
RESEARCH ARTICLE

Generation of Binary Tree-Child phylogenetic

networks

Gabriel CardonaID
1*, Joan Carles Pons1, Celine Scornavacca2

1 Department of Mathematics and Computer Science, University of the Balearic Islands, Ctra. de

Valldemossa Ctra. de Valldemossa km. 7.5. 07122 - Palma, Spain, 2 Institut des Sciences de l’Evolution (ISE-

M), Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier Cedex 5, France

* gabriel.cardona@uib.es

Abstract

Phylogenetic networks generalize phylogenetic trees by allowing the modelization of events

of reticulate evolution. Among the different kinds of phylogenetic networks that have been

proposed in the literature, the subclass of binary tree-child networks is one of the most stud-

ied ones. However, very little is known about the combinatorial structure of these networks.

In this paper we address the problem of generating all possible binary tree-child (BTC) net-

works with a given number of leaves in an efficient way via reduction/augmentation opera-

tions that extend and generalize analogous operations for phylogenetic trees, and are

biologically relevant. Since our solution is recursive, this also provides us with a recurrence

relation giving an upper bound on the number of such networks. We also show how the

operations introduced in this paper can be employed to extend the evolutive history of a set

of sequences, represented by a BTC network, to include a new sequence. An implementa-

tion in python of the algorithms described in this paper, along with some computational

experiments, can be downloaded from https://github.com/bielcardona/TCGenerators.

Author summary

Phylogenetic networks are widely used to represent evolutionary scenarios with reticu-

lated events, and among them, the class of binary tree-child (BTC for short) networks is

one of the most studied ones. Despite its importance, BTC networks, as mathematical

objects, are not yet fully understood. In this paper we introduce two operations (reduction

and augmentation) on the set of BTC networks that generalize well known operations on

phylogenetic trees, and show how they can be used to analyze and synthesize any BTC

network. Apart from the mathematical formulation of the problem, we exhibit how these

operations can be used in biological applications to add a new sequence to a given BTC

network. This can be useful, for instance, to update the network without redoing the

whole search, or in a phylogenetic placement perspective. We also obtain a recursive for-

mula for a bound on the number of such networks. We have implemented the algorithms

in this paper, made them available on a public repository, and used this implementation

to perform some computational simulations.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cardona G, Pons JC, Scornavacca C

(2019) Generation of Binary Tree-Child

phylogenetic networks. PLoS Comput Biol 15(9):

e1007347. https://doi.org/10.1371/journal.

pcbi.1007347

Editor: Erik van Nimwegen, University of Basel,

SWITZERLAND

Received: March 14, 2019

Accepted: August 20, 2019

Published: September 11, 2019

Copyright: © 2019 Cardona et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: Research of GC and JCP has been

partially supported by the Spanish Ministry of

Science, Innovation and Universities (http://www.

ciencia.gob.es/) and European Regional

Development Fund (https://ec.europa.eu/regional_

policy/es/funding/erdf/) projects DPI2015-67082-P

and PGC2018-096956-B-C43. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0001-8845-4290
https://github.com/bielcardona/TCGenerators
https://doi.org/10.1371/journal.pcbi.1007347
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007347&domain=pdf&date_stamp=2019-09-23
https://doi.org/10.1371/journal.pcbi.1007347
https://doi.org/10.1371/journal.pcbi.1007347
http://creativecommons.org/licenses/by/4.0/
http://www.ciencia.gob.es/
http://www.ciencia.gob.es/
https://ec.europa.eu/regional_policy/es/funding/erdf/
https://ec.europa.eu/regional_policy/es/funding/erdf/

Introduction

Phylogenetic networks are, mathematically, a generalization of phylogenetic trees that, con-

taining nodes with more than one ancestor, permit to model reticulated evolutionary events

such as recombinations, lateral gene transfers and hybridizations. We note here that other rep-

resentations, for example gene tree-species tree reconciliations [1], permit to model scenarios

including other classes of evolutionary events such as duplications, losses and transfers of

genes.

In this paper, we shall focus on directed phylogenetic networks (see [2] for a short survey

on the phylogenetic network paradigm also covering undirected phylogenetic networks).

Mathematically, such networks are, in the broadest sense, directed acyclic graphs with a single

node with no incoming arcs –the root– representing the common ancestor of all the Opera-

tional Taxonomic Units (OTUs for short) under study, which are represented by the nodes

with no outgoing arcs –the leaves– of the graph; internal nodes represent either (hypothetical)

speciations or (hypothetical) reticulated events. Nodes with a single incoming arc –tree nodes–

model extant or non-extant OTUs, and arcs between tree nodes model direct descent through

mutation; nodes with two incoming arcs –hybrid nodes– model reticulated events involving

the OTUs corresponding to the two parents of the node under consideration, and whose

resulting OTU is modeled as its single child. Unfortunately, this definition is too broad, both

for representing biologically-meaningful evolutionary scenarios, and for giving objects that

can be efficiently handled.

