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Abstract

Identification of potential drug–associated indications is critical for either approved or novel

drugs in drug repositioning. Current computational methods based on drug similarity and

disease similarity have been developed to predict drug–disease associations. When more

reliable drug- or disease-related information becomes available and is integrated, the pre-

diction precision can be continuously improved. However, it is a challenging problem to

effectively incorporate multiple types of prior information, representing different characteris-

tics of drugs and diseases, to identify promising drug–disease associations. In this study,

we propose an overlap matrix completion (OMC) for bilayer networks (OMC2) and tri-layer

networks (OMC3) to predict potential drug-associated indications, respectively. OMC is

able to efficiently exploit the underlying low-rank structures of the drug–disease association

matrices. In OMC2, first of all, we construct one bilayer network from drug-side aspect and

one from disease-side aspect, and then obtain their corresponding block adjacency matri-

ces. We then propose the OMC2 algorithm to fill out the values of the missing entries in

these two adjacency matrices, and predict the scores of unknown drug–disease pairs.

Moreover, we further extend OMC2 to OMC3 to handle tri-layer networks. Computational

experiments on various datasets indicate that our OMC methods can effectively predict the

potential drug–disease associations. Compared with the other state-of-the-art approaches,

our methods yield higher prediction accuracy in 10-fold cross-validation and de novo experi-

ments. In addition, case studies also confirm the effectiveness of our methods in identifying

promising indications for existing drugs in practical applications.

Author summary

This work introduces a computational approach, namely overlap matrix completion

(OMC), to predict potential associations between drugs and diseases. The novelty of

OMC lies in constructing an efficient framework of incorporating multiple types of prior

information in bilayer and tri-layer networks. OMC for bilayer networks (OMC2) can

approximate the low-rank structures of the drug–disease association matrices from both

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007541 December 23, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yang M, Luo H, Li Y, Wu F-X, Wang J

(2019) Overlap matrix completion for predicting

drug-associated indications. PLoS Comput Biol

15(12): e1007541. https://doi.org/10.1371/journal.

pcbi.1007541

Editor: Edwin Wang, University of Calgary,

CANADA

Received: July 12, 2019

Accepted: November 12, 2019

Published: December 23, 2019

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1007541

Copyright: © 2019 Yang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data can

be obtained from the website https://github.com/

BioinformaticsCSU/OMC.

Funding: This research was supported by the

National Natural Science Foundation of China

http://orcid.org/0000-0003-0178-1876
http://orcid.org/0000-0003-1516-0480
https://doi.org/10.1371/journal.pcbi.1007541
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007541&domain=pdf&date_stamp=2020-01-07
https://doi.org/10.1371/journal.pcbi.1007541
https://doi.org/10.1371/journal.pcbi.1007541
https://doi.org/10.1371/journal.pcbi.1007541
http://creativecommons.org/licenses/by/4.0/
https://github.com/BioinformaticsCSU/OMC
https://github.com/BioinformaticsCSU/OMC


drug-side and disease-side. In addition, we further improve the prediction accuracy by

extending OMC to handle tri-layer networks and develop its corresponding algorithm

(OMC3). To evaluate the performance of OMC2 and OMC3, we conduct 10-fold cross-

validation and de novo experiments on three datasets. Our computational results demon-

strate that both OMC2 and OMC3 generally outperform five state-of-the-art methods in

terms of ROC curve, PR curve, and top-ranked predictions.

Introduction

The development of new drugs is extremely time-consuming and expensive [1]. It is reported

that the average time of developing a new drug is more than 13.5 years and the cost exceeds $1.8

billion dollars [2], while only a relatively small number of novel drugs are approved by US Food

and Drug Administration (FDA) each year. Identifying new uses of existing drugs, known as

drug repositioning, has been popularly used for the pharmaceutical industry and research com-

munity. Since the existing drugs have already owned safety, efficacy, and toleration data after

numerous experiments and clinical trials, identifying new and reliable indications for commer-

cialized drugs can sharply reduce time and costs. In addition, some successfully repositioned

drugs, such as raloxifene, sildenafil, and thalidomide, have produced great revenues for their

patent companies. Hence, drug repositioning is an important strategy of drug discovery in

pharmaceutical industry.

The computational methods for drug repositioning have received much attention recently,

as the traditional manual experimental investigation is complicated and inefficient. In recent

years, many types of computational approaches have been proposed, including semantic infer-

ence, network-based analysis, and machine learning. The network-based methods are one of

the popularly-used approaches to identify potential drug–disease associations. Based on the

guilt-by-association principle, Wang et al. constructed a heterogenous graph between drug

and target and proposed the HGBI (Heterogeneous Graph Based Inference) algorithm to pre-

dict potential drug–target interactions [3]. The HGBI algorithm is also used for prediction of

drug–disease associations [4]. Based on the propagation flow algorithm, Martinez et al. pro-

posed a network-based prioritization method named DrugNet for drug repositioning [5]. The

DrugNet algorithm can perform both disease–drug and drug–disease prioritization by inte-

grating drug, disease, and target information. In [6], the MBiRW method addressed the drug-

repositioning problem by applying a bi-random walk algorithm on heterogeneous network

with comprehensive similarity measures for drugs and diseases, obtained by utilizing logistic

function [7] and ClusterONE [8].

