order correction is always negative and its absolute value becomes larger as the

rate increases; this shows that the output rate increases sublinearly with input rate, regardless

of the choice of parameters. Eq (20) also shows that the deviations from linear response
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increase with �. At finite coupling (� > 0), the first order correction is linear if τrpν0� 1; non-

linear corrections become large when �� (γg − 1)(1 − τrp ν0).

Using the saturation solution in the � expansion, we get

n0 ¼
1

trp
; n1 ¼ �

n0

trpðnX � nthÞ � ðgg � 1Þ
: ð21Þ

This equation shows that the rate approaches saturation as 1/νX for all connectivity parameters.

Note that, in the inhibition dominated regime, corrections with τrp(νX − νth)< (γg − 1) pro-

duce rates above saturation, which are not realizable. It follows that the saturation solution

appears only when the balanced-solution is larger than 1/τrp, i.e. the two solutions found at

� = 0 are mutually exclusive at finite coupling; this will not be true in model B.

As in the previous section, the approximate CV expression of Eq (14) captures the decay as

activity approaches saturation, ensuring that the suppression of irregular firing is expected for

all parameter values. However, unlike what happens for the rates, the approximated expression

departs from the mean field value as soon as umax� − 1 (see Fig 3 second row).

Model B. In this section, we characterize saturation nonlinearities in model B. Using the

perturbative method introduced for model A, we show that the network transfer function, at a

fixed external drive, has in some cases multiple solutions. In cases in which there is a unique

Fig 3. Saturation nonlinearities in Model A. Transfer function (first row) and CV (second row) computed

numerically from Eqs (3)–(5) and (6) (continuous lines) for different g (first column), C (second column) and J (third

column). As in Fig 2, colored dotted lines in the first row represent values of the rates at which umax = − 1. Black

dashed lines solutions of the approximated Eqs (13) and (14). This validation of the approximated rate equation

motivates the perturbative approach used in the main text and allows to classify nonlinearities in a general way.

Simulation parameters: J = 0.2 mV, K = 103 in (A,D); g = 5.0, J = 0.1mV in (B,E); g = 5.0, K = 103 in (C,F); in all plots gX
= 1, τ = 20ms.

https://doi.org/10.1371/journal.pcbi.1008165.g003
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rate value, depending on the connectivity matrix and coupling strength, the response can be a

sub-linear, linear or supra-linear function of the input.

As discussed in the methods section, model B features one excitatory and one inhibitory

population with rates νE,I and external drive νEX, νIX = αE,I νX. The transfer function of the net-

work is obtained solving Eqs (3)–(5) which, in the limit in which the inputs to inhibitory neu-

rons are much larger than threshold, is approximated by

aEnX � nth;E þ nE � ggEnI ¼ �
nE

1� trpnE

aInX � nth;I þ nE � ggInI ¼ b�
nI

1� trpnI
;

; if umax;E; umax;I � � 1;

8
><

>:

nE ¼ 0

aInX � nth;I � ggInI ¼ b�
nI

1� trpnI

; if umax;I � � 1 and umax;E � 1 ;

8
><

>:

ð22Þ

where � ¼
Y� Vr
KEEJEE

is the fraction of recurrent excitatory inputs that are needed to fire simulta-

neously to drive the membrane of an excitatory neuron from reset to threshold, b ¼
KEEJEE
KIEJIE

is a

parameter measuring the ratio of total recurrent excitatory synaptic strength onto excitatory

and inhibitory neurons, nth;A ¼
y

KAEJAEtA
(A = E,I) is the external firing rate needed to bring pop-

ulation A = E,I at firing threshold, in the absence of recurrent inputs and input fluctuations.

Admissible solutions of Eq (22), i.e. with rates in the range [0, 1/τrp], provide a good

approximation of the network transfer function. The advantage of using Eq (22) is that it is

polynomial in the rates and can be easily solved with an � expansion of the form

(
nE ¼ n

0
E þ �n

1
E þ � � �

nI ¼ n
0
I þ �n

1
I þ � � �

ð23Þ

Moreover, as discussed above, n0
E;I solutions describe, up to corrections of order 1=

ffiffiffiffi
K
p

, the net-

work response for |umax|� 1.

We now investigate the structure of the network transfer function using the � expansion.

To simplify expressions, in what follow we omit contributions coming from νth,A. For � = 0,

there are two solutions of Eq (22) in which neither population is saturated. The first of these

solutions, which will be called s1 or regular, has the first two terms of the expansion given by

s1 ðregularÞ ¼
n0
E ¼

gIaE � gEaI
gE � gI

nX ; n1
E ¼ �

gI
gE � gI

n0E
1� trpn

0
E
þ

gE
gE � gI

bn0I
1� trpn

0
I
;

n0
I ¼

aE � aI
gðgE � gI Þ

nX ; n1
I ¼ �

1

gðgE � gI Þ
n0E

1� trpn
0
E
þ 1

gðgE � gI Þ
bn0I

1� trpn
0
I
;

8
>><

>>:

ð24Þ

This solution corresponds to the classic ‘balanced’ solution [1, 2]. In the strong coupling limit,

regular solutions feature excitatory and inhibitory rate increasing linearly with input strength.

