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Abstract

Proteins in cellular environments are highly susceptible. Local perturbations to any residue

can be sensed by other spatially distal residues in the protein molecule, showing long-range

correlations in the native dynamics of proteins. The long-range correlations of proteins

contribute to many biological processes such as allostery, catalysis, and transportation.

Revealing the structural origin of such long-range correlations is of great significance in

understanding the design principle of biologically functional proteins. In this work, based on

a large set of globular proteins determined by X-ray crystallography, by conducting normal

mode analysis with the elastic network models, we demonstrate that such long-range corre-

lations are encoded in the native topology of the proteins. To understand how native topol-

ogy defines the structure and the dynamics of the proteins, we conduct scaling analysis on

the size dependence of the slowest vibration mode, average path length, and modularity.

Our results quantitatively describe how native proteins balance between order and disorder,

showing both dense packing and fractal topology. It is suggested that the balance between

stability and flexibility acts as an evolutionary constraint for proteins at different sizes. Over-

all, our result not only gives a new perspective bridging the protein structure and its dynam-

ics but also reveals a universal principle in the evolution of proteins at all different sizes.

Author summary

The long-range correlated fluctuations are closely related to many biological processes of

the proteins, such as catalysis, ligand binding, biomolecular recognition, and transporta-

tion. In this paper, we elucidate the structural origin of the long-range correlation and

describe how native contact topology defines the slow-mode dynamics of the native pro-

teins. Our result suggests an evolutionary constraint for proteins at different sizes, which

may shed light on solving many biophysical problems such as structure prediction, multi-

scale molecular simulations, and the design of molecular machines. Moreover, in statisti-

cal physics, as the long-range correlations are notable signs of the critical point, unveiling

the origin of such criticality can extend our understanding of the organizing principle of a

large variety of complex systems.
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Introduction

Proteins, including the globular, fibrous, membrane and intrinsically disordered proteins, are

responsible for diverse functions in almost every process of cellular life. Globular proteins, as

the majority type of the proteins in nature, can fold from disordered peptide chains into spe-

cific three-dimensional (3D) structures on minimal-frustrated energy landscape [1–4]. Such

kind of 3D structures, which are encoded by the amino acid sequences, are known as native

states. It is worth noting that the native state of a protein is not static, but exhibits dynamical

fluctuations around the energy minimum. Experiments and molecular simulations have

shown that thermal fluctuations trigger the motions of proteins such as domain movements

and allosteric transitions, which enable the biological functions of proteins such as catalysis

[5], ligand binding [6, 7], biomolecular recognition [8], and transportation [9]. Uncovering

the relations between the structure and the function of proteins is a fundamental question in

molecular biophysics. To answer it, the fluctuations at the native states may provide a key.

One of the most fascinating properties of proteins is the long-range correlated fluctuations

around the native states [10–12]. Thanks to the long-range correlations, local perturbations to

any residue can be sensed by every other residue of the entire protein, even when the two sites

are spatially distant. Such a property plays an important role in the functionality of the pro-

teins. For example, for allosteric proteins, long-range correlations warrant the binding at one

site can be transmitted to other functional sites [13, 14], and enable the high susceptibility for

proteins in cellular environments. Based on the correlation analysis of structural ensembles

determined by solution nuclear magnetic resonance (NMR), it was already demonstrated

that the native proteins exhibit long-range correlations and high susceptibility in the native

dynamics [15]. Such a phenomenon is also in line with other theoretical and experimental

results, for example, the long-range conformational forces related to the hydrophobicity scales

of the proteins [16–20], the fractal dimension in the oscillation spectrum [21] and configura-

tion space [22], the slow relaxation of protein molecules in the solution [23, 24], the volume

fluctuation of allosteric proteins [25], and the overlap between the low-frequency collective

oscillation modes and large-scale conformational changes in allosteric transitions [26–30].

Accumulating evidence indicates that native proteins are not only stable enough to warrant

structural robustness, but also susceptible enough to sense the signals in the milieu, and ready

to perform large-scale conformational changes. However, the origin of such kind of dynamics

is still unclear.

In the present paper, we concentrate on the structure and the equilibrium fluctuation

dynamics of a large set of globular proteins determined by X-ray crystallography, ranging

from a single hairpin structure to large protein assemblies. Firstly, to elucidate the connection

between the long-range correlations and protein structures, we conduct correlation analysis

based on the elastic network models (ENMs) [26–30]. We find that the long-range correlations

and the scaling laws can be robustly reproduced by the ENMs with different model parameters.