Machine learning methods have attracted a lot of attention in recent years. Based on the

common assumption that similar drugs tend to connect with similar diseases, Gottlieb et al.
calculated five drug–drug similarity measures and two disease–disease similarity measures for

drug-associated indication prediction, and presented a method (PREDICT) to identify poten-

tial drug indications for approved drugs [9]. Integrating chemical structure, drug–target inter-

action, and side-effect data, Wang et al. presented an approach called PreDR for drug–disease

association prediction [10]. PreDR treated the prediction problem as a binary classification

problem by defining a kernel function and applying an SVM-based learning algorithm. In

[11], a matrix factorization model was developed to predict new indications for known drugs

by incorporating the interaction network of genes. Luo et al. proposed a drug repositioning

recommendation system (DRRS) [12]. Specifically, a heterogeneous network was constructed

by integrating drug similarities, disease similarities, and drug–disease associations and the
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adjacency matrix of the large-scale heterogeneous network was considered as a low-rank

matrix. The singular value thresholding algorithm (SVT) [13] was implemented to complete

the missing entries of a drug–disease association matrix. Yang et al. further proposed a

bounded nuclear norm regularization (BNNR) model [14], not only tolerating the noisy simi-

larities of drugs and diseases by employing regularization, but also ensuring that all predicted

values are within the interval of [0, 1]. However, the computational cost of both DRRS and

BNNR increases sharply when target (protein/gene) information is incorporated into the het-

erogeneous drug–disease network.

In this study, we propose an overlap matrix completion for bilayer networks (OMC2) and

tri-layer networks (OMC3) to predict potential indications for approved and new drugs. We

design two different networks from drug-side aspect and disease-side aspect, instead of con-

structing a large-scale heterogeneous drug–disease network. This can significantly reduce the

computational complexity for matrix completion. Meanwhile, a BNNR model [14] developed

in our previous work is implemented to fill out the missing entries in the block adjacency

matrix of these networks. We evaluate the performance of OMC2 and OMC3 in three different

datasets and compare them with five latest approaches for drug repositioning. Our computa-

tional results show that our methods yield better accuracy in predicting potential drug–disease

associations.

Materials and methods

In this section, we introduce OMC for bilayer networks (OMC2) and tri-layer networks

(OMC3) to identify potential indications for both known and novel drugs. First of all, a con-

cise description of experimental datasets is presented. In bilayer heterogeneous networks, we

integrate drug–drug, disease–disease, and drug–disease information. In tri-layer heteroge-

neous networks, besides the above three kinds of data, drug–protein and disease–protein

associations are considered. Then, we present the OMC2 algorithm for drug–disease bilayer

networks to predict novel drug–disease associations. Finally, we extend OMC2 to an OMC3

algorithm in handling the tri-layer networks, where the target-related information is also

incorporated.

Datasets

To construct bilayer and tri-layer networks, we collected drug, disease, and target protein

information from published literatures and related authoritative databases. The approaches to

collect association information and to compute similarity are described below.

Drug–disease associations. Confirmed drug–disease associations were obtained from the

supplementary material of [9], which was admittedly treated as the gold standard dataset.

There were 1, 933 associations between 593 drugs registered from DrugBank [15] and 313 dis-

eases listed in the Online Mendelian Inheritance in Man (OMIM) database [16].

Drug–drug similarity. Drug–drug similarities were calculated based on chemical structures.

The Canonical Simplified Molecular Input Line-Entry System (SMILES) [17] of these 593

drugs were downloaded from DrugBank. Then, the Chemical Development Kit (CDK) [18]

was utilized to compute hashed fingerprints for each drug with default parameters. Finally, the

similarity between two drugs was measured by the Tanimoto score [19] in the range of [0, 1].

Disease–disease similarity. Disease–disease similarities were computed by MimMiner [20],

which identifies similarity of appearance of MESH (medical subject headings vocabulary)

terms between two diseases in medical descriptions from the OMIM database. In the MimMi-

ner program, the disease–disease similarity was normalized to the interval of [0, 1].

OMC for predicting drug-associated indications
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Drug–protein interactions. The interactions between drugs and proteins were collected

from DrugBank. We collected 3, 184 drug–target (protein) interactions between 576 relevant

drugs of the gold standard dataset and 975 proteins.

Disease–protein associations. We collected disease–protein associations in two steps. In the

first step, we downloaded the interactions between diseases included in the gold standard data-

set and genes from CTD [21], and the total of 475 disease–gene interactions were collected.

Secondly, these genes were mapped into 849 proteins in UniprotKB database [22]. There were

1, 066 associations between 166 diseases and 849 proteins at last.

OMC algorithm for bilayer networks

Two drug–disease bilayer networks and corresponding adjacency matrices. We con-

struct two heterogeneous drug–disease bilayer networks. One is composed of a drug–drug net-

work and a drug–disease network and the other is of a disease–disease network and a drug–

disease network. Fig 1 shows the workflow for constructing two bilayer networks and their

corresponding block adjacency matrices.

For the drug–drug network withm drug nodes, let ARR 2 IRm�m be its adjacency matrix,

where element (ARR)ij represents the similarity between drugs ri and rj. Similarly, ADD 2 IRn�n

is the adjacency matrix of the disease–disease network with n disease nodes, where (ADD)ij

Fig 1. The workflow of constructing the DrNet-Dis network and the DisNet-Dr network. (a) Drug–drug network and its similarity

matrix. (b) Drug–disease associations and KNN preprocessing. (c) Disease–disease network and its similarity matrix. (d) DrNet-Dis

network and its block adjacency matrix. (e) DisNet-Dr network and its block adjacency matrix.

https://doi.org/10.1371/journal.pcbi.1007541.g001
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denotes the similarity between diseases di and dj. For the drug–disease network, let ADR 2
IRn�m be its adjacency matrix (drug–disease association matrix), where (ADR)ij is set to 1 if

there exists an experimentally validated association between di and rj, otherwise 0.