For finite coupling, the network transfer function deviates from this linear scaling. In particu-

lar, the response of one population is supralinear (sublinear) if the first order correction is pos-

itive (negative). For instance, the excitatory rate is a supralinear function of inputs if

bgEðaE � aIÞ > gIðaEgI � gEaIÞ ; ð25Þ

sublinear scaling appears if the above inequality is not satisfied. Analogous conditions holds

for the inhibitory population. In agreement with this result, we find numerically that solutions
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of Eqs (3)–(5) which approach s1 solutions for � = 0 transition from sublinear to supralinear as

β increases (Fig 4A).

The second unsaturated solution of Eq (22) obtained for � = 0 will be called s2 or supersatu-

rated and is given by

s2 ðsupersaturatedÞ ¼
n0
E ¼ 0 ; n1

E ¼ 0 ;

n0
I ¼

aI
ggI
nX ; n1

I ¼ �
1

ggI

bn0I
1� trpn

0
I
:

8
<

:
ð26Þ

In the strong coupling limit, the inhibitory rate increases linearly with the external drive while

the excitatory population remains silent due to overwhelming inhibition. Applying the same

Fig 4. Saturation nonlinearities in model B. (A-F) Numerical solutions of Eqs (3)–(5) for different parameters

(colored lines) and linear approximations predicted by Eqs (24), (26) and (27) in the strong coupling limit (dotted

lines). In each panel, the first (second) row shows the excitatory (inhibitory) firing rate as a function of νX. (A,B)

Nonlinear solutions obtained at finite coupling starting from solution s1 and s2 for different β values. (C-F) All

admissible cases of coexistence of multiple solutions at low νX; note that, as expected from our analysis, the number of

solutions changes as νX increases. Simulation parameters are: (A) gI = 3.9, gE = 8, αI = 1 αE = 7; (B) gI = 3.9, gE = 8, αI =

10, αE = 7; (C) gI = 4, gE = 3, αI = 5, αE = 2; (D) gI = 8, gE = 6, αI = 5, αE = 2; (E) gI = 1, gE = 2, αI = 0.3, αE = 2; (F) gI = 1,

gE = 2, αI = 3, αE = 2. In panels (A-F), gEX = gIX = 1; JEE = JIE = 0.2mV and KEE = KIE = 103; except in A and B where

KEE ¼
ffiffiffi
b
p

103, KIE ¼ 103=
ffiffiffi
b
p

.

https://doi.org/10.1371/journal.pcbi.1008165.g004
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approach as the one used for s1 solutions, we find that s2 solutions at finite coupling admit

only sublinear scaling (Fig 4B).

Up to now, we have assumed that only one of the two solution types appears for any given

value of νX. In what follows we discuss under what conditions the assumption is valid and

what happens if these conditions are not met. In this analysis, a key role is played by saturated

solutions of Eq (22) which are of three types

s3 ¼

n0
E ¼

1

trp
; n1

E ¼
� 1=trp

aEnXtrpþ1� ggE
;

n0
I ¼

1

trp
; n1

I ¼
� b=trp

aInXtrpþ1� ggI
:

8
>><

>>:

s4 ¼

n0
E ¼

ggE
trp
� aEnX ; n

1
E ¼ ggEn

1
I þ

n0E
1� trpn

0
E
;

n0
I ¼

1

trp
; n1

I ¼
� b=trp

aInXtrpþn
0
Etrp� ggI

:

8
>><

>>:

s5 ¼

n0
E ¼

1

trp
; n1

E ¼
� 1=trp

aEnXtrpþ1� ggEtrpn0I
;

n0
I ¼

1

ggI
1

trp
þ aInX

� �
; n1

I ¼ n1
E �

bn0I
1� trpn

0
I

� �
1

ggI
:

8
>><

>>:

ð27Þ

In the strong coupling limit, in s3 solutions, both populations are saturated; in s4 and s5 solu-

tions, only one population is saturated while the other changes linearly with inputs.

To analyze solution admissibility, for any given value of νX, we compute the rates predicted

by the � expansion up to first order and investigate for what parameters each solution is within

the [0, 1/τrp] range. Conditions obtained for general values of νX are given in the Supporting

Information (S1 Text). For simplicity, here we analyze results obtained for νX = 0; because of

response continuity, these results are valid also in a range of sufficiently small external inputs.

In this range of inputs, we find that there are seven possible scenarios, 3 with a single admissi-

ble solution (s1, s2 and s3), and 4 with three admissible solutions ({s1, s2, s3}, {s1, s2, s5}, {s1,

s3, s4}, {s2-s3-s4}). When there are three solutions, we expect at least one of these solutions to

be unstable; we will come back to this point during the analysis of network simulations and in

the discussion.

