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Abstract

Upon exposure to different stimuli, resting macrophages undergo classical or alternative

polarization into distinct phenotypes that can cause fatal dysfunction in a large range of dis-

eases, such as systemic infection leading to sepsis or the generation of an immunosuppres-

sive tumor microenvironment. Investigating gene regulatory and metabolic networks, we

observed two metabolic switches during polarization. Most prominently, anaerobic glycoly-

sis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophos-

phate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in

the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6

to be the major players in the distinct signatures of these polarization events. Employing

functional assays targeting these regulators, we observed the repolarization of M2-like cells

into M1-like cells, as evidenced by their specific gene expression signatures and cytokine

secretion profiles. The predicted regulators are essential to maintaining the M2-like pheno-

type and function and thus represent potential targets for the therapeutic reprogramming of

immunosuppressive M2-like macrophages.

Author summary

The innate immune system is the first defense line to infection and macrophages are its

central players. Macrophages polarize into their resistant state when sensing an invading

pathogen. In turn, they can also polarize into a resilient state and provide compounds for

anabolism to e.g. promote wound healing processes. In several diseases ranging from can-

cer to auto immune diseases and sepsis, the disturbed polarization of macrophages is criti-

cally involved in their patho-mechanism. We investigated transcription profiles of

polarized macrophages to identify central regulators aiming to reprogram detrimental

polarization when targeted. Indeed, we came up with a model containing four transcrip-

tion factors that would reprogram macrophages based on an assembled gene signature

representing the distinct regulation of these polarized macrophages. Experimentally
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silencing these transcription factors validated the predictions and showed that we can

shift macrophages polarized from their resilient state toward the resistant state. Inhibiting

these regulators in specific macrophages may enable reactivating them into resistance

which may have a tumor suppressive effect of tumor associated macrophages or reactivat-

ing them during the immunosuppressive phase after sepsis.

Introduction

Innate immunity serves as a first-line defense against pathogens and includes natural killer

(NK) cells as well as phagocytic cells such as dendritic cells, neutrophils and macrophages [1].

Thus, macrophages are functionally involved in the control of various diseases such as cancer,

diabetes, sepsis and chronic immunological disorders [2–5]. Macrophages show marked plas-

ticity. Depending on the environmental stimuli they receive, macrophages polarize into mye-

loid cell types with distinct phenotypes and functions. Extensive research has led to a better

understanding of the molecular mechanisms that control macrophage polarization [6–8]. IL-

10 signaling has been shown to play a critical role in controlling inflammatory responses by

modulating cellular metabolism in activated macrophages [7]. To simplify macrophage biol-

ogy, the functional spectrum of macrophages is represented by the two extremes, i.e., classi-

cally activated M1-like macrophages and alternatively activated M2-like macrophages

(subsequently denoted as M1-like and M2-like macrophages). M1-like macrophages, which

are activated through IFN-γ as well as other factors, contribute to the inflammatory immune

response by producing proinflammatory mediators such as TNF-α, IL-6 and nitric oxide. Fur-

thermore, they eliminate invading pathogens by phagocytosis [9,10]. In contrast, M2-like mac-

rophages, which can be activated by IL-4, show immunosuppressive functions and promote

wound healing [11].

It is known that tumor cells can reprogram proinflammatory immune cells, particularly

M1-like macrophages, into anti-inflammatory immune cells, including M2-like macrophages,

to induce local immune suppression [12,13]. Specifically, tumor-associated macrophages

(TAMs) are recruited by the tumor through the secretion of chemoattractants. TAMs are

involved in tumor progression and are characterized by high secretion of growth factors and

anti-inflammatory cytokines, promoting angiogenesis, cancer growth and tissue infiltration

[14]. Thus, immunotherapies aiming to polarize TAMs into M1-like macrophages have been

suggested as a therapeutic approach against cancer [15].

In addition, macrophages play a central role during sepsis, which is a life-threatening con-

dition resulting from organ dysfunction as a consequence of systemic infection. Organ dys-

function is caused by a hyperreactive immune response against an infection in the blood.

Notably, the initial proinflammatory response is followed by an anti-inflammatory immune

response, increasing patient susceptibility to severe secondary infections during sepsis. Hence,

therapies that enhance the immune response against the primary infection may increase the

survival of patients suffering from sepsis [16].

Interestingly, macrophages analyzed in murine sepsis models show marked functional plas-

ticity. Thus, peritoneal macrophages derived from mice with induced polymicrobial sepsis

were shown to be unresponsive to endotoxin (lipopolysaccharide, LPS) stimulation and to

secrete reduced amounts of TNF-α, IL-6, and IL-1β, while IL-10 levels were increased, thus

reflecting an immunosuppressive M2-like phenotype. At the same time, the chemokine

expression profile of these macrophages suggested an M1-like phenotype, as the gene expres-

sion of CCL2 (MCP1) was increased, whereas the expression of CCL17, CCL22, and CCL24
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was reduced [5]. Another study showed that the reprogramming of macrophages from an

M1-like phenotype to an M2-like phenotype can be induced by IL-4, and conversely, a pheno-

typic switch from the M2-like phenotype to the M1-like phenotype was observed upon the

addition of M1-polarizing stimuli [17]. Recently, we showed that M2-like macrophages can be

reprogrammed to the M1-like phenotype upon an antigen-specific interaction with CD4+ T

cells [18]. Hence, the repolarization of macrophages is feasible; however, the underlying regu-

latory mechanisms are still elusive. In response to the microenvironment, resting macrophages

not only polarize into distinct phenotypes but also develop specific metabolic demands. A

recent study reported two breakpoints in the citrate cycle of M1-like macrophages supporting

the production of the anti-inflammatory metabolite itaconate [10]. Furthermore, bone mar-

row-derived macrophages from IL-10 knockout mice showed higher glucose uptake and upre-

gulated glycolysis and decreased mitochondrial oxygen consumption, suggesting that IL-10

promotes oxidative phosphorylation [7].

To better understand the processes regulating M1/M2 polarization, we investigated the gene

regulation of metabolism and identified regulators that are essential in M2-like macrophages

providing a possible starting point to shift M2-like macrophages into M1-like macrophages.

Results

Differentially expressed gene sets in M1- and M2-like macrophages

Mice were injected intraperitoneally with thioglycolate containing medium to get non-polar-

ized macrophages in the peritoneum (Peritoneal exudate cells, PEC cells). Polarization into M

(LPS+IFNγ) and M(IL4) macrophages was induced by LPS + IFNγ and IL4, respectively

obtaining M1-like and M2-like polarized macrophages. In the following, we refer to M1-like

and M2-like macrophages for these M(LPS+IFNγ) and M(IL4) macrophages. We compared

the transcription profiles of M1-like and M2-like polarized macrophages (n = 3 replicates),

selected differentially expressed genes, and performed gene set enrichment analysis. S1 Table

lists all significantly differentially expressed genes. Significantly enriched gene sets were

grouped into 15 major categories of cellular processes, and statistical tests were performed to

identify the categories with significantly different numbers of genes with upregulated expres-

sion (Fig 1). As expected, we found significantly more genes with upregulated expression for

immune response processes in the M1-like macrophages than in the M2-like macrophages

(P = 1.67E-48, g:Profiler statistic, 1,117 genes in the M1-like macrophages, 374 genes in the

M2-like macrophages). In particular, the M1-like macrophages showed a strong upregulation

of the expression of immune mediators (Il-6, Tnf-α, and Stat1; see S1 Fig), which stimulate the

proinflammatory response. Furthermore, in the M1-like macrophages, we observed more

genes with upregulated expression for cell death (P = 4.55E-31, g:Profiler statistic), cellular sig-

naling (P = 2.72E-07, g:Profiler statistic), such as TNFα signaling and HIF-1α signaling, and

protein transport and modification (P = 1.31E-40, g:Profiler statistic), reflecting the extensive

upregulation of cellular processes in response to extrinsic stressors. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) provides gene sets associated with diseases. Only for the M1-like

macrophages, we found that the disease-related gene sets with upregulated expression mainly

comprised diseases caused by infection (n = 359), autoimmune diseases (n = 60) and cancer

(n = 242) (S2 Table). Comparing the two types of macrophages indicated that both the M1-

and M2-like macrophages showed upregulation of cell cycle and repair mechanisms. Cell

cycle mechanisms in the context of M2-like macrophages have been described before [19].

