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Abstract

With computational biology striving to provide more accurate theoretical accounts of bio-

logical systems, use of increasingly complex computational models seems inevitable.

However, this trend engenders a challenge of optimal experimental design: due to the

flexibility of complex models, it is difficult to intuitively design experiments that will effi-

ciently expose differences between candidate models or allow accurate estimation of

their parameters. This challenge is well exemplified in associative learning research.

Associative learning theory has a rich tradition of computational modeling, resulting in

a growing space of increasingly complex models, which in turn renders manual design

of informative experiments difficult. Here we propose a novel method for computational

optimization of associative learning experiments. We first formalize associative learning

experiments using a low number of tunable design variables, to make optimization tracta-

ble. Next, we combine simulation-based Bayesian experimental design with Bayesian

optimization to arrive at a flexible method of tuning design variables. Finally, we validate

the proposed method through extensive simulations covering both the objectives of accu-

rate parameter estimation and model selection. The validation results show that computa-

tionally optimized experimental designs have the potential to substantially improve upon

manual designs drawn from the literature, even when prior information guiding the optimi-

zation is scarce. Computational optimization of experiments may help address recent

concerns over reproducibility by increasing the expected utility of studies, and it may

even incentivize practices such as study pre-registration, since optimization requires

a pre-specified analysis plan. Moreover, design optimization has the potential not only

to improve basic research in domains such as associative learning, but also to play an

important role in translational research. For example, design of behavioral and physiologi-

cal diagnostic tests in the nascent field of computational psychiatry could benefit from an

optimization-based approach, similar to the one presented here.
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Author summary

To capture complex biological systems, computational biology harnesses accordingly

complex models. The flexibility of such models allows them to better explain real-world

data; however, this flexibility also creates a challenge in designing informative experi-

ments. Because flexible models can, by definition, fit a variety of experimental outcomes,

it is difficult to intuitively design experiments that will expose differences between such

models, or allow their parameters to be estimated with accuracy. This challenge of experi-

mental design is apparent in research on associative learning, where the tradition of

modeling has produced a growing space of increasingly complex theories. Here, we pro-

pose to use computational optimization methods to design associative learning experi-

ments. We first formalize associative learning experiments, making their optimization

possible, and then we describe a Bayesian, simulation-based method of finding optimized

experiments. In several simulated scenarios, we demonstrate that optimized experimental

designs can substantially improve upon the utility of often-used canonical designs. More-

over, a similar approach could also be used in translational research; e.g., in the nascent

field of computational psychiatry, designs of behavioral and physiological diagnostic tests

could be computationally optimized.

Introduction

A major goal of computational biology is to find accurate theoretical accounts of biological sys-

tems. Given the complexity of biological systems, accurately describing them and predicting

their behavior will likely require correspondingly complex computational models. Although

the flexibility of complex models provides them with potential to account for a diverse set of

phenomena, this flexibility also engenders an accompanying challenge of designing informa-

tive experiments. Indeed, flexible models can often be difficult to distinguish one from another

under a variety of experimental conditions [1], and the models’ parameters often cannot be

estimated with high certainty [2]. Designing informative experiments entails formalizing them

in terms of tunable design variables, and finding values for these variables that will allow accu-

rate model selection and parameter estimation. This challenge is well exemplified—and yet

unaddressed—in the field of associative learning research.

Associative learning is the ability of organisms to acquire knowledge about environmental

contingencies between stimuli, responses, and outcomes. This form of learning may not only

be crucial in explaining how animals learn to efficiently behave in their environments [3], but

understanding associative learning also has considerable translational value. Threat condition-

ing (also termed “fear conditioning”), as a special case of associative learning, is a long-stand-

ing model of anxiety disorders; accordingly, threat extinction learning underlies treatments

such as exposure therapy [4]. Consequently, the phenomenon of associative learning—

whether in the form of classical (Pavlovian) or operant (instrumental) conditioning—has been

a subject of extensive empirical research. These empirical efforts have also been accompanied

by a long tradition of computational modeling: since the seminal Rescorla-Wagner model [5],

many other computational accounts of associative learning have been put forward [6–10],

together with software simulators that implement these theories [11, 12]. As this space of

models grows larger and more sophisticated, the aforementioned challenge of designing

informative experiments becomes apparent. Here, we investigate how this challenge can

be met through theory-driven, computational methods for optimizing associative learning

experiments.

Computational optimization of associative learning experiments
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Similar methods of optimal experimental design have been developed in various subfields

of biology and cognitive science concerned with formal modeling; for example, in systems

biology [13, 14], neurophysiology [15, 16], neuroimaging [17, 18], psychology [19, 20], and

behavioral economics [21, 22]. These efforts have generally demonstrated the potential benefits

of computational optimization in experimental design. Yet, in research on associative learning,

there is a lack of tools for design optimization, although the foundation for this development

has been laid through extensive computational modeling. We therefore explore the potential

of computationally optimizing experimental designs in associative learning studies, as opposed

to the common practice of manually designing such experiments.

In optimizing experimental designs we usually need to rely on prior information: formaliz-

ing this notion is the essence of the Bayesian experimental design framework [23]. Bayesian

experimental design is the basis of the aforementioned methods in other domains, and it also

underlies our approach. This framework formalizes the problem of experimental design as

maximizing the expected utility of an experiment. With this formulation we can integrate

prior knowledge with explicit study goals to arrive at optimal designs. Moreover, upon observ-

ing new experimental data, the Bayesian design framework prescribes a principled manner in

which to update the optimal design. However, Bayesian experimental design requires calcula-

tions of expected utility that usually result in analytically intractable integrals. To address this

issue, we adopt a simulation-based approach to utility calculations [24, 25]. Using the simula-

tion-based approach, we can flexibly choose the experiment structure, space of candidate

models, goals of the study, and the planned analysis procedure, without the need to specify an

analytically tractable utility function.

To illustrate the proposed design method, we apply it to the optimization of classical condi-

tioning experiments, as a special case of associative learning. We first enable computational

optimization by formalizing the structure of classical conditioning experiments and by identi-

fying tunable design variables. Next, we propose low-dimensional design parameterizations

that make optimization computationally tractable. We then generate optimized designs for

three different types of study goals: namely, (1) the goal of accurately estimating parameters

of a model, (2) the goal of comparing models with different learning mechanisms, and (3)

the goal of comparing models with different mappings between latent states and emitted

responses. Additionally, we perform the optimizations under varying levels of prior knowl-

edge. Finally, we compare the optimized designs with commonly used manual designs drawn

from the literature. This comparison reveals that optimized designs substantially outperform

manual designs, highlighting the potential of the method.

Methods

We can decompose the problem of designing experiments into three components: formalizing,

evaluating, and optimizing. We will first outline each of these components of experimental

design and introduce the main concepts. The details and the application to designing associa-

tive learning experiments are covered by the later sub-sections. Here we provide a non-techni-

cal description of the method, with the more formal treatment available in the S1 Appendix.

Formalizing experiments. involves specifying the experiment structure and parameteriz-

ing it in terms of design variables. Design variables are the tunable parameters of the

experiment (e.g., probabilities of stimuli occurring), and the experiment structure is a deter-

ministic or stochastic mapping from the design variables to experiment realizations (e.g.,

sequences of stimuli). The relationship between experiment structure, design variables, and

experiment realizations, is analogous to the relationship between statistical models, their

parameters, and observed data, respectively. Importantly, much like statistical models,

Computational optimization of associative learning experiments
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experiment structures can be parameterized in various ways, some more amenable to design

optimization than others.