We find that s1 solutions are the only one admissible if

aI

aE
<

gI
gE
< 1 and ggE > 1 ; ð28Þ

analogously, s2 solutions are the only one that appear if

gI
gE
<
aI

aE
;

gI
gE
< 1 ; ggE > 1 and ggI < 1 : ð29Þ

Note that the conditions in Eq (29) are analogous to those for supersaturating solutions in the

SSN [24]. The first two inequalities ensure suppression of excitatory rate with increasing input

strength; reabsorbing JEA into αA, they correspond to the conditions OE< 0 and det J> 0

found in [24]. The last two inequalities prevent the existence of saturated solutions. Because of

the presence of the refractory period in our model, the mathematical expressions are different

in the SSN—the analogous condition in [24] being a2
EOE < OIa

2
I . Any time Eqs (28) or (29)

are violated, multiple solutions appear. All the above-mentioned combinations of coexisting

multiple solutions for νX� 0 are shown explicitly in Fig 4C–4F. Note that the admissibility
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conditions derived in SI depends on the value of νX. Therefore, as νX increases, the number

and the identity of solutions is expected to change; examples of this phenomena are given in

Fig 4, where s1-s5 (Fig 4D) or s1-s4 (Fig 4E) solutions merge for νXτrp� 0.05 leaving only one

admissible solution for larger inputs. Using the relations derived in SI, we also derive relations

between solutions that must be satisfied for arbitrary values of νX. First, we find that solutions

s3 and s5 are mutually exclusive and can never appear at the same time. Second, any time that

solution s1 and s2 are admissible at the same time, s4 solutions are not admissible. These two

results imply that, for any value of νX at most three saturation-generated solutions can coexist.

Finally, for large νX, only s3 solutions are admissible, i.e. as the input intensity increases, both

populations eventually saturate.

To summarize, we have shown that in model B at finite coupling, the network response can

have one or multiple solutions. We have provided a general framework which, given the net-

work parameters, predicts the expected number of solutions and their nonlinearities at finite

coupling.

Response-onset nonlinearities

In this Section, we characterize nonlinearities generated at response onset, first in model A

and then in model B. In both models we show that, at response onset, one or multiple firing

rates can coexist while, at larger input stimuli, response approaches the balanced-solutions

described in the previous section.

Model A. To understand the possible nonlinearities appearing at response onset in model

A, we rely on Eq (15), whose solution provide a good approximation of the network response

for umax� 1. In this regime, we were not able to find a useful perturbative expansion and

hence we will use a different approach, analyzing how the response evolves as a function of

input strength νX.

For small enough νX, effects of recurrent interactions in the network are negligible, feedfor-

ward inputs dominate over recurrent inputs, and the transfer function is given by

tn ¼

ffiffiffiffiffiffi
Kt
p

r
nth � nX
ffiffiffiffiffiffiffiffiffigXnX
p

� �

exp � Kt
ðnth � nXÞ

2

gXnX

� �

: ð30Þ

As shown in Fig 5A, Eq (30) captures the response for small rates: response rises exponentially

as νX approaches νth.

As νX increases, the network rate increases and recurrent inputs become relevant. In partic-

ular, recurrent inputs impacts network response as soon as their contributions to current

mean or noise are of the same order as feedforward input. Specifically, using Eq (15) we find

that this happens as soon as ν approaches the smaller of (νX − νth)/(1 − gγ) and νXgX/(1 + g2 γ).

At this point, the transfer function is found solving the implicit Eqs (3)–(5) (or its simplified

form Eq (15)). We find numerically (see Fig 5B–5D) that, up to the point at which the mem-

brane potential is close to threshold (umax� 1), there is either a single solution, or three solu-

tions to the equations for the population firing rate. When a unique solution is present, firing

increases supralinearly with inputs. For larger input values, the transfer function is determined

by the linear response of the balanced-state regime.

As pointed out in [37, 38], multiple solutions emerge because of the positive feedback

induced by the variance of the fluctuations in recurrent synaptic inputs and can be understood

as follows. Let us consider the fictitious dynamics given by [38]

t
dn
dt
¼ � nþ

Y � m

st
ffiffiffi
p
p

� �

exp �
Y � m

s

� �2
 !

: ð31Þ
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The fixed points of the above equation gives the network response at fixed input, i.e. the net-

work transfer function; when multiple solutions are present, one solution must be unstable.

This means there must be a solution for which the linearized dynamics

t
dn
dt
¼ ln ð32Þ

has λ> 0, with

l ¼ � 1 �
dumax

dn
2u2

max � 1

t
ffiffiffi
p
p

� �

exp ð� u2

maxÞ : ð33Þ

Since the above equation is valid for umax� 1, multiple solutions can be generated only if

the derivative of umax with respect to ν is sufficiently large and negative. This derivative is

Fig 5. Response-onset nonlinearities in model A. (A) Network response computed from Eqs (3)–(5) (red). (B) As in

panel A but in log-log scale to highlight the behavior at low rate. Response at low rates is determined only by

feedforward inputs (black, Eq (30)); effects of recurrent noise (blue) and mean (green) become relevant at higher rates,

with opposite effects on the number of solutions. (C-F) Effects of different parameters on the number of solutions in

network response; responses are shown in linear (top) and log-log (bottom) scale. Simulation parameters, unless

otherwise specified in legend, are K = 103, J = 0.5 mV, g = 5.0, gX = 1, τ = 20ms.

https://doi.org/10.1371/journal.pcbi.1008165.g005
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given by

dumax

dn
¼
@umax

@m

@m

@n
þ
@umax

@s

@s

@n
;

@umax

@m

@m

@n
¼

KJtðgg � 1Þ

s
;
@umax

@s

@s

@n
¼ � umax

ðg2gþ 1ÞJ2tK
2s2

:

ð34Þ

The above equation shows that, in an inhibition dominated network (gγ> 1), recurrent

input mean and fluctuation have opposite effects; while the mean inputs provide negative

feedback and hence cannot generate more than one solution, fluctuations provide positive

feedback and therefore can potentially lead to multiple solutions.