DrNet-Dis network. The DrNet-Dis network, illustrated in Fig 1(a), 1(b) and 1(d), is con-

structed by integrating the drug–drug network and the drug–disease network. For the sake of

generality in applications, we take some novel disease nodes into account, which are not asso-

ciated with any known drug node. For instance, d4 is a new disease node in Fig 1(b), and the

corresponding row of ADR is a zero vector, which causes difficulty in matrix completion

and affects the performance of prediction. To address this cold-start problem, we conduct a

K-Nearest Neighbor (KNN) preprocessing step for these new diseases. Specifically, for each

novel disease dp, K nearest neighbor diseases of dp are picked based on their disease similarities

in descending order. We update the corresponding row vector of disease dp in the drug–dis-

ease association matrix by filling out a part of weighted association information. The detail of

the KNN preprocessing algorithm is described by Algorithm 1. After the KNN preprocessing
step, an updated drug–disease association matrix ADR1 is obtained and the block adjacency

matrixM1 2 IRðmþnÞ�m of the DrNet-Dis network is presented as follows,

M1 ¼
ARR

ADR1

" #

:

DisNet-Dr network. The DisNet-Dr network, demonstrated by Fig 1(b), 1(c) and 1(e), is

constructed by integrating the disease–disease network and the drug–disease network. For

some novel drugs (e.g., drug r2 in Fig 1(b)), the corresponding columns of ADR are zero vec-

tors. Similarly, the KNN preprocessing step is also implemented for these new drugs by Algo-

rithm 1, and a new corresponding association matrix ADR2 is developed. Finally, the block

adjacency matrixM2 2 IRn�ðmþnÞ of the DisNet-Dr network is denoted as follows,

M2 ¼ ADR2 ADD½ �:

Actually, the above KNN preprocessing step is not required if there is no novel disease or

drug node.M1 andM2 are the to-be-complete matrices.

Algorithm 1: KNN Preprocessing Algorithm
Input: The drug similarity matrix ARR 2 IRm�m, the disease similarity
matrix ADD 2 IRn�n, the disease–drug association matrix ADR 2 IRn�m may con-
tain some zero rows or columns, and the neighborhood size K.
Output: Updated ADR1 and ADR2.
1. Initialize ADR1 = ADR and ADR2 = ADR;
2. Find index numbers of all zero rows of the matrix ADR1, which are
denoted as {i1, i2, . . ., is} � {1, 2, . . ., m}. D0 ¼ fdi1 ; di2 ; . . . ; disg represents
the corresponding disease set. /� Entries of D0 actually are novel dis-
eases, where di1 represents i1-th disease in all diseases.�/
for each disease dp 2 D0 do
3. U ¼ KNNðADD;K; dpÞ; /� KNN is a function for finding the K nearest
neighbors of disease node dp based on similarity matrix ADD in descend-
ing order.�/
4. Sd ¼

P

du2U
ADDðdp; duÞ;

5. ADR1ðp; :Þ ¼
P

du2U

ADDðdp ;duÞ
Sd

� ADRðdu; :Þ;

/�ADR1(p, :) notes the p-th row of matrix ADR1 and the denominator is
the normalization term.�/
end for
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6. Find index numbers of all zero columns of the matrix ADR2, which are
denoted as {j1, j2, . . ., jt} � {1, 2, . . ., n}. R0 ¼ frj1 ; rj2 ; . . . ; rjtg represents
the corresponding drug set. /�Entries of R0 actually are novel drugs,
where rj1 represents the j1-th drug in all drugs.�/
for each drug rq 2 R0 do
7. V ¼ KNNðARR;K; rqÞ; /� KNN is a function for finding the K nearest
neighbors of drug node rq based on similarity matrix ARR in descending
order.�/
8. Sr ¼

P

rv2V
ADDðrq; rvÞ;

9. ADR2ð:; qÞ ¼
P

rv2V

ARRðrq ;rvÞ
Sr
� ADRð:; rvÞ;

/�ADR2(:, q) notes the q-th column of matrix ADR2 and the denominator is
the normalization term.�/
end for
10. return ADR1 and ADR2.

BNNR model. Matrix completion, whose goal is to recover the missing elements of matrix

from only a few observations, has been widely used in many applications. Under the low-rank

assumption, matrix completion is generally formulated as the following nuclear norm minimi-

zation problem

min
X
kXk�

s:t: POðXÞ ¼ POðMÞ:
ð1Þ

where kXk� denotes the nuclear norm of X, which is defined as the sum of all singular values

of X.M is the incomplete matrix, O is a set including index pairs (i, j) of all known elements in

M, and PO is the projection operator projecting matrix X onto O, which is defined as

ðPOðXÞÞij ¼

(Xij; ði; jÞ 2 O

0: ði; jÞ =2 O

In the drug–disease association matrix, the entry value 1 denotes an experimentally validated

indication while 0 indicates the association has not been validated yet. As a result, the pre-

dicted drug–disease association values are expected to fall in the interval of [0, 1], indicating

the likelihood of being a true association. Therefore, a predicted value beyond the [0, 1] range

is meaningless in the context of the application. To enforce the predicted values within the

interval of [0, 1], a bounded constraint is added into the matrix completion model. In addition,

due to the large amount of “noise” when calculating drug similarity and disease similarity, we

relax the constraint satisfaction condition by incorporating a regularization term. As a result,

we have proposed the bounded nuclear norm regularization (BNNR) described in [14] as fol-

lows,

min
X
kXk� þ

a

2
kPOðXÞ � POðMÞk

2

F

s:t: 0 � X � 1:

ð2Þ

where α> 0 is a harmonic parameter to balance the nuclear norm and the error term and 0�

X� 1 represents 0� Xij� 1 for all i, j. A simple and effective algorithm is designed to solve

model (2) by using the alternating direction method of multipliers (ADMM). By introducing a

