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Abstract

Planar cell polarity (PCP), the long-range in-plane polarization of epithelial tissues, pro-

vides directional information that guides a multitude of developmental processes at cellu-

lar and tissue levels. While it is manifest that cells utilize both intracellular and intercellular

interactions, the coupling between the two modules, essential to the coordination of collec-

tive polarization, remains an active area of investigation. We propose a generalized reac-

tion-diffusion model to study the role of intracellular interactions in the emergence of long-

range polarization, and show that the nonlocality of cytoplasmic interactions, i.e. coupling

of membrane proteins localized on different cell-cell junctions, is of vital importance to the

faithful detection of weak directional signals, and becomes increasingly more crucial to the

stability of polarization against the deleterious effects of large geometric irregularities. We

demonstrate that nonlocal interactions are necessary for geometric information to become

accessible to the PCP components. The prediction of the model regarding polarization in

elongated tissues, is shown to be in agreement with experimental observations, where the

polarity emerges perpendicular to the axis of elongation. Core PCP is adopted as a model

pathway, in term of which we interpret the model parameters. To this end, we introduce

three distinct classes of mutations, (I) in membrane proteins, (II) in cytoplasmic proteins,

and (III) local enhancement of geometric disorder. Comparing the in silico and in vivo phe-

notypes, we show that our model successfully recapitulates the salient phenotypic fea-

tures of these mutations. Exploring the parameter space helps us shed light on the role of

cytoplasmic proteins in cell-cell communications, and make falsifiable predictions regard-

ing the cooperation of cytoplasmic and membrane proteins in the establishment of long-

range polarization.
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Author summary

Planar cell polarity (PCP) is an indispensable and conserved pathway in morphogenesis.

In spite of the advances in understanding the different modules of PCP, a comprehensive

picture of the intracellular protein-protein interactions necessary for the emergence of

long-range tissue polarity is still lacking. In order to address this question, we devised a

generalized reaction-diffusion model, through which we investigated the role of cyto-

plasmic interactions in PCP pathways. The length scale of intracellular interactions is

demonstrated to be crucial to the stability of the cytoplasmic segregation of membrane

proteins in disordered tissues, as well as the capacity of polarization field for detecting the

gradient and geometrical cues. Finally, three classes of mutants are investigated within

the context of our model. Comparison with the in vivo observations allows us to infer the

major contributions of cytoplasmic proteins to the emergence of tissue polarity, and make

testable predictions regarding the cooperation of cytoplasmic and membrane proteins in

the coordination of collective polarization.

Introduction

The patterning of an organism requires the coupling of cellular states across multicellular

scales. The collective coordination of cellular processes are thus crucial to the emergent pheno-

type of an organism and requires faithful transduction of directional information across tis-

sues. Planar cell polarity (PCP) is recognized as one of the core mechanisms responsible for

such tissue-wide signaling [1–4]. At the cellular level, polarity is defined as the asymmetric

localization of two membrane proteins on the apicolateral cell-cell junction. For instance in

Drosophila wing, two of the core PCP proteins, Frizzled (Fz) and Van Gogh (Vang), are respec-

tively localized at the distal and proximal membranes of each cell. This compartmentalization

depends on cytoplasmic segregation of membrane proteins, which is reinforced by intracellu-

lar interactions [1–8]. Long-range polarization on tissue-wide length scales is contingent upon

intercellular signaling, through which adjacent cells align their polarities. The cooperation of

intra- and intercellular interactions to coordinate the long-range planar polarity is the focus

of our study [1, 9–11]. The intra- and intercellular interactions are largely carried out via two

PCP pathways: “core PCP” and “Fat/Dachsous” [1, 3, 4], each of which involves several inter-

acting membrane-bound and cytoplasmic proteins. Throughout this paper, we adopt core

PCP as the reference pathway, according to which we interpret the results. However, the

model is constructed based upon phenomenology, general symmetry-based arguments and

physical assumptions, hence largely independent of the molecular details of specific PCP

pathways.

Modeling planar cell polarity

Quantitative modeling of PCP and the underlying mechanisms has been of great interest to

computational biologists and biophysicists. Several classes of models have been proposed, each

focusing on certain aspects of polarity, in particular the subcellular circuitry in charge of sin-

gle-cell polarity, and intercellular communications that give rise to propagation of polarization

over large distances. Nevertheless, the coupling between the two modules has remained a key

question. While individual molecular components and their roles vary among different PCP

pathways, networks of these components seem to share principal collective functionalities. In

addition to the mechanisms of interaction among different components of a PCP pathway,
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detection of global cues is of great importance, as the direction of polarity is eventually set by

such cues. While the coupling of PCP proteins to the cues of chemical origins, i.e. diffusible

molecules, is more conceivable, deciphering the readout mechanisms of others such as geo-

metrical and mechanical cues has proven challenging. Therefore, an important question is

how each type of these chemical and physical cues couple to the tissue polarity. Some models

propose mechanisms through which cells are individually polarized by gradient cues [12, 13].

Others consider scenarios where rotational symmetry breaks spontaneously across the tissue;

the long-range polarity is subsequently rotated through coupling with the global cue [14–17].

The second mechanism enjoys high sensitivity and faithful detection of global cues, and is

robust against random misreadings of the orientational information by individual cells.

A large class of mathematical models begin with intracellular interactions, which together

with cell-cell couplings, give rise to long-range alignment of tissue polarity [13–16, 18]. In the

case of vectorial polarity, two types of membrane proteins are considered to interact and local-

ize asymmetrically on cell membranes; their interactions are assumed to regulate the localiza-

tion of membrane proteins. Intracellularly, the interactions between the membrane-bound

proteins are carried out by diffusing cytoplasmic proteins, and are referred to as “nonlocal”, if

the diffusion length scales of interaction-mediating cytoplasmic factors are comparable to the

cell diameter. Conversely, the interactions are called “strictly local” if the diffusion length scales

are much smaller than the cell diameter.

Previous theoretical studies suggest that nonlocality of cytoplasmic interactions is essential

to the emergence of long-range polarization [14, 16, 17]. For instance, nonlocal inhibition

between opposite complexes is proposed in Ref. [14], as a possible cytoplasmic mechanism for

establishing long-range polarity in ordered tissues. In another study, Abley, et.al. [16] consid-

ered various possibilities for local and nonlocal interactions between the membrane proteins.

Both studies find that the nonlocal interactions lead to the successful cytoplasmic partitioning,

and the correlated propagation of polarity over multicellular length scales. Nevertheless, these

models predict that global cues are needed for the long-range (tissue-wide) polarity to be

achieved within the biological timescales, and conclude that the misorientations in fat-mutant

Drosophila wing is associated with the role of Fat/Dachsous pathway as the putative graded

global cue. This proposal does not explain the early margin-oriented polarity of the wing (≲ 17

hours after puparium formation (hAPF), [11]), when fat is yet to be expressed [11, 19–21].

However, we shall mention here that the presence of other cues at this stage is not ruled out.

Indeed the Drosophila wing margin is a source of Wnts. In particular, wingless (wg) and wnt4
are expressed at the dorsal-ventral (DV) boundary of the wing disc (the future wing margin), as

early as the third instar stage [22, 23]. Together with the fact that Fz can act as a receptor for Wg,

it is speculated that the early polarization of the wing is oriented by Wg [7, 23, 24]. Upon ever-

sion of the wing disc, the former DV boundary is converted into the wing margin, where wg
continues to be expressed throughout wing development [7, 11, 23, 24]. In order for this to be a

plausible scenario, the margin-oriented long-range polarity—originally established by Wg in the

wing disc—must be robust to cellular stochastic noises in early pupal wing when wg expression

is limited to the wing margin, i.e. bulk cues are lacking [23]. In Nonlocal Cytoplasmic Interac-

tions (NLCI), we probe the stability of the initially-correlated polarization fields in the absence

of cues, by introducing a stochastic noise and measuring the angular dispersion of the cell

dipoles. (For brevity, “vectorial polarity of cell” is referred to as “cell dipole” hereafter).

Molecular ingredients

Core PCP pathway consists of three membrane proteins: (1) seven-pass transmembrane pro-

tein Flamingo (Fmi, or its mammalian homolog Celsr), which bind homophilically to form
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Fmi—Fmi bridges across the cell-cell junctions. (2) Frizzled (Fz), and (3) Van Gogh (Vang,

also called Strabismus (Stb)), bind to Fmi on the opposite sides of the cell-cell junctions to

form the asymmetric (polarized) complexes [Fz:Fmi—Fmi:Vang] across the cell-cell junctions.

Additionally, three cytoplasmic proteins are believed to play crucial roles in intracellular sig-

naling: Dishevelled (Dsh) and Diego (Dgo) bind to Fz, and Prickle (Pk) binds to Vang [1, 3, 5,

8, 25, 26]. While individual cell-cell junctions can be polarized through formation of the Fz:

Fmi—Fmi:Vang heterodimers (junctional polarity), in order for a cell to be polarized as a

whole, the membrane proteins (Fz and Vang) must be segregated to the opposite sides of the

cell. Subsequently, the tissue-wide polarity emerges upon the alignment of the cell dipoles.

Experiments under artificial conditions such as over-expression of membrane proteins, as

well as observations of the patterns of polarization near the mutant patches of different cyto-

plasmic proteins, suggest that although the presence of Dsh, Dgo, and Pk seems to be unneces-

sary for junctional polarity (less so for small clones of Dsh and Dgo, compared to Pk clones),

they are essential to the segregation of the membrane proteins and cellular polarization; thus,

their absence impairs long-range polarization [27, 28]. The intracellular interactions and local-

ization of a membrane protein, say Fz, can be upregulated either directly by proteins of the

same type, or indirectly by antagonizing the localization of nearby proteins of the other type

(Vang in this case). In particular, Fz:Dsh and Vang:Pk are believed to mutually suppress the

activities of one another [9, 13, 25, 28, 29]. Regardless of the mechanism, membrane proteins

effectively upregulate the localization of proteins of the same type, namely Fz$ Fz, and Vang

$ Vang; and downregulate the localization of the other membrane protein Fz Vang. One

of the main goals of this paper is to address the significance of cytoplasmic proteins as the

mediators of the interactions between membrane proteins.

