
EDUCATION

Ten quick tips for delivering programming

lessons

Greg WilsonID*

RStudio, Inc., Toronto, Canada

* greg.wilson@rstudio.com

Abstract

Teaching well is a craft like any other, and success often comes from an accumulation of

small improvements rather than from any single large change. This paper describes 10

practices you can use when teaching programming (and other subjects). All are easy to

adopt and have proven their value in institutional classrooms, intensive workshops, and

other settings.

Introduction

Teaching well is a craft like any other, and success often comes from an accumulation of small

improvements rather than from any single large change. This paper describes 10 practices you

can use when teaching programming and other subjects that are easy to adopt and have proven

their value in institutional classrooms and other settings, such as workshops. Some have been

inspired by [1, 2, 3], while others draw on the experience of this paper’s author and colleagues

[4, 5, 6]. In particular, this paper extends the evidence-based practices described in [7].

The foundation for these recommendations is the fact that active learning is more effective

than passive learning [8, 9]. People who use new knowledge as it comes in by doing exercises

or summarizing it learn more than people who just watch or listen. Active teaching is similarly

more effective: people learn more when instructors dynamically adjust their teaching based on

real-time feedback from their learners, e.g., by providing an alternative explanation of a con-

cept that the class has found difficult or by changing direction to incorporate a question that

reveals an unexpected learner interest. Finally, learners who are intrinsically motivated learn

more than those who are extrinsically motivated or not motivated at all [10]. When you make

a connection between what you are teaching and your learners’ goals or demonstrate that you

respect their time and priorities, you increase how much they learn.

Tip 1: Use formative assessment every 10–15 minutes

Instructors always want to get through more material than time allows, so we often teach at the

speed at which we can talk rather than the speed at which people can learn. Having learners do

something every 10–15 minutes slows us down to the speed at which people can learn rather

than the speed at which we can talk. It also keeps them engaged and gives us and them feed-

back on whether they have actually understood.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 1 / 7

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wilson G (2019) Ten quick tips for

delivering programming lessons. PLoS Comput

Biol 15(10): e1007433. https://doi.org/10.1371/

journal.pcbi.1007433

Editor: Francis Ouellette, University of Toronto,

CANADA

Published: October 31, 2019

Copyright: © 2019 Greg Wilson. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The author received no specific funding

for this work.

Competing interests: The author has declared that

no competing interests exist.

http://orcid.org/0000-0001-8659-8979
https://doi.org/10.1371/journal.pcbi.1007433
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007433&domain=pdf&date_stamp=2019-10-31
https://doi.org/10.1371/journal.pcbi.1007433
https://doi.org/10.1371/journal.pcbi.1007433
http://creativecommons.org/licenses/by/4.0/


In-class checks like this are called formative assessments. Good ones take only a minute or

two to complete so that they don’t derail the flow of the lesson and have an unambiguous cor-

rect answer so that they can be checked in large classes. Popular kinds of formative assessment

in programming classes include:

• Answer a multiple choice question.

• Write a few lines of code.

• Predict what the code on the screen will do when it runs.

• Contribute the next line of code.

• Label a diagram of a data structure.

• Trace the order in which statements are evaluated.

Starting with a formative assessment that reviews a previous lesson is a good way to signal

that class has started, and having learners recall older material before tackling something new

improves learning outcomes [11]. Similarly, ending the class with such an exercise gives learn-

ers a sense of how far they have progressed.

Some formative assessments should be designed in advance; in fact, they should be designed

before the lesson content is written so that they can act as goalposts [6]. However, they can

also be created on the fly to incorporate and respond to learners’ questions and confusions.

For example, after writing and presenting a few lines of code, an instructor can ask what

would happen if something was added or modified. If learners make different predictions, the

instructor can then ask them to debate the outcomes as a form of ad hoc peer instruction [7].

Tip 2: Give learners and yourself a break every 45–90 minutes

People’s brains get tired when they are concentrating, and tired brains can’t learn [9]. Caffeine

doesn’t fix this, so find an excuse, such as stand-up discussion, to have learners get up and

move around for a few minutes every hour in order to reoxygenate their gray cells. This also

allows those who need a bathroom break to take care of things discreetly. (A colleague once

told me that the basic unit of teaching is the bladder. When I said I’d never thought of that, she

said, "You’ve obviously never been pregnant.")