This is verified in Fig 5A, where we compare network response computed from Eqs (3)–(5)

with and without either recurrent input mean (μrc = ν(1 − gγ)) or noise (s2
rc ¼ nð1þ g2gÞ); it

show that noise is the key factor to produce multiple solutions.

We characterize the number of solutions numerically, since the nonlinearities make an ana-

lytic approach unfeasible. First we note that, out of the 5 model parameters in Eq (15) (τ, K, gX,

J, and g) only 4 are relevant in determining the response structure, since τ fixes the overall

scale of the rates. Results of the numerical investigation are shown in Fig 5B–5E. For all param-

eters, the low rate response rises exponentially up to the point at which recurrent inputs are no

longer negligible. After this point, the network shows either supralinear increases or multiple

solutions. Increasing J and K (Fig 5B–5C) decreases the response onset point, as expected by

the definition of νth, and lead to multiple solutions. Changing g (Fig 5D) has little effect on

response onset but it affects the slope of the balanced-solution. Finally, increasing gX (Fig 5E)

reduces the likelihood of having multiple solutions; this is due to the fact that recurrent input

noise becomes negligible compared to the feedforward input noise.

Model B. In this section we analyze the behavior of model B at response onset. As dis-

cussed above, at low input rates, responses are determined by feedforward inputs, and the

contribution of recurrent interactions are negligible. At larger input rates, when at least one

of the two population has umax of order one, recurrent interactions are relevant, the network

response is approximately linear and approaches one of the solutions derived in the previous

section (e.g., when only one solution is present, regular or supersaturated). The response

region connecting these two regimes is expected to be nonlinear; characterizing possible non-

linearities is the goal of this section. Unlike the case of model A, however, the large number of

parameters makes an extensive exploration of possible behaviors unfeasible. Therefore, we

focus our investigation on the role of coupling strength, which in model A was found to have a

major role in determining the type of response nonlinearity.

Examples of excitatory and inhibitory activity for regular and supersaturated solutions are

shown in Fig 6. We find that, in the region of inputs connecting response onset to the balanced

solution, rates can either have a unique or multiple solutions. When only a unique solution is

present, response increases supralinearly in the regular case (Fig 6A) and has a supralinear

increase which eventually becomes sublinear in the supersaturated case (Fig 6B). In model B,

there are two independent ways in which coupling strength can be modified to affect these

responses: uniform change (e.g. increase KEE with KEE = KIE) and relative change (e.g. fix KEE

and change KIE).

In regular solutions, a uniform increase in coupling strength reduces the region of nonlin-

ear response, promoting a more sudden transition to linear scaling (Fig 6A, first vs second

columns). The same modification in supersaturated solutions reduces the peak response of

excitatory cells and increases the likelihood of having multiple solutions (Fig 6A, first vs sec-

ond columns).
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The main effect of changing the relative coupling is to move the relative onset point of the

two populations, since it controls the ratio of νth,E and nthI . For instance, increasing KEE at fixed

KIE makes the excitatory population respond at lower input rates than the inhibitory popula-

tion. For small modifications, this leads to a larger region of supralinear response (e.g. first

column of Fig 6B light blue vs yellow lines). For larger modifications, it produces multiple

solutions, since the excitatory population is unstable on its own (e.g. first column of Fig 6B red

line). Finally, we note that similar effects could be produced modifying the relative onset point

of the two populations through changes in other parameters, such as JEE of JIE.

In model B, there are two independent sources of positive feedback which can generate

multiple solutions: excitatory-to-excitatory connectivity [39] and noise. Which of these

sources generates the observed multiple responses? We already know that, when network

structure reduces model B to model A, i.e. when excitatory and inhibitory populations have

the same properties, multiple solutions are generated by noise feedback. Are noise-gener-

ated multiple solutions limited to this specific case or a more general feature of model B? To

answer this question, inspired by model A, we computed numerically the network response

with and without recurrent noise, for different values of network parameters; results are

shown in Fig 7. At all coupling values, results along the line gE = gI are analogous to model

A, as expected. At strong coupling, for a significant fraction of parameter space, the pres-

ence of multiple solutions is generated by noise, as they disappear when noise is removed.

Interestingly, at weak coupling, noise seems to stabilize activity in a finite fraction of the

parameter space; this phenomenon could be due to the larger increase in inhibitory

response produce by its positive feedback coming from recurrent noise of inhibitory

population.

