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Abstract

Context effects have been explained by either low-level neural adjustments or high-level

cognitive processes but not their combination. It is currently unclear how these processes

interact to shape individuals’ responses to context. Here, we used a large cohort of human

subjects in experiments involving choice between two or three gambles in order to study the

dependence of context effects on neural adaptation and individuals’ risk attitudes. Our

experiments did not provide any evidence that neural adaptation on long timescales (~100

trials) contributes to context effects. Using post-hoc analyses we identified two groups of

subjects with distinct patterns of responses to decoys, both of which depended on individu-

als’ risk aversion. Subjects in the first group exhibited strong, consistent decoy effects and

became more risk averse due to decoy presentation. In contrast, subjects in the second

group did not show consistent decoy effects and became more risk seeking. The degree of

change in risk aversion due to decoy presentation was positively correlated with the original

degrees of risk aversion. To explain these results and reveal underlying neural mechanisms,

we developed new models incorporating both low- and high-level processes and used these

models to fit individuals’ choice behavior. We found that observed distinct patterns of decoy

effects can be explained by a combination of adjustments in neural representations and

competitive weighting of reward attributes, both of which depend on risk aversion but in

opposite directions. Altogether, our results demonstrate how a combination of low- and

high-level processes shapes choice behavior in more naturalistic settings, modulates overall

risk preference, and explains distinct behavioral phenotypes.

Author summary

A large body of experimental work has illustrated that the introduction of a new, and

often irrelevant, option can influence preference among the existing options, a phenome-

non referred to as context or decoy effects. For example, introducing a new option that is

worse than one of the two existing options in all its attributes but better than the alterna-

tive option in some attributes (and thus should not ever be selected) can increase the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007427 October 14, 2019 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Spitmaan M, Horno O, Chu E, Soltani A

(2019) Combinations of low-level and high-level

neural processes account for distinct patterns of

context-dependent choice. PLoS Comput Biol 15

(10): e1007427. https://doi.org/10.1371/journal.

pcbi.1007427

Editor: Ulrik R. Beierholm, Durham University,

UNITED KINGDOM

Received: February 4, 2019

Accepted: September 20, 2019

Published: October 14, 2019

Copyright: © 2019 Spitmaan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data used in the

manuscript are available online at http://ccnl.

dartmouth.edu/DataShare/ConEffAda_

DatasetShare_20190204.zip.

Funding: This study was supported by National

Science Foundation Award #1632738. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-4948-0677
http://orcid.org/0000-0003-4386-8486
https://doi.org/10.1371/journal.pcbi.1007427
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007427&domain=pdf&date_stamp=2019-10-24
https://doi.org/10.1371/journal.pcbi.1007427
https://doi.org/10.1371/journal.pcbi.1007427
http://creativecommons.org/licenses/by/4.0/
http://ccnl.dartmouth.edu/DataShare/ConEffAda_DatasetShare_20190204.zip
http://ccnl.dartmouth.edu/DataShare/ConEffAda_DatasetShare_20190204.zip
http://ccnl.dartmouth.edu/DataShare/ConEffAda_DatasetShare_20190204.zip


preference for the former option. Context effects have been explained by high-level cogni-

tive processes—such as comparisons and competitions between attributes—or low-level

adjustments of neural representations. However, it is unclear how these processes interact

to shape individuals’ responses to context. Here, we show that both high-level cognitive

processes and low-level neural adjustments shift risk preference during choice between

multiple risky options but in opposite directions. Moreover, we demonstrate that combi-

nations of these processes can account for distinct patterns of context effects in human

subjects.

Introduction

Despite the prevalent use of two-alternative choice paradigms to study value-based choice,

real-life decisions often involve selecting among multiple options. The set of options, even

those irrelevant to the decision maker, can strongly influence preference and alter choice pro-

cesses [1–6]. For example, introducing a new option that is worse than one of the two existing

options in all its attributes but better than the alternative option in some attributes (asymmet-

rically dominated option) can increase the preference for the former option [2,6–8]. The

dependence of preference on the choice set, often referred to as context or decoy effects, has

been extensively studied in value-based choice and has revealed important aspects of valuation

and decision processes [5,9–16].

Because of their complexity, decoy effects often have been explained by changes in subjec-

tive value due to various high-level cognitive processes, such as attentional switching to differ-

ent choice attributes, menu-dependent evaluation of choice attributes, and competition

between attribute processing to enhance contrast between certain attributes [1,14,17–22]. In

contrast, aiming to address underlying neural mechanisms, others have attributed decoy

effects to low-level adjustments of neural representations to the set of options presented on

each trial [23,24]. However, none of the current models of context-dependent choice includes

both low-level and high-level processes. Interestingly, long-term adaptation of neural response

to the set of presented options could diminish decoy effects, and there is strong evidence for

such adaptation over a block of trials or an experimental session [25–27]. It is currently

unknown whether such adaptation contributes to context effects or not.

In addition, although context effects mainly have been measured in a between-subjects

design [12,28,29], there is large variability in how such effects influence different individuals

[2,7,23,30–32] that could reflect additional mechanisms involved in the valuation of multi-

attribute options. For example, during choice between multiple gambles, the presence of a few

gambles with large reward magnitudes could bias the decision maker to more strongly process

reward magnitude at the expense of reward probability, ultimately resulting in more risk-seek-

ing behavior. The influence of choice set on this selective processing of information, however,

could depend on each individual’s degree of risk aversion. Currently, little is known about the

dependence of context effects on risk attitudes when choosing between risky options.

Here, we measured risk preference and decoy effects in a large cohort of subjects to study

whether and how context effects depend on long-term adaptation to the range of reward prob-

abilities and magnitudes as well as on an individual’s degree of risk aversion. Risk aversion was

measured using binary choice between pairs of monetary gambles [33]. Decoy effects were

measured using a phantom-decoy design; subjects were initially presented with three mone-

tary gambles to evaluate, one of which was subsequently removed at the time of choice. To

examine the contribution of neural adaptation, we introduced a new set of gambles in 20% of
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trials to interrupt possible ongoing long-term adaptation to the range of reward probabilities

and magnitudes in the main set of gambles. Finally, we developed a new model of context-

dependent choice that incorporates both low- and high-level processes in order to explain our

results and reveal underlying neural mechanisms.

Results

Overall decoy effects

Each subject performed two experiments in which they evaluated and selected between two or

three monetary gambles. In the first experiment, subjects selected between two gambles (esti-

mation task; see Materials and Methods for more details; Fig 1A). Choice behavior in this

experiment was used to estimate individuals’ degree of risk aversion and to tailor gambles for

each subject in the second experiment. In the second experiment, subjects selected between

three gambles under two different conditions (decoy task; Fig 1B and 1C). Choice behavior in

this experiment was used to study context effects.

During the estimation task, subjects selected between two monetary gambles in each trial.

One of the two gambles was always a fixed low-risk gamble: a gamble with a reward probability

(pR) equal to 0.7 and a reward magnitude of $20. The other gamble was selected from a set of

high-risk gambles with pR = 0.3 and different reward magnitudes, M. As expected, subjects

chose the high-risk gambles over the low-risk gamble more often as M increased (S1A Fig). By

fitting choice behavior with a logistic function of the difference between the two gambles’ mag-

nitudes in a given trial, we estimated the indifference point for each subject. The indifference

point was defined as the magnitude of a high-risk gamble that was as equally preferable as the

low-risk gamble (see Materials and Methods). Thus, it reflects the degree of risk aversion for a

given subject; a larger indifference point corresponds to increased risk aversion. Overall, we

observed large variability for the indifference points across subjects (S1B Fig).

During the decoy task, subjects were initially presented with three monetary gambles to

evaluate, one of which was subsequently removed at the time of choice (Fig 1B; see Materials

and Methods for more details). This phantom-decoy design allowed us to measure the influ-

ence of the removed gamble (the decoy) on the preference between the remaining gambles.

Two out of the three gambles, which we refer to as the target (T) and competitor (C), were tai-

lored for each subject using his/her indifference point estimated from the estimation task. The

decoys were positioned in the attribute space relative to the target and competitor gambles in

one of the four possible positions with some jitters (Fig 1C). In the control condition of the

decoy task, jittered versions of the target, competitor, and decoy gambles were presented

throughout the experiment. In the range-manipulation condition, however, we introduced a

new set of gambles with large probabilities and magnitudes in 20% of trials in order to inter-

rupt possible long-term adaptation to the range of reward probabilities and magnitudes in the

main set of gambles. In total, 108 subjects participated in the study: 38 exclusively in the con-

trol condition (control only cohort), 48 exclusively in the range-manipulation condition

(range-manipulation cohort), and 22 in both conditions (mixed cohort), resulting in 130 sets

of data. Therefore, 60 and 70 datasets correspond to the control and range-manipulation con-

ditions, respectively.

Examining the average probability of target selection for different decoy types, we found a

significant effect of the decoy location in the control condition (one-way ANOVA; F(3,236) =

6.04, p = 5.6×10−4; Fig 2A). Tukey’s post-hoc test revealed significant differences between the

majority of decoy location pairs in terms of the average target probabilities (S1 Table). We

also measured the effect of decoys on preference using decoy efficacies that quantify the ten-

dency to choose the target due to the presentation of decoys at a given location after
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subtracting the overall tendency to choose the target (Materials and Methods). Similarly to the

probability of target selection, decoy efficacies varied with decoy types in the control condition

(one-way ANOVA; F(3,236) = 31.4, p = 4.1×10−17; Fig 2B), and Tukey’s post-hoc test revealed

significant differences between all pairs of decoy efficacies (S1 Table).

Comparing decoy efficacies with chance level (0), we found significant effects for all decoy

types except D2. As we show later based on clustering analyses, the lack of an effect for D2

decoys could be due to a large number of certain individuals in our cohort of subjects. Asym-

metrically dominant decoys decreased the preference for the gamble next to them in the

attribute space (competitor for D1 and target for D3; two-sided Wilcoxon signed-test; D1:

p = 0.023, d = 0.72; D3: p = 0.042, d = -0.73). In contrast, asymmetrically dominated decoys

increased the preference for the gamble next to them (competitor for D2 and target for D4),

but this effect was only significant for D4 (two-sided Wilcoxon signed-test; D2: p = 0.17, d =

-0.35; D4: p = 0.030, d = 0.59). This phenomenon is often referred to as the attraction effect

[2]. Considering the number of comparisons (N = 4) and using Bonferroni correction, most of

the reported decoy efficacies were not statistically significant. Finally, the decoy efficacies for

the dominant and dominated decoys were anti-correlated (Pearson correlation; D1 and D3,

r = -0.39, p = 0.039; D2 and D4, r = -0.33, p = 0.027), suggesting that similar mechanisms

underlie their generation.