So far, several restrictions on this general definition have been introduced in the literature.

A few of them are based on biological considerations, while the majority have been introduced

to artificially narrow the space of networks under study. This led to the introduction of a pano-

ply of different classes of phylogenetic networks, such as time-consistent networks [3], regular

networks [4], orchard networks [5], galled trees [6] and galled networks [7], level-k networks

[8], tree-sibling networks [9], tree-based networks [10] and LGT networks [11], just to name a

few.

In this paper, we shall focus on binary tree-child networks (BTC networks, for short),

which were introduced by [9] and are one of the most studied classes of phylogenetic networks

[12–15]. Mathematically, being tree-child means that every internal node is compelled to have

at least a child node that is a tree node. BTC networks have been introduced in order to adjust

a complex biological reality in a computationally tractable way. Although the original motiva-

tion for these networks is not biological, and hence they present some limitations, the mathe-

matical constraint on BTC networks translates biologically as follows: every non-extant OTU

is required to have at least an offspring species that evolved only through mutation. This

means that not all biologically-meaningful evolutionary scenarios can be modeled with BTC

networks. For example, the scenarios depicted in Fig 1(a) and 1(e) are not allowed since, in

these cases, the node labeled with u has no child with a single incoming arc. Still, BTC net-

works are one of the most permissive classes of phylogenetic networks and they permit to

model quite a lot of meaningful scenarios, and those that cannot be modeled can be approxi-

mated pretty well, see Fig 1.

The combinatorial study of phylogenetic networks is nowadays a challenging and active

field of research. Nevertheless, the problem of counting how many phylogenetic networks are

in a given subclass of networks is still open even for long-established classes. More precisely,

this problem has been only recently solved for galled networks [18]; for other classes, including

tree-child networks, we only have asymptotic results [19, 20]. Associated to the problem of

counting networks, we find the problem of their “injective” generation, i.e. without having to

check for isomorphism between pairs of constructed networks.

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 2 / 29

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007347

The main result of this paper is a systematic way of recursively generating, with unicity, all

BTC networks with a given number of leaves. This generation relies on a pair of reduction/

augmentation operations –both producing BTC networks– where reductions decrease by one

the number of leaves in a network, and augmentations increase it. The idea of using pairs of

operations has already been used to deal either with other classes of phylogenetic networks

[21, 22], or for BTC networks but without the unicity feature [5].

In order to give a biological meaning to these augmentation operations, assume that the

evolutive history of a given group of species is known and modeled by a BTC network, and a

new species has to be taken into account. The augmentation operation determines exactly how

the phylogenetic network has to be modified, and what is the minimum information needed

to establish this modification, in order to model the evolution of the group of species with the

newly incorporated one.

As an interesting side product, this procedure gives a recursive formula providing an upper

bound on the number of BTC networks. Note also that being able to generate all BTC net-

works with a given number of leaves may also be interesting as part of a divide-and-conquer

framework to reconstruct phylogenetic networks, where we start by computing BTC networks

on 3/5 leaves that are then combined together, as done for example in [23, 24].

The paper is organized as follows. In Section Methods, we review the basic definitions that

will be used throughout the paper. The main part of the paper is in Section Results, which is

split between different subsections. Subsection Reduction of networks is devoted to the reduc-

tion procedure, while in Subsection Generation of networks we introduce the augmentation

operation and prove that any BTC network can be obtained, in a unique way, via a sequence of

augmentation operations applied to the trivial network with one leaf. In Subsection Bounding

Fig 1. Limitations of BTC networks. The scenarios in (a) and (e) are not BTC networks since in both cases the node labeled with u
has no tree-node child. Still, the scenario in (a) can be approximated either by the scenario in (b) or by that in (c), both scenarios

being BTC networks. Also, if we are lucky enough to find an OTU between the hybrid event represented by the node u and that

represented by v, e.g. the node q in (d), then the hybrid event in v can be modeled. The same reasoning holds for the scenario in (e)

and those in (f,g,h). Thus, if the “true” network is not BTC, we can always find a BTC network those topology is not far from the true

one. In our example, the networks in (b,c) are both a head-moving rSPR [16] away from the true network in (a). The same holds for

the networks in (f,g) w.r.t. the one in (e). In general, each violation of the TC property, i.e. each hybrid node that has only hybrid

children, moves the reconstructible network a head-moving rSPR away from the true one. Note that the configuration in (a) is

known to generate severe indistinguishability issues [17].