Global cues

Several experimental evidences suggest that in spite of the spontaneous emergence of polariza-

tion over multicellular length scales, external cues seem to be necessary for fixing the direction

of polarization (see e.g. [1, 3, 30, 31] and references therein for overviews and discussions).

The graded distribution of regulatory factors across a tissue [3, 32], mechanical cues [2, 4, 7,

11, 20, 33–35], and geometrical cues [36, 37], are speculated to contribute to the orientational

signals, and partially break rotational symmetry. Elongation in particular, has been observed

to act as an axial global cue that sets the preferred axis of polarization either parallel or perpen-

dicular to that of elongation, reducing the in-plane rotational symmetry—in each case—to a

twofold +/− symmetry. In some cases, elongation gives rise to the polarization of microtubules

and vesicle trafficking, which in turn dictates the axis of polarity to be parallel to the elongation

[11, 36, 38, 39]. In the mammalian cochlea and skin, polarization emerges perpendicular to the

elongation axis [30]. An example is the axial polarity of Celsr1 during the murine skin mor-

phogenesis, where the anterior-posterior polarization is suggested to arise as the tissue is

stretched along the medial-lateral axis [37]. Our model intends to provide a mechanistic expla-

nation for the emergence of polarity perpendicular to the elongation axis.

Geometric disorder

Several studies (e.g. [13, 14, 16, 40]) have proposed underlying physical mechanisms of PCP in

ordered and isotropic systems. Establishment of long-range polarization during the course of

development, however, can precede the formation of an ordered lattice, e.g. margin-oriented

polarity in the larval Drosophila wing [7, 10, 11]. On the other hand, an experimental study by

Ma, et.al. shows that the polarity in mutants lacking graded global cues, is susceptible to local

geometric irregularities [20]. While mutants exhibit swirling patterns at the locus of the clone,
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a sufficiently strong global cue retrieves the wild-type polarization. This observation lends

more support to the hypothesis that the tissue polarity is not merely a result of local readout of

global cues, but that the orientational order emerges spontaneously from cell-cell communica-

tions. The symmetry broken state is characterize, among other quantities, by a correlation

length. The correlation length can be estimated, by noting that the distorted patterns of polar-

ity are expected to appear when the clones’ length scales are comparable to that of the polarity

correlation length; a very small mutant patch fails to distort the polarization field [20]. Estima-

tion of correlation lengths, in principle, would provide information about some collective

behavior of polarization, e.g. sensitivity and response time of polarization upon coupling to a

global cue. Therefore, it is important to understand how PCP propagates through geometri-

cally disordered tissues. Note that the above conclusions could also be drawn, with some con-

siderations, from the domineering non-autonomy in core proteins’ phenotypes. The privilege

of geometrical mutants is that they are achieved without directly interfering with the PCP

pathway, but by the knock-down of PTEN. In this paper, the geometric disorder is parame-

trized by �0, such that �0 = 0 corresponds to perfectly hexagonal lattice, and highly disordered

tissues can be achieved by tuning �0 ≳ 0.6.

Timescales

The polarity pathway involves several dynamical processes characterized by their respective

timescales. Incorporating the dynamics of all components not only requires knowledge of the

details of molecular interactions and complicates the numerical computations, but also limits

the predictive power and applicability of a theoretical model. Therefore, we take advantage of

the separation of timescales to abstract the relevant processes from the full complex dynamics.

The most important dynamical processes to be considered (particularly in the Drosophila
wing), are (1) tissue flows and dynamics induced by mechanical stresses, (2) stability of the

membrane bound complexes, (3) cytosolic diffusion of the membrane as well as cytoplasmic

proteins, and (4) time-dependence of the total amounts of Fz and Vang.

The tissue flows and dynamics of the wing blade take place over’ 16 − 28 hAPF, during

which the anisotropic mechanical stresses drive oriented cell rearrangements and divisions,

that are also accompanied by transient cell shape deformations, and the formation of a rather

ordered hexagonal packing of cells [11]. The early margin-oriented polarity is observed to fol-

low these dynamics and rotate to point distally by 28 hAPF. An important point to be noted

is that the rotation of cell dipoles, at this stage, does not require the turnover of membrane-

bound proteins and formation of new complexes. As a matter of fact, membrane complexes

appear to be highly stable over the course of tissue dynamics. The rotation of the polarization

field is the result of cell flow, and formation and reorientation of cell-cell junctions, which

carry the localized complexes along [11]. While the formation of new junctions and disappear-

ance of old ones decrease the magnitude of polarity during the transient stage, the bound

complexes remain stable on the junctions that survive the transition. Thus, insofar as the mem-

brane-bound complexes are concerned, the tissue dynamics does not interfere with the stabil-

ity of these complexes. In a sense, from the perspective of each cell’s co-rotating frame of

reference, the cell’s dipole is oblivious to the tissue dynamics; this particular rotation is not

considered to reflect “genuine” dynamics of the polarization field. Focusing on biological

interactions, we tend to ignore this stress-induced rotation of polarity. Thus, the concentra-

tions of the membrane-bound proteins seems to vary slowly over timescales of order’ 10

(hrs).

The timescale associated with the cytosolic diffusion of proteins can be inferred from the

cell sizes and the estimated diffusion constant. The latter is in turn estimated using different

Nonlocal intracellular interactions detect geometric information in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007454 November 26, 2019 5 / 29

https://doi.org/10.1371/journal.pcbi.1007454


methods, either experimentally through FRAP measurements, or theoretically using Stokes’

law for the frictional force on a “spherical” particle (proteins) moving in a viscous fluid (cyto-

plasm). The diffusion constant from Stokes’ law is found to be inversely proportional to the

(Stokes’) diameter as of the object. On the other hand, this diameter is related to the atomic

mass of the proteins mp (e.g. Fz, Vang, Dsh, Pk): as � m1=3
p . Assuming that cytoplasm, com-

posed of 70% water, has a viscosity close to that of water, the diffusion constants of core pro-

teins with masses of the order mp’ 10 − 100 (kDa), are in the range of Dp’ 0.1 − 10(μm2/s)
[41–43] (the values obtained by FRAP, and those from Stokes’ law are often different because

of inaccuracies in both methods). The cells in the the wing blade, are around dc’ 5(μm)

in diameter. The diffusion timescale is then estimated to be tdiff ¼ d2
c=Dp ’ 1 � 10 (min),

roughly two orders of magnitude faster than the dynamics of polarity. Thus, it is safe to assume

that the concentrations of diffusing proteins reach steady state, insofar as the dynamics of

polarization are concerned.

Finally, the time-variations in the total amount of membrane proteins Fz and Vang are nec-

essary to be estimated, as we will see in Model that the effective rates of binding/unbinding

reactions depend on these values. The expression of fz in Drosophila wing was observed in [44]

to be fairly constant over a long time span of about’ 24 − 60 hr awp (after white prepupae),

roughly corresponding to’ 12 − 48 hAPF. On the other hand, the dynamics of polarization in

the wing, takes place between’ 18 − 32 hAPF. Thus, we believe that although the polarization

dynamics is by orders of magnitude slower than the cytosolic diffusion, it is fast enough for the

constant concentrations of total Fz and Vang to be a good approximation.

Terminology

Before introducing the formalism, we shall disambiguate the following terms: “edge” and

“junction” are used interchangeably depending on the context emphasizing the geometrical or

biological aspects of the problem, respectively. Therefore, one can think of an edge as a cell-

cell junction. Next, downregulation and upregulation are sometimes used in lieu of inhibition

and activation, respectively. Furthermore, cytoplasmic proteins are sometimes referred to

as messenger proteins, to emphasize their role as the mediators of intracellular interactions.

Finally, formation/dissociation of cross-junctional complexes are contingent upon the bind-

ing/unbinding processes of the membrane proteins on the opposite sides of the junctions.

Therefore, the binding/unbinding rates are identical to those of formation/dissociation

processes.

Outline

The objectives of this paper are threefold. We address the role of intracellular interaction in

establishing long-range alignment of polarization in tissues with disordered and/or elongated

geometries. Varying the characteristic length scales of the upregulating and downregulating

cytoplasmic interactions, we explore and unravel the crucial role of nonlocal interactions in

the correlations of the polarization field in highly disordered tissues. Furthermore, we demon-

strate that the nonlocality of cytoplasmic interactions is of vital importance to (a) the long-

range correlations of polarity, and (b) the accurate detection of elongation as a global cue.

Finally, to facilitate a conversation between theory and experiment, we investigate our model’s

predictions in three classes of in silico mutants, and identify phenotypic similarities with exper-

imental observations. The accompanying Supporting Information (S1 Appendix) includes

extensive discussions on the assumptions, approximations and the results presented in the

Main Text. While the key results are included in the Main Text, interested readers are
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encouraged to consult the SI for a detailed account of the mathematical definitions, deriva-

tions, as well as the secondary results obtained by exploring the parameter space.

Model

We introduce a set of reaction-diffusion (RD) equations that govern the binding/unbinding

reactions of membrane proteins. Each cell is assumed to contain a pool of membrane proteins

Fz and Vang, which in their active state bind to the cross-junctional Fmi—Fmi homodimers.

The cell-cell signaling occurs when the two types of proteins localize to the opposite sides of

the Fmi—Fmi bridges to form asymmetric complexes Fz:Fmi—Fmi:Vang. For the sake of

notational convenience, this complex is denoted by F—G hereafter, namely F� Fz:Fmi,

and G� Fmi:Vang. The concentrations of total (i.e. bound plus unbound) Fz and Vang, are

denoted by f0 and g0. These concentrations are assumed to be identical for all cells across the

tissue, and constant during the time evolution of polarity. The first assumption is not crucial,

should the cell-to-cell variations of concentrations be negligible compared to the average con-

centrations. As discussed in Introduction, the assumption of time independence could be justi-

fied by noting that while the concentrations of localized complexes vary over’ 18 − 30 hAPF

[11, 18, 28, 42, 45], the level of endogenous Fz has been observed to stay constant over the time

span of’ 24 − 60 hr awp, which roughly corresponds to’ 12 − 48 hAPF [44]. Thus, the time

independence of f0 and g0 is a reasonable assumption.