In order to fully characterize (and summarize) the changes in choice behavior due to the

introduction of a decoy, we used linear transformations of decoy efficacies to define four

orthogonal decoy-effect indices that measure different aspects of decoy effects in a more com-

prehensive way. Briefly, the overall attraction effect (AE) measures the average relative decoy

effects over all locations. The overall frequency effect (FE) quantifies the overall tendency to

choose the gamble next to the decoy in terms of both reward probability and magnitude (i.e.,

the competitor for D1 and D2 decoys, and the target for D3 and D4 decoys). The dominant vs.

dominated (DD) measures the overall difference between the effects of dominant and domi-

nated decoys. The fourth index quantifies the overall change in risk aversion (CRA) due to the

decoy presentation (see Materials and Methods for more details).

Fig 1. Experimental design. (A) Timeline of the estimation task used to measure individuals’ degree of risk aversion. After the inter-trial interval and fixation cross, two

monetary gambles were presented on the screen. The subject had 4 seconds to evaluate the gambles. After “Evaluate” banner was replaced with “Choose,” the subject had 1

second to choose between the two gambles. The subjects made a choice by pressing the left or right arrow key. Selected option remained highlighted on the screen for 1

sec. (B) Timeline of the decoy task used to study context effects. After the inter-trial interval and fixation cross, three monetary gambles were presented on the screen. The

subjects had 6 seconds to evaluate the gambles. Subsequently, one of the three gambles was randomly removed, and the subjects had 1 second to choose between the

remaining two gambles. The subjects made a choice by pressing the left or right arrow key; no feedback was provided following choice. (C) Four possible decoy positions

relative to the target (T) and competitor (C) gambles are shown. For illustration purposes, decoy gambles are shown in the middle of the three gambles, but their

arrangement was randomly determined on each trial of the actual experiments. D1 (D3) decoys, referred to as asymmetrically dominant decoys, were greater in both

attributes than the competitor (target), whereas D2 (D4) decoys (asymmetrically dominated decoys) were worse than the competitor (target).

https://doi.org/10.1371/journal.pcbi.1007427.g001
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Calculating these indices for each subject, we found a significant overall attraction effect

(two-sided Wilcoxon signed-test, p = 0.011, d = 0.94; Fig 2C). We also found a small but signif-

icant frequency effect (two-sided Wilcoxon signed-test, p = 0.046, d = 0.31), indicating an

overall increase in the selection of the gamble next to the decoys. However, considering the

number of comparisons (N = 4) and using Bonferroni correction, the frequency effect was not

statistically significant in the control condition. There was no significant difference in the

effects of dominant and dominated decoys as measured by the DD (two-sided Wilcoxon

signed-test, p = 0.22, d = 0.17). Finally, because of the symmetry in decoy presentation as well

Fig 2. Preference was similarly influenced by decoys in the control and range-manipulation conditions. (A)

Probability of selecting the target for different decoy types during the control condition. Each gray circle shows the

average probability that an individual subject selected the target for a given decoy location, and black squares indicate

the average across all subjects. Error bars show the s.e.m., and an asterisk shows that the median of choice probability

across subjects for a given decoy location is significantly different from 0.5 (two-sided Wilcoxon signed-test, p< 0.05).

A gray asterisk indicates that the difference is not significant after Bonferroni correction. (B) Decoy efficacies measure

the tendency to choose the target due to the presentation of decoys at a given location after subtracting the overall

tendency to choose the target. An asterisk shows that the median of a given decoy efficacy across subjects is

significantly different from zero (two-sided Wilcoxon signed-test, p< 0.05). Presentation of decoys resulted in change

in preference in all locations. (C) Plot shows four measures for quantifying different effects of decoys on preference

(AE: attraction effect; FE: frequency effect; DD: dominant vs. dominated; and CRA: change in risk aversion). Other

conventions are similar to those in panel B. (D–F) The same as in A–C but for the range-manipulation condition. (G–

I) Comparisons between the average target probabilities (G), decoy efficacies (H), and our four indices (I) in the two

experimental conditions. Overall, there were no significant differences between the two experimental conditions based

on choice probability, decoy efficacies, or any of our four measures (two-sided Wilcoxon rank-sum test, p> 0.05).

https://doi.org/10.1371/journal.pcbi.1007427.g002
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as the tailoring of the target and competitor gambles for individual subjects, each subject

should choose equally between the target and competitor in absence of any decoy effects.

Therefore, any overall bias toward either gamble could be attributed to changes in risk prefer-

ence due to the presentation of decoys, which is quantified by the CRA. Interestingly, we

found a significant increase in risk aversion due to decoys across all subjects (two-sided Wil-

coxon signed-test, p = 0.035, d = 0.33). Again, considering the number of comparisons (N = 4)

and using Bonferroni correction, this effect was not statistically significant. However, as we

show below this is mainly due to the presence of two distinct phenotypes of subjects that

change their overall risk preference in opposite directions.

Contribution of long-term neural adaptation to decoy effects

Previous monkey experiments from Padoa-Schioppa’s group [27] have shown adaptations of

neural response to the range of stimuli on the order of 100 trials. In order to test the contribu-

tion of such long-term adaptation to context effects, we introduced a new set of gambles with

large reward probabilities and magnitudes during 20% of trials of the range-manipulation con-

dition (see Materials and Methods). We predicted that such adaptation should decrease decoy

effects. In an extreme case, full adaptation to the range of presented gambles could diminish

decoy effects because the range of all stimuli could be incorporated into representations of

reward attributes and thus, no range normalization would be necessary. We set the attributes

of high-range gambles as large as possible (considering that we had to resolve such gambles if

they were chosen) to increase the chance of detecting an effect.

Computing the average probability of target selection for different decoy types, we found a

significant effect of the decoy location in the range-manipulation condition (one-way

ANOVA; F(3,236) = 3.45, p = 0.017; Fig 2D). Tukey’s post-hoc test revealed significant differ-

ences between all decoy location pairs in terms of the average target probabilities (S1 Table).

Similarly to the probability of target selection, decoy efficacies varied with decoy types (one-

way ANOVA; F(3,236) = 24.3, p = 5.9×10−14; Fig 2E), and Tukey’s post-hoc test revealed signif-

icant differences between all pairs of decoy efficacies (S1 Table).

Similar to the control condition, subjects in the range-manipulation condition exhibited

significant decoy effects for D1, D3, and D4 decoys (two-sided Wilcoxon signed-test; D1: p =
0.039, d = 0.43; D2: p = 0.33, d = -0.34; D3: p = 0.031, d = -0.62; D4: p = 0.028, d = 0.59; Fig

2E). In addition, we found a significant overall attraction effect and change in risk aversion

due to decoy presentation (two-sided Wilcoxon signed-test; AE: p = 0.014, d = 0.72; FE:

p = 0.61, d = 0.07; DD: p = 0.73, d = 0.18; CRA: p = 0.044, d = 0.36; Fig 2F). Considering the

number of comparisons (N = 4) and using Bonferroni correction, however, most of reported

decoy efficacies were not statistically significant. Finally, similar to the control condition, the

decoy efficacies for the dominant and dominated decoys were anti-correlated in the range-

manipulation condition (Pearson correlation; D1 and D3, r = -0.38, p = 0.002; D2 and D4, r =

-0.37, p = 0.001).

We next directly compared decoy efficacies and decoy-effect indices across the control and

range-manipulation conditions. Despite the large number of subjects in our experiment, how-

ever, we did not find any significant difference between subjects’ behavior in the two experi-

mental conditions with regards to the average decoy efficacies (two-sided Wilcoxon rank-sum

test; D1: p = 0.51; D2: p = 0.92; D3: p = 0.35; D4: p = 0.68; Fig 2H) or decoy-effect indices

(two-sided Wilcoxon rank-sum test; AE: p = 0.31; FE: p = 0.11; DD: p = 0.42; CRA: p = 0.26;

Fig 2I). These results provide no evidence that range manipulation, designed to interrupt

long-term adaptation to the set of options, has an influence on decoy effects.

Modulation of context effects by risk attitudes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007427 October 14, 2019 6 / 31

https://doi.org/10.1371/journal.pcbi.1007427


To test for interactions between experimental conditions and decoy effects, we also per-

formed two-way ANOVA using both experimental conditions (control and range-manipula-

tion). We found that the decoy location had significant effects on average target probabilities

(two-way unequal size ANOVA; F(3,512) = 8.80, p = 0) and decoy efficacies (two-way unequal

size ANOVA; F(3,512) = 54.67, p = 0). However, we did not find any effect for experimental

conditions or their interactions with decoy types on average target probabilities (two-way

unequal size ANOVA; experimental conditions: F(1,512) = 1.15, p = 0.28; interaction: F(3,512)

= 0.13, p = 0.94) or on decoy efficacies (two-way unequal size ANOVA; experimental condi-

tions: F(1,512) = 0.01, p = 0.93; interaction: F(3,512) = 0.82, p = 0.48; Fig 2G and 2H).

Combining data from the control and range-manipulation conditions, we found significant

decoy efficacies for all decoy types except D2, even after considering Bonferroni correction

(two-sided Wilcoxon signed-test; D1: p = 0.005, d = 0.68; D2: p = 0.15, d = -0.21; D3: p = 0.001,

d = -0.65; D4: p = 0.004, d = 0.62). In addition, we found a significant overall attraction effect

and change in risk aversion due to decoy presentation (two-sided Wilcoxon signed-test; AE:

p = 4.8×10−12, d = 1.34; FE: p = 0.08, d = 0.23; DD: p = 0.78, d = 0.06; CRA: p = 3.86×10−4,

d = 1.18).

We also examined the time course of decoy-effect indices in the two experimental condi-

tions by computing the running average of AE and CRA over time, using a sliding window

with a length of 40 trials and steps of 20 trials (Fig 3). However, we did not observe any signifi-

cant changes in any of the decoy-effect indices over time (two-sided t-test; AE (control),

p = 0.96; AE (range-manipulation), p = 0.75; CRA (control), p = 0.81; CRA (range-manipula-

tion), p = 0.46). Finally, there was no significant differences in the slopes of the AE or CRA as a

function of time (within a session) between the two experimental conditions (AE (control),

b = 0.0004, 95% CI [-0.0146, 0.0154]; AE (range-manipulation), b = -0.0027, 95% CI [-0.0191,

0.0137]; CRA (control), b = 0.0021, 95% CI [-0.0149, 0.0191]; CRA (range-manipulation),

b = 0.0052, 95% CI [-0.0144, 0.0248]).