Fig 6. Onset-nonlinearities in model B. Responses obtained solving numerically Eqs (3)–(5) for regular (A) and

supersaturated (B) solutions at different coupling strengths and for different β = KEE JEE/KIE JIE. The size of the

nonlinear region decreases as the coupling strength increases and as the inhibitory activation threshold decreases.

In B, the lack of purple curve in the first row means that the firing rates are very close to zero in the whole range of

inputs. In the plots, response onset emerges around 0.1νth because of the value gEX = gIX = 10 used in simulations. As

showed in Fig 5F, this choice enhances the amplitude of the nonlinear region by decreasing the likelihood of having

multiple solutions. Other simulation parameters are:, JEE = JIE = 0.1mV, gI = 3.9, gE = 8. In (A) αI = 1 αE = 7; in (B)

αI = 10, αE = 7.

https://doi.org/10.1371/journal.pcbi.1008165.g006
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These results show that, in model B, response onset is nonlinear and that a full characteriza-

tion of response nonlinearities requires recurrent noise to be included in the model. This rep-

resents a qualitative difference with respect to rate models, where recurrent noise is not taken

into account. In the next section we show how the results obtained so far compare with rate

models.

Comparison with network simulations and rate models

Results on response nonlinearities described up to this point have been obtained using a mean

field analysis of networks of spiking neurons. In this section, we compare these results to other

two approaches widely used in the study of neural networks: network simulations and rate

models.

Network simulations. We perform numerical simulation in networks with either uniform

or Erdös–Rényi connectivity. In the uniform case, all neurons receive exactly the same num-

bers of external, recurrent excitatory and recurrent inhibitory connections, i.e. there is a fixed

in-degree for all types of connections. In the Erdös-Rényi (ER) case, the adjacency matrix spec-

ifying the existence of a synapse from any presynaptic to any (distinct) post-synaptic neuron

is composed of i.i.d. Bernoulli variables, with connection probability given by ratio between

mean number of connections and number of neurons in the presynaptic population. This

leads to fluctuations in numbers of in-degrees between neurons which generates, in the bal-

anced limit, a wide distribution of firing rates [1–3, 5]. The mean-field theory we have used so

far assumes a fixed in-degree. Simulations of networks with uniform connectivity are useful to

check that MF results are accurate, in spite of all the involved approximations (see Materials

and Methods); simulations of ER networks allow us to assess the robustness of our results to

heterogeneities.

Fig 7. Role of recurrent noise in generating multiple solutions at onset in model B. Number of solutions for

different combinations of gE and gI (red and blue correspond to single solution and multiple solutions, respectively)

computed without (first column) and with (second column) recurrent noise; the third column shows transfer

functions for specific combinations (indicated by triangles in the first two columns). Both for small (first row) and

large (second row) K, noise influences the number of solutions. (A-C) For some parameters, noise reduces the size of

the region with multiple solutions. (D-F) For others, noise increases the size of the region with multiple solutions.

Parameters: JIE = JEE, gIX = gEX = 1, αI = αE = 1.

https://doi.org/10.1371/journal.pcbi.1008165.g007
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Network simulations were performed with the simulator BRIAN2 [40] using networks of

NE = 11KEE excitatory and NI = 11KEI inhibitory neurons, receiving excitatory inputs from

ensembles of NEX,IX = 11KEX,IX independent Poisson units firing at rates νEX,EX, respectively.

We used uniformly distributed delays of excitatory and inhibitory synapses. Delays were

drawn randomly and independently at each existing synapse from uniform distributions in

the range [0, 100]ms (E synapses) and [0, 1]ms (I synapses) [38]. These extreme values ensure

no synchronized oscillations are present (see Discussion). For fixed network parameters, rates

were computed starting from a given initial condition and gradually increasing the external

drive. We explored different initial conditions to check for multiple solutions. Stationary

responses obtained for different representative parameter sets are shown in Fig 8. For connec-

tivity parameters leading to saturation nonlinearity, results of the network simulations closely

match predictions of the mean field theory. In the case in which multiple solutions are

expected from the mean field theory, either generated at saturation or at response-onset, simu-

lations capture the upper and lower branches of the response; the absence of the middle branch

suggests that it corresponds to unstable fixed points of the dynamics. Simulations obtained for

parameters generating supersaturation in the mean field model are found to depend on the

connectivity structure. For uniform connectivity, simulation follows the same trend of the

mean field prediction, with inhibitory rate increasing monotonically while excitatory rate

show an increase with inputs at low intensity and suppression at larger inputs. We note that,

although this mean response follows the trend of the mean field prediction, the network

showed oscillatory activity in the region of maximum excitatory response despite the broad

distribution of synaptic delays. In the case of random connectivity, on the other hand, we

found that the suppression of excitatory response is not present. This lack of supersaturation at

the population level is generated by an heterogeneity in responses of excitatory cells, with 66%

of cells which are silent while the remaining 33% show a weak increase in rate with the external

drive. Despite this difference, a common features of supersaturating solutions in networks of

spiking neurons, observed both in the mean filed theory and in simulations, is that the peak

response of excitatory cells is small. The intuitive reason why firing rates of excitatory neurons

are generically small in this scenario is that rates go to zero in the strong coupling limit.