Evaluating experiments. consists of calculating the expected utility for evaluated designs.
Calculation of expected utility requires us to integrate across the distribution of datasets

observable under our assumptions; however, this calculation generally results in analytically

intractable integrals. To tackle this issue, we adopted the simulation-based approach to the

evaluation of expected utility [24, 25]. The simulation-based approach entails three steps: sim-

ulating datasets, analyzing datasets, and calculating the expected utility (Fig 1A–1C).

Simulated datasets consist both of experiment realizations and model responses (Fig 1A).

Experiment realizations are sampled from the experiment structure using the design being

evaluated. In order to sample model responses, we first need to specify a candidate model
space and an evaluation prior. A candidate model space is a set of generative statistical models,

which encode hypotheses about possible data-generating processes underlying the phenome-

non under study. An evaluation prior is a probability distribution that encodes the a priori
plausibility of candidate models and their parameters. Using the evaluation prior, we can sam-

ple a candidate model and its parameters, which together comprise the ground truth. Using the

ground truth model and the experiment realization, we can now sample model responses, thus

completing the simulated dataset.

With the simulated dataset we can perform the planned analysis procedure (Fig 1B). This is

the procedure that we plan to conduct with the dataset obtained in the actual experiment. Any

type of statistical analysis can be used here, but Bayesian analyses seem particularly appropri-

ate, since specifying generative models and priors is already a prerequisite of the design evalua-

tion procedure. If we employ a Bayesian analysis, an additional prior needs to be specified—

the analysis prior. Unlike the evaluation prior—which should reflect the experimenter’s best

guess about the state of the world, and can be as informative as deemed appropriate—the anal-

ysis prior should be acceptable to a wider audience, and therefore should not be overly infor-

mative or biased [26]. The analysis procedure—Bayesian or otherwise—will yield an analysis
result; for example, a parameter estimate (in estimation procedures) or a discrete choice of the

best-supported model (in model selection procedures).

Having performed the analysis on the simulated dataset, we can now calculate the experi-
ment utility (Fig 1C). The experiment utility is provided by the utility function, which encodes

the goals of the study, and maps the values of design variables to utility values. Although we

are interested in how the utility depends on the design, the utility function may generally

depend not only on the direct properties of the design (e.g., experiment duration and cost) but

also on quantities influenced by the evaluation prior or the analysis procedure, e.g., the analysis

result and the ground truth. For example, when the goal is accurate parameter estimation, the

utility function can be based on the discrepancy between the true parameter value (ground

truth), and the obtained parameter estimate (analysis result), neither of which are direct prop-

erties of the design. Finally, to obtain the expected design utility, we simulate a number of

experiments using the same design, calculate the experiment utility for each experiment, and

average the utility values across experiments.

Optimizing experiments. requires finding the values of design variables that maximize the

expected utility under our evaluation prior (please note, we will refer to the evaluation prior

used in design optimization as the design prior, to avoid confusion when a design is optimized

using one prior, but ultimately evaluated using a different prior). The principle of maximizing

expected design utility is the core idea of Bayesian experimental design, which is simply the

application of Bayesian decision theory to the problem of designing experiments [23, 27, 28].

Practically, maximizing expected design utility can be achieved using optimization algorithms

(Fig 1D). We first specify the domain over which to search for the optimal design—the design
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space. The design space is defined by providing the range of feasible values for the design vari-

ables, which must also take into account any possible constraints on these variables. Next, we

specify the optimization objective function, which is in this case the expected design utility,

evaluated through the previously described simulation-based approach. Lastly, we specify the

parameters of the optimization algorithm, e.g., the termination criterion. The optimization

Fig 1. The simulation-based method of evaluating and optimizing experiment designs. Note: light-blue elements denote required

user inputs. (A) Dataset simulation process generates experiment realizations (e.g., cue-outcome sequences) and model responses

(e.g., predicted physiological or behavioral responses), which together form a simulated dataset. (B) Dataset analysis applies the user-

specified analysis procedure to the simulated dataset and produces analysis results (e.g., model evidence or parameter estimates). If

the analysis procedure is Bayesian, an additional analysis prior needs to be specified. (C) The calculation of expected design utility

requires simulating and analyzing a number of datasets. The user-defined utility function—which can depend directly on the design

or on other simulation-specific quantities—provides the utility value for each simulated experiment. The expected design utility is

obtained by averaging experiment-wise utilities. (D) Design optimization proceeds in iterations: the optimization algorithm

proposes a design from the design space, the design is evaluated under the design prior, and the expected design utility is passed back

to the optimizer. If the optimization satisfies the termination criterion (which is one of the user-defined optimization options), the

optimizer returns the optimized design.

https://doi.org/10.1371/journal.pcbi.1007593.g001
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proceeds in iterations that consist of the algorithm proposing a design, and obtaining back the

expected design utility. After each iteration, the termination criterion is checked: if the crite-

rion is not fulfilled, the algorithm continues, by proposing a new design (based on the previ-

ously observed utilities). Ultimately, the algorithm returns an optimized design, which—

importantly—might not be the optimal design, depending on the success of the search.

Formalizing associative learning experiments

As outlined, in order to optimize associative learning experiments, we first need to formalize

their structure. Here we consider the paradigm of classical conditioning, as a special case of

associative learning, where associations are formed between presented cues and outcomes.

There are many design variables that need to be decided in implementing a conditioning

experiment, such as physical properties of the stimuli, or presentation timings. However,

learning is saliently driven by statistical contingencies between cues and outcomes in the

experiment; consequently, most computational models of associative learning capture the

effect of these contingencies on the formation of associations. Therefore, we focus on the sta-

tistical properties of the experiment as the design variables of interest.

We formalize a classical conditioning experiment as a sequence of conditioning trials. A

conditioning trial consists of presenting one of the cues (i.e., conditioned stimulus, CS), fol-

lowed—with some probability—by an aversive or appetitive outcome (i.e., unconditioned

stimulus, US). If each trial’s cue-outcome pair is sampled independently, and if the probability

of the outcome depends only on the cue, then each trial can be represented as a Markov chain

(Fig 2A). In this formalization, the cue probabilities P(CS) and conditional outcome probabili-

ties P(US|CS) are the transition probabilities of the trial-generating Markov chain. These tran-

sition probabilities represent the design variables to be optimized.

Allowing the transition probabilities of each trial to be independently optimized results in a

high-dimensional optimization problem, even with a modest number of trials. However, the

majority of existing experimental designs for studying associative learning vary the cue-out-

come contingencies only between experiment stages (i.e., contiguous blocks of trials), and not

between individual trials. Examples of such designs include forward (Kamin) blocking [29],

backward blocking [30], reversal learning [31], overexpectation [32], overshadowing [33], con-

ditioned inhibition [33], and latent inhibition [34]. Constraining the designs to allow only for

contingency changes between stages can dramatically reduce the number of design variables,

making optimization tractable. Therefore, the first design parameterization of conditioning

experiments that we introduce here is the stage-wise parameterization. In this parameterization

the experiment is divided into stages, with each stage featuring a trial-generating Markov

chain with constant transition probabilities (Fig 2B). The number of trials per stage is assumed

to be known, and the tunable design variables are stage-wise cue probabilities P(CS) and con-

ditional outcome probabilities P(US|CS) (some of these design variables can further be elimi-

nated based on constraints). The aforementioned motivating designs from the literature are

special cases of the stage-wise parameterization, but this parameterization also offers enough

flexibility to go beyond classical designs.