Hourly breaks aren’t just for the learners’ benefit. They also give instructors a few minutes

to review what they are planning to teach next and to think about how to answer questions in

their backlog (discussed in the next tip). If you are co-teaching (Tip 8), this is a natural time to

swap roles, give or get feedback, or discuss problems that learners seem to be having.

Tip 3: Use a variety of exercise types

The final rule in [7] said, "Don’t just code," and it bears elaboration here. Most programming

classes rely primarily on code-and-run exercises in which learners write software that behaves

in a tightly specified way. To keep learners engaged and to give them opportunities to practice

other skills and higher-level reasoning, you should also use the following:

Parsons Problems, which give them the lines of code needed to solve a problem but in jum-

bled order [12, 13, 14]. Parsons Problems reduce cognitive load by allowing learners to focus

on control flow without simultaneously having to recall syntax.

Multiple choice questions whose wrong answers have been chosen to probe for specific

misconceptions. For example, learners who have worked with spreadsheets may believe that

after executing a = 10, b = a, and a = 20, the value of b will be 20.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 2 / 7

https://doi.org/10.1371/journal.pcbi.1007433


Matching and ranking problems in which they match terms from one column to defini-

tions in another, put predefined labels on a diagram, or sort items according to some criteria

(e.g., most likely to least likely).

Debugging, completion, and extension exercises in which learners must fix, finish, or

extend an existing program. These all model authentic tasks (i.e., the kinds of things program-

mers spend most of their time doing in real life).

Tracing execution order or tracing values, in which the learner lists the order in which the

statements in a program are executed or the values that one or more variables take on as the

program runs, which are essential program comprehension skills.

Code reviews in which learners score a program against a marking guide supplied by the

instructor in order to learn how to find flaws in code. Learners start with a perfect score and

lose points for false positives, as well as false negatives so that they don’t simply mark every

statement as being wrong in all possible ways.

Tip 4: Use sticky notes to monitor progress and distribute attention

Sticky notes are my favorite teaching tool, and I’m not alone in loving their versatility, porta-

bility, stickability, foldability, and subtle yet alluring aroma [15]. Give each learner two sticky

notes of different colors, such as orange and green. If someone has completed an exercise and

wants it checked or if they feel that they are following the lesson, they put the green sticky note

somewhere the instructor can see. If they run into a problem and need help, they put up the

orange one. This works much better than having people raise their hands: it’s more discreet

(which means they’re more likely to actually do it), they can keep working while their flag is

raised rather than trying to type one-handed, and the instructor can quickly see from the front

of the room what state the class is in.

Sticky notes can also be used to ensure that attention is fairly distributed. Instructors natu-

rally focus their attention on learners who are making eye contact and asking lots of questions

—in other words, on extroverts. This creates two feedback loops: the extroverts ask even more

questions because they’re getting attention, while other learners stop trying to engage because

they aren’t. To prevent this, have each learner write their name on a sticky note and post it on

their laptop or somewhere equally visible. Each time the instructor calls on them or answers

one of their questions, they take their sticky note down. Once all the sticky notes are down,

everyone puts theirs up again. This technique makes it easy for the instructor to see whom

they haven’t spoken with recently, which helps them avoid unconscious bias and preferential

interaction. It also shows learners how attention is being distributed so that when they are

called on, they won’t feel like they’re being picked on.

Tip 5: Create a visible backlog

You may not have time to answer all of your learners’ questions or might not actually know

the answers. To handle this, write questions on sticky notes and post them on the wall behind

you, then look over this backlog during breaks and decide which questions you want to tackle.

This gives you a chance to prioritize based on what’s most relevant (and what you actually

know). It also helps build trust: Many people have learned that "I’ll address that later" means "I

hope you’ll forget that you asked." If they see you trying to tackle a few of the questions that

have come up, they will forgive you for not getting to the rest.