Together, our analyses did not provide any evidence for changes in decoy effects due to

range manipulation, which was intended to interrupt possible long-term adaptation to the

range of reward probabilities and magnitudes. Therefore, we did not find any evidence that

long-term neural adaptation on the order of ~100 trials–present in the control but not in the

range-manipulation condition–contributes to context effects.

Distinct behavioral phenotypes for susceptibility to decoy

Our data analyses above did not reveal any evidence for the effect of range manipulation on

context effects, which could be due to many reasons including ineffectiveness of our manipula-

tion, individual variability, etc. Nonetheless, the control and range-manipulation conditions

provided us with a large dataset to investigate individual variability and behavioral phenotype

with respect to decoy effects. To that end, we used a strict clustering method to isolate distinct

patterns of decoy effects in our large cohort of subjects. For this whole-data clustering analysis,

we used all 130 datasets. Nevertheless, we performed additional analyses to ensure that there

was no difference between the three cohorts of subjects in terms of behavioral phenotypes

identified via clustering (see below). We adopted the k-means clustering method for different

sets of features and numbers of clusters. The sets of features included all the possible exclusive

combinations of four decoy-effect indices and the cluster sizes ranged from 2 to 5. We found

the best clustering (based on silhouette values) is achieved using all decoy-effect indices and

two clusters (S2 Fig). We used the clusters with the best separation to divide the subjects into

two groups (Group 1: N = 72, and Group 2: N = 58).
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The subjects in the two groups exhibited very distinct patterns of responses to the presenta-

tion of decoys (Fig 4). More specifically, subjects in Group 1 showed an overall increase in risk

aversion during the decoy task by selecting the target with a probability larger than 0.5 (over

all decoy types), whereas subjects in the Group 2 showed a decrease in risk aversion by choos-

ing the target with a probability smaller than 0.5 (Fig 4A and 4B). In addition, subjects in the

first group showed strong and consistent (i.e., across all decoy types) decoy effects (two-sided

Wilcoxon rank-sum test; D1: p = 0.001, d = 0.99; D2: p = 0.008, d = -0.62; D3: p = 0.0001, d =

-0.67; D4: p = 0.0003, d = 0.60; Fig 4C), whereas decoy effects in the second group were incon-

sistent and limited to decoys next to the less risky gamble (two-sided Wilcoxon rank-sum test;

D1: p = 0.42, d = 0.18; D2: p = 0.79, d = -0.03; D3: p = 0.0001, d = -0.67; D4: p = 0.0022,

d = 0.58; Fig 4D). Specifically, the lack of an effect for D2 decoys in Group 2 could explain the

absence of this effect in overall data. That is, the absence of significant decoy effect for decoys

in the D2 location compared to a previous study by Soltani et al. [23] could be the result of hav-

ing more subjects with inconsistent decoy effects (Group 2 subjects) in the current study.

Using ANOVA for each group of subjects, we found significant effects of the decoy location

on the average target probabilities (one-way ANOVA; Group 1: F(3,284) = 16.8, p = 4.7×10−10;

Group 2: F(3,228) = 4.95, p = 0.002) and decoy efficacies (one-way ANOVA; Group 1: F(3,284)

= 48.8, p = 1.9×10−25; Group 2: F(3,228) = 16.1, p = 1.6×10−9) in both groups. In addition,

Tukey’s post-hoc tests revealed significant differences between all decoy location pairs in terms

of the average target probabilities and decoy efficacies in both groups (S2 Table).

Finally, both groups showed positive attraction effects (two-sided Wilcoxon signed-test;

Group 1: p = 0.026, d = 1.00; Group 2: p = 0.031, d = 0.62), but there were no significant fre-

quency effects (two-sided Wilcoxon signed-test; Group 1: p = 0.71, d = 0.19; Group 2: p = 0.51,

d = 0.15) or differences between dominant and dominated decoys (two-sided Wilcoxon

signed-test; Group 1: p = 0.64, d = -0.04; Group 2; p = 0.33, d = 0.41). Importantly, subjects in

Group 1 exhibited a significant positive change in risk aversion (CRA; two-sided Wilcoxon

signed-test, p = 0.011, d = 1.77; Fig 4E), whereas this change was significantly negative for

Group 2 (two-sided Wilcoxon signed-test, p = 0.042, d = -0.82; Fig 4F). In other words, Group

1 became more risk aversive due to decoy presentation while Group 2 became more risk seek-

ing. However, considering the number of comparisons (N = 4) for each group, only the CRA

in Group 1 was statistically significant.

Fig 3. No significant difference between the time course of decoy effects in the control and range-manipulation

conditions. Plotted is time course of the overall attraction effect (AE) and the overall change in risk aversion (CRA) in

the control (A) and range-manipulation conditions (B). Each point shows the average value of the respective measure

during 40-trial bins around that point across all subjects. The error bar shows the s.e.m. The solid and dashed lines

show the regression lines.

https://doi.org/10.1371/journal.pcbi.1007427.g003
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To further reveal the differences in decoy effects between the two groups, we directly com-

pared the four decoy-effect indices between the two groups of subjects. We found a larger

overall attraction effect in Group 1 (two-sided Wilcoxon rank-sum test, p = 0.021, d = 0.50; Fig

5A), reflecting more consistent decoy effects in this group of subjects. In contrast, the DD was

slightly but significantly larger in Group 2 (two-sided Wilcoxon rank-sum test, p = 0.037, d =

-0.48), but this effect was not significant in either group (Fig 4E and 4F). Also, there was no

difference between the two groups in terms of the overall frequency effect (two-sided Wil-

coxon rank-sum test, p = 0.49, d = 0.05). Finally, the change in risk aversion was much larger

in Group 1 than Group 2 (two-sided Wilcoxon rank-sum test, p = 0.0007, d = 2.55).

Fig 4. Distinct decoy effects in two groups of subjects identified by clustering based on all decoy-effect indices.

(A–B) Probability of selecting the target for different decoy types in the two groups of subjects identified by clustering.

Conventions are the same as in Fig 2. Subjects in the first group (N = 72) selected the target with a probability larger

than 0.5 for all decoy types (increased risk aversion), whereas subjects in the second group (N = 58) selected the target

with a probability smaller than 0.5 (decreased risk aversion). An asterisk shows that the median of choice probability

across subjects for a given decoy location is significantly different from 0.5 (two-sided Wilcoxon signed-test, p< 0.05).

(C–D) Decoy efficacies in the two groups of subjects. An asterisk shows that the median of a given decoy efficacy

across subjects is significantly different from zero (two-sided Wilcoxon signed-test, p< 0.05). Subjects in Group 1

exhibited strong, consistent decoy effects (C), whereas the decoy effects were inconsistent and limited to decoys next to

the less risky gamble (target) in Group 2 (D). (E–F) Plot shows decoy-effect indices for individuals in the two groups of

subjects. A gray asterisk indicates that the difference is not significant after Bonferroni correction. The first group

showed a strong attraction effect and an overall increase in risk aversion. The second group showed a significant

attraction effect and a decrease in risk aversion.

https://doi.org/10.1371/journal.pcbi.1007427.g004
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Finally, we also examined possible differences in subjects’ behavior under different experi-

mental conditions. To that end, we performed two additional analyses to examine possible dif-

ferences in behavioral phenotypes between the three cohorts of subjects: control only (N = 38),

range-normalization only (N = 48), and mixed cohorts (N = 22). First, we performed cluster-

ing analyses for each cohort of subjects separately. For this analysis, we combined data from

subjects who performed the control condition first with those who performed the control con-

dition only (combined-control data). We also combined data from subjects who performed

the range-normalization condition first with those who performed the range-normalization

only (combined-RN data). Comparing average behavior across the two groups of subjects did

not reveal any evidence for a difference between patterns of decoy effects in combined-control

and combined-RN datasets (S3 and S4 Figs; comparing decoy-effect indices using two-sample

t-test, Group 1 AE: p = 0.43; Group 1 FE: p = 0.19; Group 1 DD: p = 0.22; Group 1 CRA:

p = 0.44; Group 2 AE: p = 0.62; Group 2 FE: p = 0.49; Group 2 DD: p = 0.37; Group 2 CRA:

p = 0.27). The observed pattern of decoy effects for these datasets was also similar to those

found based on whole-data clustering (compare Fig 4 with S3 and S4 Figs).

Second, we used the two groups of subjects identified based on whole-data clustering and

examined the proportion of subjects from each of the three experimental cohorts in these two

groups. Again, we did not find any significant differences between the proportion of the two

behavioral phenotypes in the three cohorts of subjects (χ2 = 0.065; p = 0.97; control-only

cohort: 16 subjects in Group 1 vs. 22 in Group 2; RN-only cohort: 21 subjects in Group 1 vs. 27

in Group 2; mixed cohort: 10 subjects in Group 1 vs. 12 in Group 2). Overall, these analyses

did not provide any credible evidence for a difference between behavioral phenotypes of the

three cohorts of subjects.

Relationship between decoy effects and risk preference

The observed difference between the CRA in the two groups of subjects suggests a relationship

between risk preference and change in preference due to decoy presentation. To test this

Fig 5. Comparison of the average decoy effects and original risk aversion between the two groups of subjects

identified by clustering based on all four decoy-effect indices. (A) Plot shows the mean (±std) of each measure

separately for the two groups of subjects. An asterisk indicates that the difference between a given measure for the two

groups is significant (two-sided Wilcoxon rank-sum test, p< 0.05). The two groups were different in terms of the

overall attraction effect and the overall change in risk preference. (B) Comparison between the indifference points for

the two groups of subjects. Plot shows the mean (±std) of the indifference point separately for the two groups of

subjects and the dashed line indicates an indifference point of $46.70, corresponding to risk-neutrality. The asterisk

above the bar shows a significant difference from $46.70 (two-sided Wilcoxon signed-rank test, p< 0.05), and the

asterisk above the horizontal line indicates a significant difference between the two groups (two-sided Wilcoxon rank-

sum test, p< 0.05). (C) Plotted is the change in risk aversion in the decoy task as a function of the indifference point in

the estimation task. There was a significant correlation between these quantities indicating that individuals’ risk

aversion in the binary choice influences their response to decoys.

https://doi.org/10.1371/journal.pcbi.1007427.g005
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relationship directly, we examined the indifference points from the estimation task (note that

indifference points from the estimation task were not used for clustering of decoy effects) as

the original risk aversion in the two groups of subjects identified in the decoy task. Interest-

ingly, we found that indifference points of subjects in Group 1 were significantly larger than

what was predicted by expected value ($46.70), and thus, these subjects were risk averse (two-

sided Wilcoxon signed-rank test; p = 3.2×10−6, d = 0.65; Fig 5B). In contrast, there was no evi-

dence to support that the indifference points of subjects in Group 2 were different from risk

neutral (two-sided Wilcoxon signed-rank test; p = 0.17, d = 0.23). In addition, the indifference

points for Group 1 were significantly larger than Group 2 (two-sided Wilcoxon rank-sum test,

p = 0.0013, d = 0.59). These results were completely unexpected because we had not considered

indifference points from the estimation task for our clustering.