In order to covey the concepts concretely, we avoid the notational complexity in this section

and simplify the mathematical expressions by adopting a symbolic notation wherever possible.

The details are saved for a comprehensive mathematical analysis in Sec. (1) of S1 Appendix.

First, u and v denote the concentrations of the complexes with their F-end and G-end in cell 1,

respectively. The complexes can be localized anywhere on the perimeter of the cell. The oppo-

site end of these complexes are naturally in one of the neighboring cells. Note that v is not a

fundamentally different entity; it is equivalent to u calculated in adjacent cells. For clarity, we

use u12 to denote the concentration of u complexes localized on the junction separating cells 1

and 2. The equation governing the binding/unbinding dynamics of u12 reads:

(1)

In the above equation, the first and second terms on the right-hand side represent the rates of

binding and unbinding processes, with coefficients κ and γ characterizing their respective

timescales. In the above equation, we have assumed that the unbound membrane proteins

become uniformly accessible to all points on the perimeter of a cell, before the dynamics of

emergent polarization sets in. This assumption requires rapid cytosolic diffusion; much faster

than the temporal variations of the junctional concentrations of membrane-bound proteins.

As mentioned in the Introduction, the diffusion constant of cytosolic diffusion obtained from

FRAP measurements and Stokes’ law, is approximated to be’ 0.11(μm2/s) [41–43]. The time-

scales associated with the diffusion within a cell of characteristic length scale’ 5(μm) is of the

order of’ 1 − 10 (min). On the contrary, the concentrations of membrane-bound proteins

are observed to be stable over the time span of several hours’ 18 − 30 hAPF [11, 18, 28, 45],

i.e. at least one order of magnitude slower than the cytosolic diffusion. Therefore, uniform

concentration of unbound proteins seems to be a plausible approximation.

In the absence of downregulating and upregulating interactions, the binding/unbinding

reaction rates could be expressed in terms of the law of mass action. The formation rate of u12

on the junction shared by cells 1 and 2 is proportional to the concentrations of unbound F in

cell 1 as well as unbound G in cell 2, that are obtained by subtracting the concentrations of
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bound proteins from the total concentrations;

f ubd ¼ f0 �
X

⬡

u ; and gubd ¼ g0 �
X

⬡

v: ð2Þ

The symbol ⬡ represents the perimeter of a given cell, where u and v are nonzero. Note that

like u and v, the concentrations of unbound F and G, fubd and gubd are time dependent.

In the second term on the right-hand side of Eq (1), the dissociation rate of u12 is, besides γ,

proportional to the local concentration of the same-polarity complexes u12; the larger the con-

centration of a bound protein, the larger the unbinding rate of the corresponding complex. As

discussed previously, in addition to the unassisted reactions, the binding/unbinding processes

are augmented by complexes of the same/opposite polarities within each cell, through what we

call “cooperative” interactions in this paper. The augmented rates of processes are reflected in

the upregulating factor aKuðu! u12Þ, and the downregulating factor . Note

that the latter depends on v, i.e. the concentration of the opposite complexes. The functional

forms of these interactions, Ku and Kd, are introduced in Sec. (1) of S1 Appendix. For now, we

only emphasize that these terms represent nonlocal interactions between membrane-bound

proteins within the same cell; that are, in their most general forms, localized on different junc-

tions of a given cell; see Fig (1).

The third term η(t) on the right-hand side of Eq (1) is a Gaussian white noise: hη(t)i = 0,

and hZðtÞZðt0Þi ¼ Z2
0
dðt � t0Þ, which arises from the molecular noise of chemical reactions and

stochasticity in the upstream signaling pathways. The former is speculated to be the dominant

source of noise [14], and is modeled by a Poisson process. The magnitude of noise scales like

Z0 � 1=
ffiffiffiffiffiffiffiffiffi
Nmol:
p

, where Nmol. is the number of molecules participating in the binding/unbinding

reactions. For the values of the parameters used in our simulations, the magnitude of the sto-

chastic noise is approximated to be η0’ 0.05 − 0.1; we set η0 = 0.1, see Table 1.

Finally, the last term models global cues of chemical origin, which are time dependent in

general. We adopt an exponentially decaying functional form with timescale τm, varying which

would capture a broad range of dynamics, from initial (rapidly decaying) to time-independent

cues. The exponential decay, however, imposes the decreasing monotonicity constraint, hence

excluding the periods when the cues grow in magnitude. Most of the results in the following

sections are obtained in the absence of chemical cues (M ¼ 0); they are discussed separately

at the end of Results. Thus, unless mentioned otherwise, the cues are assumed to be zero.

Cell polarity

Cell polarity (dipole) is a vector quantity that measures the anisotropy in the distributions of u
and v on the cell perimeter. In other words, polarization of a cell represents the level of segre-

gation of the two types of membrane proteins within the cell. The precise definition of polarity

is provided in Sec. (1) of S1 Appendix. Symbolically, cell polarity can be thought of as the dif-

ference between the vectors pointing in directions where u- and v-complexes are localized

around the cell:

Cell Polarity � ½!� � ½ �

P �
X

⬡

ð~u � ~v Þ: ð3Þ

Here, the summation runs over the cell-cell junctions; each junction contributes a vector

ð~u � ~vÞ pointing towards its center and proportional to the difference between the junctional

concentrations of u- and v-complexes. Cell dipole P is defined as the vector sum of these junc-

tional differences (vector sum, because junctional polarities point in different directions).
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While PCP signaling seems to rely on cell polarities, the notion of polarity can be restricted

to individual cell-cell junctions. Keep in mind that cell polarity represents the segregation of

membrane proteins that form polarized complexes; thus, equals the vector sum over the junc-

tional polarities. This is important as in the following, we will encounter systems in which the

junctions are polarized, yet the vector sum of junctional dipoles renders the cell unpolarized.

Nonlocal cytoplasmic interactions

Cooperative interactions are mediated by modified/activated cytoplasmic (messenger) pro-

teins. An example of the activation of cytoplasmic proteins is the Wnt-induced phosphoryla-

tion of Dsh by Casein Kinase I [46, 47]. Subsequently the messenger proteins diffuse through

Fig 1. (a) A schematic of intracellular and intercellular mechanisms in adjacent cells. Each cell contains a pool of

membrane and cytoplasmic proteins. Membrane proteins Fz (red triangles▲) and Vang (green diamonds♦) bind to

the transmembrane proteins Fmi (dark blue bars), and form cross-junctional complexes F—G. Two opposite

complexes localized on the cell-cell junction are shown in the figure. Nonlocal interactions, illustrated by orange stars

$ and solid disks●, are mediated by diffusing cytoplasmic proteins that couple the membrane-bound proteins. Star-

shaped proteins bind to the red triangles (Fz), get modified and released back to the cytoplasm, to either upregulate the

formation of same-polarity complexes, or downregulate the opposite ones; similarly for the orange disks and green

diamonds (Vang). While the upregulating interactions between similar proteins, i.e. Fz$ Fz, or Vang$ Vang, are

transmitted by their associated cytoplasmic proteins, stars and disks, respectively, both types of these cytoplasmic

proteins participate in the downregulating of the opposite complexes. In order to keep the picture clear, only a few of

the pairwise interactions are drawn. (b) shows the protein distributions in a polarized state, where the segregation of F

and G is accomplished in each cell through cytoplasmic interactions.

https://doi.org/10.1371/journal.pcbi.1007454.g001
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the cytoplasm to upregulate/downregulate the formation of the complexes of the same/oppo-

site polarities. All pairs of points on the cell membrane are coupled to each other through

modifying and emanating the messenger proteins; Fig (1). The magnitude of the coupling is

proportional to the concentration of the modified messenger proteins at the position of the

target proteins that are localized on the cell membrane. Note that the concentrations of cyto-

plasmic proteins, unlike those of unbound membrane proteins, are not constant within the

cell. The steady-state concentration of a diffusing chemical with diffusion constant D and

degradation rate τ−1, is an exponentially decaying function of the distance r from the source

of the modified proteins, namely the position of the membrane-bound modifying proteins:

/ expð� r=
ffiffiffiffiffiffi
Dt
p
Þ. Diffusion is inherently a dynamic process. Nonetheless, if the modification

and cytosolic diffusion of cytoplasmic proteins are sufficiently fast compared to the time varia-

tions of the localized proteins, the concentrations of the messenger proteins reach the steady

state before the dynamics of u and v set in. This assumption is argued to be plausible, by noting

that the cytosolic diffusion occurs over timescales of the order of minutes [41, 42], whereas the

concentrations of membrane-bound proteins are observed slowly vary over’ 10 − 15 (hrs)

[11, 28, 45]. Defining the interaction length scale l ¼
ffiffiffiffiffiffi
Dt
p

, the magnitude of the cooperative

interactions between a pair of points a distance Δr apart, is proportional to exp(−Δr/λ). From

a molecular point of view, λ is the length scale a modified protein diffuses before getting

degraded. A detailed analysis of cooperative interactions and the assumption of steady-state

concentrations can be found in Eq. (3) of S1 Appendix. A few points regarding the nonlocal

interactions are in order:

1. It is noteworthy that the exponential form of intracellular interactions is merely a conve-

nient choice with a characteristic length scale; one that is also in accord with a plausible sce-

nario of cooperative interactions mediated by cytosolic diffusion of messenger proteins.

Table 1. List of parameters, variables and their definitions. The parameters with their values mentioned are held

fixed throughout the paper. The control parameters, i.e. the geometric disorder �0, the length scale of the cooperative

interactions λ, and the magnitude of elongation E, are to be varied to explore the behavior of polarization in different

regimes.

Parameters Definition

f0 = 1 total concentration of F

g0 = 1 total concentration of G

κ = 10 formation rate

γ = 1 dissociation rate

α = 5 magnitude of cooperative formation

β = 5 magnitude of cooperative dissociation

η0 = 0.1 magnitude of stochastic noise

ℓ0 = 1 average length of cell-cell junctions

�0: control param. magnitude of geometric disorder

λ: control param. lengthscale of cooperative interactions

E: control param. magnitude of elongation

Dynamical Variables Definition

uij(t) & vji(t) concentration of [Fi − Gj]

�PðtÞ magnitude of average polarity

�QðtÞ average of the dipoles’ magnitudes

OðtÞ �PðtÞ= �QðtÞ
ξ(t) correlation length

https://doi.org/10.1371/journal.pcbi.1007454.t001
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Any other function with such properties (e.g. exp(−|Δr|2/λ2)) would qualitatively lead to the

same results as we obtain in this paper.