However, we also observed upregulation of gene sets of cell cycle categories in the M1-like

macrophages (e.g., cell cycle) and found inflammatory genes such as Il1α, Il1β, Il12α and Il12β
to be associated with the Gene Ontology definitions for cell cycle processes, possibly explaining
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this observation. For the M2-like macrophages, most of the gene sets with upregulated expres-

sion belonged to metabolic processes, as described in the next section. Fig 1 displays the cate-

gories and a representative selection of the gene sets upregulated in the M1-like and M2-like

macrophages. All identified gene sets are listed in S2 Table in the Supplementary Material.

In summary, differential gene expression analysis showed that M1-like macrophages acti-

vated inflammatory processes such as inflammation, cell death, proinflammatory cytokine

expression, and TNF signaling, while M2-like macrophages upregulated metabolic and cellular

maintenance processes.

Distinct regulation of metabolism in M1- and M2-like macrophages:

glycolysis and catabolism versus anabolism

In M1-like macrophages, glycolysis, comprising 22 genes with upregulated expression such as

hexokinases 1–3, Gapdh and Ldha, was upregulated (P = 8.27E-04 using g:Profiler). Notably,

the entire biochemical pathway from glucose to lactate production was upregulated. In addi-

tion, processes affecting the catabolism of nucleotides, cellular macromolecules and carbohy-

drates were upregulated. In contrast, M2-like macrophages showed upregulation of anabolic

processes such as the biosynthesis of amino acids and nucleic acids. Enhanced fatty acid

metabolism and expression of mitochondrial genes reflected upregulated oxidative phosphory-

lation (Fig 1, S2 Table). The biosynthesis of inosine monophosphate (IMP) is the initial and

rate-limiting step in purine biosynthesis. We observed the entire pathway for IMP biosynthesis

to be upregulated in the M2-like macrophages (n = 7 out of 7 genes).

Fig 1. Shown is a representative selection of gene sets derived from gene set enrichment analysis of RNA-seq data (S1

Table) with upregulated expression in macrophages polarized to the M1-like phenotype (A) or M2-like phenotype (B)

in respect to the other polarization. Genes with upregulated expression in M1-like macrophages were significantly

enriched in the categories immune response (IMR, P = 1.67E-48), cell death (P = 4.55E-31), signaling processes

(P = 2.72E-07) and specific metabolic processes such as nitric oxide synthesis and glycolysis, while genes with

upregulated expression in M2-polarized macrophages were enriched in anabolism (P = 1.22E-96), metabolic processes

(P = 8.44E-30) and nucleotide metabolism (P = 7.31E-12). Enrichment tests were performed using g-Profiler.

https://doi.org/10.1371/journal.pcbi.1007657.g001
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Thus, M1-like macrophages upregulated biochemical catabolic processes and glycolysis, in

particular all genes coding for the Warburg effect, which was also reflected by upregulated

Hif1α signaling, whereas the M2-like macrophages showed upregulated nucleotide synthesis

and oxidative phosphorylation, hinting at a distinctively different regulation of metabolism.

These results initiated our interest in modeling the metabolic fluxes and their regulation

described in the next sections.

Constraint-based modeling suggests switches in metabolic fluxes

We studied the difference in the regulation of metabolism observed in a mechanistic way

employing constraint-based modeling and the murine macrophage model described in Bord-

bar et al (2012)[20]. In our approach, we estimated the metabolic flux with a linear model that

assumed the metabolic flux was linearly dependent on the expression of the enzyme encoded

by the respective gene and was constrained by the interconnected stoichiometry of the sub-

strates and products in the metabolic network. These constraints are based on the well-estab-

lished concept of flux balance analysis (see, e.g., Orth et al (2010)[21], for details, see Materials

and Methods). Our models supported the above-described duality between glycolysis and

nucleotide biosynthesis and revealed a switch-like behavior in the metabolic fluxes (Fig 2). The

predicted metabolic flux of reactions involved in glycolysis and lactate production was distinc-

tively higher in M1-like macrophages than in M2-like macrophages (S3 Table). In contrast, in

M2-like macrophages, there was a higher flux in the biosynthesis of IMP, confirming the

above-suggested switch between glycolysis and IMP biosynthesis. Moreover, in our model,

there was a higher flux for nitric oxide synthase in M1-like macrophages, while there was a

higher flux for arginase in M2-like macrophages. This finding suggests a second switch

between nitrogen being either metabolized into nitric oxide as a proinflammatory signaling

molecule (in M1-like macrophages) or degraded into urea by arginase (in M2-like macro-

phages). Indeed, nitric oxide synthase and arginase have been described as valid markers of

murine M1- and M2-like macrophages, respectively [10]. Notably, we observed a similar meta-

bolic flux profile for M0 and M2-like macrophages. The metabolic flux for IMP synthesis was

also higher in M0 macrophages than in M1-like macrophages. In contrast, there was no meta-

bolic flux through the urea cycle and no synthesis of lactate in M0 macrophages. The estimated

fluxes for M0 macrophages are also provided in S3 Table in the Supplementary Material.

In summary, flux balance analysis elucidated metabolic switches between M1-like and

M2-like polarization, most prominently between glycolysis and purine biosynthesis and

between nitric oxide and urea production in the urea cycle.

Compiling a literature-based gene expression signature associated with

M1- and M2-polarized macrophages

Macrophages are classified according to their origin and functional features. Various macro-

phage subsets have been reported. The activation signals of Th2 responses, such as the secre-

tion of IL-4 or IL-13, trigger M2-like polarization in macrophages, while M1-like macrophages

are induced by exposure to LPS and IFN-γ [10]. Previous studies have demonstrated distinct

transcriptional signatures for M1- and M2-like-polarized macrophages, providing a reasonable

means for the experimental validation of these distinct macrophage subsets. Hence, based on

the studies listed in S4 Table, we compiled a list of 36 genes for an initial transcriptional gene

signature distinguishing M1- and M2-like polarization. The signature comprises surface mark-

ers (i.e., Cd80, Cd86), cytokines, chemokines, metabolic enzymes (Arg1, Nos2 or iNos) and

other M1/M2 markers, such as Chil3 (Ym1), Retnla (Fizz1) and Vegfa/b. M1-like macrophages

express high levels of proinflammatory mediators such as IL-6 and TNF-α. In contrast,
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M2-like macrophage activation leads to the upregulation of Il-10 expression, while the expres-

sion of Il-12 is reduced [8]. The gene expression profile of our M1-like- and M2-like-polarized

macrophages was in line with the expression reported in the literature (n = 33 agreed, n = 3

disagreed, S4 Table). As expected, compared to the M2-like macrophages, the M1-like macro-

phages upregulated the expression of proinflammatory cytokines and chemokines such as Il6,

Il12, Tnfα, Ccl3 and Ccl4. In contrast, Tgfb2 and tissue repair genes such as Chil3 and Retnla

exhibited upregulated expression in the M2-like macrophages and were associated with

M2-like polarization. In the rest of the manuscript, the described list is denoted as the litera-

ture signature (S2 Fig).