Considering that the most contrasting differences between the two groups were the change

in risk aversion in the decoy task and the indifference points in the estimation task, we exam-

ined the relationship between these two quantities within individual subjects. Interestingly, we

found a significant positive correlation between the CRA and the indifference point (Pearson

correlation; r = 0.26, p = 0.003; Fig 5C), such that subjects with larger indifference points

exhibited larger changes in risk aversion due to the decoy presentation. This result indicates

that subjects who were more risk averse during binary choice became even more risk averse

when considering three gambles. We also computed the correlation between individuals’

degree of risk aversion (measured by indifference points) and the CRA within each group of

subjects but did not find any statistically significant relationship in either group (Pearson cor-

relation; Group 1: r = 0.10, p = 0.42; Group 2: r = 0.01, p = 0.97).

Finally, we performed additional analyses to test for possible differences between the two

groups of subjects and the relationship between individuals’ attraction effect and CRA within

each group. Comparing stochasticity in choice (measured by σ) between the two groups did

not reveal any significant difference (Group 1 median = 0.93; Group 2 median = 0.75; Wil-

coxon rank-sum test, p = 0.7). There was no significant difference between the median reac-

tion times of the two groups of subjects either (Group 1 median = 0.70 sec; Group 2

median = 0.73 sec; Wilcoxon rank-sum test, p = 0.3). We also tested the correlation between

the AE and CRA in each group but did not find any evidence for a relationship between these

quantities in either group (Pearson correlation; Group 1: r = −0.31, p = 0.055; Group 2:

r = 0.014, p = 0.9). Overall, these results suggest a distinct rather than a continuous pattern of

responses to decoy presentation in the two groups of subjects.

Effects of decoy distance

Because decoy attributes were determined relative to the attributes of the target or competitor

adjacent to them, decoys would be farther from the competitor in terms of reward magnitude

for more risk-averse subjects (those with larger indifference points). Considering previous

observations that decoy effects increase with the distance of decoy [23], it is possible that more

consistent decoy effects in Group 1 subjects was due to larger indifference points for these sub-

jects. We performed additional analyses to examine this possible confound and to test the

effect of distance on decoy effects.

First, we divided subjects in each group into two subgroups based on their indifference

points (using median) and computed decoy efficacies for each subgroup. However, we did not

find any significant difference between decoy efficacies of the two subgroups of either Group 1

or Group 2 (two-sided Wilcoxon rank-sum test, p> 0.05; Fig 6A and 6B). Therefore, we did

not find any evidence that the indifference point influenced decoy effects within each group of

subjects.
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Second, we measured the effect of distance on decoy effects by dividing decoys into far and

close decoys (median split based on the absolute Euclidean distance between decoy and the

gamble next to it) and calculating decoy-effect indices in each group. We found similar differ-

ences between the two groups for close and far decoys (compare Fig 6C and 6D and Fig 5A).

More specifically, the two groups were statistically different in terms of the overall change in

risk preference for both close and far decoys (two-sided Wilcoxon rank-sum test; CRA close

decoy: p = 1×10−21, d = 1.95; CRA far decoy: p = 2×10−12, d = 1.35), differential decoy effect for

close decoys (two-sided Wilcoxon rank-sum test; DD close decoy: p = 0.007, d = −0.43; DD far

decoy: p = 0.009, d = −0.28), and the overall attraction effect for far decoys (two-sided Wil-

coxon rank-sum test; AE close decoy: p = 0.1, d = 0.34; AE far decoy: p = 0.04, d = 0.36). There

was no significant difference between the frequency effect of Groups 1 and 2 for the close or

far decoys (two-sided Wilcoxon rank-sum test; FE close decoy: p = 0.9, d = 0.03; FE far decoy:

p = 0.4, d = 0.03).

Finally, we also examined an overall effect of distance by computing decoy efficacies and

decoy-effect indices for close and far decoys across all subjects. We found significantly stronger

decoy efficacy for far compared with close decoys when they were presented at D1 and D2

locations but not D3 and D4 (two-sided Wilcoxon rank-sum test; D1: p = 0.0005, d = −0.69,

D2: p = 0.003, d = −0.59; D3: p = 0.9, d = −0.07; D4: p = 0.7, d = −0.04; Fig 6E). Therefore, we

found a more consistent distance effect for decoys next to the competitor gamble. In addition,

we found the overall attraction effect to be significantly larger for far compared with close

decoys (two-sided Wilcoxon rank-sum test; AE: p = 0.004, d = −0.15, FE: p = 0.9, d = −0.04,

DD: p = 0.7, d = −0.07, CRA, p = 0.3, d = −0.05; Fig 6F). Together, these results suggest that

observed differences between the two groups identified by clustering are not likely caused by

the differences in the distance of decoys from the competitor.

New computational model to reveal the underlying mechanisms

In order to explain the observed pattern of choice behavior, we extended the previous range-

normalization model of context-dependent choice by Soltani et al. [23] to include the influence

of high-level processes and used this model to fit choice behavior of subjects during the decoy

task. The model incorporated both low-level and high-level processes (S5 Fig). Low-level pro-

cesses correspond to adjustments in reward attribute representations (reward magnitude and

probability) by the set of options presented on each trial. We assume linear encoding with

threshold and saturation points and implemented low-level processes by dynamically adjust-

ing the slope, threshold, and saturation points based on representation factors and the set of

presented gambles on each trial. High-level processes were assumed to operate on the output

of neurons encoding gamble attributes in order to change the contribution of each attribute to

the final choice. These processes were implemented by allowing different weights for each

attribute (gain modulation) based on the configuration of the three gambles in the attribute

space, which is assumed to be mediated by attention. Finally, we considered possible combina-

tions for how low- and high-level processes could be implemented with different numbers of

parameters (e.g., similar or different representation factors for the two reward attributes),

resulting in 17 different models.

We compared these 17 models, which differ in terms of how representations and competi-

tive weighting are modulated, with regards to their ability to account for the pattern of decoy-

effect indices in individual subjects in order to determine the best model (see Materials and

Methods for more details). We then used the best model parameters to examine relationships

between risk preference, adjustments in representations of reward attributes (probability and

magnitude), and competitive weighting of these two attributes.
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Using three measures for goodness-of-fit, cross-validation prediction error, Akaike infor-

mation criterion (AIC), and Bayesian information criterion (BIC), we found that a model with

both low-level and high-level components provided the best fit to individual subjects’ choice

data (Table 1). Although overall small values for the cross-validation prediction error could

give the wrong impression that different models provide equally good fits, small differences in

this measure correspond to large differences in the ability of models to capture choice behav-

ior. Specifically, we found that both AIC and BIC were significantly different between the best

model with low-level components only and the best model with both low-level and high-level

components (Table 1). Therefore, models with and without high-level mechanisms exhibited

Fig 6. Distinct decoy effects in two groups of subjects identified by clustering do not depend on indifference

points or distance of decoys. (A–B) Comparisons between the decoy efficacies in sub-groups of subjects with small

(sub-group 1) or large (sub-group 2) indifference points. Overall, there were no significant differences between decoy

efficacies in the two subgroups of either Group 1 or Group 2 (two-sided Wilcoxon rank-sum test, p> 0.05). (C–D)

Comparison of the decoy-effect indices between the two groups of subjects identified by clustering, separately for close

(C) and far (D) decoys. Plots show the mean (±std) of each measure separately for the two groups of subjects. An

asterisk indicates that the difference between a given measure for the two groups is significant (two-sided Wilcoxon

rank-sum test, p< 0.05). (E–F) Comparison of decoy effects for close and far decoys across all subjects. Plots show the

mean (±std) of decoy efficacy (E) and decoy-effect indices (F), separately for close and far decoys. An asterisk indicates

that the difference between a given measure for the two conditions is significant (two-sided Wilcoxon rank-sum test,

p< 0.05).

https://doi.org/10.1371/journal.pcbi.1007427.g006
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large differences in terms of their ability to capture choice behavior. The best model (Model #

4 in Table 1) required similar location-dependent biases (high-level component) for decoys

next to the target and competitor and separate representation factors (fp and fm). The fit based

on this model also closely captured the observed pattern of decoy effects in the two groups of

subjects (Fig 7).

Despite providing clear results on the best model that can account for experimental data,

model selection relies on evaluating the ability of candidate models to predict this data. Other

important methods for evaluating computational models are to test their ability to generate the

observed behavioral effect and model falsification, which are often ignored [34]. As mentioned

above, the best model uses both low-level and high-level processes and is able to replicate the

main experimental results (Fig 7). To further illustrate the importance of both processes, we

simulated behavior in the decoy task using models with only low-level adjustments of neural

representations (S6 Fig) or high-level adjustments (S7 Fig) and found that both models failed

to capture all aspects of our data. We note that small differences between fits presented in Fig

7 and S6 and S7 Figs could be misleading because these figures show the average fit of choice

data across all subjects and not the individual subjects for which the fit was done. Finally, we

also performed model recovery by fitting simulated data and examining estimated model

parameters (see Model recovery and falsification in Materials and Methods). Overall, we found

that our fitting method is able to identify the best model among a set of alternative models (S8

Fig) and moreover, provides an unbiased estimate of model parameters (S9 Fig).

Table 1. Comparison of different models’ abilities in capturing subjects’ patterns of decoy efficacies based on three goodness-of-fit measures.