2. Although there is no a priori reason for assigning equal length scales to the upregulating

and downregulating interactions, we find it convenient to make this assumption for now.

The argument goes as follows: (i) While in actuality the upregulating interactions F$ F

and G$ G, and the downregulating interactions F G, are mediated by different cyto-

plasmic proteins, the way they appear in our model is through interacting complexes F—G.

Therefore, the u$ u and v u interactions are integrative representations of the actual

protein-protein interactions; so is the associated length scale. (ii) In the absence of complete

understanding of the molecular details, we assume that both types of interactions are medi-

ated by the same cytoplasmic proteins. Indeed as mentioned above, the upregulating inter-

actions could take place either directly, or indirectly through downregulating the other

membrane protein. Later in Nonlocal Cytoplasmic Interactions (NLCI), we relax this

assumptions and investigate the effects of unequal length scales.

3. We will see in Local mutations, that the interaction range λ is proposed to be related to

the concentration of cytoplasmic proteins. On the other hand, the above definition for λ
is independent of concentrations. We emphasize here, that while we defined λ based on

some diffusion constant and degradation timescale of cytoplasmic proteins, in the presence

of other components, the diffusion constants and degradation timescales are no longer

guaranteed to remain the same as their bare values. In other words, the interactions

between different molecular components can modify the diffusion parameters, in a concen-

tration-dependent manner.

Before proceeding to discuss the results, we shall make a concrete list of the key model

parameters and variables that appear frequently throughout the paper; see Table 1. Some of the

parameters are held fixed and their values are included in the table. These values are chosen to

satisfy the polarizability condition; discussed in see SI (2.1). The results, however, remain qual-

itatively insensitive to changing these values, as long as the polarizability conditions are satis-

fied. There also exist control parameters, the values of which are varied to explore the behavior

of the polarization in different regimes. Note that some of the parameters and variables in

Table 1 are to be introduced in the following sections.

Results

In this section we investigate the significance of the nonlocal intracellular interactions in the

establishment of long-range polarization, particularly in the disordered tissues. Varying the

length scale of the cytoplasmic interactions, we consider two regimes: (1) strictly local cyto-

plasmic interactions (SLCI), in which λ is negligible compared to cell size, i.e. λ/ℓ0! 0; and

(2) nonlocal cytoplasmic interactions (NLCI), where λ is of the same order of magnitude as,

but smaller than ℓ0, i.e. λ/ℓ0 ≲ 1.

The solutions to Eq (1) reveal two distinct mechanisms underlying the emergence of junc-

tional and cell polarities. We find that the former—a prerequisite for the latter—depends on

the (relative) abundance of membrane proteins (g0/f0), whereas the latter imposes further con-

straints on the length scale of cytoplasmic interactions (λ). In Sec. (2.1) of S1 Appendix, we

show that the necessary and sufficient condition for individual junctions to be polarized is

g0 > g�, where g� depends on other model parameters; it is inversely related to the product αβ.

For the model parameters in Table 1, the stable junctional polarization appears for g0 > g� =

0.25. Throughout the Main Text, we set g0 = 1, well above the threshold; hence the junctions

are guaranteed to be polarized.
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The asymmetric localization of the membrane proteins on a given junction is a result of the

competition between the two types of membrane proteins to occupy the junction. It can be

shown that for infinitely abundant membrane proteins the competition has no winner, and

the junctional polarization becomes inaccessible. Thus one can think of the finite pools of the

two membrane proteins as limiting components, rendering the asymmetric junctional locali-

zation of the two proteins a stable state of the system. It is also noteworthy that the finiteness of

the total amount of proteins induces an effectively nonlocal interaction, that is implicitly incor-

porated in our equation. The local interactions between opposite complexes is a functions of

their local concentrations. The latter is in turn inversely dependent on the concentrations of

the bound proteins on other junctions, since the total amounts of the membrane proteins are

finite. Thus, apart from the explicit nonlocal cooperative interactions, a secondary mechanism

couples different junctions. This is also reflected in our equations: the reaction equations gov-

erning the concentrations of bound complexes on different junctions of a cell are not indepen-

dent, but rather coupled through the constraint imposed by the total amount of membrane

proteins. This indirect nonlocal interaction between the junctions, however, is independent of

their distance; in each equation, the proteins’ concentrations on all junctions of the cell appear

on an equal footing, irrespective of their relative distances (see Eq (2)). It turns out that the

indirect coupling is insufficient for the segregation of membrane proteins, and the polarization

of cells.

In order to unravel the richness and complexity of the possible polarization patterns, we

illustrate three distinct configurations in Fig (2). The left panel shows two special patterns of

polarization in (a1) and (a2), where the cell dipoles are identical across the tissue; the former is

a cell-polarized state whereas the latter has zero-net polarization. We call these “trivial” pat-

terns. (a1) shows a perfectly polarized state where the segregation is fully accomplished. The

configuration in (a2), in principle satisfies Eq (1); a configuration where the cells, unlike edges,

remain unpolarized. However, the polarity becomes highly unstable, as soon as the nonlocal

interactions come into play (see Sec. (2.2) in S1 Appendix). Note that in Eq (1), the second

term inhibits the localization of u in the vicinity of v (and vice versa). The configuration in

Fig 2. Cartoons of the trivial (a1, a2), and (b) nontrivial patterns. Trivial patterns exhibit uniform polarity across the tissue. While the

polarization pattern in (a1) is highly stable, the one in (a2) is immediately destabilized by slightest nonlocal cytoplasmic interactions. In (b) all

junctions are polarized with equal magnitudes, yet the cell dipoles are oriented randomly with little correlation; two dipoles belonging to the

central cell and its right neighbor are shown.

https://doi.org/10.1371/journal.pcbi.1007454.g002
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(a2) is the most intermixed pattern, where adjacent junctions carry alternating polarities, and

the segregation is far from complete. Therefore, even if the initial distribution of proteins cor-

responds to such polarity patterns, slightest stochasticity suffices to destabilize the initial state,

and redistribute the proteins to form a polarized state. The right panel, Fig (2b), illustrates an

irregular pattern in which the polarity differs from cell to cell; we call these patterns “nontriv-

ial”. Below, we show that these states appear when the cytoplasmic interactions are local. Cyto-

plasmic segregation is incomplete in these states, and the polarization is characterized by

incoherently oriented dipoles; hence no long-range correlation.

Global measures of correlation

In addition to the correlation function which is defined rigorously in Sec. (1) of S1 Appendix,

two global quantities are introduced that help us gain insight into the angular correlation of

polarization. Earlier in the Model we introduced cell polarity, which is a vector quantity. Aver-

aging cell dipoles over the entire systems is defined as the global tissue polarity. We denote the

magnitude of this vector by �P. On the other hand, one could first calculate the magnitude of

each cell dipole, and then average over the magnitudes; we call this �Q. The latter is guaranteed

to be larger than the former per definition: �Q is an average over positive values (magnitudes

of dipoles), whereas �P is the magnitude of a vector which is in turn obtained by averaging

over cell dipoles, and could in principle be very small in size. The ratio of the two quantities

O � �P=�Q is bounded from above by one.

It is pedagogical to consider the following two limits: (1) Randomly oriented dipoles: the

average over the dipoles returns a vector with nearly zero magnitude �P ! 0, whereas the mag-

nitude of individual dipoles are not necessarily small, and so is their average �Q↛ 0, thus

O ¼ �P=�Q ! 0. (2) Perfectly aligned, identical dipoles across the system (Fig (2a1)): the aver-

age is a vector with both direction and magnitude equal to those of a single dipole. The average

of magnitudes also equals the magnitude of a single dipole, and O ¼ �P=�Q ! 1. Therefore, O
provides an intuitive global measure for the long-range order of the tissue polarization. We

shall emphasize, however, that while O! 1 guarantees perfect alignment, the opposite limit

O! 0 does not necessarily imply complete loss of order. There exist intermediate configura-

tions where polarity is ordered over medium-size patches of cells, yet averaging over the sys-

tem makes O small. This brings us to the more informative measure of order, the correlation

length. Denoted by ξ in the following sections, correlation length characterizes the length

scales over which the polarity retains the angular correlation. See Sec. (1) in S1 Appendix for

precise definition of correlation length.

Below we discuss the results of our numerical simulations in tissues with strictly local and

nonlocal interactions. The discussion is followed by the investigation of the role of cytoplasmic

interactions in elongated tissues. Save for the stability analysis of polarization, the initial distri-

butions of F and G on the cell membranes are assumed to be random in all simulations.

Strictly Local Cytoplasmic Interactions (SLCI)

A generic steady state of the systems with local cytoplasmic interactions, and the rose-plot of

the angular distribution of dipoles are shown in Fig (3a1) and (3b1), respectively. Big arrows in

(a1) represent local averages of polarity on patches of a few cells, which exhibit little angular

correlation. The dash-dotted curves in Fig (3c1) and (3c2) demonstrate the time evolution of

�QðtÞ, �PðtÞ, their ratio OðtÞ, as well as the correlation length ξ(t), respectively. To facilitate the

comparison, Fig (3c1) and (3c2) include the corresponding quantities computed for other

cases of study to be discussed in Nonlocal Cytoplasmic Interactions (NLCI) and Polarization
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Fig 3. Generic steady states of two systems in the SLCI (λ/ℓ0 = 0.01) and NLCI (λ/ℓ0 = 0.5) regimes are shown in (a1) and

(a2), respectively. Cellular geometry, initial conditions, and model parameters (other than λ) are identical in (a1) and (a2).