In silico reprogramming of activated macrophages reveals key regulators

for the metabolic switch

Gene set enrichment analysis and mechanistic modeling revealed distinct regulation of central

energy metabolism, anabolism and catabolism in M1- and M2-like macrophages. Next, we

aimed to identify the transcriptional regulators of this regulatory switch. Our detailed work-

flow was as follows (Fig 3): first, we selected 76 metabolic genes of enriched pathways of energy

metabolism including also genes of the citrate cycle and the pentose phosphate pathway. We

only considered genes with differential expression among the selected biochemical pathways

Fig 2. The metabolic fluxes of different macrophage phenotypes, M0, M1-like and M2-like, were predicted by

integrating the gene expression of enzymes into a metabolic network model. The model revealed differential fluxes

mainly involved in glycolysis, inosine monophosphate (IMP) synthesis, the urea cycle and lactate production. Orange

arrows indicate higher metabolic fluxes in M1-like macrophages, and blue arrows indicate higher fluxes in M2-like

macrophages. Induced glycolysis was observed in M1-polarized macrophages, while IMP synthesis was high in M2-like

macrophages. The quantitative values are represented by the respective color intensity ranging from 0% (no differential

flux between M1-like and M2-like macrophages) and 100% (the predicted flux was observed only in the according

macrophage type, and no predicted flux was observed in the other polarized macrophages).

https://doi.org/10.1371/journal.pcbi.1007657.g002
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including glycolysis, citrate cycle, the pentose phosphate pathway, fatty acid metabolism, IMP

synthesis and arginine biosynthesis. To find the regulators that are also responsible for the dif-

ferential expression of M1- and M2-like associated genes described in the literature, we added

the 36 genes of the literature signature described in the previous section. This led to a list of

112 differentially expressed genes subsequently denoted as the extended gene signature (the list

is given in Fig 4). We predicted the potential regulators of these genes by estimating their gene

Fig 3. The analysis pipeline to obtain the gene regulatory model. (A) Gene expression profiles and evidence-based

interactions for all transcription factors were collected. (B) After a pre-filtering step, the activity of each transcription

factor was determined, and regulatory network models were generated. The transcription factors that were most often

selected by the models across all target genes were incorporated into the extended gene signature, a parsimony model

constructed, and in silico reprogramming was performed to convert the activities of these transcription factors into

M1-like activities. (C) The predicted transcription factors were experimentally validated by investigating the cytokine

secretion and transcription profiles of the reprogrammed M2-like macrophages after knocking down the expression of

the predicted transcription factors.

https://doi.org/10.1371/journal.pcbi.1007657.g003
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expression profiles employing linear regression models. For each of these target genes, a model

was set up. Each model contained an optimization parameter and the activity of each tran-

scription factor (TFs) for which binding information was found in ChIP databases. The objec-

tive was to minimize the difference between the predicted and measured gene expression [22].

Fig 4. The relative expression (z-scores) of the extended gene signature comprising genes from arginine

biosynthesis, fatty acid metabolism, glycolysis, the citrate cycle, IMP biosynthesis and the literature gene signature

is shown. Red: upregulation, blue: downregulation, the columns represent biological (mouse 1, 2, 3) and technical

(repl. 1, 2) replicates of M1-like, M0 and M2-like macrophages.

https://doi.org/10.1371/journal.pcbi.1007657.g004
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The models were constrained to select the same sets of regulators for several target genes

employing Mixed Integer Linear Programming (constraint-based modeling). After employing

a prioritization strategy, the nine top-ranking transcription factors were selected as regulators

of all the genes in our signature. For reprogramming M2-like macrophages into M1-like mac-

rophages in silico, we replaced the activities of the predicted regulators in M2-like macro-

phages with their activities in M1-like macrophages.

Following this strategy we determined five transcription factors, CTCF, E2F1, MYC,

PPARγ, and STAT6, predicted to enable the reprogramming of M2-like macrophages into

M1-like macrophages when silenced. S3 Fig shows the gene regulatory model. Interestingly,

the activities of all five transcription factors were higher in M2-like macrophages than in

M1-like macrophages. The majority of the genes were regulated by MYC followed by E2F1,

CTCF, PPARγ and STAT6 (MYC: 72, E2F1: 57, CTCF: 28, PPARγ: 48, and STAT6: 14 genes).

E2F1 and MYC were predicted to regulate a large cluster of metabolic genes, whereas the

genes in the literature signature were predicted to be regulated mainly by PPARγ and STAT6.

In our gene regulatory model, 85% of the observed genes switched their expression from an

M2-like state into an M1-like state (S4 Fig). We also analyzed the performance of smaller mod-

els consisting of fewer regulators. Overall, the agreement with an M1-like expression pattern

of the different combinations of the predicted transcription factors decreased when decreasing

the number of regulators in the models. Employing the best combinations of four transcription

factors, more than 78% and 76% of genes were in accordance with the extended gene signature

of M1-like macrophages. These combinations were CTCF, E2F1, MYC, and PPARγ and E2F1,

MYC, PPARγ, and STAT6, respectively. The latter combination yielded better predictions for

the genes of the literature signature and, hence, was used for subsequent investigations. S2 Fig

shows the corresponding gene regulatory model.

In summary, we identified short lists of transcription factors, most prominently CTCF,

E2F1, MYC, PPARγ and STAT6, predicted to enable the reprogramming of M2-like macro-

phages into M1-like macrophages when their expression was knocked down.

M2-polarized macrophages shift to the inflammatory phenotype upon

knocking down the expression of the predicted regulators in vitro
In the next step, the predicted transcription factors were functionally validated. All five tran-

scription factors were predicted to maintain the M2-like phenotype. According to our model-

ing results described in the previous section, we hypothesized that knocking down the

expression of Ctcf, E2f1, Myc, Pparγ and Stat6 in M2-like macrophages should induce their

repolarization into proinflammatory M1-like macrophages. Therefore, we investigated the

changes in polarization upon transcription factor expression knockdown by measuring gene

expression and cytokine secretion in M2-like macrophages after transfection with siRNA

pools targeting the four transcription factors E2f1, Myc, Pparγ and Stat6. Knockdown effi-

ciency was tested for each of these TFs at 24h, 48h and 72h after siRNA transduction showing

for all except one condition and TF (E2F1, 48h) expression reduction by at least 50% (S6 Fig).

As a first validation, we performed qPCR analysis of selected genes of the literature signa-

ture at three time points after transfection. The highest impact of the knockdown on the gene

expression of M1-like and M2-like associated genes was observed at 24 h and 48 h after trans-

fection with the combined siRNA pool (Fig 5, S5 Table). Ten and eight out of fourteen M1-

and M2-associated genes, respectively, switched their gene expression as expected at 24 h and

48 h after transfection. Nos2, an important M1 marker, exhibited highly upregulated expres-

sion at 24 h and 48 h after knockdown treatment, while the expression of the M2 marker Arg1

was decreased 24 h and 48 h after knockdown treatment. Furthermore, the observed ratio of
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the expression of M1/M2 associated genes in iM1-like and M2-like macrophages was in line

with the observed ratio of expression in M1 and (mock treated) M2-like macrophages, the

same eleven out of 14 genes showed the same trend in differential expression (see S7 Fig).