OMC for predicting drug-associated indications
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new splitting matrixW, (2) can be formulated as the following equivalent form,

min
X
kXk

�
þ
a

2
kPOðWÞ � POðMÞk

2

F

s:t: X ¼W;

0 �W � 1:

ð3Þ

The augmented Lagrangian function of model (3) is

LðW;X;Y; a; bÞ ¼ kXk
�
þ
a

2
kPOðWÞ � POðMÞk

2

F

þTrðYTðX � WÞÞ þ
b

2
kX � Wk2

F;

ð4Þ

where Y is the Lagrange multiplier and β> 0 is the penalty parameter. By applying ADMM,

we can obtain the following iterative scheme:

Wkþ1 ¼ arg min
0�W�1

LðW;Xk;Yk; a; bÞ; ð5Þ

Xkþ1 ¼ arg min
X

LðWkþ1;X;Yk; a;bÞ; ð6Þ

Ykþ1 ¼ Yk þ bðXkþ1 � Wkþ1Þ: ð7Þ

We use the inverse operator [23] to solve Eq (5) and acquire a closed-form solutionW� as

follows,

W� ¼ ðI �
a

aþ b
POÞð

1

b
Yk þ

a

b
POðMÞ þ XkÞ;

where I denotes the identity operator. Moreover, to limit the element values ofWk+1 in the

interval of [0, 1], we utilize the following projection operator

Wkþ1 ¼ Q½0;1�ðW�Þ; ð8Þ

where Q½0;1� is defined as

ðQ½0;1�ðW�ÞÞij ¼

1; W�
ij > 1

W�
ij; 0 �W�

ij � 1

0: W�
ij < 0

8
>>><

>>>:

By rearranging the terms of (6), we have

Xkþ1 ¼ arg min
X
kXk� þ

b

2
X � ðWkþ1 �

1

b
YkÞ

�
�
�
�

�
�
�
�

2

F

¼ D1
b
ðWkþ1 �

1

b
YkÞ;

ð9Þ

where DtðXÞ is the singular value shrinkage (SVT) operator [13] [24]. Specifically, SVT

OMC for predicting drug-associated indications
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operator is defined as

DtðXÞ ¼
Xsi�t

i¼1

ðsi � tÞuiv
T
i ;

where σi is the ith singular value of X larger than threshold τ, while ui and vi are the left and

right singular vectors corresponding to σi, respectively.

Algorithm 2 presents an iterative BNNR scheme for solving the model (2). After performing

BNNR algorithm, we can obtain a completed matrixM�, where all the unknown entries of

matrixM have been filled out.

Algorithm 2: BNNR Algorithm
Input: The to-be-complete M, parameters α, and β.
Output: Completed matrix M�.
1. initialize X1 = PΩ(M), W1 = X1, Y1 = X1;
2. k  1;
repeat
3. Wkþ1  Q½0;1�ðW�Þ;

4. Xkþ1  D1
b
Wkþ1 �

1

b
Yk

� �
;

5. Yk+1  Yk + β(Xk+1 − Wk+1);
6. k  k + 1;
until convergence
7. M� = Wk;
8. return M�.

OMC2 algorithm. We propose the OMC algorithm for bilayer networks (OMC2) to pre-

dict the potential drug–disease associations, whose goal is to obtain the low-rank matrices of

drug–disease relationships from drug-side information and disease-side information. Firstly,

we combine the updated disease–drug association matrix with the drug similarity matrix and

create a block adjacency matrixM1, as illustrated in Fig 1(d). Meanwhile, from the disease-

side, we combine the updated disease–drug association matrix with the disease similarity

matrix and generate a block adjacency matrixM2, as illustrated in Fig 1(e). Secondly, the

BNNR algorithm is implemented to fill out the unknown entries ofM1 andM2. Finally, we cal-

culate the average of two predicted drug–disease association matrices to obtain the final pre-

dicted matrix A�DR. Each element ðA�DRÞij represents the predicted score between disease di and

drug rj. The higher the score, the more likely that the association exists. To identify the promis-

ing candidate indicates for a specific drug, we rank all candidates according to their scores in

descending order. The detail of the OMC2 algorithm is described in Algorithm 3.

Algorithm 3: OMC2 Algorithm
Input: The drug similarity matrix ARR 2 IRm�m, the disease similarity
matrix ADD 2 IRn�n, the disease–drug association matrix ADR 2 IRn�m, parame-
ters K, α, and β.
Outout: Predicted association matrix A�DR.
1. ADR1  KNN preprocessingðADR;ADD;KÞ;

2. M1 ¼
ARR
ADR1

" #

;

3. ADR2  KNN preprocessingðADR;ARR;KÞ;
4. M2 ¼ ADR2 ADD �;½

5.
A�RR
A�DR1

" #

 BNNRðM1; a;bÞ;

6. A�DR2
A�DD �  BNNRðM2; a;bÞ½ ;

7. A�DR ¼
A�DR1

þA�DR2

2
;

8. return A�DR.
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OMC algorithm for tri-layer networks

OMC can be easily extended from bilayer networks (OMC2) to tri-layer networks (OMC3)

algorithm, where the disease–protein and drug–protein association information are incorpo-

rated to further improve prediction accuracy. Firstly, we collect drug–protein (target) interac-

tions and disease–protein associations from different databases. This step has been discussed

in the previous section. Secondly, based on the two bilayer networks, i.e., the DrNet-Dis net-

work and the DisNet-Dr network, we design two corresponding tri-layer networks. We inte-

grate protein nodes and drug–protein associations into the DrNet-Dis network and construct

a drug–protein–disease network called DrNet-Pro-Dis, as showed in Fig 2(e). The block adja-

cency matrix of this tri-layer network is defined as

M1 ¼

ARR

APR

ADR1

2

6
6
6
4

3

7
7
7
5
:

Similarly, we integrate protein nodes and disease–protein associations into the DisNet-Dr net-

work and create another tri-layer network called DisNet-Pro-Dr, as illustrated in Fig 2(f). The

block adjacency matrix of DisNet-Pro-Dr network is defined as

M2 ¼ ADR2 ADP ADD½ �:

Thirdly, the BNNR algorithm is carried out to fill out the missing entries ofM1 andM2 to

obtain two predicted drug–disease association matrices. Finally, we calculate the average of

these two matrices as the final output. The detail of OMC3 the algorithm is described in Algo-

rithm 4.