Model

#

Number of parameters Model parameters Cross-validation prediction error AIC BIC

1 7 fp,fm,b1,b2,b3,b4,σ 0.3716 285.84 305.91

2 5 b1,b2,b3,b4,σ 0.0456 211.77 226.10

3 7 fp12,fm12,fp34,fm34,b12,b34,σ 0.0371 128.28 148.35

4 5 fp,fm,b12,b34,σ 0.0344 127.53 141.86

5 5 fp,fm,b13,b24,σ 0.0433 205.53 219.86

6 5 fp,fm,b14,b23,σ 0.0476 223.96 238.29

7 6 fp,fm,b12,b34,b0,σ 0.0359 128.06 145.26

8 6 fp,fm,b13,b24,b0,σ 0.0472 223.12 240.32

9 6 fp,fm,b14,b23,b0,σ 0.0493 230.05 247.25

10 5 b0,f0,b12,b34,σ 0.0521 231.08 245.41

11 4 f0,b12,b34,σ 0.0538 237.63 249.10

12 4 b0,fp,fm,σ 0.4007 303.31 314.78

13 4 b0,b12,b34,σ 0.0402 181.30 192.77

14 3 fp,fm,σ 0.0382 169.93 178.53

15 3 b12,b34,σ 0.0459 214.97 223.57

16 3 b0,f0,σ 0.0502 227.08 235.68

17 2 b0,σ 0.0461 213.70 219.43

Reported are cross-validation prediction error (i.e., the absolute difference between the predicted and actual), AIC, and BIC values for each model and its corresponding

sets of parameters. The green shading indicates the best overall model, and blue shading shows the best model with only low-level components. As parameters, σ
measures the stochasticity in choice, f0 is the single neural representation factor, and fp and fm are independent neural representation factors for probability and

magnitude, respectively. fpij (respectively, fmij) indicates location-dependent representation factors for probability (respectively, magnitude) with similar values for

decoys at locations i and j. High-level parameters b0 and bk (k = {1,2,3,4}) indicate the constant and location-dependent biases, respectively, and determine the weights

of different attributes on final choice (bij indicates the case in which location-dependent biases bi and bj are assumed to have the same value, bi = bj = bij).

https://doi.org/10.1371/journal.pcbi.1007427.t001
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Considering that the best model included both low-level and high-level neural processes,

we then investigated the individual effects of adjustments of neural representations and com-

petitive weighting of reward attributes in order to explain the observed pattern of CRA in each

group of subjects. Specifically, changes in risk preference due to decoy presentation (measured

by CRA) could happen due to different but non-exclusive factors: changes in representations

of reward probability and magnitude or changes in how reward probability and magnitude are

combined. We compared different models’ behavior and examined estimated model parame-

ters to determine which of the two main mechanisms (change in representations or competi-

tive weighting of reward attributes) contributed to the observed changes in behavior more

strongly.

First, we calculated the difference in CRA between the models with and without adjust-

ments of neural representations to decoy presentation. We found that for subjects in Group 1,

the change in CRA due to inclusion of low-level neural adjustments was significantly larger

than zero (two-sided Wilcoxon signed-rank test; median = 0.17, p = 6.6×10−12; Fig 8A). In

contrast, for subjects in Group 2, the change in CRA due to inclusion of low-level neural

adjustments was significantly smaller than zero (two-sided Wilcoxon signed-rank test; median

= -0.06, p = 0.047). These results are consistent with the observed pattern of CRA in the two

groups, indicating that adjustments of neural representations to decoy presentation can

account for most of the observed changes in risk preference (increase and decrease in risk

aversion in Groups 1 and 2, respectively).

We also examined the relationship between the estimated representation factors (fp and fm)

based on the best model fit and individuals’ degree of risk aversion (indifference points). The

representation factor for a given reward attribute determines the dynamic range for coding

Fig 7. The model with both adjustments of value representation and competitive weighting of reward attributes

can capture the experimental data. (A, C) Each gray circle shows the predicted probability of selecting the target for

different decoy types for individual subjects in the first (A) and second (C) groups using the best overall model. For

comparison, the average values across subjects (black dashed line) and their predicted values (gray solid line) are

plotted as well. (B, D) Plots show predicted decoy-effect indices for individual subjects in the first (B) and second (D)

groups of subjects using the best overall model (AE: attraction effect; FE: frequency effect; DD: dominant vs.

dominated; and CRA: change in risk aversion).

https://doi.org/10.1371/journal.pcbi.1007427.g007
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that attribute or how that reward attribute is represented and adjusted to decoy presentation.

More specifically, positive values of the representation factor for a given attribute allow the

dynamic range to extend beyond the minimum and maximum of that attribute’s values,

whereas the negative values limit the dynamic range between the minimum and maximum

values. We found opposite relationships between indifference points and estimated representa-

tion factors for probability and magnitude, reflecting competitive adjustments in how the two

reward attributes were processed in the decoy task (S10 Fig). Importantly, we found an overall

positive correlation between the difference in representation factors (Δf = fp−fm) and the indif-

ference points in both groups of subjects (Pearson correlation; r = 0.56, p = 3.5×10−5; r = 0.68,

p = 4.0×10−6, for Groups 1 and 2, respectively; Fig 8C), and this relationship was stronger for

Group 2 (two-sided t-test, p = 7.3×10−6). We focused on the difference between the two repre-

sentation factors because this difference determines relative processing of the two attributes

and thus, the final choice.

Fig 8. Adjustments of neural representations to decoy presentation and competitive weighting of reward

attributes account for opposite patterns of change in risk preference. (A) Plotted are the distributions of the

difference in CRA between the models with and without adjustments of neural representations (i.e., explained CRA

due to neural adjustments) separately for each group of subjects. The dashed lines show the medians and an asterisk

shows a significant difference from zero (two-sided Wilcoxon signed-rank test, p< 0.05) (B) Plotted are the

distributions of the difference in CRA between the models with and without competitive weighting of reward

attributes (i.e., explained CRA due to competitive weighting) separately for each group of subjects. Both these models

include adjustments of neural representations. (C) Plotted is the difference of estimated representation factor for

probability and magnitude as a function of the indifference point. The green and orange histograms plot the fractions

of subjects (green: Group 1; orange: Group 2) with certain values of Δf. (D) Plotted is the change in the differential

weighting of reward probability and magnitude between the estimation and decoy tasks as a function of the

indifference point. Adjustments of neural representations to decoy presentation and competitive weighting of reward

attributes were both strongly correlated with the original degree of risk aversion. The vertical dashed line indicates the

indifference point of $46.70, corresponding to risk-neutrality.

https://doi.org/10.1371/journal.pcbi.1007427.g008
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These results indicate that in both groups, more risk-averse subjects (subjects with larger

indifference points in the estimation task) exhibited more sensitive processing of reward mag-

nitude than reward probability. These results dovetail with the correlation between the CRA

and the indifference points (Fig 5C), indicating that the adjustment of neural representations

was the main factor for driving changes in risk aversion due to decoy presentation. In addition,

we found that the differences in the representation factors (Δf) were overall positive in Group

2 (two-sided Wilcoxon signrank test, p = 0.03; Fig 8C inset) and negative in Group 1 (two-

sided Wilcoxon signrank test, p = 0.008). Note that a larger value for Δf translates to shallower

representation for reward probability than reward magnitude, and thus, our results can explain

the overall risk attitude in the two groups of subjects.

Second, we calculated the difference in CRA between the models with and without

competitive weighting of reward attributes in order to determine how much of the CRA was

influenced by this high-level process (both these models include adjustments of neural repre-

sentations). We found that for subjects in Group 1, the overall change in CRA due to inclusion

of competitive weighting was significantly smaller than zero (two-sided Wilcoxon signed-rank

test; median = -0.04, p = 4.8×10−7; Fig 8B). In contrast, for subjects in Group 2, the change in

CRA due to inclusion of competitive weighting was significantly greater than zero (two-sided

Wilcoxon signed-rank test; median = 0.02, p = 2.0×10−6). These results indicate that competi-

tive weighting gives rise to a decrease (increase) in risk aversion in Group 1 (respectively,

Group 2), which is the opposite of the effect of adjustments in neural representations. There-

fore, competitive weighting of reward attributes, which closely resembles selective attentional

modulation, can partially compensate for the divergence of risk preference in the two groups

of subjects (Fig 8A) due to adjustments in value representation.

Interestingly, competitive weighting of reward attributes was also strongly correlated with the

original degree of risk aversion (indifferent point). Specifically, we found significant negative

correlations between the changes in the differential weighting of reward probability and magni-

tude between the estimation and decoy task ([wp−wm]decoy−[wp−wm]estimation) and the indiffer-

ence points (Pearson correlation; r = −0.42, p = 8.2×10−4; r = −0.53, p = 7.8×10−5, for Groups 1

and 2, respectively; Fig 8D). This relationship was stronger for Group 2 (two-sided t-test,

p = 0.003) indicating that similar to low-level neural adjustments, high-level changes in attribute

weighting were also more strongly correlated with the original risk aversion in this group.

Note that wp and wm measure the weights of reward probability and magnitude on the final

choice, respectively, and thus the differential weighting of reward probability and magnitude

([wp−wm]estimation) measures the degree of risk aversion in the binary gambling (estimation) task

for each individual. As a result, a decrease in the differential weighting of reward probability and

magnitude between the estimation and decoy tasks ([wp−wm]decoy−[wp−wm]estimation)<0) would

give rise to more risk-seeking behavior and vice versa. The negative correlation between changes

in differential weighting of reward probability and magnitude and the original degree of risk

aversion shows that high-level adjustments to decoy presentation (due to competitive weighting

of reward attributes) can push risk preference toward risk neutrality.

Together, results of fitting based on our model reveal how two separate mechanisms drive

subjects’ risk behavior during multi-attribute choice and give rise to opposite changes in risk

preference. On the one hand, low-level adjustments of value representation cause more risk

aversion proportional to individuals’ degree of risk aversion in the binary gambling task. On

the other hand, high-level competitive weighting of reward attributes gives rise to more risk-

seeking behavior by increasing the relative weight for probability and magnitude inversely pro-

portional to individuals’ original degree of risk aversion.
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Discussion

Previous studies on choice between multiple options have illustrated that context effects are

general features of human choice behavior [1,2,5,6,8,9,35] and moreover, revealed great indi-

vidual variability across different types of choice [7,13,15,23,30–32], indicating that multiple

processes are involved in context-dependent choice. Here, we used choice between multiple

risky options to study how context effects are influenced by individuals’ risk attitudes and neu-

ral adaptation on different timescales. With a large cohort of subjects and a new computational

model, we explored individual variability in how reward information is processed and how it

influences context effects.