Such a result indicates that the long-range correlations are encoded in the native topology of

the proteins. Secondly, we conduct normal mode analysis [31–33] for protein molecules, ideal

polymer chains, and lattice systems. A similar scaling relation holds for polymers, lattices, and

proteins, but the scaling coefficients are different. Such a result shows how native proteins bal-

ance between order and disorder, which resemble the physical systems near the critical point

of a phase transition. Thirdly, we introduce the average path length and modularity to describe

the topological characteristics of the proteins. Scaling relations are also observed between these

topological descriptors and the size of the proteins. According to the result of the scaling analy-

sis, we conclude that native proteins show both dense packing and fractal topology. Lastly, we

focus on the size dependence of proteins’ shape. With a given chain length, the shape of a
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protein is not random, but a most-probable shape factor always exists. Such a constraint sug-

gests that native proteins balance between stability and functionality. Overall, our result not

only gives a new perspective bridging the protein structure and its dynamics but also reveals a

universal principle in the evolution of proteins at all different sizes.

Results

The critical dynamics of proteins are robustly encoded in the native

structures

In previous studies, based on the structural ensembles determined by solution nuclear mag-

netic resonance (NMR), it was observed that the native proteins in the solution exhibit long-

range correlations and high susceptibility in the dynamics [15]. The native fluctuation of pro-

teins behaves as though they are near the critical point of a phase transition [34–36]. The ques-

tion arises whether the critical dynamics of native proteins are encoded in the native structure

or driven by other factors in the milieu. To answer this question, we employ the minimal

model of proteins, the elastic network model (ENM) to conduct our analysis.

In an ENM, a protein molecule is described as a set of nodes (represented by their Cα

atoms) connected with edges of elastic springs. As shown in Fig 1A, the 3D structure of a pro-

tein can be simplified as a network based on the topology of residue contacts. Note that the

elastic networks are constructed only based on the spatial distances between residues. If an

ENM can successfully reproduce long-range correlations in the fluctuations of the native pro-

teins, then it can be concluded that the critical dynamics of proteins is encoded by the local

contacts in the native structures.

The correlated motions of residues can be represented by a covariance matrix, in which

matrix element Cij ¼ hD~ri � D~rji. For simplification, we conduct our analysis based on the

Gaussian network model (GNM) [37, 38]. In GNM, the covariance matrix C is proportional to

pseudoinverse of the Kirchhoff matrix Γ, i.e., Cij ¼
3kBT
k
� ½Gþ�ij [26, 37]. Normalizing the

covariance matrix, a pairwise cross correlation �ij ¼ Cij=
ffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
an be obtained. Similar to

previous works [15, 39, 40], a distance-dependent correlation function ϕ(r) can be defined by

averaging the correlations for residue pairs at mutual distance r, and �ðrÞ ¼
P

i<j
�ijdðr� rijÞ

P
i<j
dðr� rijÞ

,

where rij denote the spatial distance between residue i and j, and δ(x) is the Dirac-delta func-

tion selecting residue pairs at mutual distance r. Here, the correlation length ξ as the distance

where ϕ(r) first decays to zero.

To examine whether the correlation scales with the protein size, we sample over the protein

data across different sizes. By averaging the distance-dependent correlation function ϕ(r) for a

subset of proteins, we can define the averaged correlation function hϕ(r)i to a group of pro-

teins. Here, we divide the dataset into subsets according to the radius of gyration Rg of the pro-

teins (e.g., subset {Rg* 12Å} contains proteins at size 11.5Å� Rg< 12.5Å), the distance-

dependent correlation functions ϕ(r) for proteins at different sizes are calculated. As shown in

Fig 1B, the correlation function first decreases from its maximum at short distances, crosses

zero at r = ξ, continues to decline, reaches a negative minimum. As a notable sign of criticality,

for proteins of different sizes, the correlation length ξ is proportional to their radius of gyration

Rg. Therefore, the correlation functions can be scaled by the size (Rg) of the proteins, and all

the correlation functions collapse (Fig 1C). This result indicates that correlations in the native

fluctuation of proteins are scale-free: No matter how large the protein molecule is, correlation

length can extend to the size of the entire system. Such long-range correlation contributes

to the functionality of a large variety of proteins, for example, for allosteric proteins, the
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long-range correlation warrants the binding at one site can be transmitted to other functional

sites [13, 14], even when the two sites are spatially distant.