Algorithm 4: OMC3 Algorithm
Input: Drug similarity matrix ARR 2 IRm�m, disease similarity matrix
ADD 2 IRn�n, protein–drug association matrix APR 2 IRs�m, disease–protein
association matrix ADP 2 IRn�t, disease–drug association matrix ADR 2 IRn�m,
parameters K, α, and β.
Output: Predicted association matrix A�DR.
1. ADR1  KNN preprocessingðADR;ADD;KÞ;

2. M1 ¼

ARR
APR
ADR1

2

6
4

3

7
5;

3. ADR2  KNN preprocessingðADR;ARR;KÞ;
4. M2 ¼ ADR2 ADP ADD �;½

5.

A�RR
A�PR
A�DR1

2

6
6
4

3

7
7
5 BNNRðM1; a; bÞ;

6. A�DR2
A�DP A�DD �  BNNRðM2; a; bÞ½ ;

7. A�DR ¼
A�DR1

þA�DR2

2
;

8. return A�DR.

Results

In this section, we systematically evaluate the performance of our proposed methods (OMC2

and OMC3) for predicting drug-associated indications. First of all, several evaluation metrics

are introduced and parameter settings are discussed. In order to compare our methods with

several state-of-the-art approaches, we perform 10-fold cross-validation and de novo tests in
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the gold standard dataset. Case studies are conducted to confirm the reliability of OMC3 in

practical applications. Then, the performance of OMC and comparison on bilayer and tri-

layer networks are discussed. Finally, we perform the same experiments on two other datasets

to further illustrate the effectiveness and robustness of OMC2 and OMC3.

Evaluation metrics

To evaluate the performance of our approaches, a 10-fold cross-validation experiment is

conducted to identify candidate diseases for specific drugs. In the gold standard dataset, all

approved drug–disease associations are randomly divided into ten parts with approximately

Fig 2. The workflow of constructing the DrNet-Pro-Dis network and the DisNet-Pro-Dr network. (a) DrNet-Dis network and its similarity matrix. (b) Drug–

protein interactions and corresponding adjacency matrix. (c) Disease–protein associations and corresponding adjacency matrix. (d) DisNet-Dr network and its block

adjacency matrix. (e) DrNet-Pro-Dis network and its block adjacency matrix. (f) DisNet-Pro-Dr network and its block adjacency matrix.

https://doi.org/10.1371/journal.pcbi.1007541.g002
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equal sizes. Each part is treated as the testing set in turn, and the training set is comprised of

the remaining nine parts. To obtain convincing results, the 10-fold cross-validation is repeated

10 times and the final result is showed by the average value of the 10 folds. After the perform-

ing prediction, all candidate diseases associating with the test drug are ranked by their pre-

dicted scores in descending order. For a given rank threshold, the candidate disease is

considered as a True Positive (TP) if its rank is above the threshold; otherwise, it is treated as a

False Negative (FN). On the other hand, if the rank of a candidate disease had no association

with the test drug is greater than the threshold, it is considered as a False Positive (FP), other-

wise, it is treated as a True Negative (TN). Based on varying ranking thresholds, we can calcu-

late True Positive Rate (TPR) and False Positive Rate (FPR) by

TPR ¼
# of TPs

# of TPsþ # of FNs
; FPR ¼

# of FPs
# of FPsþ # of TNs

;

and draw a Receiver Operating Characteristic (ROC) curve. Meanwhile, the area under the

ROC curve (AUC) is utilized to evaluate the overall performance of a method. Precision and

recall (equivalent to TPR) could be obtained to plot the precision-recall (PR) curve [25]. Due

to the fact that the top-ranked result is a more important measurement in real-life drug-reposi-

tioning applications, the number of the retrieved correct associations is reported under differ-

ent top ranking values.

Parameter settings

In OMC2 and OMC3 algorithms, there are three hyper parameters to be determined, includ-

ing α, β, and K. In this subsection, using the OMC2 algorithm as an example, we explain the

procedure of determining these parameters. The similar parameter determination procedure

can be extended to the OMC3 algorithm.

For α and β, we perform a 10-fold cross-validation to find the most appropriate values by

the grid search, which are chosen from {0.1, 1, 10, 100}. When the neighborhood size K is fixed

to 1, S1 Table shows the AUC values of OMC2 under different values of α and β on the gold

standard dataset. Our results show that the best performance is achieved by α = 1 and β = 10.

For K, we firstly assign 1 and 10 to α and β, respectively and then use cross validation to

pick an appropriate K value from {1, 5, 10, 15, 20, 25, 30}. S1 Fig shows the AUC values of

OMC2 under this setting. When K is 10, the best AUC value is achieved. Since the values of K
have little effect on AUC values, we can treat K = 10 as a prior knowledge in other datasets for

simplicity. Actually, We fixed the neighborhood size K to 10, the optimal values of α and β are

also equal to 1 and 10, respectively. The results are shown in S2 Table and it could further illus-

trate the stability of the parameter values.

Based on the above analysis, we finally choose α = 1, β = 10, and K = 10 for the gold stan-

dard dataset as the default parameters.