https://doi.org/10.1371/journal.pcbi.1007347.g001

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 3 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g001
https://doi.org/10.1371/journal.pcbi.1007347

the number of networks, we show how to relax the conditions for the applicability of the aug-

mentation operation to obtain a recursive formula providing an upper bound on the number

of BTC networks. In Subsection An application to phylogenetic reconstruction, we give a con-

crete biological application of the methods we have developed. In Subsection Computational

experiments, we introduce the implementation of the algorithms presented in the paper, and

some experimental results, including the exhaustive generation of all BTC networks with up to

six leaves and an upper bound of their number up to ten leaves. Finally, in Section Discussion

we discuss how our reduction/augmentation operations extend and generalize analogous

operations for phylogenetic trees.

Methods

In this section we introduce the mathematical notations that are used in the rest of the paper.

Throughout this paper, a tree node in a directed graph is a node u whose pair of degrees

d(u) = (indegree u, outdegree u) is (1, 0) for the leaves, (0, 2) for the roots, or (1, 2) for internal
tree nodes; a hybrid node is a node u with d(u) = (2, 1). If two nodes u and v are linked by an

arc (u, v) we say that u is a parent of v, or that v is a child of u. Also, two nodes are siblings if

they have a common parent.

A binary phylogenetic network over a set X of taxa is a directed acyclic graph with a single

root such that all its nodes are either tree nodes or hybrid nodes, and whose leaf set is bijec-

tively labeled by the set X. In the following, we will implicitly identify every leaf with its label.

A binary phylogenetic network is tree-child if every node either is a leaf or has at least one

child that is a tree node [9]; in particular, the single child of a hybrid node must be a tree node.

We will denote by BT Cn the set of binary tree-child phylogenetic networks over the set [n] =

{1, . . ., n}.

An elementary node in a directed graph is a node u with d(u) = (1, 1) or d(u) = (0, 1). An ele-
mentary path p is a path u1, . . ., uk composed of elementary nodes such that neither the single

parent of u1 (if it exists) nor the single child of uk are elementary. We call these last two nodes

respectively the grantor (if this node is well-defined) and heir of the nodes in the elementary

path. In case of an elementary node, its grantor and heir are those of the nodes in the single ele-

mentary path that contains the given node. The elimination of an elementary path p consists in

deleting all nodes in p, together with their incident arcs, and adding an arc between the grantor

and the heir of p (provided that the grantor exists; otherwise, no arc is added). The elimination

of an elementary node is defined as the elimination of the elementary path that contains the

given node.

Given a node u, we can split it by adding a new node ~u, an arc ð~u; uÞ, and replacing every

arc (v, u) with ðv; ~uÞ. If u is a tree node, then ~u is an elementary node whose heir is u, and the

elimination of ~u recovers the original network. The successive splitting (say k times) of a tree

node u generates an elementary path formed by k nodes, whose heir is u, and whose elimina-

tion recovers the original network. Fig 2 illustrates the definitions given in this section.

Results

Reduction of networks

The goal of this subsection is to define a reduction procedure on BTC networks that can be

applied to any such network, and producing a BTC network with one leaf less. By successive

application of this procedure, any BTC network can thus be reduced to the trivial network

with a single leaf.

We start by associating to each leaf ℓ a path whose removal will produce the desired reduc-

tion (up to elementary paths).

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 4 / 29

https://doi.org/10.1371/journal.pcbi.1007347

Let ℓ be a leaf of a BTC network N. A pre-TH-path for ℓ is a path u1, . . ., ur = ℓ such that (see

Fig 3):

1. Each node ui in the path is a tree node.

2. For each i = 1, . . ., r − 1, the child of ui different from ui+1, denoted by vi, is a hybrid node.

3. For each i 6¼ j, we have that vi 6¼ vj.

A TH-path is a maximal pre-TH-path, i.e. a pre-TH-path that cannot be further extended.

Note that, since all nodes in a pre-TH-path p are tree nodes, if p can be extended by prepend-

ing one node, then this extension is unique. Hence, starting with the trivial pre-TH-path

formed by the leaf ℓ alone, and extending it by prepending the parent of the first node in the

path as many times as possible, we obtain a TH-path that is unique by construction. Let u1, . . .,

ur = ℓ be a TH-path; different possibilities may arise that make it maximal: (1) u1 is the root of

N; (2) the parent of u1, call it x, is a hybrid node; (3) x is a tree node whose both children are

tree nodes; (4) x is a parent of vi for some i 2 [r − 1]. We shall see in Lemma 1 that the first

case cannot hold; the other three possibilities are depicted in Fig 4.