However, if we are interested in associative learning in environments with frequent contin-

gency changes, the stage-wise parameterization may require many stages to implement such

an environment, and would thus still lead to a high-dimensional optimization problem. To

address this scenario, we introduce the periodic parameterization, which is a parameterization

based on periodically-varying contingencies (Fig 2C). In this parameterization, each cue prob-

ability P(CS) and conditional outcome probability P(US|CS) is determined by a periodic func-

tion of time (i.e., trial number). Specifically, we use a square-periodic function parameterized

Computational optimization of associative learning experiments
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with the two levels P1 and P2, between which the probability cycles, and the length of the half-

period T. This parameterization allows expressing designs with many contingency changes

using a small number of design variables, when compared with an equivalent stage-wise

design; however, unlike the stage-wise parameterization, the periodic parameterization con-

strains contingency changes to occur in regular intervals and only between two fixed values.

Evaluating associative learning experiments

Having formalized the structure of classical conditioning experiments, we now specify the pro-

cedure to evaluate their expected utility using the simulation-based approach. To simulate a

classical conditioning dataset, we first sample an experiment realization—i.e., a sequence of

cues (CSs) and corresponding outcomes (USs)—using the experiment structure and the evalu-

ated design. We then sample the ground truth model of associative learning and its parameter

values from the evaluation prior. Using the sampled CS-US pairs, sampled parameter values,

and the generative model, we generate the conditioned responses (CRs). These trial-wise trip-

lets of CSs, USs, and CRs constitute a single simulated dataset.

With this simulated dataset we can proceed to perform the analysis that we are planning to

do with the real dataset that will be collected. In scenarios presented here, we simulate and ana-

lyze only single-subject data. We do so for two reasons. First, the single-subject scenario pro-

vides more difficult conditions for statistical inference, due to the limited amount of data.

Second, the single-subject analysis is especially relevant from a translational view, which con-

siders clinical inferences that need to be done for each patient individually.

Fig 2. Formalizing and parameterizing the structure of classical conditioning experiments. (A) A conditioning trial can be

represented as a Markov chain, parameterized by the probabilities of presenting different cues (e.g., colored shapes), and transition

probabilities from cues to outcomes (e.g., delivery of shock vs. shock omission). (B) Stage-wise parameterization of conditioning

experiments. Trials in each stage are generated by a Markov chain with constant transition probabilities. The transition probabilities

of each stage are tunable design variables. (C) Periodic parameterization. The transition probabilities in the Markov chain are

determined by square-periodic functions of time (i.e., trial number). The design variables are the two levels of the periodic function

and its half-period.

https://doi.org/10.1371/journal.pcbi.1007593.g002
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For the analysis, we can specify any procedure that is afforded by the simulated dataset, but

computationally demanding analyses can lead to long design evaluation running times. In the

current article, we focus on two model-based types of analyses that are common in the model-

ing literature on associative learning: parameter estimation within a single model, and model

selection within a space of multiple models. For parameter estimation, we use the maximum a

posteriori (MAP) approach with uniform priors (which is equivalent to maximum likelihood

estimation (MLE)), and for model selection we use the Bayesian information criterion (BIC),

which takes into account both the model fit and model complexity. Both procedures are com-

putationally relatively inexpensive and were implemented using the existing ‘mfit’ toolbox for

MATLAB [35]. Fully Bayesian inference with proper analysis priors could also be used here, as

long as the inference procedure is not overly computationally expensive.

Finally, with the results of the analysis on the simulated dataset, we can assess the utility of

the experiment. The utility function should be determined by the goals of the study. In this

article, for parameter estimation analyses, we aim to minimize the absolute error between the

parameter estimate and the ground truth value, and for model selection analyses, we aim to

minimize the misidentification of the ground truth model (i.e., model selection error or 0-1

loss).

Optimizing associative learning experiments

So far, we have formalized the structure of associative learning experiments, and provided a

method of assessing their utility by simulation. We are now in a position to specify a method

of optimizing the design of such experiments.

Although the simulation-based approach to design evaluation is instrumental in providing

flexibility to the user, it can yield difficult optimization problems. Evaluating the expected

design utility using stochastic simulations gives noisy estimates of utility and can often be com-

putationally expensive. Furthermore, we generally cannot make strong assumptions about the

utility function (e.g., convexity) and we usually do not have access to the derivatives of the

function. A state-of-the-art optimization algorithm for such scenarios is Bayesian optimization

[36]. Bayesian optimization has already been effectively used in experimental design problems

[22, 37], and it was therefore our optimizer of choice. Bayesian optimization is a global optimi-

zation algorithm which uses a surrogate probabilistic model of the utility function to decide

which values of optimized variables to evaluate next; this allows it to efficiently optimize over

expensive utility functions, at the cost of continuously updating the surrogate model (see S1

Appendix for technical details). In results presented here, we used the MATLAB bayesopt
function (from the ‘Statistics and Machine Learning Toolbox’) which implements Bayesian

optimization using a Gaussian process as the surrogate model.

To fully specify the design optimization problems, we also need to define the design space,

the design prior, and the optimization options. The design space over which the optimization

was performed depended on the design parameterization. For the stage-wise parameterization,

each transition probability could range from 0 to 1, with the constraint that the sum of transi-

tion probabilities from a given starting state is 1. For the periodic parameterization, the two

probability levels P1 and P2, and the half-period T (expressed as a fraction of the total trial

number) also ranged from 0 to 1. For the periodic parameterization, the design is constrained

such that all the transition probabilities from a given state have the same half-period, and all P1

and P2 probabilities have to sum up to 1, respectively. The design priors were determined in a

problem-specific manner, and are described together with the application scenarios in the

Results section. In general, the design prior should be based on the information available from

the relevant literature or from existing data. Lastly, the optimization options depend on the

Computational optimization of associative learning experiments
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specifics of the chosen optimization algorithm (for Bayesian optimization, details are provided

in the S1 Appendix). A common optimization option is the termination criterion: we used a

fixed maximum number of optimization iterations as the criterion, but the maximum elapsed

time, or the number of iterations without substantial improvement can also be used.

Workflow for evaluating and optimizing associative learning experiments

Finally, we propose a workflow for employing the described simulation-based method in the

evaluation and optimization of associative learning experiments. The proposed workflow is as

follows (the required user inputs are italicized; see also Fig 1):

1. Specify the assumptions and goals of the design problem. In this step we need to specify

the components of the design problem which are independent of the specific designs that

will be evaluated. In particular, we specify our candidate model space, evaluation priors over

the models and their parameters, analysis procedure, analysis priors, and the utility function
we wish to maximize.

2. Evaluate pre-existing reference designs. If there are pre-existing reference designs, it is

advisable to first evaluate their expected utility. If these designs already satisfy our require-

ments, we do not need to proceed with design optimization. In this step we first formalize

reference designs, and then we use the simulation-based approach to evaluate their

expected utility under the assumptions made when specifying the design problem (step 1).

3. Optimize the design. If existing reference designs do not satisfy our requirements, we pro-

ceed with obtaining an optimized design. In this step we first specify the experiment struc-
ture and its design variables (both tunable and fixed), the design space, the design priors, and

optimization options. Having specified these, we run the design optimization until the ter-

mination criterion is fulfilled, and then inspect the resulting design.