Notably, if these TFs were silenced in M0 macrophages, i.e. without IL-4 stimulation, we

Fig 5. Transcriptional changes in M1-like- and M2-like-associated genes after knocking down the expression of four selected TFs were

experimentally determined by quantitative PCR. The log2-fold changes in the gene expression of 15 genes from the literature signature in iM1

macrophages (M2-like after knockdown of E2f1, Myc, Pparγ, Stat6) relative to that in the (mock treated) M2-like macrophages are shown. Samples

were extracted 24 h, 48 h and 72 h after siRNA treatment. Error bars are based on the standard error of technical replicates. Genes were considered

successfully reprogrammed if a switch towards an M1-like phenotype was observed in both biological replicates (replicates 1 and 2 in gray and

black, respectively).

https://doi.org/10.1371/journal.pcbi.1007657.g005
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observed a similar behaviour (S9 Fig), suggesting that these TFs prevent M1 polarization

regardless of IL-4 stimulation. Knocking down the expression of all five predicted transcrip-

tion factors (E2f1, Myc, Pparγ, Stat6, and Ctcf) resulted in a very similar shift towards the

M1-like phenotype (S5 Fig). These findings suggested that knocking down Ctcf expression is

not necessarily required for successful M1-like repolarization. Thus, the Ctcf-targeting siRNA

pool was excluded in subsequent experiments focusing on the four selected transcription fac-

tors, E2f1, Myc, Pparγ and Stat6. M2-like macrophages treated with the siRNA pool targeting

these four transcription factors are subsequently denoted as induced M1-like (iM1)

macrophages.

Thirteen cytokines secreted by M2-polarized macrophages after transfection of the siRNA

pool were measured at the protein level. Except for IL-10, all investigated cytokines are associ-

ated with a proinflammatory effect. The results are shown in Fig 6 (S8 Fig shows the absolute

concentration values). At 24 h after transfection of the M2-like macrophages with the siRNA

pool, the cytokine profile had already shifted to an M1-like phenotype in the transfected group

compared to the control group (mock treated M2-like macrophages) (Fig 6A). These iM1 mac-

rophages secreted the proinflammatory (M1-like) cytokines IFN-β, IL-1α, IL-6, IL-27, MCP1

and TNF-α but not IFN-γ. In accordance with the M1-like phenotype, the iM1 macrophages

did not induce the secretion of IL-23, IL-1β, IL-17A, IL-12p70, IL-10 or GMCSF. Hence, aside

from the shift from IFN-γ to IFN-β production in the iM1 macrophages, the iM1 and M1-like

macrophages showed the same cytokine secretion pattern. This similarity became even more

prominent after prolonged transfection periods, resulting in considerably higher amounts of

all aforementioned cytokines upon transcription factor expression knockdown (48 h and 72 h

post transfection, Fig 6B and 6C).

To obtain a broader overview of the impact of the regulators with knocked-down expres-

sion on the transcriptome of iM1 macrophages, RNA sequencing was performed to obtain the

iM1 transcription profile. In addition, we determined the transcription factors maximally con-

tributing to this shift and performed RNA sequencing of M2-like macrophages after knocking

down the expression of single genes.

The reprogramming of M2-like-polarized macrophages into iM1 macrophages resulted in

iM1 macrophages with an expression profile very similar to that of M1-like macrophages

(P = 3.04E-09, Fisher’s exact test). Fig 7A shows the first principal component for the gene sig-

nature (112 genes) and Fig 7B shows the first principal component for all profiled genes. As

shown in Fig 7C and S6 Table, the majority of the genes in the literature signature were

affected by our approach of the combined expression knockdown: in the iM1 macrophages,

74% (20 out of 27) of the genes in this signature were correctly reprogrammed, and 62% (29

out of 47) of the metabolic genes were successfully reprogrammed (complete extended gene

signature: 49 out of 74, i.e., 66% correctly reprogrammed). Additionally, knocking down the

expression of single transcription factors from our list induced a significant switch from an

M2-like phenotype towards an M1-like phenotype (Myc: P = 5.68E-07, Pparγ: P = 2.20E-06,

E2f1: P = 1.43E-05, and Stat6: P = 8.09E-03, Fisher’s exact test). Knocking down the expression

of the predicted transcription factors affected genes involved in central metabolism including

arginine synthesis, IMP synthesis, fatty acid synthesis, glycolysis and the citrate cycle. Our

results indicated that the reprogramming of metabolic genes was mainly mediated by knock-

ing down the expression of Myc (26 genes when individually knocked down) and Pparγ (23

genes when individually knocked down). We observed decreased expression of tissue repair

genes (Chil3 and Retnla) and Tgfb2 (S1 Fig). Consistent with previous findings, the expression

of M1-associated cytokines (Il6 and Tnfα) was upregulated in the iM1 macrophages. Regard-

ing the differential expression of all genes (not only those in the focused gene signature), we

observed 3,999 and 4,447 genes to be differentially regulated in the M1-like macrophages
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Fig 6. The quantification of cytokines released by M2-polarized macrophages upon transfection with siRNA pools

was performed by multiplex analysis. Enhanced secretion of IFN-β, IL-1α, IL-6, IL-27, MCP1 and TNF-α but not

IFN-γ was detected at 24 h (A), 48 h (B) and 72 h (C) after transfection in M2-like macrophages treated with the

combined siRNA pool targeting E2f1, Myc, Pparγ and Stat6 (iM1) compared to (mock treated) M2-like macrophages.

https://doi.org/10.1371/journal.pcbi.1007657.g006
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compared to the M2-like macrophages, respectively, and of these genes, 44% were correctly

reprogrammed in the iM1 macrophages (overlap of 1,431 genes with upregulated expression

and 2,438 genes with downregulated expression).

In summary, quantitative gene expression and cytokine secretion analysis demonstrated

efficient but incomplete in vitro repolarization of M2-like macrophages into an iM1 phenotype

mediated through knocking down the expression of the predicted regulators E2f1, Myc, Pparγ
and Stat6. Combined expression knock down of these regulators reprogrammed more genes

in the M1-like direction than individual expression knock down, indicating a cumulative effect

of these transcription factors on the regulation of M2-like to M1-like polarization.

Discussion

We identified differences in metabolic regulation when comparing M1-like- and M2-like-

polarized macrophages derived from peritoneal exudate cells (PECs). In the M1-like macro-

phages, genes involved in immune responses and metabolic processes such as nitric oxide syn-

thesis and glycolysis, respectively, exhibited upregulated expression. Aerobic glycolysis, also

Fig 7. The impact of the predicted regulators on metabolic and M1/M2 associated genes was investigated on a

large scale by profiling the transcriptome of iM1 macrophages (reprogrammed M2-like macrophages). The first

principal component of our gene signature (n = 112 genes) (A) and all profiled genes (B) show the shift of iM1 from

M2-like macrophages towards M1-like macrophages. (C) The reprogramming effect of the predicted regulators on the

extended gene signature is visualized as the number of genes that were differentially expressed in the same direction

after TF expression knockdown in M2-like macrophages as the expression observed in M1-like macrophages

compared to that observed in (mock treated) M2-like macrophages.

https://doi.org/10.1371/journal.pcbi.1007657.g007
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known as the “Warburg effect”, has been described as an exploitative process in which ATP is

produced rather lineally by converting glucose into lactate [23]. In addition to occurring in

tumor cells, the Warburg effect has also been observed in immune cells [24–27]. We noted

upregulated expression of all genes involved in the aerobic glycolysis pathway from hexoki-

nases to lactate dehydrogenase in the M1-like macrophages. This enhanced gene expression

pattern enables fast energy supply, which is needed for cytokine production and effective erad-

ication of invading pathogens. This is in line with observations in several studies that shifting

to glycolysis and away from the TCA cycle lead to more inflammatory macrophages [28,29].

ONeill and Pearce suggested that aerobic glycolysis enables induced NADPH production,

either via the pentose phosphate pathway or via malic enzyme and pyruvate, to produce NO

via iNOS or to produce other radical oxygen species [30]. Similarly, Jha et al. observed

increased glycolytic activity and reduced oxidative phosphorylation activity in bone marrow-

derived macrophages upon stimulation with LPS and IFNγ [10]. In turn, the M2-like macro-

phages showed rather upregulation of oxidative phosphorylation and anabolic metabolic pro-

cesses such as amino acid and nucleotide biosynthesis, and, fatty acid metabolism was

upregulated. ONeill and Peace suggested that glycolysis suits M1 for fast, short-termed activa-

tion affecting bacteria or fungi, whereas oxidative processes may rather support the survival of

M2 macrophages during their longer and persisting combat with parasitic helminth infections

[30].