To validate the previous analysis, let us consider the parameter sensitivity in the prediction

of the cross correlations in protein dynamics. The only free parameter in GNM is the cutoff

distance rC. With different rC, the correlation would have different magnitude at short dis-

tances; however, as shown in Fig 1D, the correlation lengths ξ keep as a constant for different

cutoff distances rC. As shown in Fig 1E, for cutoff distances ranging from 6 Å to 15 Å, the

Fig 1. The critical dynamics of proteins are robustly encoded in the native structure. (A) An illustration of the elastic network

model (rC = 9Å) of the protein CI2 (PDB code: 2CI2). The beads denote the residues, and the bonds denote the elastic springs in the

model. (B) The correlation functions ϕ(r) for proteins at different sizes predicted by GNM with cutoff distance rC = 9Å. (C)

Correlation functions scaled by the radius of gyration of the proteins Rg. (D) For proteins of similar sizes (19.5Å� Rg< 20.5Å), with

different cutoff distances rC, the correlation functions ϕ(r) predicted by GNM. (E) With different cutoff distances, for proteins of

different sizes, the correlation length ξ is always proportional to the size of the protein Rg. (F) The susceptibility χ vs. chain lengthN
shows the power-law relation: χ* Nαγ/ν, and the scaling coefficient αγ/ν� 1 can be kept with different rC (inset).

https://doi.org/10.1371/journal.pcbi.1007670.g001

Long-range correlation in protein dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007670 February 13, 2020 4 / 17

https://doi.org/10.1371/journal.pcbi.1007670.g001
https://doi.org/10.1371/journal.pcbi.1007670


correlation length ξ is always proportional to the radius of gyration Rg, showing that the critical

dynamics of native proteins is generally a stable property and insensitive to the selection of cut-

off distances. With only short-range interactions between residues taken into account, GNM

can successfully capture the long-range correlations in the native dynamics of the proteins.

To have a further investigation of the criticality, it is necessary to validate the scaling rela-

tions in the dynamics of proteins. Here, for illustration, we take the power-law relation

between the susceptibility χ and chain length N as an example. For protein systems, a finite-

size version of susceptibility χ is introduced to quantify the response of systems under pertur-

bation [15]. It is defined as the total correlation in a unit volume within the correlation length:

w ¼ s
N

P
i<j �ij � yðx � rijÞ, where s denotes the shape factor of protein, and θ(x) denotes the

Heaviside function. Previously, based on NMR-determined protein ensembles [15], it was

observed that χ* Nαγ/ν, with the scaling coefficient αγ/ν� 1 (Definitions of α, γ and ν are

listed in S1 Appendix). Here, as shown in Fig 1F, by employing the GNM, similar scaling rela-

tions can also be observed. Such a result demonstrates that, no matter how large the molecule

is, proteins can always have high sensitivity executing its function because the magnitude of

the susceptibility grows with the chain length of the proteins. Besides, the scaling coefficients

are insensitive to changes in cutoff distances (inset), demonstrating that the scale-free correla-

tion of native proteins is a robust property.

Our correlation analysis and scaling analysis methods can also be extended to other ver-

sions of elastic network models. For example, with harmonic Cα potential model (HCA) [41,

42], similar scaling coefficients can also be observed (see S1 Appendix). However, some mod-

els cannot correctly reproduce the scaling relations between χ and N, for instance, the parame-

ter-free GNM (pfGNM) [43]. In fact, pfGNM fails to predict all the scaling relations in the

proteins (see S1 Appendix). Previous researches already found that pfGNM can only be

applied for proteins in crystalline conditions, and it will have a poor agreement to the collective

motions given by molecular dynamics [42]. Such a result indicates that the scaling coefficient

may help us to probe whether the protein is solvated or in a crystalline condition.

The size dependence of slowest modes reveals criticality of native proteins

Normal mode analysis is a practical tool to elucidate the global dynamics [31–33] and the evo-

lutionary constraints [44, 45] of the proteins. Physically, the slow modes, or say, the low-fre-

quency modes of a system are related to the motions with low excitation energy, long

wavelengths (long-range correlation), long time scale (at the order from microseconds to sec-

onds) and the large amplitude motions. Usually, the motions that correspond to the slow

modes (especially the slowest nonzero mode) can have significant overlap with large displace-

ment during the functional motions [46]. These functional motions usually engage relative

movements of large subunits in the proteins or cooperative conformational changes of the

whole proteins. Previously, the unique spectral properties of the residue contact networks have

been noticed [47, 48], but the detailed differences have never been examined.