For each leaf ℓ, we denote by TH(ℓ) its single TH-path and by TH(ℓ)1 the first node of this

path. Note that we allow the case r = 1. In this case, if we are not in a trivial BTC network (i.e. a

network consisting of a single node), the parent of ℓ is either a hybrid node, or a tree node

whose two children are tree nodes.

Lemma 1. Let N be a non-trivial BTC network and let ℓ be any of its leaves. Then, TH(ℓ)1

cannot be the root of N.

Fig 2. The definitions introduced in the methods section. For the network N in the figure (black nodes and arcs

only), we have the following: X = {1, 2, 3, 4} is the set of taxa, u is the root, x is a hybrid node and all other nodes are

internal tree nodes. If we split v twice by adding the elementary nodes e1 and e2 in grey, we have that (e1, e2) is an

elementary path with grantor and heir equal respectively to u and v. N is a binary tree-child network since both parents

v and w of the only hybrid node x have another child (1 and y, respectively) that is a tree node.

https://doi.org/10.1371/journal.pcbi.1007347.g002

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 5 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g002
https://doi.org/10.1371/journal.pcbi.1007347

Proof. Let u1, . . ., ur = ℓ be the path TH(ℓ) and assume for the sake of contradiction that u1

is the root of N. For each i = 1, . . ., r − 1, let vi be the hybrid node that is a child of ui and xi the

parent of vi different from ui (see Fig 5); recall that xi does not belong to TH(ℓ) by the defini-

tion of a pre-TH-path. Since u1 is the root of N, every node of N either belongs to the path

Fig 3. A pre-TH-path for the leaf ℓ. Tree nodes are represented by circles and hybrid nodes by squares; snake arrows represent

paths. The path inside the dotted box is a pre-TH-path for ℓ.

https://doi.org/10.1371/journal.pcbi.1007347.g003

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 6 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g003
https://doi.org/10.1371/journal.pcbi.1007347

TH(ℓ) or is descendant of a node in {vi j i 2 [r − 1]}. In particular, for each i 2 [r − 1], there

exists some σ(i) 2 [r − 1] such that xi is descendant of vσ(i), and since this node is descendant of

xσ(i), xi is descendant of xσ(i). Hence, starting with x1 we get a sequence x1, xσ(1), xσ(σ(1)), . . .

where each node in the sequence is a descendant of the following one. Since there is a finite

number of nodes, at some point we find a repeated node, which means that N contains a cycle

and hence we have a contradiction.■
We say that a leaf ℓ is of type T (resp. of type H) if the parent of TH(ℓ)1 is a tree node (resp. a

hybrid node). If ℓ is of type H, we indicate by THð‘Þ the path obtained by prepending to TH(ℓ)
the parent of TH(ℓ)1. For convenience, we let THð‘Þ ¼ TH ð‘Þ if ℓ is of type T.

Definition 1. Let ℓ be a leaf in a BTC network N. We define the reduction of N with respect
to ℓ as the result of the following procedure (see Figs 6 and 7):

1. Delete all nodes in THð‘Þ (together with any arc incident on them).

2. Eliminate all elementary nodes.

We indicate this reduction by R(N, ℓ). If we want to emphasize the type of the deleted leaf,

we indicate the reduction by T(N, ℓ) and say it is a T-reduction if ℓ is of type T, or by H(N, ℓ)
and say that it is a H-reduction if ℓ is of type H.

To ease of reading, we shall introduce some notations that will be used hereafter and are

also illustrated in Figs 6 and 7:

Definition 2. Let u1, . . ., ur = ℓ be the path TH(ℓ) and let u0 be the first node in THð‘Þ. For

each i 2 [r − 1], vi is the hybrid child of ui, xi the parent of vi different from ui, and yi the single

child of vi. The parent(s) of u0 is w1 (are w1, w2); the node wj is always a tree node, zj is its par-

ent (if it exists, since wj could be the root of N), and tj its child different from u0, where j = 1

for T-reductions and j 2 [2] for H-reductions.

Fig 4. The different possibilities for the TH-path of a leaf ℓ. Depiction of the conditions (2), (3) and (4), respectively, under which

a pre-TH-path cannot be extended, making the path inside the dotted box a TH-path for ℓ.

https://doi.org/10.1371/journal.pcbi.1007347.g004

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 7 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g004
https://doi.org/10.1371/journal.pcbi.1007347

Remark 1. Since N is tree-child, the nodes yi are always tree nodes, and so are t1 and t2 in

case of an H-reduction. In case of a T-reduction, by definition of a TH-path, t1 is either a tree

node or coincides with one of the hybrid nodes vi. Also, the removal of the arcs of the form

(ui, vi) and (wj, u0) makes nodes vi and wj elementary in NnTHð‘Þ, where i 2 [r − 1], and j = 1

for T-reductions and j 2 [2] for H-reductions. Since no other arc is removed, no other node

can be elementary. In order to find the heirs of nodes vi and wj, we must analyse under which

circumstances two of these elementary nodes are adjacent in NnTHð‘Þ.