Tip 6: Have learners take notes

Fifty years ago, when being able to summarize a speech or take minutes in a meeting was con-

sidered an essential white-collar skill, it was common for high school teachers to require

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 3 / 7

https://doi.org/10.1371/journal.pcbi.1007433


students to hand in their notes for grading. This practice has fallen out of fashion, even though

research shows that taking notes improves learning because it forces learners to organize and

reflect on information as it’s coming in, which in turn increases the likelihood that they will

transfer it to long-term memory [16, 17].

To help learners improve their note-taking, have them take a minute at the end of each

class to write one thing they learned on one side of a card and one question they still have or

something they’re confused about on the other. Reviewing these cards before the next class

only takes a few minutes and will quickly reveal what learners have missed or misunderstood.

Another technique is to make 4–6 learners the official note takers for each class. They must

summarize the information presented and find answers to backlog questions that the instruc-

tor didn’t get to (Tip 5). Their notes are then graded by the instructor for quality and compre-

hensiveness and shared with the class (e.g., by being posted on the course website). In many

cases, their notes will be more useful than what you might have put together, since they will

record what they and their peers actually need to know rather than what you think they do.

Tip 7: Present diagrams incrementally to complement other

material

Our brains have separate channels for processing visual and linguistic information, so people

learn best when complementary material is presented simultaneously through these channels

[18, 19]. In simple terms, this means that you should present diagrams or other relevant images

for you to talk about rather than slabs of text that duplicate what you are saying. Diagrams are

even more effective if they are built up piece by piece rather than shown all at once. When this

is done, learners’ brains will correlate the arrival of new visual information with the arrival of

new linguistic information. Presentation of either later on will then help trigger recall of the

other.

All graphics should be directly relevant to the course material. For example, [20] distin-

guished between seductive graphics (which are highly interesting but not directly relevant to

the instructional goal), decorative graphics (which are neutral but not directly relevant to the

instructional goal), and instructive graphics (which are directly relevant to the instructional

goal). Learners who received any kind of graphic gave material higher satisfaction ratings than

those who didn’t get graphics, but only learners who got instructive graphics actually per-

formed better.

Tip 8: Teach together

Co-teaching describes two instructors working together in the same classroom [21]:

Team teaching: The instructors take turns delivering content. Each can speak for the 10–15

minutes leading up to a formative assessment (Tip 1) or for the 45–90 minutes between breaks

(Tip 2).

Teach and assist: Instructor A teaches while Instructor B moves around the classroom to

help struggling learners. (This is often combined with team teaching: whoever isn’t at the front

of the class acts as a helper.)

Alternative teaching: Instructor A provides a small set of learners with more intensive or

specialized instruction while Instructor B delivers a general lesson to the main group.

Teach and observe: Instructor A teaches while Instructor B observes the learners, collecting

data on their understanding to help plan future lessons.

Parallel teaching: The class is divided in two, and the instructors present the same material

simultaneously to each.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 4 / 7

https://doi.org/10.1371/journal.pcbi.1007433


Station teaching: The learners are divided into small groups that rotate from one station or

activity to the next while instructors supervise where needed.

Team teaching is particularly beneficial in day-long workshops because it gives each

instructor a chance to rest and think about what they are going to do next. If you and a partner

are co-teaching, try the following:

• Take 2–3 minutes before the start of each class to confirm who’s teaching what.

• Work out a couple of hand signals as well. "You’re going too fast," "Speak up," "That learner

needs help," and "It’s time for a bathroom break" are all useful.

• Each person should teach for at least 10–15 minutes at a time so that learners aren’t dis-

tracted by frequent switch-ups. Hour-long turns that synchronize with breaks for learners

are usually easiest to manage (see Tip 2).

• The person who isn’t teaching shouldn’t interrupt, offer corrections or elaborations, or do

anything else to distract from what the person teaching is doing or saying but may ask lead-

ing questions if the learners seem lethargic or unsure of themselves.

Most importantly, take a few minutes when the class is over to congratulate or commiserate

with each other: In teaching, as in life, shared misery is lessened and shared joy increased.

Tip 9: Include everyone

As discussed in [6], inclusivity is a policy of including people who might otherwise be excluded

or marginalized. [22] describes things instructors can do to make their lessons more accessible

to learners with physical challenges, whereas [23] is a brief, practical guide to practices that will

help everyone, not just members of marginalized groups:

Ask learners to email you beforehand to explain how they believe what they’re about to

learn will help them achieve their goals.