To demonstrate the particularity in the spectrum of proteins, we compare the proteins with

ideal polymer chains (detailed information listed in S1 Appendix) and lattice systems. Our

analysis focuses on the size dependence of the slow modes. As shown in Fig 2A, for all these

systems, the slowest few modes versus the system size N follow power-law distributions.

Among these slow modes, we specifically focus on the eigenvalue λ1 which corresponds to the

slowest nonzero mode. A similar power-law λ1 * N−z holds for ideal polymers, lattices, and

proteins. However, the scaling coefficients z are different in these systems. As shown in Fig 2A,

for ideal polymer chains, the scaling coefficient z� 1.674. For face-centered cubic (fcc) lattice,

by conducting normal mode analysis where atoms are connected by springs with their nearest
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Fig 2. The slow modes of proteins are robustly defined by native structure. (A) The 1st, 2nd and the 3rd non-zero

eigenvalues λ1, λ2, and λ3 vs. the chain lengthN of the proteins follows a power-law distribution. (Cutoff distance rC =

9Å, and the scaling coefficients of λ1(N), λ2(N), and λ3(N) are 1.074, 0.900, and 0.868, respectively). As comparison,

similar scaling relations in lattices and ideal polymer chains are also illustrated, and the scaling coefficients are 0.728

(lattices) and 1.674 (polymer). (B) The eigenvalue of the slowest nonzero mode λ1 versus chain lengthN shows the

scaling relation: λ1 * N−z, and the inset shows scaling coefficient z vs. the cutoff distance rC. (C) For proteins at similar

sizes (chain length 180� N< 220), the histogram for the eigenvalue distribution g(λ).

https://doi.org/10.1371/journal.pcbi.1007670.g002
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neighbors and 2nd nearest neighbors), we have z� 0.727. Theoretically, for lattice systems,

the maximum wavelength lw corresponds to the slowest elastic mode, and lw is proportional to

the characteristic length of the system. Since the maximum wavelength lw* N1/3, one can esti-

mate that l1 � o
2
1
� l� 2

w � N
� 2=3, which is close to 0.727. In contrast to ideal polymers and lat-

tices, z� 1 holds for protein molecules.

The scaling relations in the slowest modes of proteins are robust to the variation in model

parameters. As shown in Fig 2B, the selection of cutoff distances rC would not affect the scaling

coefficient z. But the robustness of the scaling coefficient cannot be attributed to that of the

eigenvalue distribution. As shown in Fig 2C, selecting different rC would influence the mode

distribution g(λ) of native proteins. The mode distribution g(λ), especially the low-frequency

part, can be enhanced by selecting a short cutoff distance rC. Such a result is also consistent

with previous theoretical analysis on protein elastic network and ranges of cooperativity [43],

which states that with a shorter interaction range, the predicted dynamics would be more

cooperative and show better overlap with the displacement in large-scale conformational

changes.

It is worth noting that the scaling coefficients in the size dependence of the slowest mode

demonstrate that the structure of proteins stands between lattices and ideal polymer chains.

For proteins, the exponent z� 1, above what is obtained from lattices (z� 0.727), and below

what is obtained from polymer chains (z� 1.674). Thus, compared with ideal polymer chains,

the proteins have higher structural stability, whereas compared with lattices, the proteins have

higher flexibility and exhibit slower vibrations. Native proteins stand between lattices and

polymers, acting as the “critical point” that separates the ordered and disordered phase. Not

only are native proteins stable enough to ensure structural robustness and functional specific-

ity, but also susceptible enough to sense the signals in the environment, and ready to perform

large-scale conformational changes. Interestingly, staying at the critical point seems to be a

common organizing principle of a large variety of biological systems [49–55]: If the system is

too disordered, the system cannot stably exist; if it is too ordered, it cannot adapt or respond to

perturbations from the environments. Our result of scaling analysis provides additional evi-

dence to support the criticality hypothesis.

Protein structure: Dense packing with fractal topology

In previous sections, we demonstrated that the critical dynamics of the proteins are encoded

in their native structures, and we showed that the equilibrium dynamics of protein molecules

if different from lattices and polymers. How does the topology of the residue contact network

encode such kind of dynamics? To answer the question, in this subsection, we will try to bridge

the vibration spectrum with the architecture of the protein by mainly focusing on the issue of

the network topology.