Comparison with other methods

In order to obtain convincing and fair comparison results, OMC2 and OMC3 are compared

with the five state-of-the-art approaches: BNNR [14], DRRS [12], MBiRW [6], DrugNet [5],

and HGBI [3]. The parameters in the compared approaches are set to either the default values

in their papers or the best value by the grid search, if the default values are not provided. We

rank the predicted indications and plot the ROC curves and PR curves to analyze the 10-fold

cross-validation results.

As shown in Fig 3, OMC2 and OMC3 outperform the other methods in ROC curves, PR

curves, and top-ranked results. More specifically, OMC2 and OMC3 obtain AUC values of
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0.939 and 0.945, while BNNR, DRRS, MBiRW, DrugNet, and HGBI yield AUC values of

0.932, 0.930, 0.917, 0.868, and 0.829, respectively. In real-life drug-repositioning applications,

researchers particularly care about precision, because the precise prediction can significantly

reduce experimental cost and time. The PR curves show OMC2 and OMC3 achieve the second

best and the best precisions of 0.449 and 0.461, while BNNR, DRRS, MBiRW, DrugNet, and

HGBI have the precisions of 0.440, 0.375, 0.304, 0.192, and 0.130, respectively. It is important

Fig 3. The performance of all methods for predicting drug–disease associations in the 10-fold cross-validation. (a) ROC curves of prediction results. (b) PR

curves of predicting candidate diseases for drugs. (c) The number of correctly retrieved drug–disease associations for various rank thresholds.

https://doi.org/10.1371/journal.pcbi.1007541.g003
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to note that OMC3 can successfully prioritize 46.1% true drug–disease associations at top

rank. A true drug–disease association is treated as the retrieved correct association when its

predicted rank is higher than the specified ranking threshold. The numbers of correct associa-

tions predicted by all methods under different top ranking values are shown in Fig 3(c). The

numbers of retrieved associations of both OMC2 and OMC3 exceed those of the other com-

peting approaches. Specifically, among 1, 933 true drug–disease associations, 1, 493(77.2%)

and 1, 529(79.1%) associations are correctly predicted at top 10 by OMC2 and OMC3, while in

comparison, 1, 475(76.3%), 1, 413(73.1%), 1, 232(63.7%), 900(46.6%), and 752(38.9%) associa-

tions are identified by BNNR, DRRS, MBiRW, DrugNet, and HGBI, respectively.

Prediction of potential indications for new drugs

To evaluate the performance of OMC2 and OMC3 for identifying indications of novel drugs,

we conduct a de novo test, where these drugs with only one known drug–disease association

are chosen. For each of these drugs, the unique disease association is removed in turn as the

test sample, and other known drug–disease associations are used as the training samples.

There are totally 171 drugs with only one known associated disease in gold standard dataset.

As shown in Fig 4, OMC2 and OMC3 achieve the AUC values of 0.851 and 0.871, while

BNNR, DRRS, MBiRW, DrugNet, and HGBI have inferior results with the AUC values of

0.830, 0.824, 0.818, 0.782, and 0.746, respectively. OMC3 has demonstrated its advantages

measured by PR curves. For top-ranked results, OMC3 outperforms all methods at all ranking

thresholds. Meanwhile, OMC2 surpasses the compared approaches at top 5, 10, 30, 50 and

100, except for being inferior to DRRS at top 1. Specifically, 74 and 88 drugs are identified cor-

rectly at top 5 by OMC2 and OMC3, respectively. In comparison, 73, 62, 71, 52, and 36 drugs

are predicted by BNNR, DRRS, MBiRW, DrugNet, and HGBI, respectively. Summarizing

the above results, one can find that our OMC methods are effective to address the cold-start

problem to identify potential indications for novel drugs. In particular, OMC3 yields further

improvement over OMC2, indicating the effectiveness of incorporating target association

information in the tri-layer network.

Case studies

We apply OMC3 to predict new uses for already approved drugs in real applications. To pre-

dict novel indications for existing drugs in the gold standard dataset, we consider all known

associations between drugs and diseases as the training samples and the unknown drug–dis-

ease pairs as the candidate samples. By carrying out the OMC3 algorithm, the predicted scores

of all candidate pairs are obtained and sorted for each specific drug.

In order to verify the predicted diseases, we choose three representative drugs: Doxorubi-

cin, Flecainide, and Levodopafour. We confirm the potential diseases associated with the given

drug by retrieving authoritative public databases, such as CTD [21], DrugBank, and KEGG

[26]. The newly predicted indications and their supporting evidences are listed in Table 1. One

can find that more than three novel indications are validated on top-5 for each representative

drug. As shown in this case study, OMC3 can be used as an effective method for identifying

new indications for specific drugs in practical applications. In order to provide more helpful

references for medical researchers, the top-30 candidate indications of each drug are listed in

S3 Table.

Effectiveness of OMC on performance

In order to evaluate the effectiveness of OMC, we compare OMC2 with algorithms using

only drug- or disease-side information in 10-fold cross-validation. The first algorithm, called
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OMC-drug, is to obtain ADR1 by BNNR in DrNet-Dis network, while the other one, called

OMC-disease, is to recover ADR2 by BNNR in DisNet-Dr network. As shown in S2 Fig, both

OMC-drug and OMC-disease are inferior to OMC2 in each fold in terms of AUC. In conclu-

sion, consolidating drug- and disease-side associations in OMC2 is a better way to predict

drug–disease associations than just using one-side information.