To our surprise, we did not observe any evidence for the effects of neural adaptation on the

order of 100 trials on decoy effects. Although this null result could be due to many factors, pre-

vious studies suggest that value representations adapt to the range of reward values available in

a given condition (e.g., block of trials). For example, Padoa-Schioppa [27] has shown that the

sensitivity of orbitofrontal cortex (OFC) neurons encoding reward value is inversely propor-

tional to the range of values for the available options, and this adaptation can result in optimal

coding of reward value [36]. Moreover, neural adaptation is prevalent in different brain areas

[37–41] and could strongly influence context effects. Interestingly, two recent studies have

shown that OFC neurons signal context-dependent reward value only during free choice [42]

and contribute to decision making in different contexts [43], indicating that neural adaptation

in OFC could contribute to value-based decision making.

The lack of evidence for the contribution of long-term neural adaptation to context effects

in our data could be due to many factors including ineffectiveness of our manipulation, indi-

vidual variability, etc. Nonetheless, our results suggest that certain neural computations, such

as long-term adaptations to the range of reward attributes, are performed only when they

allow more flexible behavior [44–47]. Moreover, context effects could be influenced by adapta-

tions to other aspects of reward information such as mean, variance, and skewness, none of

which was manipulated in our study. Despite finding null results for range manipulation, the

control and range-manipulation conditions together provided us with a large dataset to inves-

tigate individual variability and behavioral phenotype with respect to decoy effects.

Using our large dataset, we found that context effects strongly depend on individuals’

degree of risk aversion in the binary gambling task. Specifically, using a clustering method, we

identified two groups of subjects with different patterns of decoy effects. Subjects in the one

group exhibited consistently significant decoy effects and increased risk aversion due to decoy

presentation. In contrast, subjects in the other group did not show consistent decoy effects and

became more risk seeking due to decoy presentation. We found that subjects in the first group

were more risk averse when choosing between two gambles. Thus, for the first time, to the best

of our knowledge, we were able to identify distinct behavioral “phenotypes” in terms of context

effects and the influence of risk attitudes on these effects.

We note that despite the post-hoc nature of clustering analyses, our findings based on these

analyses are valid because of the size of our datasets and because of the cross-validated and

agonistic clustering method we used, ensuring that there was no overfitting and no knowledge

of data was used to determine the number of clusters, etc. Important to our finding on the rela-

tionship between risk attitudes and context effects is that risk aversion was measured during

the binary gambling (estimation) task that was performed before the decoy task and its results

were not used for clustering of decoy effects. Nevertheless, future experiments can be used to

further validate our results. Together, our results suggest that understanding individual vari-

ability could be very informative about high-level cognitive functions and their interactions

with low-level neural processes.
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Changes in risk preference due to decoy presentation (measured by the CRA in this study)

could happen due to changes in representations of reward attributes, changes in how reward

probability and magnitudes are combined, or both. We incorporated two types of processes in

our models (change in representations and competitive weighting of reward attributes) in

order to pinpoint which mechanism(s) underlies the observed change in risk preference.

Based on the fit of experimental data, we conclude that both types of changes contribute to the

observed shifts. We also estimated how much of the CRA is due to changes in representations

or due to competitive weighting of reward attributes and found the former to be more impor-

tant. Understanding how our findings apply to context effects for choice between non-risky

options requires additional experiments, but a similar computational approach can be applied

to understand the results. We speculate that factors such as saliency of certain attributes or loss

aversion could similarly drive attention when more than two options are available, resulting in

a shift in those measured factors when going from binary choice to choice between multiple

options.

Although extant models of context-dependent choice assume that context effects occur due

to either high-level cognitive or low-level neural processes, we found that both processes are

necessary to account for the complex pattern of decoy effects. For example, it has been shown

that adjustments of reward value representations can contribute to context effects via different

neural mechanisms such as range normalization [23,24] or divisive normalization [25,40,48].

We found that these adjustments can account for some but not all of the observed context

effects. High-level models rely on different cognitive processes to account for context effects,

including attentional switching to different choice attributes, menu-dependent evaluation of

choice attributes, competition between attribute processing to enhance contrast between cer-

tain attributes [1,14,15,17–21,49], and a more recent model based on rank-dependent weight-

ing of information according to the salience of the sampled information [50]. In addition to

adjustments to the set of options on each trial, we found that the model that best fit the experi-

mental data includes competitive weighting of reward probability and magnitude. Therefore,

the additional high-level mechanism included in our model shares many general features of

previous high-level models. We note that we did not perform model comparison with existing

models because our goal here was to link context effects to risk aversion. Therefore, despite

being able to reveal this link, our proposed model may not be the only model that can capture

our experimental results.

Finally, our model revealed the relationship between context effects and risk preference

within individuals. Specifically, we found that both low-level adjustments in value representa-

tion due to decoy presentation and high-level adjustments in weighting of reward attributes,

perhaps via attentional modulations, were correlated with the original degree of risk aversion

within individuals but in opposite directions. The opposite modulations of low-level and high-

level processes shifted risk preference toward risk-aversion and risk-seeking behavior, respec-

tively, and created a distinct pattern of choice behavior in a more complex task.

Materials and methods

Ethics statement

The study was approved by the Institutional Review Board of Dartmouth College. A consent

form was obtained from each subject prior to participating in the experiment.

Subjects

In total, 108 healthy Dartmouth College students with normal or corrected to normal vision

participated in the study (50 females and 58 males): 38 exclusively in the control condition, 48
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exclusively in the range-manipulation condition, and 22 in both conditions, resulting in 130

sets of data. Therefore, 60 and 70 datasets correspond to the control and range-manipulation

conditions, respectively. Data from all subjects were included in the data analyses. Subjects

were compensated with a combination of money and “t-points,” that are extra-credit points

for classes within the department of Psychological and Brain Sciences at Dartmouth College.

More specifically, in addition to the base rate of $10/hour or one t-point/hour, subjects were

compensated by up to $10/hour depending on the gambles they chose during the tasks (see

below).

Experimental paradigm

Subjects performed two gambling tasks consisting of an estimation and a decoy task. More-

over, there were two conditions within the decoy task: control and range-manipulation. In

both tasks, subjects were told to select the gamble they believed would result in more reward

considering both options’ reward probabilities and magnitudes. We told the subjects that they

would only be paid based on the outcome of one of their randomly selected gambles in each

task; therefore, every trial was equally relevant to their final payoff. The estimation task was

performed first followed by the control and range-manipulation conditions of the decoy task.

The order of the control and range-manipulation conditions was randomized between

subjects.

In the estimation task (70 trials), subjects had to choose between two gambles defined by

the probability p of earning monetary reward m, (p,m) (Fig 1A). The two reward attributes

(probability and magnitude) were represented on the screen using two different colors (red

and green). The target (T) gamble was low-risk and had a low reward magnitude (p = 0.7, m =

$20±2), while the competitor gamble (C) was high-risk and had a variable reward magnitude

(p = 0.3, m = $30−$80). On each trial of this task, two gambles appeared on the screen with the

message “Evaluate” on the top of the screen. Subjects had 4 seconds to evaluate both gambles

and decide their preferred gamble. When the 4 seconds were over, the message changed to

“Choose,” and subjects had 1 second to make their selection using the keyboard. Once the

selection was made, they could see their choice for one second. Subsequently, a fixation cross

appeared on the screen indicating that the next trial was about to start. The choice data of the

subject in this task was used to determine the subject’s attitudes toward risk. This information

was then used to tailor equally preferable target and competitor gambles (for each subject) in

the decoy task.

The decoy task was used to determine how the presence of a third gamble changed the pref-

erence between the target and competitor gambles. During each trial of the decoy task, three

gambles (presented on the same horizontal plane) and a message on top of the screen saying

“Evaluate” appeared for 6 seconds (Fig 1B). After the evaluation period, the message changed

to “Choose” and one of the gambles was simultaneously removed. Subjects had 1 second to

choose their preferred gamble from the remaining two using the keyboard. We allowed a short

amount of time for submitting a response in order to avoid re-evaluation of the remaining

options. After making a choice, their selected gamble appeared for 1 second, followed by a fixa-

tion cross indicating that the next trial was going to start. The target and the competitor gam-

bles were tailored for each subject to be equally preferable using the subjective indifference

point computed from the estimation task (see below). The third gamble (decoy) could be in

one of the following four positions in the attribute space (Fig 1C): D1 decoys, which were bet-

ter than the competitor gamble in terms of both reward probability and magnitude but were

better than the target only in terms of magnitude (asymmetrically dominant); D2 decoys,

which were worse than the competitor in both probability and magnitude but were worse than
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the target only in terms of probability (asymmetrically dominated); D3 decoys, which were

better than the target in both probability and magnitude but were better than the competitor

only in terms of probability (asymmetrically dominant); and D4 decoys, which were worse

than the target in both probability and magnitude but were better than the competitor only in

terms of probability (asymmetrically dominated). Therefore, decoys could be asymmetrically

dominant or asymmetrically dominated. Four decoy types were presented equally (30 times

each), and the decoy type was pseudo-randomly assigned in every trial.

Overall, each subject performed 120 trials in the control condition and 150 trials in the

range-manipulation condition of the decoy task. In 2/3 of the trials, the decoy gamble disap-

peared, whereas in the remaining 1/3 of the trials, either the target or the competitor was ran-

domly selected to disappear in order to make decoy identification impractical. Removing the

decoy before choice created the so-called phantom decoy effect, as the decoy was not available

in the choosing portion of the trial. This design allowed us to measure the effect of asymmetri-

cally dominant decoys that could not be studied otherwise. The trials in which either the target

or the competitor disappeared were not considered in the analyses. Because we allowed only

one second for submitting a response, subjects could miss a significant percentage of trials

(median of missed trials was equal to 12%). To avoid losing too many trials, we added any

missed trials back into the subject’s set such that each subject completed the same number of

total trials. However, due to trial replacement, it took longer for subjects (that missed many tri-

als) to perform the experiment, and consequently, some subjects were unable to complete the

task. More specifically, we terminated the experiment if it took longer than 60 minutes to com-

plete or if the subject missed more than 15 trials in a row. Overall, these criteria resulted in ter-

mination of experiments for 17 unmotivated subjects.