In the network analysis, the average path length hli is one of the most important topological

descriptors quantifying the total connectivity among the nodes. Here, we first focus on the

scaling relations between average path length hli and the system size N. As shown in Fig 3A,

for proteins at different sizes, there is a power-law relation between the average path length hli
and the chain length N: hli*Nα, and α� 0.338, which is close to 1/3. In the calculation, the

cutoff distance rC is set to be 8Å. Even different cutoff distance rC will lead to different hli, but

the scaling exponent is invariant (see S1 Appendix). The scaling relation in proteins is very

similar to what in the lattice structures. Theoretically, for 3D lattices, the exponent would be α
= 1/3. Such a scaling relation is confirmed in Fig 3A. While for ideal polymer chains, with an

extended structure, there would be longer average path lengths, and fitting gives α� 0.675.

Such a result demonstrates that the residue contact networks show similar dense packing
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property as regular lattices. Both lattice and protein networks have much shorter path

length hli than ideal polymers.

Although protein and lattice share similar dense packing properties, the residue contact

networks of proteins still exhibit unique properties. To demonstrate the difference between

the residue contact network and the lattice networks, another measure—modularity Q is intro-

duced into the study [56, 57]. Intuitively, a network that can be more easily divided into mod-

ules would have a higher Q value. Modularity Q also scales as the system size increases. For a

d−dimensional cubic lattice network with N nodes, theoretically, it was proved that the modu-

larity Q versus N follows the relation: Q = 1 − K � N−η, where the scaling coefficient Z ¼ 1

dþ1
,

and K is a constant that depend on average degree z and dimension d [58]. For ideal polymer

chains, the fitting gives η� 0.465, indicating an effective fractal dimension deff� 1.15, which

is much lower than 3. For a 3D cubic lattice, theoretically, η = 1/4. For fcc lattices, as shown in

Fig 3B, fitting gives η� 0.231< 1/4, indicating deff� 3.33 > 3, that is because, in the fcc lat-

tices, every atom has more neighbors than cubic lattice. For proteins our dataset, when taking

rC = 8Å, similar power law can also be observed, but the scaling coefficient η = 0.279 > 1/4.

Such an exponent indicate that the proteins has an effective dimension deff ¼ 1

Z
� 1 � 2:58,

which is lower than 3. Such a scaling coefficient displays that the residue contact networks

have a fractal topology, and the fractal dimension is below 3. It is worth noting that, in this

work, the fractal dimension of proteins is obtained by the scaling analysis for proteins at

different sizes. The effective dimension obtained here is consistent with the fractal dimension

(d� 2.7) of proteins determined by structural analysis methods (see S1 Appendix). The scaling

Fig 3. The protein dynamics can be quantified by topological descriptors of the residue contact network. (A) For the contact

network of proteins (rC = 8Å), fcc lattices and ideal polymers, the average path length hli vs. system sizeN. (B) Similarly for proteins,

fcc lattice and ideal polymers, modulaityQ vs. system size N. The inset shows the log-log plot of 1 − Q vs. N. (C) For proteins at

similar sizes (180� N< 220), the scattering plot (yellow dots, each dot represents a protein molecule), the binned average (red dots)

and the basic trend (red curve) of the average path length hli vs. Q, and (D) Smallest non-zero eigenvalue λ1 vs. Q.

https://doi.org/10.1371/journal.pcbi.1007670.g003
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analysis of average path length reveals that the proteins have similar dense packing properties

as ordered lattices, but the scaling analysis of modularity suggests that proteins exhibit fractal

structures, which is similar to disordered polymer structures. In short, topological analysis

demonstrates again that native of proteins balance between order and disorder.

In the discussions above, by averaging the topological descriptors of proteins at similar

sizes, we analyze the size dependence of topological properties. In fact, for proteins at similar

sizes, topological descriptors can also play an important role in capturing the main features in

the dynamics of the proteins. To illustrate that, here, we select the protein molecules with

chain length 180� N< 220 from our dataset. Although these proteins have similar chain

length, the structure may differ a lot. Our discussion centers around modularity Q. When the

modularity Q of a protein increases, as shown in Fig 3C, the average path length hli also

increases. This is because, in a highly modularized network, there will be few connections

between different communities, on the average, it will take more steps from one node to

another. As shown in Fig 3D, as the modularity Q increases, the smallest non-zero eigenvalue

λ1 decreases, in line with the common knowledge that that modularized structures in the pro-

teins contribute to slow-mode motions. Such a result is consistent with the theory of spectral

graph theory. Indeed, the spectrum of the graph Laplacian is closely related to the community

structures of the network [59]. Our analysis quantitatively demonstrates that modularized

structures contribute to the large-scale motions and slow relaxations of the proteins.