Next, we sought to determine the regulators responsible for the metabolic and functional

reprogramming of the M2-like macrophages. To focus our reprogramming efforts, we assem-

bled a gene signature comprising 112 genes from the central metabolic pathways with the

most differences between the M1- and M2-like macrophages as well as M1- and M2-associated

genes from the literature. Employing the transcription profiles of the M1- and M2-like macro-

phages and generic chromatin binding information from databases, we generated a mixed

integer linear programming-based gene regulatory model followed by a statistical analysis

pipeline and determined a refined list of four transcription factors (E2F1, MYC, PPARγ and

STAT6) predicted to be responsible for the differential gene regulation between the M1- and

M2-like macrophages. By knocking down the expression of all four regulators in M2-polarized

macrophages, we induced upregulated expression of M1-associated genes and downregulated

expression of M2-associated genes. We observed that 66% of the genes were correctly repro-

grammed i.e., differentially expressed in the same direction as that observed in M1-like macro-

phages (mock treated) compared to that observed in M2-like macrophages (mock treated). In

addition, 13 secreted cytokines were investigated. Both, the gene expression levels and the

secreted amounts of all proinflammatory cytokines analyzed, except IFNγ, were increased in

the reprogrammed macrophages, again indicating the switch to an M1-like phenotype. Instead

of higher secretion of IFNγ, higher secretion of IFNβ was observed in the reprogrammed mac-

rophages compared with the control M2-like macrophages. This secretion pattern contrasted

with the observed secretion pattern in the M1-like macrophages but is actually in agreement

with a recent report in which M1-like macrophages showed increased IFNβ secretion [31].

Overall, we observed that 8,446 genes were differentially expressed between M1-like and

M2-like macrophages. In our reprogrammed iM1 macrophages, 44% of these genes showed

correct differential expression. It thus would be intriguing to expand these studies in future

projects. Hence, the experimental validations confirmed that our predicted regulators were

essential for maintaining the M2-like phenotype, and moreover, the inhibition of these regula-

tors allowed M2-like macrophages to be driven into an activation state similar to that of

M1-like macrophages.

All predicted transcription factors were active in M2-like macrophages, and siRNA-medi-

ated knockdown repressed their transcription and hence their activity. Interestingly, the
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expression of cell cycle regulators such as MYC and E2F1 needed to be knocked down to

achieve reprogramming, suggesting that enforced cell cycle arrest in M2-like macrophages

might stimulate the acquisition of an M1-like phenotype. Indeed, from the other direction, it

has been shown that intercalator-induced DNA damage reprograms white blood cells into tol-

erance or resilience in a murine sepsis model [32]. In activated macrophages, multiple and dis-

tinct roles of the cell cycle have been observed in M1- and M2-like macrophages. Considering

M2-like macrophages, the simultaneous injection of IL-4 and thioglycollate into the murine

peritoneal cavity triggers rapid proliferation in tissue-resident macrophages in situ [33]. In

turn, it has been observed that in M1-like macrophages, the gene expression of immunostimu-

latory MHC class II molecules is regulated by the cell cycle [34].

Furthermore, we estimated the influence of each of the predicted regulators by targeting

E2f1, Myc, Pparγ and Stat6 individually. Increased gene expression of inflammatory cytokines

after individually knocking down Myc expression showed that this transcription factor is a

potential inhibitor of M1-like activation. Hao and coworkers showed that transfecting M2-like

macrophages with shRNA-cMyc leads to reduced expression of Arg1 and Mrc1, indicating

that MYC may facilitate the maintenance of the M2-polarized state [35]. This study is in line

with a study by Pello and coworkers that reported that M2-like polarization is dependent on c-

Myc expression [36]. After knocking down Myc expression, we observed reprogrammed meta-

bolic pathways such as glycolysis and IMP biosynthesis. MYC has been described as a master

regulator of cell metabolism, including nucleotide biosynthesis [37]. Particularly, nucleotide

metabolic genes are enriched among MYC targets [38], and IMP dehydrogenases have been

described as direct targets of MYC [39], supporting our observation of downregulated IMP

synthesis after Myc expression knockdown. Limited information is available about the specific

function of E2F1 in M2-polarized macrophages. We observed that knocking down E2f1

expression on its own induced an M1-like expression pattern in our extended gene signature,

and particularly, the observed M1-like and M2-like associated genes from the literature signa-

ture suggested an anti-inflammatory role for E2f1 in M2-like macrophages. After E2f1 expres-

sion knockdown, the levels of glycolysis genes encoding hexokinases 1–3 and inflammatory

genes (i.e., Ccl2, Ccl3, and Cxcl9) were upregulated, while fatty acid metabolism-related gene

expression was downregulated. Further evidence of an anti-inflammatory function of E2f1 is

provided by a study reporting enhanced levels of IL-12p70 and TNF-α in dendritic cells after

knocking down the expression of E2f1 [40]. However, different effects of E2F1 on macrophage

function were described previously by another study. The RNAi-mediated inhibition of E2F1

in J77A4.1 macrophage cells stimulated with LPS resulted in reduced IL-6 and TNF-α secre-

tion. Likewise, diminished levels of TNF-α, IL-1β and IL-6 were observed in bone marrow-

derived macrophages from E2F1-deficient mice three hours after systemic LPS challenge. Fur-

thermore, decreased production of TNF-α and IL-6 was found after stimulation with six differ-

ent TLR ligands [41]. Thus, the inflammatory and anti-inflammatory roles of E2F1 appear to

be complex and need further investigation.

We observed that Pparγ and Stat6 regulate immune-related pathways such as cell adhesion

and antigen processing and presentation. Previous research showed that IL-4-induced Stat6

expression mediates the inhibition of Nos2 expression in a murine macrophage cell line [42].

Likewise, we observed that Nos2 expression was downregulated after individual and combined

expression knockdown of E2f1, Myc, Pparγ and Stat6. Notably, Stat6 also negatively regulates

IFN-γ-induced Stat1 expression directly and indirectly [43–45]. Furthermore, our results

showed that all four identified transcription factors, i.e., E2F1, MYC, PPARγ and STAT6, had

an impact on the regulation of fatty acid metabolism, i.e., the downregulation of the expression

of one transcription factor led to a decrease in this metabolic process. This result is in line with

the recent observation that M2-like macrophages of STAT6 null mice failed to upregulate the
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expression of metabolic genes involved in fatty acid oxidation [46]. In another study, decreased

arginase activity and increased IL-6 production were also reported in macrophage-specific

Pparγ knockout mice [47].