The big arrows show the average direction of dipoles over patches of a few cells. Angular distributions of the dipoles in the

two cases are shown in (b1) and (b2), which reveal the failure of SLCI in establishing long-range polarization. Time

evolutions of �Q, �P , and O, for isotropic systems with SLCI (dash-dotted lines), with NLCI (solid lines), as well as elongated

systems with NLCI (dashed lines) are shown in (c1). Correlation lengths are illustrated in (c2); unlike in the NLCI case where

the angular correlations extend over tissue scales, the correlation length in the case of SLCI remains limited to a few cell

diameters. For clarity, the small fluctuations of all the curves, induced by stochastic noises, are removed through ensemble

averaging.

https://doi.org/10.1371/journal.pcbi.1007454.g003

Nonlocal intracellular interactions detect geometric information in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007454 November 26, 2019 14 / 29

https://doi.org/10.1371/journal.pcbi.1007454.g003
https://doi.org/10.1371/journal.pcbi.1007454


in elongated tissues. Comparing �QðtÞ and �PðtÞ, we see that while cells can develop nonzero

dipoles, they fail to align; the dipoles add up to nearly zero when averaged over patches of 2

cell diameters and larger. This can be deduced from the SLCI correlation length in Fig (3c2).

Given the lack of long-range polarization in this limit, one can consider SLCI and the asso-

ciated phenotypes to be a mutation that is a consequence of disrupted cytoplasmic interac-

tions. Note that the assumption of steady-state concentrations of messenger proteins relies on

the abundance of modified cytoplasmic proteins, which is in turn dependent on the amount

of unmodified (yet-to-be-modified) proteins. Thus under-expression of cytoplasmic proteins

and/or reduced rate of modification would impair the transmission of nonlocal interactions.

Nonlocal Cytoplasmic Interactions (NLCI)

Nonlocal interactions, as introduced in Model, are mediated by diffusing cytoplasmic messen-

ger proteins. As mentioned previously, in the presence of nonlocal interactions, the adjacent

edges of a cell prefer to carry the same polarities; nonlocality renders the alternating junctional

polarities an unfavorable configuration and destabilizes trivial solutions with zero-net polarity

depicted in Fig (2a2). Therefore, each cell tries to segregate the two membrane proteins to the

opposite sides. This intracellular mechanism, accompanied by the intercellular interactions,

conspire to align the dipoles on patches the grow in time over progressively larger distances.

Fig (3a2) shows a typical configuration of the steady-state polarization for a system in the

NLCI regime. The range of nonlocal interactions is set to λ/ℓ0 = 0.5; chosen to maximize the

alignment, and is obtained by evaluating the angular correlation for λ in the wide range of 0.01

≲ λ/ℓ0 ≲ 0.8. The results and discussions are included in Sec. (2.3) of S1 Appendix. Interest-

ingly, the correlation exhibits a non-monotonic behavior with respect to λ. Starting from

strictly local interactions, the correlation length increases initially with λ, and peaks at λ/ℓ0’

0.5 − 0.6 —the exact value depends on indeterministic factors including the specific geometry

of the tissue. For λ/ℓ0 ≳ 0.6 the correlation drops. The reason is that if the diffusion length

scale of the messenger proteins is comparable to the diameter of the cells, a complex on one

side of a cell would upregulate the formation of the complexes of the same polarity, not only in

its vicinity, but also on the opposite side of the cell. This upregulation impedes the segregation

which is meant to gather all complexes of a specific type on one side of and push the opposite

complexes to the other side of the cell. Therefore, as λ/ℓ0 exceeds’0.6, the complexes begin to

colocalize and distribute evenly around the cell. Interestingly this regime appears in one of the

classes of local mutants (type III) discussed below.

We focus on λ/ℓ0 = 0.5 hereafter. The dynamics of �Q and �P, shown in Fig (3c1), imply that

the emergence of collective polarization—from random initial distribution and in the absence

of a global cue—consists of two distinct stages: (i) the segregation of PCP proteins within each

cell, and saturation of the magnitude of cell polarity, accompanied by (ii) formation of polar-

ized local domains, which is followed by coarsening and alignment of the domains across the

tissue. The first and second stages are carried out mostly through intracellular and intercellular

interactions, respectively.

Unequal length scales of interactions (λu 6¼ λd)

We recall from Model that the characteristic length scale of upregulating and downregulat-

ing interactions were argued to be of the same order of magnitude. Here, we further investi-

gate the role of nonlocality in cytoplasmic interactions, by varying the two length scales

independently.

Borrowing the terminology from the well-known mechanism of local activation—nonlocal

inhibition (LA-NLI), we introduce four combinations of the relative activation-inhibition
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length scales: (i) LA-LI, (ii) LA-NLI, (iii) NLA-NLI, and (iv) NLA-LI. The LA-LI and NLA-NLI

cases are essentially the same as SLCI and NLCI, respectively, which are already addressed.

Mechanism (iv) is incapable of establishing polarity, since the long-range activation hampers

full segregation. The most interesting case to be discussed is the second scenario where activa-

tion, unlike inhibition, acts locally. To isolate the effects of the variations of the activation

length scale, the cellular geometries and the initial distributions of membrane proteins are

held fixed for all values of λu. Note that the downregulating interactions remain nonlocal;

λd/ℓ0 = 0.5.

The summary of our results are as follows: For tissues with small geometric disorder, the

two mechanisms of LA-NLI and NLA-NLI work equally well, and both guarantee the long-

range polarization. Upon cranking up the geometric disorder beyond �0’ 0.5, the angular cor-

relation arising from NLA-NLI is arguably larger than that of LA-NLI. The results of our simu-

lations reveal an interesting role of geometric disorder, and the necessity of nonlocal activation

for long-range polarity to emerge in highly disordered systems. This is crucial to understand-

ing the PCP in systems where long-range polarity appears before the formation of ordered tis-

sue, an example of which is the margin-oriented polarization in Drosophila wing, when the

wing blade is highly disordered. See Sec. (2.3) in S1 Appendix for detailed analyses and graphs.

Mechanism of cytoplasmic segregation

A crucial point to be discussed is in regard with the level of segregation. Naïve interpretation

of �Q would suggest that the absence of segregation prohibits large values of �Q, since the cells

remain unpolarized. Nonetheless, as we see in (c1) for local interactions, �Q grows and asymp-

totes at the same value as that of nonlocal interactions, which is claimed to be the right mecha-

nism for the segregation to be accomplished. We elaborate on this issue in Sec. (2.3) of S1

Appendix, and show that while �Q acquires large values, the cell-to-cell variations of the magni-

tude (and direction) of polarity is large, namely this quantity merely represents the average of

the magnitudes. In NLCI regime, however, the value of �Q is large due to the nearly coherent

and complete segregation of membrane proteins in each cell, and the variation of dipoles

among cells is minuscule. In summary, the segregation in tissues with local interactions is not

coherent, and arises in some cells due to initial distribution of proteins. Nonlocal interactions

amount to the redistribution and coherent segregation of proteins across the tissue. For a thor-

ough discussion we refer the reader to Sec. (2.1) of S1 Appendix.

Stability analysis

We examine the stability of polarization against stochastic noise, and compare the responses of

the polarization in tissues with local and nonlocal upregulating interactions. In order to high-

light the detrimental effects of geometric disorder in the absence of nonlocal upregulating

interactions, this comparison is repeated for different levels of geometric disorder. Fig (4)

demonstrates the results for small (�0 = 0.45), and large geometric disorder (�0 = 0.6). To iso-

late the effect of upregulating interactions, the initial conditions and tissue geometries are

fixed. The steady-state angular distributions of the dipole are shown in (a2, a3), and in (b2, b3)

for small and large disorders, respectively. Comparing the final distributions we realize that

unlike in the nearly ordered tissues, local activation fails to guarantee the long-range alignment

of cell dipoles in highly disordered tissues; the latter is more susceptible to stochastic noises,

and loses the initially imposed polarity. This effect becomes progressively more pronounced

as the geometric disorder increases (compare (a2) and (b2)). Note that even in tissues with

nonlocal activation, the final polarities are rotated compared to the initial state. This is due

to the bias provided by the irregular geometry, and the large stochastic noise that drives the
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polarization away from the initial state to the stable state dictated by geometry. Nonetheless,

the angular correlation of the polarization is preserved. The role of geometric disorder in rotat-

ing the polarization becomes evident by noting that the polarization retains its initial direction

in ordered systems.

This result should be acknowledged in light of the experimental observations of the mar-

gin-oriented Fz/Vang polarity in early pupal wing of Drosophila (≲ 16 hAFP) [11]. This stage

of the wing development resembles the circumstances under which we probed the polarization

stability in this section: (a) the putative early bulk cue, provided by Wg, is confined to the mar-

gin, and fat expression has not started yet. Therefore the dipoles are initially aligned, but are

no longer subject to a cue. (b) The mechanical stress in the wing blade has neither established

the geometric order in the tissue, nor has it rotated the dipoles, hence not acting as a cue either.

Therefore, we have a long-range polarization field subjected to stochastic cellular noises, in the

absence of global cues, and in a highly disordered tissue. Based upon the stability analysis in

highly disordered tissues, our model predicts that the local activation is insufficient for main-

taining the polarization, and the cytoplasmic upregulating interactions are required to be non-

local to survive the stochastic noises.

Directional cues

We consider two types of cues: bulk and boundary signals, each of which may be persistent or

transient. Bulk cues are assumed to have constant gradient and couple to the F component

Fig 4. Comparison of the polarization stability in systems with local and nonlocal upregulating interactions, but

identical cellular geometries and initial conditions (for each value of the geometric disorder). The magnitude of

stochastic noise equals η0 = 0.1 in all cases. (a1) illustrates a polarized initial condition in a tissue with small geometric

disorder �0 = 0.45. (a2) and (a3) show the steady-state angular distributions of dipoles in the same tissue with LA-NLI

and NLA-NLI mechanisms, respectively. The same quantities are depicted in (b1), (b2) and (b3), but in tissue with

large geometric disorder �0 = 0.6. Loss of angular coherence in (b3), indicates that the absence of nonlocal upregulating

interactions makes polarity susceptible to stochastic noises in disordered tissues.

https://doi.org/10.1371/journal.pcbi.1007454.g004
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across the entire tissue. Boundary cues couple only at the boundaries, and are modeled as a

strong polarizing signal that effectively maintains the polarity of a few layers of cells into the

bulk (resembling the Wg pattern in the margin of the early pupal wing). The magnitude of the

bulk gradient cues is in general time dependent; see Eq (1). At t = 0 the slope of the gradient

equals M and drops exponentially in time over a timescale τm. Large τm corresponds to persis-

tent cues, whereas τm! 0 models an initial cue that disappears rapidly. Before proceeding, we

note that there exist two timescales in this analysis: the timescale of polarization dynamic, and

the persistence timescale of the cue τm.