These numerical results validate the analysis derived above as a good description of the

response in spiking networks, with the only exception given by the lack of supersaturation in

networks with random connectivity. In what follows we compare how rate models compare to

results obtained in spiking networks.

Rate models. Rate models are characterized by a fixed relation between input current μ
and firing rate response (here referred to as f − μ curve); this is not the case in spiking net-

works, where the firing rate also depends on the noise level which, in turns, depends on the

input rate. Here we focus on two specific models: a ‘Ricciardi’ model, in which the single unit

transfer function is given by the Ricciardi nonlinearity at fixed noise value, and the SSN [24],

where the single unit transfer function is a power law with an exponent that is larger than one;

a mathematical definition of these models is given in the Methods section. The comparison

between different models is performed computing responses in networks of given input struc-

ture αE,I and of recurrent inhibition gE,I; this choice ensures the same balanced-solutions in

all models and limits differences to the nonlinear response regions. In the Ricciardi-model,

parameters are as in spiking network, the only exception is the noise level, which must be spec-

ified. We fix this to be the value observed in the spiking-network model at threshold. In the

SSN, we fix parameters as in [24], i.e. we assume a powerlaw nonlinearity with exponent n = 2

and proportionality constant k = 0.04.

For networks producing saturation nonlinearities (Fig 8 first and second rows), the Ricciardi-

model recapitulates quantitatively responses observed in spiking networks. As mentioned during
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our analysis of saturation nonlinearities, this is due to the fact that in spiking network the

response in the balanced-regime and for larger rates depends weakly on the noise level. It follows

that the agreement between spiking networks and the Ricciardi model is valid for all saturation

nonlinearities discussed in model A and B. The SSN, on the the hand, shows substantial discrep-

ancies. In particular, for network structure generating sublinear response in spiking network

(Fig 8 first row), the SSN responds linearly; in the parameter conditions in which spiking net-

work shows multiple solutions at zero inputs and maximum firing at large inputs (Fig 8 second

row), the SSN shows supersaturation. These discrepancies are expected, since the SSN does not

Fig 8. Spiking-networks nonlinearities in network simulations and rate models. Comparison of responses of

excitatory (red) and inhibitory (blue) neurons computed with: mean field theory of spiking networks (colored lines in

first column and black dashed lines in second to fourth columns); network simulation with uniform (second column)

and random (third column) connectivity; rate models (Ricciardi model, fourth column, and the SSN, fifth column).

Different rows correspond to different values of αE,I and gE,I. Prediction of the mean field theory match numerical

simulations, with the only exception of the lack of supersaturation in networks with random connectivity. Spiking

networks present nonlinearities at saturation and at response-onset. Saturation nonlinearities are generated by the

refractory period and hence are captured only by the Ricciardi model and not by the SSN, which lack this ingredient.

These nonlinearities have effects also at low rate and constrain the parameter space over which the response is unique.

Response-onset nonlinearities have similar structure in the three models but in spiking networks are smaller in size and

feature multiple solutions generated by noise feedback. Network structure (from top): gE = 8, gI = 7, αE = 4, αI = 2; gE =

2.08, gI = 1.67, αE = αI = 1; gE = 4.5, gI = 2.9, αE = αI = 1; gE = 4.1, gI = 2.46, αE = 1, αI = 0.2; gE = 7, gI = 6, αE = 1, αI = 0.7.

In all simulations, for spiking-networks mean field, simulations and Ricciardi model: JEE = JIE = J; KEX = KEE = KIE = K;

gEX = gIX = 1. (except second row, where JEE = JIE 2.5/2.4 = J, and fourth row, where KEX = KEE = 2KIE = 2K); values are

400 for K and 0.2mV for J in all simulations except for noise driven bistability where J = 0.5mV. In Ricciardi model, σE =

σI = σ; σ matches noise at threshold in spiking neurons and is (from the top): 25mV, 10mV, 3mV, 5mV, 7mV. In the

SSN, k = 0.04, n = 2, WEE = WIE = 1, WAI = γgA except in second row, where WIE = 2.4/2.5 and WEI = γgI 2.4/2.5, and

fourth row where WEE = 2 and WEI = 2γgE.

https://doi.org/10.1371/journal.pcbi.1008165.g008

PLOS COMPUTATIONAL BIOLOGY Response nonlinearities in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008165 September 17, 2020 20 / 27

https://doi.org/10.1371/journal.pcbi.1008165.g008
https://doi.org/10.1371/journal.pcbi.1008165


include a refractory period, i.e. the ingredient needed to generate saturation nonlinearity. While

these nonlinearities can be captured by adding a refractory period to the model, our results show

that consequences of the refractory period appear at rates that are much lower than 1/τrp. First,

for moderate coupling, response is nonlinear for rates that are far from the maximum firing

rate. Second, saturation nonlinearities limit the parameter space in which the network has a

unique solution. In particular, the network structure used in Fig 8 second row is the one used for

supersaturating solutions in [24, 25]; our results show that these parameters produce multiple

solutions and saturation when the refractory period is taken into account (see Supporting Infor-

mation for more details).