1. If we had that two nodes vi and vj were connected by an arc in NnTHð‘Þ, then the single child

of a hybrid node in N would be also a hybrid. This contradicts the fact that N is tree-child.

Fig 5. The first node in a TH-path cannot be the root. Illustration of the nodes involved in the proof of Lemma 1.

https://doi.org/10.1371/journal.pcbi.1007347.g005

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 8 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g005
https://doi.org/10.1371/journal.pcbi.1007347

2. The existence of an arc (vi, wj) would imply the existence of a cycle in N, which is

impossible.

3. Consider now the case of an arc (wj, vi). In case of an H-reduction, it would imply that both

children of wj are hybrid nodes, which is impossible. However, such an arc can be present

in a T-reduction: when t1 is equal to vi. In this last case, w1 and vi form an elementary path

in NnTHð‘Þ and their common heir is yi (see Fig 8).

4. Finally, in case of an H-reduction, it can exist an arc between w1 and w2, say that the arc is

(w1, w2) (which implies, t1 = w2, z2 = w1). In this case, w1 and w2 form an elementary path

in NnTHð‘Þ and their common heir is t2 (see Fig 9).

In all other cases, the elementary nodes vi and wj are isolated, and their respective heirs are

yi and tj.
We study now what we call the recovering data of a reduction. This information will be

used in the next subsection to recover the original network from its reduction.

Definition 3. The recovering data of the reduction N0 = R(N, ℓ) is the pair (S1, S2), where:

• S1 is the multiset of the nodes of N0 that are heirs of the nodes wj. The cardinality of S1 (as a

multiset) is either 1 or 2, depending on the type of the reduction, and will be denoted by |S1|.

Fig 6. Reduction operation of type T. Depiction of the reduction operation T(N, ℓ). The nodes inside the dotted box form THð‘Þ
and will be removed, which will create elementary nodes that will be substituted by arcs.

https://doi.org/10.1371/journal.pcbi.1007347.g006

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 9 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g006
https://doi.org/10.1371/journal.pcbi.1007347

• S2 is the tuple (y1, . . ., yr−1) of nodes of N0, which are the heirs of the nodes vi. This tuple

could be empty, corresponding to the case r = 1.

We introduce now a set of conditions on multisets and tuples of nodes, and prove that the

recovering data associated to any of the defined reductions satisfies them.

Definition 4. Given a BTC network N0 and a pair (S1, S2) with

• S1 a multiset of tree nodes of N0,

• S2 = (y1, . . ., yr−1), with r� 1, a (potentially empty) tuple of r − 1 tree nodes of N0,

consider the following set of conditions:

1. For every i, j 2 [r − 1] with i 6¼ j, the nodes yi and yj are different, and if they are siblings,

then yi 2 S1 or yj 2 S1.

2. For every i 2 [r − 1], if yi is the child of a hybrid node or has a hybrid sibling, then yi 2 S1.

3. No node in S1 is a proper descendant of any node in S2.

4T. |S1| = 1.

4H. |S2| = 2 and no node of S1 appears in S2.

We say that (S1, S2) is T-feasible if it satisfies conditions 1, 2, 3, and 4T, and H-feasible if it

satisfies conditions 1, 2, 3, and 4H. Finally, we say that (S1, S2) is feasible if it is either T-feasible

or H-feasible.

Proposition 2. Let N0 = T(N, ℓ) be a T-reduction of a BTC network N. Then, its recovering
data ({τ1}, (y1, . . ., yr−1)) is T-feasible.

Fig 7. Reduction operation of type H. Depiction of the reduction operation H(N, ℓ). The nodes inside the dotted box form THð‘Þ
and will be removed, which will create elementary nodes that will be substituted by arcs.

https://doi.org/10.1371/journal.pcbi.1007347.g007

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 10 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g007
https://doi.org/10.1371/journal.pcbi.1007347

Proof. First, note that, by Remark 1, all nodes in ({τ1}, (y1, . . ., yr−1)) are tree nodes and that

Condition 4T holds trivially. Note also that τ1 is equal to yi if t1 = vi, or to t1 if this node is dif-

ferent from all the nodes vi. We now prove that Conditions 1, 2 and 3 hold:

1. If yi = yj, then in N we have vi = vj, which is impossible by definition of TH-path. If yi and yj
are siblings in N0 but none of these nodes is equal to τ1, then vi and vj are siblings in N,

which implies that their common parent has two hybrid children, which is impossible in a

BTC network.