In the control condition, the target was low-risk and had a low reward magnitude (p = 0.7

±0.05, m = $20±2), and the competitor was high-risk and had a variable reward magnitude

(p = 0.3±0.05, m = $m0±2), where m0 is the indifference point (see Eq 1 below) obtained in the

estimation experiment. Specifically, the magnitude value of the competitor was tailored for

each subject based on their data from the estimation task such that the competitor and the tar-

get were equally preferable for every subject. In addition, reward probability and magnitude of

the decoy gambles were determined relative to the locations of adjacent target or competitor

gamble in the attribute space. More specifically, we calculated decoy attributes by shifting

reward probability and magnitude of the target (or competitor) by ±5%, ±15%, or ±30%. How-

ever, to avoid very small and large reward attributes, we constrained reward probabilities and

magnitudes to [0.2, 0.85] and [$15, $70], respectively. The range-manipulation condition was

similar to the control condition except that 20% of the trials presented a set of “high-range”

gambles. The reward probability and magnitude of the high-range gambles were the following:

(p = 0.9±0.05, m = $10±2), (p = 0.1±0.05, m = $90±2), and (p = 0.5±0.05, m = $20±2). The

high-range trials were removed from the subsequent analysis, as their only purpose was to

expand the range of gamble attributes and disrupt neural adaptation.

Data analysis

Subjects’ choice behavior in the estimation task was fit using a sigmoid function. More specifi-

cally, the probability of choosing the low-risk gamble (the gamble with reward probability pR =

0.7 and a reward magnitude of m = $20), plow−risk, was fit as a function of the reward magnitude

of the high-risk gambles, mhigh−risk:

plow� risk ¼
1

1þ eð
� ðmhigh� risk � m0Þ

s Þ

ðEq 1Þ
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where m0 corresponds to a reward value at which the high-risk gamble was equally preferable

to the low-risk gamble (i.e., the indifference point), and σ measures the stochasticity in choice.

In the decoy task, we computed the decoy efficacy (DEk) for each of four locations in the

attribute space that a decoy could appear as follows:

DEk ¼ PTðDkÞ � PT ðEq 2Þ

where PT(Dk) is the probability of choosing the target given the decoy k (k = {1,2,3,4}), and PT
is the probability of choosing the target gamble for a given subject regardless of the decoy loca-

tion. PT is calculated as the probability of choosing the target gamble across all four decoy

types. Importantly, decoy efficacies allowed us to measure decoy effects for each location rela-

tive to the overall subject preference for the target gamble (PT).

In order to fully characterize the change in preference due to the introduction of a decoy to

the choice set, we defined four orthogonal quantities (“decoy-effect” indices) based on linear

transformations of decoy efficacies and overall target selection as follows:

AE ¼
þDE1 � DE2 � DE3 þ DE4

4
¼
þPTðD1Þ � PTðD2Þ � PTðD3Þ þ PTðD4Þ

4

FE ¼
� DE1 � DE2 þ DE3 þ DE4

4
¼
� PTðD1Þ � PTðD2Þ þ PTðD3Þ þ PTðD4Þ

4

DD ¼
þDE1 � DE2 þ DE3 � DE4

4
¼
þPTðD1Þ � PTðD2Þ þ PTðD3Þ � PTðD4Þ

4

CRA ¼
P

i
PTðDiÞ

4
� 0:5

ðEq 3Þ

The first index, the overall attraction effect (AE), is computed by averaging decoy efficacies

over all decoy types and considering reversed signs for the asymmetrically dominant and dom-

inated decoys for the target and competitor ([D1-D2] versus [-D3+D4]). On the one hand,

presentation of D1 and D4 decoys can increase the preference for the target by asymmetrically

dominating the competitor or being dominated by the target, respectively. On the other hand,

D2 and D3 decoys can reduce the preference for the target by being asymmetrically dominated

by the competitor and dominating the target, respectively. Therefore, the AE measures the

overall attraction effect for both dominant and dominated decoys, or more specifically, how

much the presentation of the decoy increases preference for the target relative to the competi-

tor. The second index, the overall frequency effect (FE), quantifies the overall tendency to

choose the gamble next to the decoy in terms of both reward probability and magnitude (i.e.,

the competitor for D1 and D2 decoys, and the target for D3 and D4 decoys). The third index,

the dominant vs. dominated (DD), quantifies the overall difference between the effects of

dominant and dominated decoys. The fourth index measures the overall change in risk aver-

sion (CRA) due to the decoy presentation. Note that due to the symmetry in decoy presenta-

tion and because the target and competitor gambles were set based on the indifference point in

the estimation task, these gambles should be selected equally (with probability equal to 0.5) in

the absence of any changes in risk aversion due to decoy presentation. These four decoy-effect

indices are linear transformations of decoy efficacies and could take a value between -0.5 and

0.5. Importantly, these indices are orthogonal to each other.

For analysis of the time course of decoy effects, we used a moving window with a length of

40 trials and a step size of 20 trials in order to calculate changes in decoy-effect indices and the

probability of choosing the target over time. The statistical test used for each comparison is

reported where it is mentioned, and the reported effect sizes are Cohen’s d values.
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Clustering analyses

To identify distinct patterns of decoy effects, we separated subjects into different clusters using

the k-means clustering method based on various sets of decoy-effect indices as features and for

different numbers of clusters. Specifically, we tried all possible exclusive combinations of the

four decoy-effect indices to cluster subjects. The “silhouette” values were calculated for cluster-

ing data with different features and numbers of clusters. The silhouette values range from -1 to

1, where a high value indicates that the data point is well matched to its own cluster and poorly

matched to neighboring clusters. We found that clustering based on all four decoy-effect indi-

ces and into two clusters provides the best separation between data. We then used the cluster-

ing indices based on this model to quantify subjects’ behavior in each cluster/group.

Computational models

We extended a previous model of context-dependent choice by Soltani et al. [23] to include

the influence of high-level cognitive processes. The previous model only considered changes in

representations of reward probability and magnitude to account for decoy effects. In addition

to these low-level mechanisms, the new model also considered mechanisms for how reward

probability and magnitude are combined and how this combination is modulated by attention,

which we assumed to be high-level processes. We assumed that the values of gambles in a

given attribute dimension (reward magnitude and probability) are encoded by a neural popu-

lation selective to that attribute (attribute-encoding neurons). The output of attribute-encod-

ing neurons, in turn, projects to value-encoding neurons that compute the overall value of

each gamble (S5 Fig).

More specifically, we assumed that the response of neurons encoding attribute i (i = {p,m}),

ri, is a linear function of the attribute value vi as follows:

riðvi; fiÞ ¼ 0 if vi < ctiðfiÞ

riðvi; fiÞ ¼ kðvi � ctiðfiÞÞ if ctiðfiÞ � vi � csiðfiÞ;

riðvi; fiÞ ¼ 1 if vi > csiðfiÞ

ki ¼
1

csiðfiÞ � ctiðfiÞ

ðEq 4Þ

where k is the slope, ctiðfiÞ and csiðfiÞ are the threshold and saturation points, respectively, and fi
is the representation factor that determines the dynamic range (i.e., the interval between

threshold and saturation) of neural response for attribute i. Specifically, the threshold and satu-

ration points depend on the representation factor and the attribute values of the gambles in

the choice set as follows:

( ctiðfiÞ ¼
vi;min � fivi;nmin

1 � fi
if fi � 0

ctiðfiÞ ¼ vi;min � fiðvi;nmin � vi;minÞ if fi < 0

( csiðfiÞ ¼
vi;max � fivi;nmax

1 � fi
if fi � 0

csiðfiÞ ¼ vi;max þ fiðvi;max � vi;nmaxÞ if fi < 0

ðEq 5Þ

where vi,min and vi,nmin are the minimum and next to the minimum values of the presented

gamble in a given attribute, respectively; and vi,max and vi,nmax are the maximum and the next

to the maximum values of the presented gamble, respectively. Positive values of fi allow the
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dynamic range to extend beyond the minimum and maximum attribute values, whereas the

negative values limit the dynamic range between the minimum and maximum values [23].
Therefore, fi’s sign and magnitude determine the dynamic range of neural response.

The overall value of each gamble, V(X), is computed by a weighted sum of outputs from the

attribute-encoding neurons as follows:

VðXÞ ¼ wpðDkÞrpðXp; fpÞ þ wmðDkÞrmðXm; fmÞ ðEq 6Þ

where wi(Dk) is the weight of the connection from the attribute-encoding population i (i = {m,

p}) to the option-value population when decoy Dk was presented (k = {1,2,3,4}).

We considered an additive model instead of the multiplicative one often used in the litera-

ture for a few reasons. First, we wanted to make our new model consistent with the model of

Soltani et al. [23]. Second, although additive and multiplicative models provide very similar fit

of choice behavior, only additive models allow differential weighting of the two reward attri-

butes (e.g., via attentional mechanisms). In a multiplicative model, differential weighting of

attributes is only possible by adopting non-linear functions of reward magnitude and probabil-

ity (i.e., non-linear utility and probability weighting functions) and assuming that these func-

tions–which are assumed to be innate and fixed–change depending on decoy types. This

suggests critical limitations for multiplicative models in explaining flexible choice behavior

[51].

For some model simulations and fitting, we assumed a single neural representation factor f0
to capture neural adjustments for both reward probability and magnitude:

fp ¼ f0; fm ¼ � f0 ðEq 7Þ

where fp and fm are neural representation factors for reward probability and magnitude,

respectively. For other simulations and fitting, we used separate representation factors (fp and

fm) to allow more flexible representation.

To determine the weights of the connections between the attribute-encoding and option-

value encoding neurons (wi(Dk)), we assumed a competitive weighting mechanism as follows:

wpðDkÞ ¼ 0:5þ ðb0 þ bkÞ

wmðDkÞ ¼ 0:5 � ðb0 þ bkÞ
ðEq 8Þ

(

where b0 is a constant bias and bk is the location-dependent bias for decoy Dk. The constant

bias, b0, could be a free parameter or could be set based on the choice behavior in the estima-

tion task as follows:

b0 ¼
wp � wm

2
ðEq 9Þ

where wp and wm are estimated weights for the reward probability and magnitude in the esti-

mation task, respectively (using Eq 6). Note that the differential weighting of reward probabil-

ity and magnitude ([wp−wm]) in the estimation task was strongly correlated with the

indifference points (Pearson correlation; r = 0.92, p = 2.8×10−8), indicating that the former

quantity measures the “original” degree of risk aversion for each subject.
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The location-dependent biases, bk, could be different for the four decoy types or coupled

between certain decoys as follows:

b1 ¼ b2 ¼ b12; b3 ¼ b4 ¼ b34 ðEq 10Þ

b1 ¼ b3 ¼ b13; b2 ¼ b4 ¼ b24 ðEq 11Þ

b1 ¼ b4 ¼ b14; b2 ¼ b3 ¼ b23 ðEq 12Þ

Although we considered all the above possibilities to determine the weights, only coupling

based on Eq 10 does not require identification of decoys and is plausible. Finally, we also

assumed separate location-dependent biases for probability and magnitude in order to con-

struct a more-flexible model.