The results in a nutshell are as follows. (1) The response of the polarization field to the

global cues reveals that nonlocal cytoplasmic interactions enhance the sensitivity of the collec-

tive polarization to the gradient of global cues, and that the reorientation of dipoles requires

weaker gradients in systems with nonlocal interactions, compared to those with local interac-

tions. (2) The initial slope of the gradient required for the signal to be detected was found to

grow as the cues decay more quickly. (3) In accord with the former observations, in compari-

son to the systems with nonlocal interactions, the detection of cues occurs over exceedingly

larger timescales in systems with SLCI. The detection of transient cues was shown to be feasible

in a study by Fischer et. al. [18], wherein the hitherto proposed theoretical PCP models were

investigated. (4) In the case of boundary cues, in nearly ordered tissues with infinitesimal sto-

chastic noise, local interactions suffice to detect the signal. Presence of geometric disorder

and/or stochastic noise, however, necessitates nonlocality of cytoplasmic interactions for the

dipoles to align with the cue. Finally, an interesting observation is that, (5) nonlocal interac-

tions appear to detect sufficiently large initial boundary signals. The latter is implemented by

polarizing a column of cells with significantly larger asymmetry of proteins’ distributions (i.e.

larger dipoles). The imposed condition is relaxed immediately after the onset of dynamics.

This observation implies that a temporary boundary signal would, in principle, be able to

rotate the dipoles, provided that the cytoplasmic interactions are nonlocal. Given that the

onset of polarization alignment precedes the tissue ordering [10], the nonlocality of cyto-

plasmic interactions seems to be of vital importance to the faithful detection of directional

cues.

Polarization in elongated tissues

Elongation has been speculated and observed to act as a global cue that couples to PCP pro-

teins in some systems, e.g. Drosophila wing, mammalian cochlea and mice medial-lateral skin

[37]. Assuming that a set of signaling proteins are capable of detecting the geometric informa-

tion, stretching a tissue would rotate the dipoles either parallel or perpendicular to the axis of

elongation. This is a purely symmetry-based argument and is independent of the pathway-spe-

cific molecular details. In Ref. [37], the authors observe that the medial-lateral stretching of the

mice skin gives rise to anteroposterior polarization. Furthermore, it was shown in the same

study that the perpendicular polarization is not due to a naïve incorporation of length in the

definition of polarization, but that the short junctions are indeed depleted of proteins. Here we

show that NLCI, through increasing the strength of the cooperative self-interactions, enhance

the stability of F-G complexes on longer junctions. Intuitively, unbound proteins receive, on

average, stronger signals from complexes localized on longer junctions; see Sec. (3) in S1

Appendix. In S6 Fig, we plot, for different λ’s, the dependency of self-interactions on the edge

lengths. The magnitude and angle of elongation are denoted by E and ϕe, respectively. The for-

mer is defined such that E ¼ 0 for isotropic tissues, and the latter is measured from the x-axis.

Time evolution of �QðtÞ, �PðtÞ, OðtÞ and ξ(t) are shown in Fig (3c1) and (3c2). Fig (5b)

illustrates the steady-state of the polarization field in an elongated tissue with E ¼ 0:4. In
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order to see (a) whether the observed polarity is a collective effect or is due to single-cell

geometry, and (b) that polarity is not a trivial geometrical effect, we make the cell-by-cell

scatter plots of the magnitudes and angles of the cell dipoles, |Pi| and �
p
i , vs. the magnitudes

and angles of the cell elongations, E i and �
e
i ; see Fig (5c1) and (5c2). The infinitesimal cell-

by-cell correlation between |Pi| and E i indicates that the perpendicular polarization is not

due to the naïve definition of polarity based on junctions’ lengths. Furthermore, lack of cor-

relation between the angles of cells’ elongations �
e
i and dipoles �

p
i , reflected in (c2), implies

that the perpendicular polarization in elongated tissues is not a local, but a collective effect.

Note that if the two angles were correlated, the difference j�
p
i � �

e
i j would be close to 90˚ for

all cells, regardless of their angle of elongation; namely all points would collapse on the hori-

zontal red line.

Fig 5. (a) and (b) represent the final configuration and angular distribution of polarization in an elongated tissue with

E ¼ 0:4. Cell-by-cell magnitudes of the dipoles |Pi| versus the magnitudes of elongations E i, are shown in a scatter plot (c1).

The orange line marks the mean magnitude of the cell polarities, �Q. In (c2) the relative angles of the cell dipoles and

elongations j�
p
i � �

e
i j, are plotted against the angles of the cell elongations. The average angle of elongation, marked by the

vertical red line, is 90˚ with respect to the x-axis. By definition, the relative angles j�
p
i � �

e
i j fall below 90˚ (horizontal dark red

line).

https://doi.org/10.1371/journal.pcbi.1007454.g005
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Local mutations

Studying the mutant phenotypes is a common approach for identifying the functions of the

corresponding proteins. Local PCP mutations are characterized by irregular patterns of polar-

ity, which might be induced autonomously and/or non-autonomously by mutant clones [3, 6,

48–50]. Here, we introduce three distinct classes of mutations within the context of our model,

involving (I) membrane proteins, (II) cytoplasmic proteins, and (III) local geometric disorder.

Comparison with the in vivo counterparts helps us uncover the roles of individual components

in the PCP pathway. For instance, a trivial correspondence between Vang and G is deduced by

comparing the in vivo phenotypes of Vang−, and the in silico phenotypes associated with small

g0. Unsurprisingly, our model successfully captures the major functionalities of membrane

proteins in the core PCP pathway. The main challenge is to infer those of the cytoplasmic

proteins.

Inducing in silico mutations

Total concentrations of the membrane proteins are represented by f0, g0. Therefore, fz− and

Vang− mutations are recapitulated by small f0 and g0, respectively. Furthermore, Fat/Dachsous

pathway is speculated to provide global cues, thus ft− and/or ds− are commonly interpreted as

the absence of gradient cues; we use ds− in Fig (6) and S7 Fig.

As discussed in Model, the roles of Dsh and Pk are lumped in the cooperative interactions.

We heuristically seek phenotypic similarities between the patterns induced by the knockdown

of cytoplasmic proteins, and those generated by perturbing (α, β), and λ. These parameters

Fig 6. First and second rows illustrate various clones embedded in ds− and ds− Vang− backgrounds, respectively; ds−

implies the absence of global cue. Since Fz and Vang appear on an equal footing in the model, the background mutants are

only shown for Vang− tissues. The corresponding phenotypes in fz− background, are obtained by replacing Fz and Vang and

flipping the arrows. The colors of the background and clones are chosen as follows: blue and green represent Fz and Vang,

respectively. Together, Fz and Vang make the cyan background in the first row. Lack of either one is represented by the

complementary color. The left panel of the third row shows mutants lacking cytoplasmic proteins in ds− background. Red

arrows must be interpreted as the directions of the polarity distortion measured with respect to the wild-type polarity; not the

direction of the resulting polarity (see S7 Fig for further clarification). The thickness and length of an arrow indicate the

magnitude and spatial extension of non-autonomy, respectively. The right two panels of the third row correspond to the

geometrically disordered clones, with and without global graded cues. In this case the arrows show the resulting polarization

fields.

https://doi.org/10.1371/journal.pcbi.1007454.g006
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appear in different capacities in our model; the phenotypes associated with (α, β)-mutants

are distinguishable from those of λ-mutants. Surprisingly, one resembles the dsh− phenotypes,

whereas the other exhibits similarities to double mutants pk− dsh−. These phenotypic similari-

ties are utilized to infer the dominant roles of Pk and Dsh.

We shall clarify here that both Dsh and Pk are believed to take parts in mediating cyto-

plasmic interactions, thus presumably affect (α, β) and λ in a complicated fashion that

depends, among other factors, on their concentrations, binding affinities, diffusion constants,

and mutual interactions. Therefore their impacts on the model parameters are not easily sepa-

rable. Nevertheless, we see that the in silico mutants bear a resemblance to the in vivo pheno-

types, which is suggestive of a correspondence between the cytoplasmic proteins and their

contributions to the model parameters representing the cooperative interactions. Below we

interpret the observations, and put forward a few testable hypotheses regarding the role of

cytoplasmic proteins.

Comparison of the in vivo and in silico mutants

Results of simulations and the predicted phenotypes for all classes of mutants are shown in

S7 Fig, and their schematics are tabulated in Fig (6). In all cases, except for the bottom right

panel, the global cues are absent, hence ds−. The first two rows in Fig (6) belong to type-I muta-

tions, namely under- or over-expression of membrane proteins. The first row illustrate the

non-autonomy induced by mutant clones embedded in otherwise wild-type backgrounds,

whereas the second row shows them in mutant backgrounds lacking one of the membrane

proteins. The third row demonstrates type II in the bottom left, and type III in the bottom

right panels. The thickness and the length of an arrow represent the strength and spatial exten-

sion of the non-autonomous effects, respectively. Except in the type-III mutants (bottom right

panel), the red arrows should be interpreted as the deviations of the dipoles relative to the

wild-type polarity; not the actual orientations of the resulting dipoles. In type-III mutants,

the arrows indicate the polarity patterns in clones with enhanced geometric irregularities.