2. If yi is the child in N0 of a hybrid node and τ1 6¼ yi, then in N we have that vi, which is a

hybrid node, is the child of a hybrid node, which is impossible in a tree-child network.

Analogously, if yi has a sibling in N0 which is a hybrid node, and yi 6¼ τ1, then in N we have

that vi is sibling of another hybrid node, which is again impossible.

3. The existence of a non-trivial path in N0 from yi to τ1 would, by construction, imply the

existence of a path from yi to w1 in N. Since there exists also a path in N from w1 to yi, this

would contradict the fact that N is a DAG.■

Proposition 3. Let N0 = H(N, ℓ) be an H-reduction of a BTC network N. Then, its recovering
data ({τ1, τ2}, (y1, . . ., yr−1)) is H-feasible.

Fig 8. Reduction operation of type T (particular case). Particular case of the reduction operation of type T when t1 = vi for some

i 2 [r − 1].

https://doi.org/10.1371/journal.pcbi.1007347.g008

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 11 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g008
https://doi.org/10.1371/journal.pcbi.1007347

Proof. Again we have, by Remark 1, that all nodes in the recovering data are tree nodes.

Additionally, by the same remark, we have that |S1| = 2 –and hence the first part of Condition

4H holds– and if (w1, w2) is an arc of N, then S1 = {t2, t2}, otherwise S1 = {t1, t2} with t1 6¼ t2.

Note that Condition 3 implies that Conditions 1 and 2 can be simplified as follows: for all i, j 2
[r − 1] with i 6¼ j, yi and yj are neither equal nor siblings, and for all i 2 [r − 1], yi is neither the

child nor the sibling of a hybrid node.

Conditions 1 and Conditions 2 and 3 in their simplified form follow using the same argu-

ments as in the previous proposition. As for the condition 4H, the nodes τ1 and τ2 are different

from the nodes yi since the parents of τ1 and τ2 in N are tree nodes, while the parent of each of

the nodes yi is hybrid.■
The following proposition is the main result of this subsection, since it shows that the

reduction that we have defined, when applied to a BTC network, gives another BTC network

with one leaf less. Hence, successive applications of these reductions reduce any BTC network

to the trivial BTC network.

Proposition 4. Let N be a BTC network over X and ℓ one of its leaves. Then, R(N, ℓ) is a BTC
network over X \ {ℓ}.

Proof. First, it is easy to see that, since no new path is added, the resulting directed graph is

still acyclic.

Then, we need to check that R(N, ℓ) is binary. To do so, we start noting that every node in

NnTHð‘Þ is either a tree node, a hybrid node, or an elementary node. Indeed, the removal of

THð‘Þ (Phase 1 of Definition 1) only affects the nodes adjacent to this path, that is the nodes vi
and wi, which, as shown in Remark 1, become elementary. The elimination of all elementary

Fig 9. Reduction operation of type H (particular case). Particular case of the reduction operation of type H when w1 and w2 are

linked by an arc.

https://doi.org/10.1371/journal.pcbi.1007347.g009

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 12 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g009
https://doi.org/10.1371/journal.pcbi.1007347

nodes (Phase 2 of Definition 1) does not affect the indegree and outdegree of any other node,

apart when the root ρ of NnTHð‘Þ is elementary. In such a case, the heir of ρ becomes the new

root. Hence, R(N, ℓ) is binary and rooted.

Note also that the set of leaves of R(N, ℓ) is X \ {ℓ}, since in NnTHð‘Þ no node becomes a

leaf and the only leaf that is removed is ℓ.
Finally, we need to prove that R(N, ℓ) is tree-child. Note that, from what we have just said

about how the reduction affects indegrees and outdegrees of the nodes that persist in the net-

work, it follows that each hybrid node of R(N, ℓ) is also a hybrid node of N, and that its parents

in R(N, ℓ) are the same as in N. It follows that no node in R(N, ℓ) can have that all its children

are hybrid, since this would imply that N is not tree-child, a contradiction.■
Corollary 5. Let N 2 BT Cn be a BTC network over [n]. Let Nn = N and define recursively

Ni = R(Ni+1, i + 1) for each i = n − 1, n − 2, . . ., 1. Then, Ni is a BTC network over [i]. In particu-
lar, N1 is the trivial BTC network with its single node labeled by 1.

We finish this subsection with the computation of the number of tree nodes and hybrid

nodes that the reduced network has, both in terms of the original network and of the reduction

operation that has been applied. But before, we give an absolute bound on the number of these

nodes in terms of the number of leaves.

Lemma 6. Let N be BTC network over [n] with t tree nodes and h hybrid nodes. Then t −
h = 2n − 1, h� n − 1 and t� 3n − 2.