Use inclusive language, such as mixed or gender-neutral pronouns, culturally diverse

names, etc.

Avoid intimidating language, e.g., the use of jargon or feigned surprise ("Oh, you don’t

know that?").

Emphasize that what matters is the rate at which people learn, not the advantages or dis-

advantages they had when they started.

Tip 10: Enforce a code of conduct

The most important step in creating an inclusive classroom, and often the most difficult, is

dealing with people who are being condescending or abusive. As a first step, adopt a code of

conduct, tell everyone where to find it, and require everyone who takes part in your classes to

abide by it. It can’t stop people from being offensive any more than laws against theft stop peo-

ple from stealing, but it can make expectations and consequences clear and signal that you are

trying to make your class welcoming to all.

A code of conduct is only useful if it is enforced. If you believe that someone has violated

yours, you may warn them, ask them to apologize, and/or expel them, depending on the sever-

ity of the violation, whether or not you believe it was intentional, and whether it is a repeated

offense. If you do have to expel someone:

Do it in front of witnesses. Most people will tone down their language and hostility in

front of an audience, and having someone else present ensures that later discussion doesn’t

degenerate into conflicting claims about who said what.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 5 / 7

https://doi.org/10.1371/journal.pcbi.1007433


Tell the rest of the class what happened and why. This helps prevent rumors from spread-

ing and shows that your code of conduct actually means something.

Email the offender as soon as you can to summarize what happened and the steps you

took and copy the message to your workshop’s hosts or one of your fellow teachers so that

there’s a contemporaneous record of the conversation. If the offender replies, don’t engage in a

long debate: it’s never productive.

What happens outside of class matters at least as much as what happens within it [24], so

you need to provide a way for learners to report problems that you aren’t there to see yourself.

One step is to ask someone who isn’t part of your group to be the first point of contact; that

way, if someone wants to make a complaint about you or one of your fellow teachers, they

have some assurance of confidentiality and independent action. [25] has lots of other advice

and is both short and practical.

Conclusion

One final note: If you are teaching an evening class after working for a full day, you and your

learners will both appreciate it if you brush your teeth and put on a clean shirt before you start

teaching. Cough drops will also help you keep your voice and fend off whatever colds the

learners brought with them, and your back will be grateful tomorrow that you wore comfort-

able shoes today.

References

1. Huston T. Teaching What You Don’t Know. Harvard University Press; 2012.

2. Lang JM. Small Teaching: Everyday Lessons from the Science of Learning. Jossey-Bass; 2016.

3. Lemov D. Teach Like a Champion 2.0: 62 Techniques that Put Students on the Path to College. Jos-

sey-Bass; 2014.

4. Wilson G. Software Carpentry: Lessons Learned. F1000Research. 2016; https://doi.org/10.12688/

f1000research.3-62.v2 PMID: 24715981

5. Devenyi GA, Emonet R, Harris RM, Hertweck KL, Irving D, Milligan I, et al. Ten Simple Rules for Collab-

orative Lesson Development. PLoS Comput Biol. 2018; 14(3). https://doi.org/10.1371/journal.pcbi.

1005963 PMID: 29494585

6. Wilson G. Ten Quick Tips for Creating an Effective Lesson. PLoS Comput Biol. 2019; 15(4):e1006915.

https://doi.org/10.1371/journal.pcbi.1006915 PMID: 30973880

7. Brown NCC, Wilson G. Ten Quick Tips for Teaching Programming. PLoS Comput Biol. 2018; 14(4).

https://doi.org/10.1371/journal.pcbi.1006023 PMID: 29621229

8. Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How Learning Works: Seven

Research-Based Principles for Smart Teaching. Jossey-Bass; 2010.

9. National Academies of Sciences, Engineering, and Medicine. How People Learn II: Learners, Contexts,

and Cultures. National Academies Press; 2018.

10. Wlodkowski RJ, Ginsberg MB. Enhancing Adult Motivation to Learn: A Comprehensive Guide for

Teaching All Adults. Jossey-Bass; 2017.

11. Weinstein Y, Sumeracki M, Caviglioli O. Understanding How We Learn: A Visual Guide. Routledge;

2018.