The nearly perfect agreement with the in vivo phenotypes involving membrane proteins,

confirms that these components are incorporated appropriately in the model. In the case of

cytoplasmic proteins, although experimental observations suggest minimal non-autonomy

of dsh− and pk− clones in wild-type backgrounds [13], the autonomous effects of the two are

discernible. While dsh− clones are almost unpolarized, pk− clones seem to remain polarized

parallel to the wild-type background [13]. Contrasting the in vivo phenotypes with our results

suggests that the mutants generated by diminished strength of cooperative interactions (α, β)

are reminiscent of dsh− clones, with minute cell polarities and almost zero non-autonomy; see

Fig (6) and S7 Fig. The λ-mutants, on the other hand, resemble the pk− clones to some extent,

though with imperfect alignment within the clone unlike their putative in vivo counterparts;

indeed they look more like dsh− pk− double mutants. Therefore, we hypothesize that while

both Dsh and Pk contribute to the magnitude and the length scale of nonlocal cytoplasmic

interactions, Dsh is mainly in charge of the magnitude, whereas the length scale depends on

Pk as well as Dsh. This hypothesis leads to the following important prediction. We recall from

Results that the minimum concentration of Vang required for tissue polarization increases

as the magnitudes of cooperative interactions (α, β) decrease; see Sec. (2.1) in S1 Appendix.

Therefore we predict that under-expression of Vang can be partially compensated for, by over-

expression of cytoplasmic proteins, mainly Dsh. This is an elegant manifestation of the collab-

oration between cytoplasmic and membrane proteins in establishing long-range polarization.

Also comparing the phenotypes of membrane proteins with cytoplasmic ones, we notice that

the non-autonomous effects of the former are generically stronger than those of the latter;
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see S7 Fig. This is consistent with the fact that cell-cell communications occur through mem-

brane proteins, whereas cytoplasmic proteins are the carriers of intracellular interactions.

We discussed previously in Introduction that local geometric disorders were observed in

Ref. [20], to obstruct the propagation of wild-type polarization. In Drosophila, fat− mutants

not only lack global cues, but also exhibit geometric irregularities. In order to separate the two

effects of fat−, local disorder is induced by PTEN−, which does not interfere with the global

cue. Ma, et.al. showed in Ref. [20], that while the alignment of polarization field is preserved

in single mutants fat− or PTEN−, the angular correlation is disrupted significantly in double

mutants fat− PTEN−, implying that local geometric disorder is an obstacle to the faithful propa-

gation of polarization. In order to test our model’s predictions in this class of mutants, we sim-

ulate type-III mutants in the absence, as well as in the presence of global gradient cues. In our

simulations we borrowed from Ref. [20], the statistics of cells’ areas in PTEN− clones, and

introduced a patch with strong geometric disorder and shrunken cells; the disorder dissolves

smoothly into an otherwise wild-type background with small disorder. In the absence of

graded global cues, the polarity field shows strong aberrations with swirling patterns centered

at the mutant patch. Adding the global cue, however, unwinds the swirls and the wild-type

polarization reappears; see the two bottom right panels in Fig (6), and S7 Fig. Disrupted polar-

ity in cells with altered geometry can be understood in our model, by noting that nonlocal

interactions sustain polarity only within a certain range of λ/ℓ0. Upon decreasing the cell size,

this ratio exceeds the upper bound of the functional range of NLCI, thus the polarization is

distorted. We recall that the loss of functionality of the nonlocal interactions in small cells,

originates from the destabilizing competition between upregulating and downregulating inter-

actions that strongly couple bound complexes on the opposite sides of the cells.

Comparison with experimental observations [13, 21, 31] (type I), and [13, 27, 28] (type II),

and [20] (type III) reveals qualitative similarities between the in vivo, and in silico phenotypes.

Agreement with experimental observations lends support to the capabilities of our model in

explaining and capturing the salient features of different PCP components, and their coupling

with global cues as well as geometry. Note that all of the phenotypes discussed above, ensue

from a dysfunctional NLCI mechanism of some sort, and would not appear otherwise. It is

also noteworthy that while the phenotypes of different, say fz− alleles, are qualitatively similar,

the spatial extension and magnitude of non-autonomy varies among them. For instance,

autonomous fz alleles have phenotypes similar to dsh clones. Based on this observation, Amon-

lirdviman, et.al hypothesized in Ref. [13] that while these alleles might be deficient in complex-

ing with Dsh, their ability to complex with Vang remains unchanged. Our model does not

accommodate such minor effects, and is only meant to capture the primary roles of distinct

PCP components.

Discussion

In this paper we studied the role of cytoplasmic interactions in PCP through a generalized

reaction-diffusion model equipped with nonlocal intracellular interactions. Although we relied

on details pertaining to the core PCP pathway to interpret the results, the structure and ele-

ments of the model remain independent of pathway-specific assumptions regarding the

molecular details and interactions. Thus, we believe as long as the reaction-diffusion-type

mechanisms dominate the cytoplasmic transport of proteins, our model would be capable

of explaining—at least qualitatively—the behavior of tissue polarity. We explored different

scenarios for intra- and intercellular interactions, and specified the optimal range of cyto-

plasmic interactions length scales to achieve long-range polarization: 0.2 ≲ λ/ℓ0 ≲ 0.7. Investi-

gating the cases of unequal λu and λd, in particular local activation—nonlocal inhibition, we
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demonstrated the inefficacy of the latter in preserving the angular correlation of polarity, com-

pared to the case of identical λ’s. We further examined the response of polarization to external

cues, and concluded that NLCI is essential to detecting directional signals in even moderately

disordered tissues.

A direct consequence of NLCI is the readout of cellular geometry. Of particular interest to

our study is tissue elongation, a putative symmetry-breaking cue. We showed that NLCI is

responsible for stabilization of collective polarity perpendicular to the axis of elongation.

Agreement with the observed value of elongation at which the perpendicular polarity

becomes detectable, is suggestive of the NLCI as the dominant PCP mechanism in systems

like mammalian cochlea and skin. We shall emphasize that this prediction is only valid

under the following assumptions: (a) polarization is predominantly induced by reaction-dif-

fusion processes, and (b) tissue rearrangements and dynamics are negligible in comparison

with PCP kinetic timescales. Lastly, in order to examine the predictive power of the model,

we studied three classes of mutants and found arguably similar phenotypes to the experimen-

tal observations, which helped us interpret the model parameters and predict the role of the

cytoplasmic proteins.

Manifestations of nonlocal cytoplasmic interactions

Throughout the paper we discussed the significance of nonlocal interactions in establishing

and stabilizing the long-range polarization in epithelial tissues. Furthermore, we claimed that

nonlocal interactions are essential to geometric readouts, an example of which is the detection

of the tissue elongation. While the coupling of geometry and polarization is a corollary of non-

local cytoplasmic interactions, it has implications beyond stabilizing the long-range polariza-

tion, that can serve as benchmarks for experimental verification of the proposed mechanism.

Two possible scenarios are discussed here.

Consider a scenario where a tissue is prepared in a polarized state, e.g. through exposure to

a strong gradient cue. If the tissue is now stretched parallel to the axis of its initial polarization,

the proteins would redistribute to rotate the polarity perpendicular to the axis of elongation,

which is the stable configuration of polarity. Another way to view this is as follows. Suppose a

gradient cue is imposed perpendicular to the polarity of an already polarized tissue. If the tis-

sue is not elongated (i.e. isotropic), the polarity would rotate to align with the cue. On the

other hand, if the tissue is elongated, with its initial polarity perpendicular to the axis of elon-

gation, the newly applied global cue would be parallel to the elongation axis (since perpendicu-

lar to perpendicular is parallel). Unlike in the isotropic case, the polarization in elongated

tissue would show resistance against rotation and alignment with the gradient cue. Again, this

is because of the stable and favorable state of polarization being perpendicular to elongation

axis; were the interactions local, the polarization would be enslaved to the global cue regardless

of the tissue geometry. More importantly, even if a sufficiently strong cue manages to rotate

the polarization, the proteins would redistribute back on the long junctions upon removing

the global cue.

Note that nonlocality—of some sort—is required for the geometric information to

become available to the proteins. Therefore, verification of the geometric readout would

support the hypothesis of nonlocal interactions. The geometric information stored in pack-

ing disorder seems to be experimentally inaccessible—at least in the context of PCP—as

the average polarization appears to be insensitive to the packing disorder. Elongation, as a

large-scale property, provides an experimental observable to validate or reject the hypothe-

sis of nonlocal cytoplasmic interactions. Below we propose experiments to assess our mod-

el’s predictions.
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Comparison with other models

Although our model is not the first phenomenological approach to the problem of PCP, we

believe that the features included in this model, captures a broader range of recently observed

phenomena. Among the models that incorporate intracellular interactions, the one put for-

ward by Burak and Shraiman in Ref. [14] is closely related to our model. They demonstrated

that in ordered tissues, nonlocal inhibitory reactions are sufficient to fully drive the intracellu-

lar segregation of Fz and Vang. The role of geometric disorder, however, remained to be inves-

tigated. The theoretical considerations presented here address this question, as well as the

importance of nonlocal activation interactions. Interestingly, we observed that the two seem-

ingly unrelated factors that are missing in Ref. [14], become important in relation to one

another, and that the nonlocal activation is the reliable mechanism to stabilize the long-range

polarity—at least in disordered tissues.

Our model suffers from several limitations, most of which arise from the phenomenological

nature of our approach that neglects pathway-specific details, thus fails to provide explanations

for certain observations. Unlike the models in which the parameters are inferred from experi-

ments; e.g. [12, 13, 16], our model’s ingredients are meant to capture effective quantities such

as timescales, magnitude of interactions and binding affinities. This approach enables explor-

ing the parameter space, identifying the primary roles of distinct PCP components, and mak-

ing testable predictions. There is also a minor simplifying assumption associated with the

uniform junctional distributions of membrane proteins. Several experiments have suggested

localization of proteins in clusters at distinct loci (puncta). The primary motivations for this

approximation are the significant decrease in (a) the computational cost, and (b) model com-

plexity. Nonetheless, by segmenting each junction into pieces of length 0.1ℓ0, we performed a

limited number of simulations in the cases of small and large geometric disorders. While the

approximation of uniform concentrations seems to have minimal impacts on the correlations,

we suspect that dropping this assumption would indeed enhance the rotational freedom of the

polarization, which could slightly improve the angular correlations in disordered systems.