Proof. The equality t − h = 2n − 1 follows easily from the handshake lemma taking into

account the number of roots, internal tree nodes, leaves and hybrid nodes in N, and their

respective indegrees and outdegrees. The inequality h� n − 1 is shown in Proposition 1 in [9],

and the last inequality is a simple consequence of the equality and the inequality already

proved.■
Proposition 7. Let N be a BTC network and ℓ one of its leaves, and N0 = R(N, ℓ). Let t, h

(resp. t0, h0) be the number of tree nodes and hybrid nodes of N (resp. of N0). Then

t0 ¼ t � jTHð‘Þj � 1; h0 ¼ h � jTHð‘Þj þ 1;

where jTHð‘Þj is the number of nodes in THð‘Þ.
Proof. Since the number of tree nodes and hybrid nodes are linked by the equality in

Lemma 6, it is enough to prove that h0 ¼ h � jTHð‘Þj þ 1. From the discussion in Remark 1,

it is straightforward to see that the number of hybrid nodes in N that are not in N0 is r − 1 if ℓ is

of kind T, and r otherwise. Hence, in both cases we have h0 ¼ h � ðjTHð‘Þj � 1Þ and the result

follows.■

Generation of networks

In this subsection, we consider the problem of how to revert the reductions defined in the pre-

vious subsection, taking as input the reduced network and its recovering data. This will allow

us to define a procedure that, starting with the trivial BTC network with one leaf, generates all

the BTC networks with any number of leaves in a unique way.

We start by defining two augmentation procedures that take as input a BTC network and a

feasible pair, and produce a BTC network with one leaf more.

Definition 5. Let N be a BTC network over X, ℓ a label not in X, and ({τ1}, (y1, . . ., yr−1)) a

T-feasible pair. We apply the following operations to N (see Fig 10):

1. Create a path of new nodes u1, . . ., ur.

2. Split the node τ1 creating one elementary node w1 and add an arc (w1, u1).

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 13 / 29

https://doi.org/10.1371/journal.pcbi.1007347

3. For each node yi, split it introducing one elementary node vi and add an arc (ui, vi).

4. Label the node ur by ℓ.

We denote by T−1(N, ℓ; {τ1}, (y1, . . ., yr−1)) the resulting network and say that it has been

obtained by an augmentation operation of type T.

Note that the order in which steps 2 and 3 are done is relevant in the case that τ1 = yi for

some i 2 [r − 1]. In such a case, two nodes w1 and vi are created, linked by an arc (w1, vi) (see

Fig 11).

Proposition 8. Using the notations of Definition 5, the network

~N ¼ T � 1ðN; ‘; ft1g; ðy1; . . . ; yr� 1ÞÞ

is a BTC network over X [{ℓ}. Moreover, if N has h hybrid nodes, then ~N has h + r − 1 hybrid
nodes.

Proof. We first check that the resulting directed graph is acyclic. Let us assume that ~N con-

tains a cycle. If we define U1 = {u1, . . ., ur} and U2 ¼ Vð ~NÞnU1, we have that the only arcs con-

necting U1 with U2 are (ui, vi) (with i = 1, . . ., r − 1), and (w1, u1) is the only arc connecting U2

Fig 10. Augmentation operation of type T. Depiction of the augmentation operation T−1(N, ℓ; {τ1}, (y1, . . ., yr−1)) when τ1 6¼ yi for

all i 2 [r − 1].

https://doi.org/10.1371/journal.pcbi.1007347.g010

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 14 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g010
https://doi.org/10.1371/journal.pcbi.1007347

with U1. The cycle can be contained neither inside U1, since these nodes are linked by a single

path, nor inside U2, since otherwise N would contain a cycle. Hence, the cycle must contain at

least the arc (w1, u1) and an arc (ui, vi). This implies the existence of a path from vi to w1 visit-

ing only nodes in U2, which in turn means that N contains a path from yi to τ1, against Condi-

tion 3 of Definition 4.

Note that the nodes in U1 are tree nodes by construction. Also by construction, the node w1

is a tree node, the nodes vi are hybrid nodes and ur is a leaf which is labelled with ℓ. Finally, the

other nodes keep the same degrees they had in N and hence ~N is a binary phylogenetic net-

work over X [{ℓ} with h + r − 1 hybrid nodes.

Since N is tree-child, in order to check that ~N is also tree-child, we only need to check the

newly added hybrid nodes, which are the parents of the nodes vi.
Let us first consider the case that τ1 6¼ yi for all i 2 [r − 1]. For each node vi, its parents are ui

and the parent xi of yi in N. The node ui is by construction a tree node whose other child is

ui+1, which, in turn, is a tree node. Since τ1 6¼ yi, by Condition 2 of Definition 4, yi can have

neither a hybrid parent nor a hybrid sibling, and it cannot be a sibling of any other node yj
with j 2 [r − 1]. This latter restriction implies that yi has the same sibling ~xi in N and ~N . Thus

both xi and ~xi are not hybrid nodes, and the network is tree-child.