Fig 4. Performance of all methods in predicting potential diseases for new drugs. (a) ROC curves of prediction results. (b) PR curves of predicting candidate

diseases for drugs. (c) Number of correctly retrieved drug–disease associations for various rank thresholds.

https://doi.org/10.1371/journal.pcbi.1007541.g004
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Comparison on tri-layer networks

In this subsection, we illustrate the performance and the computational efficiency of different

approaches in tri-layer networks. BNNR, DRRS, DrugNet, and HGBI algorithms are taken

into account for extending from bilayer networks into tri-layer networks, in comparison with

OMC3. Since the protein association information is incorporated, the resulted affinity matrix

of the tri-layer network is significantly enlarged. This also poses computational challenges in

the factorization algorithms in matrix completion, which often grow cubically. The running

time of each approach is obtained on a Linux server with CPU 2.30 GHz and 128 GB memory.

As described in our previous works, BNNR and DRRS constructed the same bilayer net-

works between drugs and diseases. In order to construct a tri-layer heterogeneous network, we

integrate protein-related information into the network, including protein–protein similarities,

drug–protein interactions, and disease–protein associations. Accordingly, we get the corre-

sponding square, symmetric adjacency matrix defined as follows,

M ¼

ARR ATDR ATPR

ADR ADD ATPD

APR APD APP

2

6
6
6
4

3

7
7
7
5
;

where APP represents the protein–protein similarity matrix, which is calculated based on the

amino acid sequence alignment by Rcpi [27]. The programs for completing the matrixM by

BNNR and DRRS are called BNNR3 and DRRS3, respectively. For DrugNet, it is also applied

to tri-layer networks by integrating target-related information [5], which is denoted as

DrugNet3 here. DrugNet3 can predict drug–disease relationships by propagating information

in the drug–target–disease network. Based on the guilt-by-association principle, the authors of

HGBI had extended bilayer networks into tri-layer networks by integrating drug, target, and

disease information [4], which was called TL-HGBI (denotes HGBI3 here).

The 10-fold cross-validation is uniformly conducted in the same gold standard dataset

for OMC3, BNNR3, DRRS3, DrugNet3, and HGBI3. As shown in Fig 5(a) and 5(b), OMC3

Table 1. The top-5 candidate diseases for Doxorubicin, Flecainide, and Levodopa.

Drugs

(DrugBank IDs)

Top-5 candidate diseases

(OMIM IDs)

Evidences

Doxorubicin

(DB00997)

Dohle bodies (223350)

Reticulum cell sarcoma (267730) CTD

Small cell cancer of the lung (182280) CTD

Leukemia (109543) CTD/DB/KEGG

Testicular germ cell tumor (273300) CTD

Flecainide

(DB01195)

Atrial fibrillation (608583) CTD

Cardiac arrhythmia (115000) CTD/DB

Diastolic hypertension (608622) CTD

Hyperplastic myelinopathy (147530)

Nephropathy-hypertension (161900)

Levodopa

(DB01235)

Parkinson disease (168600) CTD/DB/KEGG

Dementia (125320) CTD/DB

Schizophrenia (181500) CTD

Optic atrophy, hearing loss, and peripheral neuropathy (165199) CTD

Hyperplastic myelinopathy (147530)

https://doi.org/10.1371/journal.pcbi.1007541.t001
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outperforms the other approaches measured by the AUC values of the ROC curves and the

precision. Specifically, OMC3 obtains the best AUC value of 0.945, while BNNR3, DRRS3,

DrugNet3, and HGBI3 have the AUC values of 0.932, 0.932, 0.835, and 0.855, respectively.

The PR curves show that OMC3 obtains the best precision with 0.460, while BNNR3,

DRRS3, DrugNet3, and HGBI3 have the precision values of 0.431, 0.329, 0.093, and 0.227,

respectively.

Fig 5. Method comparison in bilayer networks and tri-layer networks. (a) ROC curves of prediction results. (b) PR curves of prediction results. (c) The average

running time of each fold in the 10-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1007541.g005
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Surprisingly, a method extended from bilayer networks into tri-layer networks does not

necessary improve the prediction performance. In fact, only OMC and HGBI obtain perfor-

mance improvement in tri-layer networks over bilayer ones. BNNR3, DRRS3, and DrugNet3

yield even worse performance when tri-layer networks are used compared to the corespondent

algorithms on bilayer networks. This is due to the fact that protein–protein similarities calcu-

lated by the algorithm contain a large amount of “noise”, which causes BNNR3, DRRS3, and

DrugNet3 to degrade their prediction performance. In contrast, OMC3 avoids the use of pro-

tein–protein similarities and the information OMC3 used is experimentally proven, such as

drug–protein interactions and disease–protein associations, which in turn leads to perfor-

mance improvement over OMC2 on bilayer networks.

As shown in Fig 5(c), the average running time of BNNR and DRRS increase sharply from

bilayer networks (BNNR2 and DRRS2) to tri-layer networks (BNNR3 and DRRS3), due to the

increase of the affinity matrix. Nevertheless, this does not have such a significant impact on

OMC, DrugNet, and HGBI. For OMC, this is because OMC keeps the matrix completion com-

putation at the bilayer network level. As a result, OMC is not only better in terms of the predic-

tion performance, but is also computational efficiency.

Experiments on the other datasets

We apply OMC2 and OMC3 to two other datasets, including Cdataset [6] and DNdataset [5],

to demonstrate their robustness. Cdataset contains 663 drugs collected in DrugBank, 409 dis-

eases obtained in OMIM database, and 2, 352 known drug–disease associations. In addition,

we have collected drug–protein interactions related to drugs of Cdataset from DrugBank and

retrieved a total of 3, 251 associations between 637 drugs and 891 proteins. For disease–protein

associations, we download disease–gene interactions related to diseases of Cdataset from CTD

database, and map genes into proteins in the UniprotKB database. There are 1, 280 associa-

tions between 226 diseases and 1, 002 proteins. The drug similarity and disease similarity are

calculated in the same way as described in the previous section. DNdataset includes 1, 490

drugs registered in DrugBank, 4, 516 diseases annotated by Disease Ontology (DO) terms, 18,

107 proteins extracted from BioGRID, 11, 658 disease–protein associations directly extracted

from the disease and gene annotations (DGA), 4, 026 drug–protein interactions collected in

DrugBank, and 1, 008 known drug–disease associations. We evaluate the performance of our

methods on Cdataset and DNdataset by performing a 10-fold cross-validation and de novo
experiments.