12. Parsons D, Haden P. Parson’s Programming Puzzles: A Fun and Effective Learning Tool for First Pro-

gramming Courses. In: 2006 Australasian Conference on Computing Education (ACE’06). Australian

Computer Society; 2006. p. 157–163.

13. Morrison BB, Margulieux LE, Ericson BJ, Guzdial M. Subgoals Help Students Solve Parsons Problems.

In: 2016 Technical Symposium on Computer Science Education (SIGCSE’16). Association for Comput-

ing Machinery (ACM); 2016.

14. Ericson BJ, Margulieux LE, Rick J. Solving Parsons Problems versus Fixing and Writing Code. In: 2017

Koli Calling Conference on Computing Education Research (Koli’17). Association for Computing

Machinery (ACM); 2017.

15. Ward J. Adventures in Stationery: A Journey Through Your Pencil Case. Profile Books; 2015.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 6 / 7

https://doi.org/10.12688/f1000research.3-62.v2
https://doi.org/10.12688/f1000research.3-62.v2
http://www.ncbi.nlm.nih.gov/pubmed/24715981
https://doi.org/10.1371/journal.pcbi.1005963
https://doi.org/10.1371/journal.pcbi.1005963
http://www.ncbi.nlm.nih.gov/pubmed/29494585
https://doi.org/10.1371/journal.pcbi.1006915
http://www.ncbi.nlm.nih.gov/pubmed/30973880
https://doi.org/10.1371/journal.pcbi.1006023
http://www.ncbi.nlm.nih.gov/pubmed/29621229
https://doi.org/10.1371/journal.pcbi.1007433


16. Aiken EG, Thomas GS, Shennum WA. Memory for a Lecture: Effects of Notes, Lecture Rate, and Infor-

mational Density. Journal of Educational Psychology. 1975; 67(3):439–444. https://doi.org/10.1037/

h0076613

17. Bohay M, Blakely DP, Tamplin AK, Radvansky GA. Note Taking, Review, Memory, and Comprehen-

sion. American Journal of Psychology. 2011; 124(1):63. https://doi.org/10.5406/amerjpsyc.124.1.0063

PMID: 21506451

18. Mayer RE, Moreno R. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psy-

chologist. 2003; 38(1):43–52. https://doi.org/10.1207/s15326985ep3801_6

19. Mayer RE. Multimedia Learning. 2nd ed. Cambridge University Press; 2009.

20. Sung E, Mayer RE. When Graphics Improve Liking but not Learning from Online Lessons. Computers

in Human Behavior. 2012; 28(5):1618–1625. https://doi.org/10.1016/j.chb.2012.03.026

21. Friend M, Cook L. Interactions: Collaboration Skills for School Professionals. Eighth ed. Pearson;

2016.

22. Burgstahler SE. Universal Design in Higher Education: From Principles to Practice. 2nd ed. Harvard

Education Press; 2015.

23. Lee CB. What Can I Do Today to Create a More Inclusive Community in CS?; 2017. Available from:

http://bit.ly/2oynmSH. [cited 2019 Oct 10].

24. Partanen A. What Americans Keep Ignoring About Finland’s School Success; 2011. Available from:

https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-about-finlands-

school-success/250564/. [cited 2019 Oct 10].

25. Aurora V. Frame Shift Consulting Workshop on Ally Skills; 2017. Available from: https://

frameshiftconsulting.com/ally-skills-workshop/. [cited 2019 Oct 10].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007433 October 31, 2019 7 / 7

https://doi.org/10.1037/h0076613
https://doi.org/10.1037/h0076613
https://doi.org/10.5406/amerjpsyc.124.1.0063
http://www.ncbi.nlm.nih.gov/pubmed/21506451
https://doi.org/10.1207/s15326985ep3801_6
https://doi.org/10.1016/j.chb.2012.03.026
http://bit.ly/2oynmSH
https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-about-finlands-school-success/250564/
https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-about-finlands-school-success/250564/
https://frameshiftconsulting.com/ally-skills-workshop/
https://frameshiftconsulting.com/ally-skills-workshop/
https://doi.org/10.1371/journal.pcbi.1007433