In summary, we postulate that targeting E2f1, Myc, Pparγ and Stat6 in M2-like macro-

phages induces a shift towards immunostimulatory M1-like macrophages, which may support

immune defense and hence improve therapy against infection. In several studies, it has been

observed that induced shifts between tolerance and resistance can be beneficial. It is known

that tumors in septic patients can regress. E.g., in a patient with stage IV cutaneous metastatic

melanoma, complete tumor regression was observed after multifactorial sepsis during chemo-

therapy. After targeted antibiosis and combined complication-free chemotherapy, the clinical

condition of the patient improved, resulting in the complete clearance of metastases by end of

therapy [48]. Furthermore, several studies have reported beneficial effects from anti-inflamma-

tory therapies; macrolides, in addition to their antibiotic effect, can modulate the immune

response and are applied to treat chronic inflammatory diseases such as panbronchiolitis,

bronchiectasis, rhinosinusitis and cystic fibrosis. The immunomodulatory mechanisms under-

lying the effects of macrolides, although not completely understood, may be due to the inhibi-

tion of MAPK/ERK signaling and NF-κB. Macrolides accumulate within cells, suggesting that

they may associate with the receptors or carriers responsible for the regulation of the cell cycle

and immunity (see review by Kanoh and Rubin (2010) [49]). In line, it is known that activation

of NF-κB can lead to M1-like polarization (see review [50]). Indeed, we observed a significant

higher activity (derived from the expression of the target genes, see Materials and Methods) of

NF-κB in iM1 and M1-like compared to M2-like macrophages (P = 0.0072 and P = 0.025,

respectively, Student’s T-test). Investigating the complementary and synergistic effects of

macrolides with E2f1, Myc, Pparγ and Stat6 may provide a better understanding of these bene-

ficial mechanisms and may lead to developments modulating their mode of action. For the

future, we suggest to substantiate the shift in polarization also metabolically, e.g. in the con-

sumption and production of metabolic compounds and oxygen consumption. The problem of

trying to reprogram M2-like into M1-like macrophages is mathematically symmetric to the

shift from M1-like to M2-like macrophages. The latter would have clinically highly relevant

applications, e.g. reducing the inflammatory response during the acute phase of sepsis. Experi-

mentally, such an analysis was out of scope of this study, but can be fruitful in future work.

Methodologically, we inferred metabolic fluxes from gene expression employing a mixed inte-

ger programming based model linearly correlating the metabolic fluxes with the expression of

the according enzyme coding gene(s). Several other methods have been published with a simi-

lar aim, i.e. to predict metabolic fluxes from gene expression [51–53]. A CPU demanding, but

necessary task for these approaches is to reduce thermodynamically infeasible loops. As a

future aspect it would be intriguing to compare these methods which may lead to an improved

model better reflecting the metabolic fluxes.

Conclusions

Understanding and manipulating the polarization of macrophages to shift these cells from an

immunosuppressive state into an immunostimulatory state or vice versa have a high potential

to treat a broad range of widespread diseases such as sepsis, cancer or chronic inflammatory

diseases. The present study provides new molecular insights into the reprogramming of mac-

rophages. Using siRNA pools targeting E2f1, Myc, Pparγ and Stat6, we demonstrated that

these transcription factors are essential to maintaining an M2-like phenotype. The reprogram-

ming of M2-like macrophages by repressing these transcription factors induced a switch

towards an M1-like phenotype as evidenced by i) increased secretion of proinflammatory
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cytokines, ii) a characteristic gene expression signature and an extended gene signature based

on previously described M1/M2 marker genes and central metabolism genes, and iii) an over-

all differential expression pattern similar to that of M1-like macrophages. Our results may sup-

port the design of immunotherapy-based strategies targeting macrophages to modulate the

immune system in widespread chronic and acute diseases.

Materials and methods

Isolation of murine peritoneal exudate cells (PECs)

C57BL/6 mice (H2b, aged 8–20 weeks) were obtained from Charles River (Sulzfeld, Germany)

and housed under SPF conditions in individually ventilated cages (IVCs) at the animal facility

of the DKFZ. C57BL/6 mice were injected intraperitoneally (i.p.) with 1 ml of 3% (w/v) thio-

glycolate containing medium (Applichem, Darmstadt, Germany; Cat. No. A3869) using a 27

G needle. Four days later, mice were sacrificed by gradual CO2 exposition and PECs were iso-

lated upon lavage of the peritoneum with 8 ml ice cold PBS. This procedure yielded approxi-

mately 1.5 x 107 PECs per mouse.

Ethics statement

Animal experiments were approved by the Internal Ethics Committee of the DKFZ and by the

District Government in Karlsruhe, Germany (approval ID 35–9158.81/G-211/16).

In vitro polarization of PECs

PECs were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal

calf serum (FCS), and 2 x 106 cells were seeded into each well of a 6-well plate. After washing

with phosphate-buffered saline (PBS), adherent cells were used for this study. Next, the cells

were cultured for 24h in DMEM supplemented with either 10 ng/ml IL-4 or 100 ng/ml LPS

and 50 ng/ml IFN-γ to induce M2-like or M1-like polarization, respectively. Within the whole

article, we are referring to these macrophages derived from PECs when we write "macro-

phages". Then, PECs were transfected with siRNA pools targeting Myc (Dharmacon, Lafayette,

USA), Ctcf, E2f1, Pparγ, and Stat6 (siTools Biotech, Planegg, Germany) by using Dharma-

FECT 4 Transfection Reagent according to the manufacturer’s instructions. No effects on via-

bility were observed following siRNA transfection as judged by microscopic inspection. In the

reprogramming experiments, PECs were polarized for 24 h into M2-like macrophages using

IL-4 and subsequently transfected with siRNA pools targeting Myc (Dharmacon, Lafayette,

USA), Ctcf, E2f1, Pparγ, and Stat6 (siTools Biotech, Planegg, Germany) by using Dharma-

FECT 4 Transfection Reagent according to the manufacturer’s instructions (subsequent cul-

turing took place in the absence of IL-4). Cytokine assays, quantitative real-time PCR and

RNA sequencing were performed 24, 48 or 72 h post transfection. RNA sequencing experi-

ments were performed 24h after polarization of PECs (obtaining the transcription profiles of

M0, M1-like and M2-like macrophages, without reprogramming or transfection) and 48h post

transfection (for the reprogramming study). PECs treated only with the transfection reagent

were used as mock controls.

Quantification of secreted cytokines and chemokines

Secreted cytokine levels in PEC culture medium were measured by using the LEGENDplex

Mouse Inflammation Panel (13-plex, with Filter Plate, Biolegend, Cat No. 740150; Lot No.

B242042) according to the manufacturer’s protocol with double the sample volume and sample

incubation time at 4˚C overnight.
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RNA isolation and quantitative real-time PCR

RNA extraction from PECs (RNA extraction from PECs (n = 3 biological replicates for M0,

M1-like, M2-like and iM1 macrophages) was carried out using the RNeasy Plus Mini Kit

according to the manufacturer’s instructions (including on-column DNA digestion). The

extracted RNA was purified by ethanol precipitation prior to reverse transcription using the

Transcriptor First Strand cDNA Synthesis Kit according to the manufacturer’s instructions.

Gene expression was measured using quantitative real-time PCR. Therefore, 2 X Power SYBR

Green PCR Master Mix (Thermo Fisher Scientific, Waltham, USA; Cat. No. 4367659), 10 ng

of cDNA, 400 nM primer pair and nuclease-free water were mixed to a total volume of 20 μl.

The selected genes were amplified using the ABI 7300 Real-time PCR System. All the obtained

qPCR data were normalized to the data for the housekeeping gene Rpl19. Primers were pur-

chased from Sigma-Aldrich (St. Louis, USA), dissolved in ddH2O to a stock concentration of

100 μM and stored at -20˚C. A list of all primers used is given in S7 Table.

RNA sequencing and analysis

RNA was extracted using the Qiagen RNeasy Plus Mini Kit according to the manufacturer’s

instructions. Samples were sequenced by the Genome and Proteomics Core Facility of the Ger-

man Cancer Research Center in Heidelberg (HiSeq SE50) and Novogene (Hong Kong, HiSeq

PE150). The resulting reads were trimmed and mapped against the mouse GRCm38/mm10

reference genome using Trimmomatic [54] and TopHat [55], respectively. Read counts were

calculated using featureCounts [56,57]. DESeq2 [58] was used to identify the genes with differ-

ential expression between M1-like- and M2-like-polarized macrophages. To note, throughout

the article, we refer to "up- and down-regulated genes" in respect to the comparison in gene

expression between M1-like (or later induced M1, iM1) and M2-like macrophages, irrespective

to the expression in M0 macrophages.