We next focus on response-onset nonlinearities. In spiking networks, rates at responses

onset can either increase supralinearly or go through a region with multiple solutions; for

larger inputs, rates approach the balanced solutions. Example of these transitions are shown in

the last three rows of Fig 8. For network structure leading to supersaturating solution in spik-

ing networks, the same qualitative behavior is observed in rate models but quantitative differ-

ences are observed. First, because of feedback coming from recurrent noise, the supralinear

region at response onset is stiffer in spiking network. Indeed, the response in the Ricciardi-

model, where the noise amplitude is fixed and there is no positive feedback coming from

noise, is much less steep. A second major quantitative difference is that the peak excitatory rate

is smaller in spiking network and Ricciardi model with respect to the SSN. More generally, our

numerical analysis shows that response-onset nonlinearities occur in a smaller range of firing

rates in spiking networks and in the Ricciardi model than in the SSN. In the Supporting Infor-

mation (S3 Text), we show that this difference comes from the different shape of the f − μ
curve in these models. For network structures leading to multiple solutions at response-onset,

we should distinguish two cases: mean and noise generated multiple solutions. For some

parameters, positive feedback due to mean recurrent input generates multiple solutions; this

mechanism is also present in the Ricciardi model and in the SSN (Fig 8, fourth row). On the

other hand, when multiple solutions are generated by noise feedback in spiking networks,

there are no multiple solutions in rate models (Fig 8, fifth row); this is expected because in rate

models there is no positive feedback generated by recurrent noise.

Discussion

In this work, we have investigated responses in networks of spiking neurons at finite coupling.

In this regime, which has recently been suggested to underlie cortical dynamics [24, 25, 41,

42], we have shown that two types of nonlinearities emerge: response-onset and saturation.

The network response transitions between these two nonlinearities as feedforward input

increases; for intermediate inputs, the response matches that of the balanced-state model up to

corrections of order 1=
ffiffiffiffi
K
p

. Importantly, the influence of refractoriness emerges already at

rates that are much lower than the single neuron maximum response, producing sublinear or

supralinear response and affecting the number of solutions at low inputs. Therefore, both

types of nonlinearities can be relevant at activity levels observed in the brain. Our results have

been obtained using a mean-field analysis, but are also confirmed in numerical simulations of

large networks. Finally, we have analyzed which of the features of the response of spiking net-

works can be recapitulated by rate models.

Nonlinear operations are thought to underlie contrast dependent input summations

observed in cortex, e.g. in surround suppression [17, 18] and normalization [19, 20]. These

phenomena, which involve summation of responses to two different stimuli (e.g. two stimuli in

the receptive field or stimuli in center and surround), have been recently explained by the SSN

model [25]. In the SSN, because of the assumed power-law single neuron f − μ curve, the
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activity level smoothly modulates the effective coupling between units in the network: at low

inputs, cells are weakly coupled and driven by feedforward inputs; at larger inputs, recurrent

interactions become dominant and determine the network response. In the absence of struc-

tured connectivity, the increase of excitatory rates with feedforward input is supralinear for

small inputs and, depending on the parameter regime, becomes either linear or supersaturat-

ing for larger inputs [24]. When the model includes structured connectivity, it shows nonlin-

ear summation of responses to two different stimuli consistent with what is observed in cortex

[24, 25, 43], both in non-supersaturating and supersaturating regimes (Ken Miller, private

communication). Our work shows that all the response nonlinearities observed in the SSN in

the absence of structured connectivity are present in spiking networks. As in the SSN, these

nonlinearities emerge at response-onset, when coupling between units becomes strong enough

to dominate over feedforward inputs. However, unlike in the SSN, the f − μ curve in spiking

networks is supralinear only for a small region of inputs, and rapidly becomes vanishingly

small for smaller inputs, and linear and then sublinear for larger inputs. This feature limits the

range of rates over which response-onset nonlinearities unravel, both in regular (Figs 2, 5, 6

and 8) and supersaturated solutions (Figs 6, 8 and supporting Information S3 Text), and seems

to question the applicability of response-onset nonlinearities to explain some summation

properties observed in the cortex, since they emerge over rate changes up to tens of spk/s [19].

Note however that we cannot exclude having missed small regions in parameter space for

which more robust response-onset nonlinearities could occur. Also, one cannot exclude that

this issue might be alleviated by the use of more detailed spiking neuron models. Finally, the

nonlinearities in spiking networks discussed here refer to cases in which the strength of a sin-

gle stimulus is varied, while summation properties observed in the cortex arise in the SSN

when structured connectivity is considered. This suggests that structured connectivity could

yield nonlinear behaviors not captured by the analysis discussed here and which need further

investigation.