Predictions

A summary of our model’s predictions is as follows. (1) By comparing the phenotypes we

concluded that the concentration of Dsh plays the dominant role in the magnitude of the

cooperative interactions (α, β). We also recall that the minimum g0 that guarantees long-range

polarization is inversely related to α, β. Thus, the minimum concentration of Vang (i.e. g0)

required for the stable polarization depends inversely on the concentration of Dsh (i.e. α, β),

and polarity alignment can be partially retained in tissues with under-expression of Vang, by

over-expression of Dsh. This prediction is crucial to understanding the collaboration of mem-

brane and cytoplasmic proteins in PCP, and can be tested by tuning the expression levels of

Dsh and Vang. (2) Since the nonlocality of interactions is proposed to be dependent on Pk

and Dsh, the role of elongation as a global cue relies on the abundance of Pk and Dsh, thus the

knockdown of pk and dsh would invalidate the guaranteed orthogonality of polarization and

the elongation axis. (3) The length scale of cytoplasmic interactions are dependent on the cyto-

plasmic protein concentrations, perhaps due to the nonlinear effects on the diffusion constants.

Interpreting λ to be an increasing function of Pk (and possibly Dsh), and given that the polari-

zation is destabilized for λ/ℓ0 ≳ 0.8, our model predicts that excess Pk destroys the PCP align-

ment. Interestingly, this effect was observed in a study by Cho, et.al. in Ref. [51]. Since the

nonlocal interactions are contingent upon the presence of Pk and Dsh, predictions (2) and (3)

can be tested—in the absence of their respective global cues—by under- or over-expressions

of Pk and Dsh, as the representatives of NLCI. (4) The direction of the polarity in disordered

Nonlocal intracellular interactions detect geometric information in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007454 November 26, 2019 24 / 29

https://doi.org/10.1371/journal.pcbi.1007454


tissues is chosen by the geometry, is independent of initial distribution, and shows robustness

against stochastic noise and small external cues. This can be tested experimentally, by compar-

ing the response of polarized tissues to global cues in transverse direction, for ordered and dis-

ordered geometries, e.g. before and after the ordering in Drosophila wing.

Finally, in spite of several insightful findings regarding the mutual interplay of PCP and tis-

sue mechanics [10, 11, 20], the relevant molecular and physical mechanisms remain elusive.

Planar polarity and cell packing are known to mutually influence one another. On the other

hand, cell packing is highly susceptible to mechanical stress. A natural direction for future

studies would be to investigate the coupling between PCP proteins and stress-generating

motor proteins, as well as the emergent tissue-level coordination of polarization and regulation

of mechanical stress. Furthermore, given the role of microtubules in polarizing cells through

biasing transport of membrane proteins, it is of great importance to understand the conditions

under which this mechanism dominates the diffusive transport. Our study lays the ground-

work for further investigations, by uncovering one of the scenarios through which PCP cou-

ples to cellular geometry.

Methods

Dynamical simulations are carried out using Runge-Kutta method of 4th order, with the time

steps of 10−3 γ−1, on lattices of size 40 × 40 cells. For each cell, starting from a randomized

distribution of F and G proteins, the concentration of proteins evolve according to the RD

equations. For each set of the model parameters (e.g. disorder �0, interaction length scale λ),

simulations are run for 500 initial conditions. Stochasticity in the RD equations, is incorpo-

rated by adding a Gaussian white noise to the RD equations. Using the assumption of the uni-

form distribution of membrane proteins along all junctions, the geometrical coefficients (Kmn)

are computed for all pairs of junctions μ and ν, by integrating the interaction kernels along the

two junctions; see Sec. (1) in S1 Appendix for the definition of Kðr � r0Þ. Boundary conditions

are chosen to be periodic along both axes. The global cues are modeled as constant gradients

that exponentially decay in time. For each edge of a given cell, the magnitude M is propor-

tional to the distance of the center of the edge from the centroid of the cell.

Supporting information

S1 Appendix. Supporting Information intends to (a) introduce rigorous mathematical for-

malism, (b) discuss secondary results and further elaborate on those presented in the Main

Text, and (c) provide additional supporting evidence for the findings. S1 Appendix.
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S1 Fig. Polarization in one-dimensional arrays of cells. (a) cartoon of a 1D array of cells.

Complexes with similar and opposite polarities, activate and inhibit each other on the inter-

faces. The edge lengths are denoted by ℓi,i+1. (b) shows the average polarizations against

G0/F0, for different values of length disorder �0 = 0 to 0.6. In ordered arrays, the critical value is

g�
0
’ 0:23. The plot is obtained by ensemble averaging over 1000 realizations of quenched dis-

order in arrays of 1000 cells. For G0/F0 = 0.3, (c) and (d) show the heatmaps of the cell polari-

ties versus time (vertical axis), in an ordered array with a small bias, and in a highly disordered

array (�0 = 0.6) with a large initial bias.

(TIFF)

S2 Fig. Mean-field solutions in two dimensions. (a1) and (a2) show the trivial MF solutions

with nonzero and zero net polarities, respectively. While (a1) is a stable solution, (a2) is desta-

bilized by NLCI. (a3) is an illustration of a nontrivial MF solution where cell polarities point in
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random directions. (b1) and (b2) show the initial (red) and final (blue) distributions of f ubdi gubd
j

for randomized edges labels (ij), in SLCI and NLCI systems, respectively. The variance of the

distributions decreases significantly over time, supporting the MF approximation.

(TIFF)

S3 Fig. Cytoplasmic segregation in NLCI and SLCI regimes. (a1) The average value of the

vector sum of the partial polarities defined in Eq. (26), divided by the average magnitude Q,

as a function of time for SLCI and NLCI systems. Evidently, the ratio drops to zero for NLCI,

implying full segregation. (b1) The normalized standard deviation of cell polarities defined in

Eq. (27). Zero standard deviation in the presence of nonlocal interactions implies that, unlike

in the SLCI case, segregation is achieved in these systems.

(TIFF)

S4 Fig. Swirls and crosses in tissues with under-expression of cytoplasmic and membrane

proteins. Two examples of persistent defects. (a) shows a system with λ/ℓ0 = 0.1. Other param-

eters are fixed at the values mentioned in Table 1 of the Main Text. (b) A system with g0 = 0.25

(i.e. close to polarization threshold), and “wild-type” interaction length scale λ/ℓ0 = 0.5. Both

systems exhibit swirling and crossing patterns that appear as long-lived steady patterns. We

picked one ordered and one disordered tissue. However, in both cases of small λ and small g0,

defects appear, more or less irrespective of the geometric disorder.

(TIFF)

S5 Fig. Comparison of LA-NLI and NLA-NLI in disordered tissues. Rose plots illustrate, for

different values of geometric disorder, �0, the angular distributions of polarization fields in sys-

tems with equal and unequal length scales, λu and λd. (a) Equal λ’s, with �0 = 0.6. (b), (c) For λd/

ℓ0 = 0.5 and 0.01≲ λu/ℓ0 ≲ 0.8, the angular distributions are shown for �0 = 0.45 and �0 = 0.6. (d)

Angular distributions for λu/ℓ0 = 0.5 and 0.01≲ λd/ℓ0 ≲ 0.8, with geometric disorder �0 = 0.6.

(TIFF)

S6 Fig. Elongated tissues and mean-field solutions. (a1) Shows the elongated system with

elongation axis passing thorough a vertex. Since the cooperative interactions increase with

length, the long junctions get polarized before the shorter edges can absorb complexes. This

case is twofold symmetric, like a 1D array of cells that is extended perpendicular to the elonga-

tion axis. (a2) and (a3) show the alternative elongation axis perpendicular to one of the edges.

In these cases there are four long edges competing to absorb membrane proteins. The possible

configurations are now fourfold, two of which are polarized perpendicular, and the other two

are polarized parallel to the axis of elongation; they are shown in (a1) and (a2), respectively.

The latter is destabilized by the nonlocal cytoplasmic interactions. (b) For different values of

λ/ℓ0, the magnitude of cooperative self-interactions αs is plotted as a function of L/ℓ0. (c) The

angle between the average polarization and the axis of elongation, as a function of the average

elongation index E (initial condition and geometry are held fixed). At E ’ 0:1, the polarization

and elongation axis are almost orthogonal; |Fp −Fe|’ 87˚.

(TIFF)

S7 Fig. Patterns of polarity for different classes of in silico mutants. Illustrations of type I,

II, and III mutants. The layout of the table is the same as that in the Main Text, and the red

arrows show the directions of distortion with respect to the wild-type polarity. This table facili-

tates a more detailed comparison of the autonomous effects that were absent in Fig (6) of the

Main Text. In particular note the differences between the polarities within the putative dsh−

and pk− clones, that were induced by small (α, β) and small λ, respectively.

(TIFF)

Nonlocal intracellular interactions detect geometric information in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007454 November 26, 2019 26 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007454.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007454.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007454.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007454.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007454.s008
https://doi.org/10.1371/journal.pcbi.1007454


Author Contributions

Conceptualization: Shahriar Shadkhoo, Madhav Mani.

Formal analysis: Shahriar Shadkhoo.

Funding acquisition: Madhav Mani.

Investigation: Shahriar Shadkhoo.

Methodology: Shahriar Shadkhoo.

Software: Shahriar Shadkhoo.

Visualization: Shahriar Shadkhoo.

Writing – original draft: Shahriar Shadkhoo, Madhav Mani.

Writing – review & editing: Shahriar Shadkhoo.

References
1. Zallen JA. Planar polarity and tissue morphogenesis. Cell. 2007; 129(6):1051–1063. https://doi.org/10.

1016/j.cell.2007.05.050 PMID: 17574020

2. Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and

directed motility. Nat Rev Genet. 2007; 8(2):126–138. https://doi.org/10.1038/nrg2042 PMID:

17230199

3. Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development. 821 2011; 138

(10):1877–1892. https://doi.org/10.1242/dev.054080

4. Devenport D. Tissue morphodynamics: translating planar polarity cues into polarized cell behaviors. In:

Seminars in cell & developmental biology. vol. 55. Elsevier; 2016. p. 99–110.

5. Strutt DI. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila

wing. Molecular cell. 2001; 7(2):367–375. https://doi.org/10.1016/s1097-2765(01)00184-8 PMID:

11239465

6. Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Devel-

opment. 2007; 134(4):647–658. https://doi.org/10.1242/dev.02772 PMID: 17259302
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