4. Evaluate the optimized design. We take the optimized values of design variables obtained

in step 3, and use them to specify the optimized design. Then we obtain the expected utility

of the optimized design in the same simulation-based manner as we did for the reference

designs (in step 2), and inspect the obtained results.

5. Compare the reference and optimized designs. Having evaluated the reference and opti-

mized designs through simulations (in steps 2 and 4, respectively), we can now compare

their expected utilities. For example, if we are aiming for accurate parameter estimates,

we can inspect the design-wise distributions of estimation errors, and if we are aiming for

accurate model selection, we can inspect the design-wise confusion matrices (and corre-

sponding model recovery rates). If the optimized design does not satisfy our requirements,

we can go back to step 3; for example, we can modify the experiment space or run the opti-

mization for longer. If the optimized design satisfies our requirements, we can proceed to

its implementation.

For one of the simulated scenarios presented in the Results section (Scenario 2), we illus-

trate the described workflow with an executable MATLAB notebook provided on Zenodo at

https://doi.org/10.5281/zenodo.3582947.

Results

We validated the proposed method in three scenarios, with one scenario targeting the goal of

accurate parameter estimation, and the other two targeting the goal of accurate model selec-

tion. The overview of user inputs employed in these scenarios is given in Table 1. In each
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scenario we compared optimized designs with a reference design drawn from prior work in

associative learning. In order to evaluate the design’s accuracy of parameter estimation or

model selection, it is necessary to know the ground truth, i.e., to sample a data-generating

model and its parameter values from the evaluation prior. Therefore, we have evaluated the

designs through simulations, as is common in the field of experimental design. To illustrate

the benefit of optimized designs, we report estimates of the difference in accuracy between the

designs, and the associated 95% confidence intervals. We do not quantify the benefit of opti-

mized designs using classical p-values because the number of simulations (sample size) can be

made arbitrarily large, such that optimized designs can be made “significantly” better than ref-

erence designs even if the differences are trivially small [38].

Furthermore, we wanted to investigate the effect of different amounts of background

knowledge, i.e., to perform a sensitivity analysis with respect to the design prior, while holding

the ground truth (evaluation prior) constant. Therefore, we optimized designs both under a

vague (weakly-informative) design prior and under a strongly-informative design prior. The

designs were then evaluated using point evaluation priors, representing an assumed ground

truth. With these two extreme design priors, we obtain, respectively, approximate lower and

upper bounds on the expected design utility of optimized experiments. However, please note

that while in a methodological study—like this one—it can be advantageous to disambiguate

between the design prior and the evaluation prior, in practical applications these two priors

should coincide, with both of them expressing the experimenter’s knowledge base at the time

of designing the experiment.

Optimizing for accuracy in parameter estimation

An early, but still widely influential model of classical conditioning is the Rescorla-Wagner

(RW) model [5]. A parameter of particular interest in this model is the learning rate α [40].

For example, the learning rate of the RW model fitted to human learning data in volatile con-

ditions has been found to correlate with trait anxiety [41]. Therefore, in Scenario 1, we opti-

mized designs with the goal of accurately estimating the RW learning rate α.

Table 1. Overview of user inputs for the three simulated scenarios.

User inputs Scenario 1 Scenario 2 Scenario 3

Candidate model

space

RW RW, KRW RW(V), RWPH(V), RWPH(α), RWPH(V +

α)

Analysis procedure Maximum likelihood parameter estimation Model selection using BIC Model selection using BIC

Utility function Absolute error of learning rate (α) estimate Model selection accuracy Model selection accuracy

Analysis prior Uniform over α Uniform over models and parameters Uniform over models and parameters

Reference design Acquisition followed by extinction of equal

length

Backward blocking Reversal learning

Evaluation prior Point priors on low, middle and high α (LA,

MA, HA)

Uniform over models with point priors on

parameters (from [39])

Uniform over models with point priors on

parameters (from [31])

Optimized

experiment structure

One cue with periodically varying contingency Two stages with three cues (A, B, AB) and

stage-wise contingencies

Two stages with two cues (A, B) and stage-

wise contingencies

Design space Two contingencies (P1, P2) and the period (T)

of their switching (3 variables)

For each stage s and cue X: Ps(X), Ps(US|X)

(10 non-redundant variables)

For each stage s and cue X: Ps(X), Ps(US|X) (6

non-redundant variables)

Design priors Either a point prior over α coinciding with

evaluation prior (PA) or a vague prior (VA)

Uniform over models with either a point

(PP) or vague (VP) prior over parameters

Uniform over models with either a point

(PP) or vague (VP) prior over parameters

The role of user inputs is clarified by Fig 1. See the Methods section for details. Analysis priors are used in fitting models, design priors are used to simulate data when

optimizing designs, and evaluation priors are used to simulate data when evaluating both reference and optimized designs.

https://doi.org/10.1371/journal.pcbi.1007593.t001
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As ground truth, three different point evaluation priors on learning rate were used: low

alpha (LA, α = 0.1), middle alpha (MA, α = 0.2), and high alpha (HA, α = 0.3). Three types of

experimental designs were compared under these three evaluation priors using the absolute

estimation error metric. All three designs have the same structure, which is simple but suffi-

cient to estimate the learning rate: the probability of the CS being followed by a US (P(US|CS))

is a periodic function of time, and it switches between two discrete values. Therefore, there are

three variables that specify the design: the two reinforcement probabilities, and the period with

which these two probabilities are switched.

The first evaluated design is the (manual) reference design (denoted REF), which was

taken from existing literature rather than being computationally optimized. Here we chose the

often-used classical conditioning design in which an association is first acquired under partial

reinforcement of a CS with a US (acquisition stage), and then extinguished by ceasing the

reinforcement of the CS (extinction stage) [42]. The probabilities of reinforcement were 0.5

and 0 in the acquisition and the extinction stages, respectively. The switch between the stages

occurred only once, at the middle of the experiment. The second design is the design opti-

mized under a vague prior over the learning rate α (denoted VA-OPT). The vague prior here

is implemented as a uniform prior over α. This prior reflects the situation when there is little

information on the parameter of interest at the planning stage of the experiment. Under this

prior we are estimating a lower bound on the accuracy of optimized experiments. The third

design is the design optimized under the exact point prior on the learning rate α (denoted

PA-OPT). This prior reflects the situation where we have perfect knowledge of the ground

truth learning rate, and it therefore results in different specific designs for the LA, MA, and

HA evaluation priors. Although in practice the ground truth is not known, under this prior we

can estimate an upper bound on the accuracy of optimized experiments.

The optimized designs were obtained by running Bayesian optimization for 300 iterations,

with the absolute estimation error of the learning rate being minimized. In each iteration, the

estimation error was evaluated using 32 datasets simulated from the RW model, with parame-

ters being randomly drawn from the design prior. Using 32 CPU cores at 2.5 GHz, average

time to obtain the optimized design was 0.5 h, with the average being taken across optimiza-

tions with different design priors. The reference design and the optimized designs were

evaluated in additional 256 simulations per each combination of the evaluation prior (ground

truth) and design.