Our analysis suggests a different explanation of nonlinear summation in cortex than the

one proposed by SSN model. We found that, for finite coupling, saturation nonlinearities gen-

erate an activity dependent summation: at low intensity, inputs are summed linearly; summa-

tion becomes increasingly sublinear as the intensity increases. This nonlinearity emerges at

relatively low rates and evolves gradually over activity levels which span few hundreds spk/s, a

feature which compares favorably with some experimental results [19]. Moreover, unlike the

SSN, this model does not require supralinear input summation at low activity level, a feature

which has (to our knowledge) not been widely reported so far. Further experimental studies

are needed to understand which mechanism underlies nonlinear input summation in cortex.

We have found that, in networks of spiking neurons, firing irregularity, i.e. the CV of the

ISI, decreases monotonically in regular solutions for sufficiently large inputs. This effect is con-

sistent with the stimulus-driven suppression of variability that has been reported in various

experiments [44–48]. In our model, regardless of the specific parameters used, variability sup-

pression emerges as the mean input approaches firing threshold, a robust prediction which is

consistent with results from intracellular recordings [44, 45, 47, 49]. In addition, depending on

the parameters, our model can show supra-Poissonian variability (e.g. Fig 2B, see also [36]),

another phenomenon which has been widely reported experimentally [46]. It is important to

point out that the suppression of variability observed experimentally [44–48] could potentially

involve both ‘private’ and ‘shared’ variability components. Our model captures only the former

component, as the network is assumed to operate in the asynchronous irregular state. Hence,

our work differs qualitatively from other studies [43, 50], which focus on explaining the sup-

pression of the shared component of variability. Additional experimental and theoretical

investigations are needed to understand the degree to which private and shared variability
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contribute to the quenching of neuronal variability observed experimentally and its underlying

mechanisms.

Our analysis revealed that multiple solutions can appear at response-onset, produced by

noise-driven or mean-driven positive feedback, and at larger rate values, generated by single

neuron refractoriness. In both cases, neural response can assume one of three possible values;

combining these mechanisms, we find that, in spiking networks, there can be up to five coex-

isting solutions for every fixed value of the external drive. Even though the stability of these

solutions has not been investigated here, network simulations suggests that in the case three

solutions coexist, up to two of them can be stable (the one with lowest and highest rates), while

the intermediate solution is unstable. In the case of 5 coexisting solutions, up to three of them

can be stable (the ones with lowest, 3rd highest and highest rates) while intermediate solutions

are again unstable. Note that 5 coexisting solutions can also be generated in rate models with

refractoriness, as noted by Wilson and Cowan [51], while SSNs can support up to four fixed

points at fixed external drive, with only two being stable [52].

Multiple studies have found that fixed points can also become unstable due to oscillatory

instabilities, depending for instance on the distribution of synaptic delays [4, 53] These insta-

bilities can destroy bistability [4, 38] and, in some regimes, produce transitions between net-

work states which leads to an increase in irregularity and to large ‘shared’ variability [38, 39].

Moreover, it has been shown that, for certain parameters, the asynchronous state is stable only

for intermediate values of the external drive, while synchronous states exist both for low exter-

nal drive [4, 38, 39], and high external drive [4, 54, 55]. This pattern bears similarities with

experimental data obtained in primary visual cortex, both in monkeys [49] and mice [56]. In

addition, synchronous oscillations at low inputs can generate an effective supralinear transfer

function in a region with multiple (unstable) fixed points coexist, through time average of net-

work activity. In this context, our classification of multiple solutions could be used as a starting

point to systematically classify the possible oscillatory regions that can emerge in a network.

We developed a new approach to study network response at finite coupling strength, allow-

ing us to classify all possible deviations from linear response. Although this framework has

been derived in the case of one excitatory and one inhibitory population, it can be readily gen-

eralized to study models with multiple interacting populations. An important application con-

cerns the case of networks with one excitatory and multiple inhibitory populations, e.g. SOM,

PV and VIP cells. The interaction between these neuron types has been recently implicated,

among other phenomena, in the top-down modulation of activity during locomotion [57–61].

In particular, the observed change of modulation with context (dark vs visual stimuli) has

been explained with a rate model with supralinear f − μ curve, assuming a change in baseline

activity (low vs high) [62]. As we have shown in the present work, other scenarios exist close to

response onset in networks of spiking neurons, which might lead to alternative explanations of

the observed phenomena. Understanding the role of nonlinearities in this and other phenom-

ena will require additional theoretical and experimental work.

Nonlinearities studied in this contribution are generated uniquely from the interplay

between single neuron properties and network connectivity, using synapses with fixed efficacy.

Synapses in the brain exhibit changes at multiple time scales, which could affect qualitatively

the picture derived here. Further theoretical and experimental investigations are needed to

understand how the interplay between these mechanisms shapes response properties of net-

works in the brain.

To conclude, we have shown that a simple network of interacting excitatory and inhibitory

spiking neurons shows a rich repertoire of nonlinearities. Most neural systems receive infor-

mation from multiple inputs. This is true not only in sensory systems, where most of the cur-

rently available data come from, but also in associative areas, where information coming from
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different sensory systems is combined with an animal cognitive state to make decisions and

drive behavior. The general rules with which different inputs are combined for these and other

computations are still the subject of debate; our work provides the basis to systematically study

the biophysical constraints on these operations.
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