Stability-functionality constraint: The size dependence of proteins’ shape

The intrinsic dynamics of proteins is encoded in their structures. Since scaling relation

between the dynamics and the size of the protein is already discussed in the previous sections.

We focus on the relationship between the structure and the size of the protein in this section.

The shape factor s can be introduced to describe the general architecture of a protein mole-

cule [15]. According to the definition, the shape factor can be understood as the residue pack-

ing density within the inertia ellipsoid. When residues are tightly packed with a globular

shape, the shape factor s would be large. When disordered loops or flexible linkers are connect-

ing multiple domains, the shape of the molecule deviates from an ellipsoid, then s would be

small. Here, for illustration, three proteins with a similar chain length 180� N< 220 but with

different shape factor s are shown in Fig 4A. On the left, the receptor-binding domain of the

short tail fiber (STF) is illustrated. Such a molecule has hardly any regular secondary structures

like α−helices or β-strands [60]. The structure of such a molecule in its monomer state has a

small shape factor and high modularity. To perform its functions, a knitted trimeric assembly

has to be formed [60]. In the middle, there is the human molecular chaperone heat-shock pro-

tein 90 (Hsp90) [61] with medium shape factor and modularity. On the right, a de novo
designed helical repeat protein DHR10 is illustrated. By repeating a simple helix–loop–helix–

loop structural motif, DHR10 protein is highly ordered and becomes very stable, which can

stay folded even at 95˚C [62]. Generally, the proteins with larger shape factors show higher sta-

bility, and the proteins with smaller shape factors show higher flexibility.

Although the definition of shape factor does not introduce any detailed information on sec-

ondary structures or residue contacts, the shape factor is closely related to the topological

descriptors of the residue contact network. Here, statistics for the proteins with similar chain

length (180� N< 220) is conducted. The scattering plot of shape factor s versus modularity Q
is shown in Fig 4B. A trend line (in red) displays that as modularity Q increases, the shape fac-

tor s decreases. The result is easy to understand intuitively, a protein molecule in a shape that

deviates from an ellipsoid is likely to have multiple domains or have flexible linkers connecting

multiple ordered regions. Interestingly, although the proteins could have very different shapes,

Long-range correlation in protein dynamics
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for protein molecules with a specific chain length, the value of shape factor does not vary a lot.

Here, in Fig 4B, histograms of the shape factor s (right vertical) and modularity Q (top hori-

zontal) are plotted. The histograms show that there exists a most-probable shape factor s� and

corresponding modularity Q�. Most natural proteins have shape factors close to s�, exhibit a

balancing behavior between stability and flexibility [21].

In fact, for proteins with different chain lengths, the most-probable shape factor s� always

exists, which can be recognized as a constraint in the shape of the protein. As shown in Fig 4C,

it was observed that larger proteins prefer smaller shape factors. A similar relation is also

observed based on NMR-determined ensembles [15]. These observations provide additional

pieces of evidence to support the criticality of native proteins. The native proteins have to bal-

ance between stability and flexibility. With short chain lengths, the proteins tend to have a

larger shape factor to ensure a stable folded state. Accordingly, small proteins usually have

higher residue packing density. However, as the chain length of the proteins increases, to exe-

cute functional motions, flexibility becomes the main demand of the proteins. One good

example is the designed protein DHR10 as illustrated in Fig 4A. DHR10 has high structural

stability, but it is hard for such a protein to execute any biological functions. In such a situa-

tion, smaller shape factors, which usually correspond with disordered loops or multi-domain

structures, are demanded by the functionality. Our results suggest that the balance between

stability and flexibility acts as an evolutionary constraint for proteins at different sizes.