The results of the design evaluation are shown in Fig 3. We first inspect the distribution of

absolute estimation errors under different designs and evaluation priors (Fig 3A). Under all

designs, the estimation errors were relatively small (with almost all simulations yielding errors

below 0.1). This can be attributed to sufficient number of simulated trials and moderate levels

of observation noise. Nevertheless, even in such favorable conditions, the REF design yielded

the largest estimation errors, followed by the VA-OPT design, and the PA-OPT design. This

suggests that including even weak prior knowledge (as in the VA-OPT design) can improve

parameter estimation accuracy, with more informative prior knowledge providing further

improvements (as in PA-OPT).

Next, we quantified the relative differences in design utility, by estimating the probability

that a randomly sampled experiment from one design will yield higher utility than an experi-

ment sampled from another design (i.e., the probability of superiority). These probabilities

were estimated for all pairs of designs by computing the non-parametric common language

effect sizes (CLES) [43], which indicate designs of equal expected utility with CLES = 50%. The

95% CIs for CLES estimates were obtained using the percentile bootstrap method [44], with

1000 bootstrap samples. The appropriateness of the percentile bootstrap method was verified

by inspecting bootstrap distribution histograms, which did not exhibit substantial bias or
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skew. The design evaluation results are shown in Fig 3B and they confirm that the VA-OPT

design is more probable to yield lower estimation errors than the REF design, under all evalua-

tion priors: the probabilities of VA-OPT being superior are 58.9% (95% CI: [53.9%–63.8%]),

59.2% (95% CI: [54.1%–64.0%]), and 58.2% (95% CI: [53.6%–62.7%]) for the LA, MA, and HA

evaluation priors, respectively. Moreover, the the PA-OPT design is probable to be superior–

under all evaluation priors–both to the REF design (LA—68.8%, 95% CI: [64.2%–73.2%]; MA

—66.3%, 95% CI: [61.8%–70.8%]; HA—63.3%, 95% CI: [58.4%–68.5%]) and to the VA-OPT

design (LA—60.0%, 95% CI: [55.0%–64.9%]; MA—58.0%, 95% CI: [53.1%–62.7%]; HA—

55.8%, 95% CI: [50.8%–60.8%]).

Finally, we inspect the obtained designs and the corresponding model responses in Fig 3C.

The REF design and the VA-OPT design are the same under all evaluation priors, since they

do not take into account the ground truth learning rate, whereas the PA-OPT designs are

tuned to the exact parameter value. Compared to the REF design, the VA-OPT design uses

more frequent contingency switches, allowing for more accurate estimation of the learning

rate under a wide range of possible values. The PA-OPT design adapts the frequency of contin-

gency switches to the learning rate, with low learning rates being better estimated from longer

periods of stability, and higher learning rates being better estimated from frequent transitions.

Optimizing for accuracy in model selection

The basic RW model explains many aspects of associative learning, but it fails to account for

many others [45]. For this reason, various extensions of the basic RW model have been pro-

posed in the literature. One example is the Kalman Rescorla-Wagner (KRW) model [7, 9, 39],

which is a probabilistic extension of the RW model. Another example is the hybrid Rescorla-

Wagner-Pearce-Hall (RWPH) model [31], which maintains separate dynamic learning rates

Fig 3. Design evaluation in Scenario 1: RW model learning rate estimation. Three designs—reference acquisition-extinction

design (REF), design optimized under a vague prior (VA-OPT), and design optimized under a point prior (PA-OPT)—are evaluated

under the low (LA), middle (MA), and high (HA) value of the learning rate alpha. (A) Distribution of absolute errors in estimating

the learning rate. (B) Pair-wise comparison of design accuracy expressed as the probability of the first design in the pair being

superior (i.e., having lower estimation error). Error bars indicate bootstrapped 95% CI and 50% guideline indicates designs of equal

quality. (C) Comparison of model responses (red full line) to the contingencies (black dashed line) obtained under different designs

and different evaluation priors.

https://doi.org/10.1371/journal.pcbi.1007593.g003
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(termed “associabilities”) for all the cues. The growing space of theoretical models of associa-

tive learning highlights the need for experiments that can efficiently expose the differences

between these accounts. Therefore, in Scenarios 2 and 3, we optimized designs to achieve the

goal of accurate model selection (i.e., how often the selected winning model coincides with

the ground truth model). The model space of Scenario 2 is comprised of models with different

learning mechanisms, whereas the model space of Scenario 3 entails not only models with dif-

ferent learning mechanisms, but also models with different mappings from latent model states

to conditioned responses.

Scenario 2 is based on the simulation study of Kruschke (2008) [39], which compares the

RW and the KRW model using the backward blocking design. The backward blocking design

is comprised of two stages. In the trials of the first stage, only the reinforced compound cue AB

is presented. In the trials of the second stage, only one of the elements of the compound (e.g.,

A) is presented and reinforced. In the test stage, the single element cues—A and B—are tested

separately in non-reinforced trials. This design has been used to compare the RW and KRW

models because they make different predictions about test responding to the cue that was not

presented in the second stage (here, cue B). According to the RW model, responding to cue B

should be unchanged, as this model allows cue-specific associations to change only when the

cues are presented. In contrast, the KRW model predicts that the responding to cue B at test

will be diminished (blocked), because the model has assigned the credit for reinforcements to

the cue A (i.e., during the first stage a negative correlation between the associative weights for

element cues is learned). Due to the opposing model predictions for this design, and its previ-

ous use in literature, we chose it as the reference (REF) design in Scenario 2.

Scenario 3 is based on the empirical study of Li et al. (2011) [31], which compared the RW

model (labeled RW(V)) and three variants of the RWPH model. The variants of the RWPH

model were formulated to emit different model quantities as the conditioned response: asso-

ciative weights (RWPH(V)), associabilities (RWPH(α)), or a mixture of weights and associabil-

ities (RWPH(V + α)). In order to distinguish between these models Li et al. (2011) [31]

employed a reversal learning design, and this is the design we used as the reference (REF)

design in Scenario 3. The design is comprised of two stages: in the first stage one cue is partially

reinforced, while the other is not, and in the second stage the two cues switch their roles. This

design is intuitively appealing for the goal of discriminating between the RW and RWPH mod-

els: at the point of contingency reversal, the learning rate in the RWPH model increases due to

large prediction errors, while in the RW model the learning rate is constant.

In both Scenario 2 and 3 the structure and parameterization of the optimized designs was

the same: the experiment had two stages (with equal number of trials), and the cue-outcome

contingencies were kept constant within each stage. Hence, the stage-wise design variables

were the CS presentation probabilities and the probabilities of the US conditional on the CS.

To keep a close comparison with the reference designs, Scenario 2 included two CSs (A and B)

and their compound (AB), whereas Scenario 3 only included two elemental CSs. Similarly to

Scenario 1, we obtained optimized designs under two types of design priors: a vague prior on

model parameters (in the VP-OPT design) and an exact point design prior on model parame-

ters (in the PP-OPT design). The vague priors were either uniform (for bounded parameters)

or only weakly informative (see S1 Appendix for details). In Scenario 2 the point priors were

set at the same values as in the simulations of Kruschke (2008) [39]. The point priors in Sce-

nario 3 were set to the best fitting parameter values of the RWPH(V + α) model reported in

the study of Li et al. (2011) [31] (the best fitting parameters of other models are not reported in

their study); for other models in this scenario, we were able to use subsets of the RWPH(V + α)

parameters, since the models were nested. Importantly, even when the exact point priors

on model parameters were used in the design optimization (PP-OPT designs), the simulated
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datasets were sampled in equal proportions from all candidate models (implying a uniform

prior over models).