Gene set enrichment analysis was performed using g:Profiler [59] and the gene set defini-

tions of Gene Ontology (GO) and KEGG analyses. The enriched gene sets from the GO analy-

sis were filtered with customized scripts to reduce redundant GO terms using linear

optimization. In detail, redundancy between two gene sets was quantified using Jaccard simi-

larity coefficients,

J A;Bð Þ ¼
jA \ Bj
jA [ Bj

ð1:1Þ

in which A and B are gene sets containing significantly differentially expressed genes. An undi-

rected graph G = (X, E) is introduced, with X being gene sets as vertices and E being gene set
pairs with J(A,B)> = 0.5 as edges of the graph. A mixed integer linear model (weighted stable

set problem) was set up with a constraint for each edge to select at most one of the vertices of

an edge:

Max
Pn

i¼1
wiXi ð1:2Þ

subjected to

Xi þ Xj � 1 for every fi; jg � E and Xi � f0; 1g for 1 � i � n; ð1:3Þ

where, wi is the weight of a gene set. The weight is derived from its significance value (p-value)

and calculated as 1 − log10(p-value)/100. This maximization was done employing linear integer

programming solved by the software Gurobi (version 7.5.2 https://www.gurobi.com). This led

to an optimal selection of at most one gene set from a pair in such a way that the overall
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number of non-redundant gene sets were maximized. The remaining gene sets from the GO

analysis, together with the gene set definitions from the KEGG analysis, were grouped by man-

ual curation into broader categories comprising anabolic processes (ANP); nucleic acid metab-

olism (NAM); oxidative stress (OXS); metabolic processes (MEP); protein transport,

modification and processing (PRO); transport (TRA); catabolic processes (CAP); the damage

response (DAR); cellular death (CED); cellular growth (CEG); development (DEV); response

to stimuli (RES); signaling processes (SIP); the immune response (IMR); disease-related path-

ways (DIS) and miscellaneous (MIS). Raw data and read counts have been deposited in the

Gene Expression Omnibus repository (GSE 129253).

Flux balance analysis

Our metabolic network was based on a macrophage cell line model (RAW 264.7 cells) from

Bordbar et al. [20]. A constraint for the minimal biomass production (biomass� 0.028) was

set as reported by Bordbar et al. To note, the lower bound on the biomass reaction was set by

Bordbar and coworkers to the lower experimental growth rate of 0.0281/h to mimic minimal

maintenance of the macrophages. The model of Bordbar et al. bases on proteomics data from

another study in which macrophages were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% heat-inactivated fetal bovine [60]. Further, the reaction

Ornithineþ Carbamoyl� phosphateÐ Hþ þ Pi þ L� Citrulline ð2Þ

catalyzed by ornithine carbamoyltransferase was added to the network. We predicted the flux

of a set of reactions for different macrophage phenotypes. In our model, a gene expression-

based flux ~vr;p of reaction r and condition p was derived from a linear model in which the

expression of the gene encoding the corresponding enzyme, �g r;p, was related to flux ~vr;p by

j~vr;pj ¼ minVr þ �g r;p � minGr
� �

�
maxVr � minVr
maxGr � minGr

ð3:1Þ

where �g r;p was the Z-transformed gene expression value of macrophage type p � {M0,M1,M2}

andminGr andmaxGr were the lowest and highest Z-transformed gene expression values for

reaction r across the conditions.maxVr andminVr were the lowest and highest absolute fluxes

and were determined by flux variance analysis [61]. Metabolic fluxes were constrained by the

known stoichiometry of the reactions r and their substrates and products, compiled into the

stoichiometric matrix S, and constrained by lower (lbr) and upper (ubr) bounds for each reac-

tion r. Flux variance analysis [61] was performed to determine the lower and upper bounds for

all reactions. Assuming that the metabolic network is in a steady state, in which the metabolite

concentrations do not change over time, yields the constraints (3.2)

Sr � vr;p ¼ 0; ð3:2Þ

and flux ~vr;p is constrained by

lbr � vr;p � ubr: ð3:3Þ

Sr is the stoichiometric matrix, and vr,p is the flux of reaction r and macrophage phenotype

p. The objective function for the optimization problem was to minimize the difference between

the gene expression-based flux prediction ~vr;p and the predicted flux vr,p:

Minimize
P

r;pwr;p � jjvr;pj � j~vr;pjj; with ð4:1Þ
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wr;p ¼

100

maxVr � n
8r 2 CR

1

maxVr � n
otherwise

ð4:2Þ

8
>>><

>>>:

wheremaxVr is the highest absolute flux of reaction r, n is the number of genes associated with

reaction r. Hence, our model did not consider AND/OR rules if more than one gene was asso-

ciated with a reaction r. We rather calculated the associated flux by averaging the gene expres-

sion values using the weights wr,p for each gene encoding this reaction. Reactions that were not

associated with any genes were not considered in the objective function. CR denotes the set of

core reactions associated with the pathways of interest (glycolysis, citrate cycle, urea cycle, or

IMP synthesis). The fluxes of the core reactions (r 2 CR) were of special interest and thus were

weighted by 100. Lower weights (= 1) were used for reactions that were direct neighbors of the

core reactions. All other reactions were not part of the objective function. The flux of each

reaction r was normalized by the maximum absolute flux value derived from flux variance

analysis yielding the weights wr,p (formula 4.2). In addition, we developed a method to detect

and remove the thermodynamically infeasible loops that were part of the flux solution space.

First, the flux vector v of the optimal solution for the system (1) to (4.2) is required. Supp(v) is

the support of v and contains a subset of the reactions, where v is higher than or equal to the

threshold 0.01. 0.01 was used as the best trade-off between CPU time and getting reasonable

models. Next, the length of a minimum-containing cycle of the support is determined by solv-

ing the following MIP problem:

Minimize
P

rlr ð5:1Þ

Subject to

P
rSr � lr ¼ 0 ð5:2Þ

lr � inFCr ð5:3Þ

P
rinFCr � 2 ð5:4Þ

in which Sr is the stoichiometric matrix and λr indicates the flux of reaction r (8r 2 Supp(v)).
inFC is a binary variable that equals 1 if and only if the reaction r is involved in the detected

thermodynamic cycle. Notably, all sums in (5.1) to (5.4) are built over Supp(v). If there is no

thermodynamically infeasible loop, then this MIP problem is infeasible, and we can stop. Oth-

erwise, there are at least two reactions involved in a thermodynamic cycle. The corresponding

variables inFCr1 , . . ., inFCrkðk � 2Þ are all equal to 1. In this case, we forbid this cycle by the

constraint

Pk
i¼1
inFCri � k � 1: ð6Þ

This inequality is added to the systems (1) to (4.2), which enforces that after the next opti-

mization, at least one flux of the corresponding cycle will be 0, but which is 0 is decided by the

optimization. This procedure of adding inequalities of type (6) was repeated until all thermo-

dynamically infeasible loops were detected and forbidden. So first we prefer small loops to be

detected. This is to decrease the overall running time. Afterwards the detected loop is for-

bidden by inequality (6) and we look for the next loop by reoptimization. After the
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optimization leads to no feasible solution any more, there is no loop in the solution (with

support� 0.01). Otherwise a solution would have been found.

Modeling of regulatory networks and in silico reprogramming

We selected 112 metabolic genes and M1/M2-associated genes from the literature for which

we predicted a short list of transcription factors best explaining the transcription profiles of

these genes. We collected evidence-based interactions for all transcription factors from various

sources: MetaCore (Thomson Reuters), ChEA [62], ECRbase [63], Mouse ENCODE [64,65],

and TfactS [66,67]. We compiled transcription factor binding information from MetaCore,

ChEA [62] and ENCODE [64,65]. Additionally, we added the two additional databases ECR-

Base and TfactS. ECRBase is based on alignments of evolutionarily conserved transcription

factor binding sites [63]. TfactS contains interaction information inferred from the regulation

of transcription factors in the gene expression data of experimentally well-characterized target

genes listed in TRED [68], TRRD [69], PAZAR [70] and NFIregulomeDB [66,71]. Interaction

information from MetaCore labeled "direct" was regarded as the most reliable and hence

weighted by a factor of two. If an interaction was listed in two out of the (a) MetaCore (labeled

"unspecified"), (b) ChEA and (c) ECRbase databases, it was weighted by one (for each source).