Fig 4. The shape factor correlates with the chain lengths of the proteins. (A) Three proteins with similar chain lengths: (Left) The receptor-binding

domain of T4 STF (PDB: 1OCY, s = 0.84,Q = 0.74); (Middle) Human Hsp90 protein (PDB: 3T0H, s = 1.77, Q = 0.65); and (Right) The DHR10 protein

(PDB: 5CWG, s = 2.37,Q = 0.63). (B) For proteins at similar sizes (chain length 180� N< 220), the scattering plot (yellow dots), binned average (red

dots) and the trend line (red line) of shape factor s vs. modularityQ are plotted. Besides, there are histograms of the shape factor s (right vertical) and

modularityQ (top horizontal). (C) For all the proteins in our dataset, the 2D histogram (in the background) of s vs. N and the plot (in navy blue) of the

most-probable shape factor s� vs. chain lengthN.

https://doi.org/10.1371/journal.pcbi.1007670.g004
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Discussion

The long-range correlated fluctuations contribute to many biological processes of the proteins,

such as allostery, catalysis, and transportation. To understand the origin of such long-range

correlations, based on the elastic network model, we conduct normal mode analysis for a large

dataset of globular proteins determined by X-ray crystallography.

First, we predict the correlated motions for proteins at different sizes. It is observed that the

correlation length of a protein can extend to the size of the whole protein, no matter how large

the protein molecule is. Moreover, with different model parameters, the scale-free correlations

and the scaling laws can be reproduced by the elastic networks model, which is the minimal

structure-based model of native proteins. Such a result indicates that the critical dynamics

characterized by the power-law relations are robustly encoded in the native topology of the

proteins.

Second, for proteins at different sizes, we conduct normal mode analysis and perform scal-

ing analysis for the slow vibration modes of the proteins. To demonstrate the particularity in

the spectrum of proteins, we compare the proteins with ideal polymer chains and lattice sys-

tems. Native proteins stand between ordered lattices and disordered polymers, acting as the

“critical point” that separates the ordered and disordered phase. Our result of scaling analysis

provides additional evidence to support the criticality hypothesis.

Third, to understand how the native topology determines the architecture and the dynam-

ics of the proteins, we conduct scaling analysis for the topological descriptors and the size of

the proteins. Our results demonstrate that, although proteins have similar average path length

with lattice structures, the residue contact networks are more modularized.

Last, we focus on the size dependence of proteins’ shape. For proteins with different chain

lengths, the most-probable shape factors always exist. Larger proteins prefer smaller shape fac-

tors. Such a constraint results from the balance between stability and functionality of proteins.

In summary, our work quantitatively demonstrates how the native contact topology defines

the long-range correlations and the slow dynamics of the native proteins. Our work not only

provides quantitative scaling relations supporting the “structure-dynamics-function” para-

digm but also reveals evolutionary constraints for proteins at different sizes. These results may

shed light on a large variety of biophysical problems such as structure prediction, multi-scale

molecular simulations, and the design of molecular machines.

Materials and methods

Dataset

Our dataset contains 13081 proteins selected from the Protein Data Bank (PDB) [63]. The

structures of these proteins are all determined by X-ray diffraction with high resolution

(� 2.0Å). For every protein structure in the dataset, it contains no DNA, RNA or hybrid struc-

tures; and the chain length 30� N� 1200. In our protein dataset, every two proteins share

less than 30% sequence similarity. The PDB codes of all the proteins in our dataset are listed in

the Supplementary Information (S1 and S2 Files).

The elastic network models

The elastic network models are widely applied to predict the functional dynamics of a variety

of proteins and bio-machineries [26, 27, 29, 30]. With the assumption that all residue fluctua-

tions are Gaussian variables distributed around their equilibrium coordinates, the Gaussian

Network Model (GNM) can successfully reproduce the residue fluctuations as determined by

experiments [37, 38]. For a protein consisting of of N residues, based on the native structure,
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the potential energy of the network is given by:

VGNM ¼
k

2

XN

i;j¼1

D~ri � Gij � D~rj; ð1Þ

in which κ is a uniform force constant; D~ri and D~rj is the displacement of residue i and j,
respectively; and Γij is the element of Kirchhoff matrix, or in a graph theory perspective, it is

the graph Laplacian of the residue-residue contact network. The elements of matrix Γ is

defined according to the contact topology of the native structure: for residue pair i − j, if rij�
rC, then Γij = −1; if rij> rC, then Γij = 0; and for the diagonal elements, Γii = −∑j6¼i Γij = −ki,
where ki denote the degree of node i. In GNM with homogenous contact strength, the only

control parameter is the cutoff distance rC. With a large rC, residue pairs at long distances can

interact with each other; while for smaller rC, only short-range interactions are contributed to

the elastic energy of the system. One may also introduce distance-dependent force constants

[41–43] to refine the predictions of elastic network models. In these models, the force con-

stants κij becomes a function of the mutual distance between residue i and j. Further details

and other variations of the elastic network models are listed in the S1 Appendix.