In both Scenario 2 and 3, we ran the Bayesian design optimization for 300 iterations and in

each iteration the utility function (model selection accuracy) was evaluated using 32 datasets

simulated from each of the candidate models. Average optimization times (across different

design priors) were 5.2 h in Scenario 2, and 14.1 h in Scenario 3. The optimized designs and

the reference designs were evaluated in additional 256 simulated experiments per each combi-

nation of the ground truth model and design. Additionally, we computed the responses of

models fitted to the evaluation simulations. For visualization, the responses of fitted models to

each CS were computed in all the trials, even though in the simulated experiments only one of

the CSs was presented in each trial. The evaluation results for Scenario 2 and 3 are shown in

Figs 4 and 5, respectively.

For Scenario 2, model selection accuracies of reference and optimized designs are shown in

Fig 4A. Although the REF design yields accuracies above chance level (mean: 59.6%, 95% CI:

[55.2%–63.9%]), optimized designs provide substantial improvements. Using a vague prior,

the VP-OPT design provides a lower bound on the accuracy expected with an optimized

design; nonetheless, even this lower bound provides near perfect accuracy (mean: 99.8%, 95%

CI: [98.9%–100.0%]). We can quantify the relative improvement using the odds ratio (OR) as

the effect size (please note: the value OR = 1.0 indicates designs of equal expected utility, and

the 95% CIs were obtained using the Woolf’s method with the Haldane-Anscombe correction

[46]). The VP-OPT design greatly increases the odds of correctly identifying the ground truth

model (OR: 346.8, 95% CI: [48.4, 2486.4]). Moreover, with the exact knowledge of model

parameters, the PP-OPT design provides an upper bound on expected improvements. Due to

Fig 4. Design evaluation in Scenario 2: Selection between RW and KRW models. Three designs—reference backward blocking design (REF), design

optimized under a vague prior (VP-OPT), and design optimized under a point prior (PP-OPT)—are evaluated under the ground truth model being

either the RW or the KRW model. (A) Model selection accuracy (mean and the Clopper-Pearson binomial 95% CI). Horizontal guideline indicates

chance level. Darker bars summarize results across ground truth models. (B) Values of the design variables in the two stages of the experiment: cue

probabilities P(CS) and joint cue-outcome probabilities P(CS, US). (C) Comparison of fitted model responses obtained under different designs (rows)

and different ground truth models (columns). Inset labels give the average difference in BIC (±SEM) between the fit of the true model and the

alternative model (more negative values indicate stronger evidence in favor of the true model).

https://doi.org/10.1371/journal.pcbi.1007593.g004
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the already near-perfect accuracy of the VP-OPT design, the PP-OPT design yielded similar

accuracy (mean: 100.0%, 95% CI: [99.3%–100.0%]). The relative improvement of the PP-OPT

design over the REF design is substantial (OR: 696.2, 95% CI: [43.2, 11208.0]). However, due

to a ceiling effect, we do not observe a clear advantage of the PP-OPT design over the VP-OPT

design (OR: 3.0, 95% CI: [0.1, 74.0]).

Similar results are observed when comparing the design accuracies in Scenario 3 (Fig 5A).

Accuracy of the REF design is significantly above chance level (mean: 59.7%, 95% CI: [56.6%–

62.7%]), but the designs optimized both under a vague and point prior provide greatly

improved accuracies. The VP-OPT design yields both a high accuracy in absolute terms

(mean: 94.8%, 95% CI: [93.3%–96.1%]) and a large improvement relative to the REF design

(OR: 12.4, 95% CI: [9.1, 16.8]). The PP-OPT design also provides a high accuracy (mean:

95.9%, 95% CI: [94.5%–97.0%]), and an even larger improvement relative to the REF design

(OR: 15.8, 95% CI: [11.3, 22.1]); however, the improvement relative to the VP-OPT design

seems to be small (OR: 1.3, 95% CI: [0.8, 1.9]).

In both Scenario 2 and 3, we can observe that the largest gain in accuracy is realized when

the true model is the most complex candidate model (KRW in Scenario 2, and RWPH(V + α)

in Scenario 3). With the REF designs, data simulated from these more complex models is often

attributed to simpler models (e.g., see confusion matrix in Fig 5A). Such misidentification

occurs because both simple and complex models can account for the data from a simple design

similarly well, but the model selection criterion (BIC in our case) penalizes complexity, thus

Fig 5. Design evaluation in Scenario 3: Selection between RW and RWPH models. Three designs—reference reversal learning design (REF), design

optimized under a vague prior (VP-OPT), and design optimized under a point prior (PP-OPT)—are evaluated under the ground truth model being

either the RW(V), RWPH(V), RWPH(α), or RWPH(V + α). (A) Model selection accuracy (mean and the Clopper-Pearson binomial 95% CI).

Horizontal guideline indicates chance level. Darker bars summarize results across ground truth models. Inset shows the confusion matrix between the

ground truth model (rows) and the selected model (columns). (B) Values of the design variables in the two stages of the experiment: cue probabilities P
(CS) and joint cue-outcome probabilities P(CS, US). (C) Comparison of fitted RW(V) and RWPH(V + α) model responses obtained under different

designs (rows) and these two models as assumed ground truth (columns). Inset labels give the average difference in BIC (±SEM) between the fit of the

true model and the alternative model (more negative values indicate stronger evidence in favor of the true model). Note: the model responses are nearly

identical when the RW(V) model is true, because this model is a special case of the alternative RWPH(V + α) model.

https://doi.org/10.1371/journal.pcbi.1007593.g005

Computational optimization of associative learning experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007593 January 6, 2020 15 / 23

https://doi.org/10.1371/journal.pcbi.1007593.g005
https://doi.org/10.1371/journal.pcbi.1007593


biasing the selection towards simple models and even leading to accuracies below chance level,

as seen in Figs 4A and 5A. This suggests that simple manual designs do not provide the condi-

tions in which complex models could make predictions sufficiently distinct from simpler

models. Hence, to achieve conditions in which candidate models make sufficiently diverging

predictions, the simplicity of experimental designs may need to be sacrificed. Indeed, this is

what we observe by comparing the values of design variables between the REF, VP-OPT, and

PP-OPT designs, both in Scenario 2 (Fig 4B) and Scenario 3 (Fig 5B). In both cases, the opti-

mized designs are arguably less parsimonious than the reference designs. However, the opti-

mized designs also result in more distinct model responses, especially when the ground truth

model is more complex.

For example, in Scenario 2, model responses of the fitted RW and KRW models (Fig 4C)

are very similar for cues presented in the REF design (AB in stage 1, and A in stage 2), regard-

less of which model is the ground truth. We can observe a similar pattern in Scenario 3 (Fig

5C), where we show the responses of the RW(V) and RWPH(V + α) models, which are most

often confused under the REF design. This is also reflected in the BIC differences between the

true and the alternative models (ΔBIC), which are—under the REF design—in favor of the

simple model regardless of the ground truth model. In contrast, model responses with opti-

mized designs are more distinct when the ground truth model is complex, allowing for easier

model discrimination in both scenarios. However, when the ground truth model is simple,

model responses are similar even under optimized designs; yet, this is not a failure of the

design optimization: when the predictions are similar, the simpler model will correctly be

selected, since BIC favors parsimony. Similarly, it may seem surprising that the PP-OPT

designs can yield evidence in favor of the true model that is weaker than in the VP-OPT

designs (e.g., see Fig 4C) in terms of ΔBIC, even though the PP-OPT designs are based on

stronger prior knowledge and provide similar or higher accuracies than VP-OPT designs.