Overall, different choices for setting similar or separate parameters for representation fac-

tors and attribute weighting resulted in the generation of 17 models. We used these 17 models

to fit individuals’ choice data in terms of decoy-effect indices using three measures for good-

ness-of-fit. First, we performed cross validation to compare the prediction error of decoy-effect

indices to determine the best model. Specifically, we used 70% of data (randomly chosen) to

estimate the best-fitting parameters and then calculated the model prediction errors over the

remaining 30% of data. One hundred different data partitions were generated for estimation

and prediction purposes. We also calculated the Akaike information criterion (AIC) and

Bayesian information criterion (BIC) based on all data from each individual subject using the

following equations:

AIC ¼ 2� kþ n� lnðRSSÞ; ðEq 13Þ

BIC ¼ n� lnðRSSÞ þ k� lnðnÞ; ðEq 14Þ

where k is the number of parameters for each model, n represents the total number of trials,

and RSS indicates the residual sum square of the model. Overall, we found that the model with

separate representation factors (fp and fm) and similar location-dependent biases for decoys

next to the target and competitor (Eq 10) provides the best fit. Therefore, we chose this model

to estimate the representation factors and weights of connections for each subject and how

they are related to individuals’ risk preference.

Model recovery and falsification

For model recovery, we generated data for the decoy task using 200 different instances of each

model (total 17 models). We then fit the generated data with all models in order to find the

best fitting model based on AIC (similar results are obtained using BIC). The results can be

summarized by a confusion matrix that plots the percentage of instances that a model used to

generate the data was best fit by the same or other models (S8 Fig). We found that the majority

of models can predict their own generated data better than the other competing models. We

also calculated the estimation error for 5 parameters of the best model (Model # 4 in Table 1).

For this analysis, we generated 500 sets of model parameters. We did not find any significant

difference between the estimation and actual model parameters, indicating that the fitting

method can provide an unbiased estimate of model parameters (S9 Fig).

For model falsification and to further show the importance of both processes, we simulated

behavior in the decoy task using the best model (Fig 7) and models with only low-level adjust-

ments of neural representations (S6 Fig) or high-level adjustments of attribute weights on the

final choice (S7 Fig).
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Supporting information

S1 Fig. Behavior of subjects during the estimation task. (A) Plotted is the probability of

choosing the low-risk gamble (target) as a function of the reward magnitude of the high-risk

gambles for an individual subject. The solid curve shows the fit using a sigmoid function. Each

black dot represents an individual subject’s data. (B) Distribution of estimated indifference

points in estimation task across subjects. The indifference point is defined as the magnitude of

a high-risk gamble that was as equally preferred as the low-risk gamble. The dashed line indi-

cates the median. Overall, we observed large variability for the indifference point across sub-

jects.

(TIF)

S2 Fig. Quality of clustering based on various combinations of decoy-effect indices (noted

on the y-axis) and number of clusters (x-axis). Reported are silhouette values for a given

number of clusters and combination of decoy-effect indices (AE: attraction effect; FE: fre-

quency effect; DD: dominant vs. dominated; CRA: change in risk aversion). The silhouette can

take any values between -1 and 1; higher values indicate that each data point (a measure or set

of measures) is closely matched to its own cluster and poorly matched to neighboring clusters.

Best clustering results are achieved using all decoy-effect indices and two clusters.

(TIF)

S3 Fig. Identified patterns of decoy effects using data from subjects who performed the

control condition first and those who performed the control condition only (combined-

control data). (A–B) Probability of selecting the target for different decoy types in the two

groups of subjects identified by clustering. Each gray circle shows the average probability that

an individual subject selected the target for a given decoy location, and black squares indicate

the average probability across all subjects. Error bars show the s.e.m., and an asterisk shows

that the median of choice probability across subjects for a given decoy location is significantly

different from 0.5 (two-sided Wilcoxon signed-test, p< 0.05). A gray asterisk indicates that

the difference is not significant after Bonferroni correction. (C–D) Decoy efficacies in the two

groups of subjects. Subjects in Group 1 exhibited strong, consistent decoy effects (C), whereas

the decoy effects were inconsistent in Group 2 (D). (E–F) Plot shows decoy-effect indices for

individuals in the two groups of subjects. The first group showed a strong attraction effect and

an overall increase in risk aversion. The second group showed a significant decrease in risk

aversion.

(TIF)

S4 Fig. Identified patterns of decoy effects using data from subjects who performed the

range-normalization condition first and those who performed the range-normalization

condition only (combined-RN data). (A–B) Probability of selecting the target for different

decoy types in the two groups of subjects identified by clustering. Each gray circle shows the

average probability that an individual subject selected the target for a given decoy location,

and black squares indicate the average probability across all subjects. Error bars show the s.e.

m., and an asterisk shows that the median of choice probability across subjects for a given

decoy location is significantly different from 0.5 (two-sided Wilcoxon signed-test, p< 0.05). A

gray asterisk indicates that the difference is not significant after Bonferroni correction. (C–D)

Decoy efficacies in the two groups of subjects. Subjects in Group 1 exhibited strong, consistent

decoy effects (C), whereas the decoy effects were inconsistent and limited to decoys next to the

less risky gamble (target) in Group 2 (D). (E–F) Plot shows decoy-effect indices for individuals

in the two groups of subjects. The first group showed a strong attraction effect and an overall

increase in risk aversion. The second group showed a significant attraction effect and a
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decrease in risk aversion.

(TIF)

S5 Fig. Schematic of the extended model with both low-level and high-level mechanisms.

Values of gambles in a given attribute (reward magnitude and probability) are encoded by the

corresponding attribute-encoding population of neurons. We assumed the response of attri-

bute-encoding neurons (response curve) to be a linear function of the attribute value. Repre-

sentation factor fi (i = {p,m}) determines dynamic range (threshold and saturation points) of

neural response as well as the slope of the response curve for each attribute. We assumed that

an additional competitive mechanism could modulate the weight of each attribute (wm and

wp) on the overall value of each gamble.

(TIF)

S6 Fig. A model with only adjustments of value representations cannot capture all aspects

of the experimental data. Plotted are fit of individual subjects based on a model that has

adjustments to decoy presentation similar to the original model by Soltani et al. [23]. (A, C)

Each gray circle shows the probability of selecting the target for different decoy types based on

the model fit for individual subjects in the first (A) and second (C) groups of subjects. For

comparison, the average value across subjects (black dashed lines) and their fits (gray solid

lines) are plotted as well. (B, D) Plots show four measures for quantifying different effects of

decoys on preference based on the cited model fit for individual subjects in the first (B) and

second (D) groups of subjects (AE: attraction effect; FE: frequency effect; DD: dominant vs.

dominated; and CRA: change in risk aversion).

(TIF)

S7 Fig. A model with only competitive weighting of reward attributes cannot capture all

aspects of the experimental data. Plotted are fit of individual subjects based on a model that

only assumes a competitive mechanism to modulate the weight of each attribute (wm and wp)

on the overall value of each gamble. (A, C) Each gray circle shows the probability of selecting

the target for different decoy types based on the model fit for individual subjects in the first

(A) and second (C) groups of subjects. For comparison, the average value across subjects

(black dashed line) and their fits (gray solid lines) are plotted as well. (B, D) Plots show four

measures for quantifying different effects of decoys on preference based on the cited model fit

for individual subjects in the first (B) and second (D) groups of subjects (AE: attraction effect;

FE: frequency effect; DD: dominant vs. dominated; and CRA: change in risk aversion).

(TIF)

S8 Fig. Model recovery. Our fitting method was able to identify the correct model. The

value of each cell reports the percentage of instances that a model used to generate the data

(shown on the x-axis) was best fit by the same or other models (fitting model, shown on the y-

axis). The model corresponding to each number is provided in Table 1. The model with the

minimum AIC was assigned as the best model. The probability for assigning the best model by

chance is ~6% and thus, values above 19% on the diagonal indicate that in most cases the cor-

rect model was identified. For these simulations, we generated 200 sets of data based on a

given model using parameters from the fit of individual subjects’ data. We then fit those data

with all the models in order to calculate AIC and determine the best fitting model.

(TIF)

S9 Fig. Parameter recovery for the best model. Our method was able to provide unbiased

estimates of 5 model parameters. Plots show the difference between estimated and real values

for fp (A), fm (B), wp (C), wm (D), and σ (E). Orange dashed and solid gray lines show zero and
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median, respectively. None of the differences are significantly different from zero. Estimation

errors are calculated based on 500 sets of randomly generated model parameters.

(TIF)

S10 Fig. Plots show the estimated representation factor for probability (A) and magnitude

(B) as a function of the indifference points within each individual. The green and orange

inset histograms plot the fractions of subjects (green: Group 1; orange: Group 2) with certain

values of representation factor. Neural representations to decoy presentation of reward attri-

butes were both strongly correlated with the original degree of risk aversion in both groups,

reflecting competitive adjustments in how the two reward attributes were processed in the

decoy task.

(TIF)

S1 Table. Comparison of the average probability of selecting the target and decoy efficacies

between different decoy types using Tukey’s HSD post-hoc test, separately for the control

and range-manipulation conditions. Reported are p-values for comparison of a pair of decoy

types (rows) and for different quantities and experimental conditions (columns). The orange

shading indicates p-values that are smaller than 0.05 and thus differences that are statistically

significant.

(DOCX)

S2 Table. Comparison of the average probability of selecting the target and decoy efficacies

between different decoy types using Tukey’s HSD post-hoc test, separately for the two clus-

ters of subjects. Reported are p-values for comparison of a pair of decoy types (rows) and for

different groups and quantities (columns). The orange shading indicates p-values that are

smaller than 0.05 and thus differences that are statistically significant.

(DOCX)
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