A listed entry in mouse ENCODE was weighted by 0.5. The interactions in TfactS were consid-

ered to be of weaker evidence and were weighted by 0.25. This approach led to the overall edge

score ESt,i of transcription factor t and target gene i. If ESt,i was larger than zero, the interaction

was considered to be known. We considered only transcription factors for which we found

known interactions with at least 15 genes in our gene set. In addition, the activity for each tran-

scription factor was determined as described previously [22]: the activity of a regulator was cal-

culated from the average expression (z-scores) of its known target genes. We predicted the

regulators for a set of genes with a linear approach by minimizing the difference between the

predicted gene expression values ~g i;k and the measured gene expression values gi,k of gene i in

sample k [72]:

Minimize
P

i;kjjgi;kj � j~g i;kjj; with ð6:1Þ

~g i;k ¼ b0;i þ
P

tbt;i � ESt;i � actt;k ð6:2Þ

where t is the transcription factor potentially regulating gene gi and actt,k, is the above-described

activity of transcription factor t in sample k. ESt,i is the edge score of transcription factor t to

gene gi. The beta values were the parameters to optimize. βt,i is the parameter to optimize the

impact of t regulating gene i, β0,i is an additive offset for gene i. We applied this method within

the following bootstrapping scheme. First, we randomly selected 10 genes out of the gene set

and predicted their regulators within a 3-fold cross-validation using the described regression

model (Eqs 6.1 and 6.2). To avoid overfitting, the maximum number of regulators in the model

was set to 5. After 1,000 repetitions, we collected the predicted transcription factors from all

runs and performed Fisher’s exact tests to determine the transcription factors that were selected

significantly more often than by chance. These transcription factors were used in the last step in

which we predicted the most parsimonious set of reprogramming transcription factors for the

whole gene set within a 3-fold cross-validation using the same regression scheme (Eqs 6.1 and

6.2) with at most five regulators. For reprogramming the macrophages from the M2-like to

M1-like phenotype (M2!M1) in silico, we replaced the activity (actt,M1) of the selected tran-

scription factors in the model of the gene of interest as follows:

~g i;M2!M1 ¼ b0;i þ
P

tbt;i � ESt;i � actt;M1 þ
P

ubu;i � ESu;i � actu;M2 ð7Þ
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where i 2 the genes of the extended gene signature, t 2 the selected transcription factors (Myc,

E2F1, Pparg, and Stat6), and u 2 all other transcription factors in the model, i.e., leaving the rest

of the model as an M2-like model. All betas were used from the predicted M2-like models.

Supporting information

S1 Fig. Gene expression profiles of the extended gene signature in (mock treated) M1 mac-

rophages or M2 macrophages treated with siRNA-pools targeting E2f1, Myc, Pparg, Stat6

and their combination, compared to (mock treated) M2 macrophages. Significantly upregu-

lated genes with a log2 fold change� 1.5, non-significantly upregulated genes, significantly

downregulated genes with a log2 fold change� -1.5, and non-significantly downregulated

gens are shown in red, orange, blue and light blue, respectively.

(TIF)

S2 Fig. Gene regulatory network including the short list of four transcription factors

(E2f1, Myc, Pparg, Stat6) and 112 genes comprising 76 metabolic genes from biochemical

pathways being differentially regulated in M1 and M2, and a literature derived gene signa-

ture comprising of 36 M1 or M2 associated genes.

(TIF)

S3 Fig. Gene regulatory network including five transcription factors (depicted in black

ellipses) and 112 genes comprising 76 metabolic genes from biochemical pathways being

distinctively differentially regulated in M1 and M2, and a literature derived gene signature

comprising of 36 M1 or M2 associated genes.

(TIF)

S4 Fig. Performance of the different combinations of the predicted transcription factors

was investigated by reprogramming M2 macrophages to M1 macrophages in silico.

(TIF)

S5 Fig. Transcriptional changes of M1 and M2 associated genes after knockdown of five

selected TFs were experimentally determined by quantitative PCR. Shown are log2 fold

changes in gene expression of 15 genes (from the initial, literature derived signature) in M2 mac-

rophages after treatment with the combined siRNA pool targeting E2f1, Myc, Pparg, Stat6 and

Ctcf relative to M2 mock treated macrophages. Samples were extracted 24 h, 48 h and 72 h after

siRNA treatment. Error bars are based on the standard error of technical replicates. Gene expres-

sion profiles were considered as successfully reprogrammed if a switch towards an M1-like pheno-

type was observed in both biological replicates (replicate 1 and 2 in grey and black, respectively).

(TIF)

S6 Fig. Knockdown efficiency 24 h, 48 h and 72 h after siRNA transduction targeting the

transcription factors E2f1, Myc, Pparg and Stat6. Error bars indicate the standard error of

three technical replicates.

(TIF)

S7 Fig. Transcriptional changes of M1 and M2 associated genes after macrophage polariza-

tion to the M1-like phenotype were determined by quantitative PCR. Shown are log2 fold

changes in gene expression of 15 genes (from the initial, literature derived signature) in

M1-like (24h polarization) and iM1 macrophages (24h post transfection) relative to their

expression in M2-like macrophages (24h polarization). Error bars are based on the standard

error of technical replicates.

(TIF)
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S8 Fig. The quantification of cytokines released by M2-polarized macrophages upon trans-

fection with siRNA pools was performed by multiplex analysis. Shown are the concentra-

tions of the cytokines in the medium after 24 hrs (A), 48 hrs (B) and 72 hrs (C), averaged from

two technical replicates.

(TIF)

S9 Fig. Transcriptional changes in M0 macrophages of M1-like- and M2-like-associated

genes after knocking down the expression of four selected TFs were experimentally deter-

mined by quantitative PCR. Shown is the differential expression of the genes 72 hrs after

siRNA transfection. 72 hrs correspond to a similar culturing time of the cells as if we polarize

for 24hrs and then transfect with siRNA for 48hrs. Error bars indicate standard deviations of

technical replicates.

(TIF)

S1 Table. Results from the differential expression analysis between M1 and M2 macro-

phages. DESeq2 was used to determine the differentially expressed genes.

(XLSX)

S2 Table. Significantly enriched gene sets in M1-polarized versus M2-polarized macro-

phages. Gene set enrichment analysis was performed using g:Profiler followed by filtering of

enriched gene sets with customized scripts.

(XLSX)

S3 Table. Predicted metabolic fluxes using the constraint based model.

(XLSX)

S4 Table. Gene signature for M1 and M2 macrophages. Various macrophage subsets had

been classified in other studies according to their transcriptional signatures. We assembled

a signature from these studies and found very similar differential gene expression (n = 33

agreed, n = 3 disagreed) when comparing expression profiles (M1 versusM2 macrophages) of

our experiments to the reported gene expression profiles in literature.

(PDF)

S5 Table. Transcriptional changes of M1 and M2 marker genes from the literature signa-

ture after transfection with the siRNA pool targeting E2f1, Myc, Pparγ and Stat6 (inducing

iM1).

(PDF)

S6 Table. Differential expression of the genes from the extended gene signature.

(PDF)

S7 Table. Primers for quantitative real-time PCR. Primers were purchased from Sigma-

Aldrich (St. Louis, USA), resolved in ddH2O to a stock concentration of 100 μM and stored

at -20˚C.

(DOCX)
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