Again, this is not a failure of the optimization; instead, the procedure takes into account that

our goal is maximizing the frequency of correct model identifications, rather than the subtly

different goal of maximizing the expected evidence in favor of the true model. Altogether,

these observations demonstrate that the optimization took into account not only the supplied

model space and design priors, but also the specific properties of our utility function.

Discussion

In this paper we investigated the potential of computationally optimizing experimental designs

in associative learning studies, with the goal of enabling accurate statistical inference from

experimental data. First, we formalized and parameterized the structure of classical condition-

ing experiments to render them amenable to design optimization. Next, we brought together

several existing ideas from the literature on experimental design and computational optimiza-

tion—in particular, simulation-based Bayesian experimental design and Bayesian optimiza-

tion—and we composed them into a flexible method for designing associative learning studies.

Finally, we evaluated the proposed method through simulations in three scenarios drawn from

the literature on associative learning, with design optimization spanning both the goals of

accurate parameter estimation and model selection. In these simulated scenarios, optimized

designs outperformed manual designs previously used in similar contexts: the benefits ranged

from a moderate reduction in parameter estimation error in Scenario 1, to substantial gains in

model selection accuracies in Scenarios 2 and 3.

Furthermore, we highlight the role of prior knowledge in experimental design optimization.

Within the framework of Bayesian experimental design, we can distinguish three types of prior

probability distributions—the analysis, evaluation, and design prior. The analysis prior is the
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prior we ultimately plan to use in analyzing the obtained experimental data (if we plan to use

Bayesian inference). Analysis priors should generally be acceptable to a wide audience, and

therefore should not be overly informative or biased; for analysis priors we used flat priors that

were fixed within scenarios, representing a fixed, but non-prejudiced analysis plan. The evalu-

ation prior is used to simulate data for the evaluation of expected design utility: in simulations

the models and their parameters are sampled from the evaluation prior. The design prior is

used to simulate data in the process of optimizing experimental designs.

Although in practical applications the evaluation prior and the design prior coincide (both

representing the designer’s partial knowledge), here we distinguish them in order to investi-

gate how different levels of background knowledge impact the accuracy of designs under

different assumed ground truths. Hence, in the presented scenarios, point evaluation priors

represent the exactly assumed ground truth and design priors represent the varying degrees

of background knowledge. For design priors we used both weakly-informative (vague) and

strongly-informative priors. The weakly-informative and strongly-informative design priors

can be thought of as providing approximate lower and upper bounds on achievable accuracy

improvements, respectively. As expected, strongly-informative design priors provided highest

accuracies, but, importantly, even the designs optimized with only weakly-informative design

priors enabled similarly accurate inferences (e.g., in Scenarios 2 and 3). This result suggests

that specifying the space of candidate models may in some cases be sufficient prior informa-

tion to reap the benefits of design optimization, even when there is only sparse knowledge on

plausible values of the models’ parameters.

Limitations and future work

Although the results presented here show that optimized designs can yield substantial

improvements over manual designs, there are some important caveats. For example, we can

have floor or ceiling effects in design utility. A floor effect can be observed when, e.g., the data

is noisy regardless of the chosen experimental design, leading to poor accuracy with both man-

ual and optimized designs. Similarly, a ceiling effect can be observed when the utility of a man-

ual design is already high—e.g., a design manually optimized for a small model space may

already provide near-perfect model discrimination under low noise conditions. Nevertheless,

given the often large number of design variables, and the complexity of the information that

needs to be integrated to arrive at the optimal design, we conjecture that manual designs are

often far from optimal. Support for this view comes from two recent studies. Balietti et al.

(2018) [22] asked experts in economics and behavioral sciences to determine the values of two

design variables of an economics game, such that the predictions of hypothesized models of

behavior in this game would be maximally different. Results of simulations and empirical

experiments showed that the experts suggested a more expensive and less informative experi-

mental design, when comparing with a computationally optimized design. The study of Bakker

et al. (2016) [47] investigated researchers’ intuitions about statistical power in psychological

research: in an arguably simpler task of estimating statistical power of different designs, major-

ity of the participants systematically over- or underestimated power. The findings of these two

studies indicate the need for formal approaches.

Another important pair of caveats relates to the specification of the design optimization

problem. First, the experiment can only be optimized with respect to the design variables that

affect model responses. For example, in scenarios presented in this paper, we considered dis-

crete, trial-level models of associative learning, rather than continuous-time models. However,

trial-level models do not capture the effects of stimuli presentation timings, and therefore

design variables related to timing cannot be optimized using this model space. If we suspect
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that the phenomenon under investigation crucially depends on timings, a model capturing

this impact needs to be included in the model space. Second, if the specified models and their

parameters inadequately describe the phenomenon of interest, then the optimized designs

might actually perform worse than manually chosen designs. For example, if specified candi-

date models do not take into account attentional mechanisms or constraints on cognitive

resources, the resulting optimized designs might either be so simple that they disengage sub-

jects, or so complex that subjects cannot learn effectively. This issue can be solved directly by

amending the candidate model space and design prior to better capture the studied phenome-

non. Alternatively, the desired properties of the design can be achieved by including them in

the utility function or by appropriately constraining design variables. Overall, it is important

to keep in mind that design optimality is relative, not absolute: a design is only optimal with

respect to the user-specified model space, design prior, experiment structure, design space,

analysis procedure, and a utility function.

The problem of misspecification is however not particular to our approach, or even to experi-

mental design in general; every statistical procedure requires assumptions, and can yield poor

results when those assumptions are not met. However, in the domain of experimental design,

this problem can be dealt with by iterating between design optimization, data acquisition,

modeling, and model checking. Posterior of one iteration can be used as the design prior of the

next one, and model spaces can be amended with new models, if current models are inadequate

in accounting for the observed data. This iterative strategy is termed Adaptive Design Optimiza-

tion (ADO) [48] and it can be implemented at different levels of granularity—between studies,

between subsamples of subjects, between individual subjects, or even between trials. Implement-

ing the ADO approach in the context of associative learning studies—especially with design

updates at the level of each subject or trial—will be an important challenge for future work.

Adapting designs at finer granularity may be particularly beneficial for designs with com-

plex experimental structures. Even global optimization algorithms like Bayesian optimiza-

tion can struggle in high-dimensional experiment spaces. Optimizing designs on a per-trial

basis may not only reduce the number of variables that need to be tuned simultaneously, but

might also improve inference accuracy by incorporating new data as it becomes available

[49]. But even with the non-adaptive design approach, a number of options is available to

reduce the computational burden: Bayesian optimization can be sped up using GPUs [50],

and analytical bounds [17] or normal approximations to the utility function [51] can be used

to identify promising parts of the experiment space, which can then be searched more thor-

oughly (see Ryan et al. (2016) [52] for a review of computational strategies in Bayesian exper-

imental design). Moreover, although some of the scenarios presented in this paper required

lengthy optimizations, this time investment seems negligible compared to typical length of

data acquisition in associative learning studies and to the cost of the study yielding non-

informative data.

We have demonstrated our approach by optimizing designs for accurate single-subject

inferences, which we contend is especially valuable from a translational perspective, and also

represents a difficult benchmark, due to limited amounts of data in single-subject experiments.