Normal mode analysis and the spectrum of the graph laplacian

Based on GNM, by diagonalizing the Kirchhoff matrix Γ, we can obtain all the eigenvalues and

the corresponding eigenvectors describing the motions of every normal mode [32]. To com-

pare the mode distribution for proteins of different chain lengths, the Kirchhoff (Laplacian)

matrices correspond to the topology of native proteins are normalized. By normalizing all the

diagonal elements as 1, we can obtain the symmetric normalized graph Laplacian [48]:

L ¼ D� 1=2 � G � D� 1=2; ð2Þ

in which D is a matrix of all the diagonal elements of matrix D = diag[Γ1,1, Γ2,2, � � �ΓN,N],

describing the local packing status of each residue. Diagonalizing matrix L, then we have

L = UΛUT, in which the eigenvalues Λ = diag[λ0, λ1, λ2, � � �λN−1] (λ0� λ1� λ2,� � � � � λN−1)

and eigenvectors U = [u0, u1, u2, � � � uN−1]T. The eigenvalue λi describes the frequency ωi of the

i-th eigenmode (li � o
2
i ), and the eigenvector ui describes the motion profile of the corre-

sponding eigenmode. Note that the zero mode corresponds to the eigenvalue λ0 = 0, and

eigenvector u0 describes the collective translational or rotational motions of the system. The

code of normal mode analysis is listed in the Supplementary Code (S2 Appendix and S3 File).

Shape factor

To have a general description of the structure of a protein molecule, a dimensionless shape fac-

tor s is defined [15]. By calculating the the moments of inertia of a protein molecule, one can

estimate the residue packing density within the inertia ellipsoid as s ¼ Na3

L1L2L3
, in which a = 3.8Å

is the residue size, and L1, L2 and L3 are lengths of the principal axes of the protein (L1 > L2 >

L3). The shape factors of the proteins in our dataset are listed in the Supplementary Data

(S4 File).

Average path length

The average (or characteristic) path length hli usually works as a measure of the information

transfer efficiency on a network. It is defined as the average number of steps along the shortest

paths for all possible pairs of network nodes. When li,j denotes the shortest distance between
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node i and j, then, the average path length

hli ¼
1

NðN � 1Þ

X

i6¼j

li;j: ð3Þ

Modularity

Modularity is a topological descriptor which is designed to quantify if a network can be easily

divided into modules. For a network with N node andM edges, when the topology is described

by the adjacency matrix A where Aij = 1 if and only if node i and j are connected. Modularity is

defined as the fraction of the edges that fall within the given module minus the expected frac-

tion when edges were distributed at random [56, 57]. According to the definition, one can

introduce the modularity matrix B with elements Bij ¼ Aij �
kikj
2M to describe the expected num-

ber of edges between node pairs, in which ki and kj denote the degrees of node i and j, respec-

tively. Based on matrix B, the modularity can be calculated as:

Q ¼
1

4M
Trð~xT � B �~xÞ; ð4Þ

in which~x is the column vector describing the partition of a network. Vector x has elements

xi = ±1 indicating the modules to which the node belongs. The value of the Q lies in the range

−1� Q� 1. For any given partition s of a network, one can calculate the Q corresponding to

such a partition. The appropriate partition of a network would maximize the modularity Q
[64]. In this work, we introduced the Louvain method [65] to partition the network and maxi-

mize the value modularity Q. The code of topological analysis is listed in the Supplementary

Code (S2 Appendix and S3 File).

Supporting information

S1 Appendix. Supplementary information. Detailed descriptions of the structural datasets

involved in this research. Additional information concerning the scaling relations, generation

of polymer structures, and other variations of elastic network models are also included in the

Supplementary Information.

(PDF)

S2 Appendix. Supplementary code. The code (written in Python language) for PDB file pro-

cessing, correlation analysis, normal mode analysis, and topological analysis are listed in Sup-

plementary Code.

(PDF)

S1 File. The PDB codes and the chain length of the proteins in Dataset A (13081 proteins

determined by X-ray crystallography) are listed in the file.

(TXT)

S2 File. The PDB codes and the chain length of the proteins in Dataset B (5078 proteins

determined by solution nuclear magnetic resonance) are listed in the file.

(TXT)

S3 File. A Jupyter Notebook version of the supplementary code.

(ZIP)

S4 File. The data (chain length N, radius of gyration Rg, average path length hli, smallest

non-zero eigenvalue λ1, shape factor s and susceptibility χ) for all the proteins in our
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