For Cdataset, as shown in S3(a)–S3(c) Fig, OMC2 and OMC3 demonstrate superior perfor-

mance in terms of ROC curve, PR curve, and top-ranked results in the 10-fold cross-valida-

tion. Specifically, OMC2 and OMC3 obtain the AUC values of 0.953 and 0.957 in the ROC

curves, while BNNR, DRRS, MBiRW, DrugNet, and HGBI have 0.948, 0.947, 0.933, 0.903, and

0.858, respectively. The PR curves indicate that OMC2 and OMC3 achieve the second best pre-

cision of 0.476 and the best precision of 0.489, while the precision values in BNNR, DRRS,

MBiRW, DrugNet, and HGBI are 0.471, 0.403, 0.351, 0.239, and 0.168, respectively. In addi-

tion, OMC2 and OMC3 outperform the other methods in the top-ranked results with respect

to different ranking thresholds. In the de novo test, there are 177 drugs with only one known

associated disease in Cdataset. As shown in S4(a)–S4(c) Fig, OMC2 and OMC3 obtain the

AUC values of 0.830 and 0.846, respectively, while BNNR, DRRS, MBiRW, DrugNet, and

HGBI have the AUC values of 0.812, 0.819, 0.804, 0.785, and 0.732, respectively. Both OMC2

and OMC3 exceed the other methods in terms of AUC values as well. For top-ranked results,

among 177 test drugs, 100 (56.5%) drugs are correctly identified at top 10 by OMC3, while
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only 87 (49.2%), 78 (44.1%), 80 (45.2%), 61 (34.5%), and 48 (27.1%) drugs are predicted by

BNNR, DRRS, MBiRW, DrugNet, and HGBI, respectively.

For DNdataset, in the 10-fold cross-validation results shown in S5(a)–S5(c) Fig, OMC2 and

OMC3 obtain the AUC values of 0.957 and 0.965, while BNNR, DRRS, MBiRW, DrugNet, and

HGBI yield the AUC values of 0.955, 0.934, 0.956, 0.950, and 0.921, respectively. Similar to

that of Cdataset, OMC2 obtains the second best precision of 0.360 and OMC3 obtains the best

precision of 0.369 in PR curves. Moreover, OMC2 and OMC3 outperform the other methods

on top-ranked results at different ranking thresholds. In the de novo test, OMC3 also outper-

forms the other methods. As shown in S6(a)–S6(c) Fig, OMC2 and OMC3 obtain the AUC

values of 0.963 and 0.972, while BNNR, DRRS, MBiRW, DrugNet, and HGBI have the AUC

values of 0.956, 0.946, 0.970, 0.969, and 0.928, respectively. For top-ranked results, among 347

test drugs, 228 (65.7%) and 231 (66.6%) drugs are correctly identified at top 1 by OMC2 and

OMC3, while only 218 (62.8%), 213 (61.4%), 219 (63.1%), 156 (45.0%), and 150 (43.2%) drugs

are predicted by BNNR, DRRS, MBiRW, DrugNet, and HGBI, respectively. In summary, the

above results on Cdataset and DNdataset demonstrate the robustness and generalization of

OMC.

Discussion

In this study, we have proposed a novel OMC method for predicting drug-associated indica-

tions, which can effectively integrate multiple types of drug and disease information. In addi-

tion, our method can be simply extended from bilayer networks to tri-layer networks by

incorporating drug-target associations. Furthermore, OMC effectively avoids the use of noisy

data in tri-layer networks. The performance of our methods (OMC2 and OMC3) are validated

by the cross validation, de novo experiments, and case studies. The experimental results indi-

cate that our methods are effective compared with the latest approaches, particularly for de
novo drugs.

However, OMC has two potential limitations. First, the drug and disease similarity compu-

tations in this work may be not optimal. More reliable similarity measures, for example con-

sensus integrating multiple similarities computations from different aspects could improve the

performance of OMC. Second, OMC must perform matrix completion twice from both drug-

side and disease-side before the final predicted score is obtained.

OMC can actually be used on other drug-related predictions, such as synergistic drug com-

bination and small molecule–miRNA association prediction. The synergistic drug combina-

tion is based on the assumption that principal drugs which obtain the synergistic effect with

similar adjuvant drugs are often similar and vice versa [28]. That means the drug combination

matrix is also of low-rank. Therefore, OMC can be applied to predict potential synergistic

drug combinations by integrating the drug similarity matrix and the drug–target interaction

matrix. In addition, it may avoid classifying principal drugs and adjunct drugs before obtain-

ing the final score of drug combinations. MiRNAs play an important role in the initiation and

development of various human diseases. Several drug-like compound libraries targeting differ-

ent miRNAs have been successfully screened in cell assays, further demonstrating the possibil-

ity of targeting miRNAs with small molecules. Hence, it is very meaningful and promising to

develop computational models for drug repositioning based on drug related miRNA. Some

original and novel methods have been proposed in recent years [29]. Especially, based on tri-

layer heterogeneous networks, more prior information is used to obtain better prediction per-

formance [30]. In the future, we plan to extend our OMC method to explore drug combina-

tions and miRNA-small molecule associations for drug repositioning.
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