Group studies could also be accommodated within our approach, but simulating group studies

would be computationally expensive, and it would imply that the design can be updated only

once all the subjects’ data has been acquired. Instead, in future developments of design meth-

ods for associative learning, it may be advantageous to adopt the hierarchical ADO (HADO)

approach [53]: this approach combines hierarchical Bayesian modeling with adaptive design.

Even when the goal is to achieve accurate inferences at the level of single subjects, hierar-

chically combining the new subject’s data with the previously acquired data can improve effi-

ciency and accuracy.
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The design optimization method was illustrated on classical conditioning, as a special case

of associative learning, but the extension to operant conditioning is conceptually straightfor-

ward. Whereas we formalized classical conditioning experiments using Markov chains, oper-

ant conditioning experiments can be formalized using Markov decision processes (MDPs). In

general, optimizing MDPs may be computationally challenging, as the design has to specify

transition probabilities and rewards for each state-action pair, possibly resulting in a high-

dimensional problem. However, tractable optimization problems may also be obtained for

experiments that can be represented using highly structured MDPs, with only few tunable

design variables [20, 54]. We expect that the crucial challenge for future work will be to eluci-

date general correspondences between model classes and experimental structures that allow

their discrimination, while still being amenable to optimization (i.e., resulting in low-dimen-

sional problems).

Conclusion

We believe that computational optimization of experimental designs is a valuable addition to

the toolbox of associative learning science and that it holds promise of improving the accuracy

and efficiency of basic research in this field. Optimizing experimental designs could also help

address the recent concerns over underpowered studies in cognitive sciences [55]: the usually-

prescribed use of larger samples should be complemented with the use of better designed

experiments. Moreover, the effort in specifying the modeling details prior to designing the

experiment allows for the experiment to easily be pre-registered, thus facilitating the adoption

of emerging open science norms [56, 57]. The requirement to specify candidate models and

the analysis procedures may seem restrictive, but this does not preclude subsequent explor-

atory analyses, it just delineates them from planned confirmatory analyses [58]. And the results

of both confirmatory and exploratory analyses can then be used to further optimize future

experiments.

Finally, we believe design optimization will play a role not only in basic research on associa-

tive learning, but also in translational research within the nascent field of computational psy-

chiatry. Computational psychiatry strives to link mental disorders with computational models

of neural function, or with particular parameter regimes of these models. Employing insights

of computational psychiatry in a clinical setting will require the development of behavioral or

physiological diagnostic tests, based on procedures like model selection and parameter estima-

tion [59]. This presents a problem analogous to the design of experiments [60], and therefore

computational optimization may be similarly useful in designing accurate and efficient diag-

nostic tests in this domain.
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A gaussian process library using TensorFlow. Journal of Machine Learning Research. 2017; 18

(40):1–6.

51. Overstall AM, McGree JM, Drovandi CC. An approach for finding fully Bayesian optimal designs using

normal-based approximations to loss functions. Statistics and Computing. 2018; 28(2):343–358.

https://doi.org/10.1007/s11222-017-9734-x

52. Ryan EG, Drovandi CC, McGree JM, Pettitt AN. A Review of Modern Computational Algorithms for

Bayesian Optimal Design: A Review of Modern Algorithms for Bayesian Design. International Statistical

Review. 2016; 84(1):128–154. https://doi.org/10.1111/insr.12107

53. Kim W, Pitt MA, Lu ZL, Steyvers M, Myung JI. A Hierarchical Adaptive Approach to Optimal Experimen-

tal Design. Neural Computation. 2014; 26(11):2465–2492. https://doi.org/10.1162/NECO_a_00654

PMID: 25149697

54. Zhang S, Lee MD. Optimal experimental design for a class of bandit problems. Journal of Mathematical

Psychology. 2010; 54(6):499–508. https://doi.org/10.1016/j.jmp.2010.08.002

55. Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and power in the recent cogni-

tive neuroscience and psychology literature. PLOS Biology. 2017; 15(3):e2000797. https://doi.org/10.

1371/journal.pbio.2000797 PMID: 28253258

56. MunafòMR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, et al. A manifesto for

reproducible science. Nature Human Behaviour. 2017; 1(1):0021. https://doi.org/10.1038/s41562-016-

0021

57. Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proceedings of

the National Academy of Sciences. 2018; 115(11):2600–2606. https://doi.org/10.1073/pnas.

1708274114

58. Wagenmakers EJ, Wetzels R, Borsboom D, van der Maas HLJ, Kievit RA. An Agenda for Purely Confir-

matory Research. Perspectives on Psychological Science. 2012; 7(6):632–638. https://doi.org/10.

1177/1745691612463078 PMID: 26168122

Computational optimization of associative learning experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007593 January 6, 2020 22 / 23

https://doi.org/10.1111/j.1600-0706.2013.01073.x
https://doi.org/10.1111/j.1600-0706.2013.01073.x
https://doi.org/10.3758/LB.36.3.210
https://doi.org/10.1038/nn1954
http://www.ncbi.nlm.nih.gov/pubmed/17676057
https://doi.org/10.1038/nn.3961
https://doi.org/10.1038/nn.3961
http://www.ncbi.nlm.nih.gov/pubmed/25730669
https://doi.org/10.1037/h0058138
https://doi.org/10.1037/h0058138
https://doi.org/10.1037/0033-2909.111.2.361
https://doi.org/10.2307/3314608
https://doi.org/10.1037/0033-2909.117.3.363
http://www.ncbi.nlm.nih.gov/pubmed/7777644
https://doi.org/10.1081/SAC-200040691
https://doi.org/10.1177/0956797616647519
https://doi.org/10.1177/0956797616647519
http://www.ncbi.nlm.nih.gov/pubmed/27354203
https://doi.org/10.1162/neco.2009.02-09-959
http://www.ncbi.nlm.nih.gov/pubmed/20028226
https://doi.org/10.1111/cogs.12467
https://doi.org/10.1111/cogs.12467
http://www.ncbi.nlm.nih.gov/pubmed/27988934
https://doi.org/10.1007/s11222-017-9734-x
https://doi.org/10.1111/insr.12107
https://doi.org/10.1162/NECO_a_00654
http://www.ncbi.nlm.nih.gov/pubmed/25149697
https://doi.org/10.1016/j.jmp.2010.08.002
https://doi.org/10.1371/journal.pbio.2000797
https://doi.org/10.1371/journal.pbio.2000797
http://www.ncbi.nlm.nih.gov/pubmed/28253258
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1177/1745691612463078
https://doi.org/10.1177/1745691612463078
http://www.ncbi.nlm.nih.gov/pubmed/26168122
https://doi.org/10.1371/journal.pcbi.1007593


59. Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ, et al. Charting the landscape of prior-

ity problems in psychiatry, part 1: classification and diagnosis. The Lancet Psychiatry. 2016; 3(1):77–

83. https://doi.org/10.1016/S2215-0366(15)00361-2 PMID: 26573970

60. Ahn WY, Gu H, Shen Y, Haines N, Hahn HA, Teater JE, et al. Rapid, precise, and reliable phenotyping

of delay discounting using a Bayesian learning algorithm. bioRxiv; 2019.

Computational optimization of associative learning experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007593 January 6, 2020 23 / 23

https://doi.org/10.1016/S2215-0366(15)00361-2
http://www.ncbi.nlm.nih.gov/pubmed/26573970
https://doi.org/10.1371/journal.pcbi.1007593