Fig 11. Augmentation operation of type T (particular case). Depiction of the augmentation operation T−1(N, ℓ; {τ1}, (y1, . . ., yr−1))

when τ1 = yi.

https://doi.org/10.1371/journal.pcbi.1007347.g011

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 15 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g011
https://doi.org/10.1371/journal.pcbi.1007347

Let us now consider the case that τ1 = yi for a single choice of i 2 [r − 1]. The hybrid node vi
in ~N has as parents the nodes w1 and ui, and these two nodes have as respective children u1

and ui+1, which are tree nodes. For each other node vj with j 6¼ i and such that yj is a not sibling

of yi, the same argument as in the previous case proves that both parents of vj have a tree child.

If yj is a sibling of yi, it is easy to see that the parent of vj is still tree-child since it has w1 as

child.■
Definition 6. Let N be a BTC network over X, ℓ a label not in X, and ({τ1, τ2}, (y1, . . ., yr−1) a

H-feasible pair. We apply the following operations to N (see Fig 12):

1. Create a path of new nodes u0, u1, . . ., ur.

2. Split each of the nodes τi introducing one elementary node wi and add an arc from wi to u0.

Note that, if τ1 = τ2, two consecutive elementary nodes must be created (see Fig 13 for this

case).

3. For each node yi, split it introducing one elementary node vi and add an arc (ui, vi).

4. Label the node ur by ℓ.

We denote by H−1(N, ℓ;{τ1, τ2}, (y1, . . ., yr−1)) the resulting network and say that it has been

obtained by an augmentation operation of type H.

Proposition 9. Using the notations of Definition 6, the network

~N ¼ H� 1ðN; ‘; ft1; t2g; ðy1; . . . ; yr� 1ÞÞ

is a BTC network over X [{ℓ}. If N has h hybrid nodes, then ~N has h + r hybrid nodes.

Fig 12. Augmentation operation of type H. Depiction of the augmentation operation H−1(N, ℓ; {τ1, τ2}, (y1, . . ., yr−1)) when τ1 6¼ τ2.

https://doi.org/10.1371/journal.pcbi.1007347.g012

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 16 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g012
https://doi.org/10.1371/journal.pcbi.1007347

Proof. The proof is completely analogous to that of Proposition 8, taking into account that

one extra hybrid node is created.■
Given a BTC network over X, a label ℓ =2 X and a feasible pair (S1, S2), in order to unify nota-

tions we define the augmented network R−1(N, ℓ; S1, S2) as T−1(N, ℓ; S1, S2), if |S1| = 1, and as

H−1(N, ℓ; S1, S2), if |S1| = 2. Also, we shall generically say that the offspring of a BTC network is

the set of networks that can be obtained from it by means of augmentation operations.

Our next goal is to prove that different augmentation operations applied to a same BTC net-

work or different BTC networks over the same set of taxa provide different networks. We start

with the case of different networks.

Proposition 10. Let ~N 1 and ~N 2 be two BTC networks, both obtained by one augmentation
operation applied to two non-isomorphic BTC networks N1 and N2 over the same set of taxa X.
Then ~N 1 and ~N 2 are not isomorphic.

Proof. If ~N 1 and ~N 2 have different sets of labels, then it is clear that they are not isomorphic.

We can therefore assume that both augmentation operations introduced the same new leaf ℓ.
Suppose that ~N 1 ’

~N 2. Then Rð ~N 1; ‘Þ ’ RðN2; ‘Þ. Now, from the definitions of the reductions

and augmentations it is straightforward to check that Rð ~Ni; ‘Þ ¼ Ni and we get that N1’ N2, a

contradiction.■
We treat now the case of applying different augmentation operations to the same BTC net-

work. But first, we give a technical lemma that will be useful in the proof of the proposition.

Lemma 11. Let N be a BTC network. Then, the identity is the only automorphism (as a leaf-
labeled directed graph) of N.

Proof. Let ϕ be any automorphism of N. Since ϕ is an automorphism of directed graphs and

sends each leaf to itself, it follows that μ(u) = μ(ϕ(u)) for each node u of N, where μ(u) is the

Fig 13. Augmentation operation of type H (particular case). Depiction of the augmentation operation H−1(N, ℓ; {τ1, τ2},

(y1, . . ., yr−1)) when τ1 = τ2.

https://doi.org/10.1371/journal.pcbi.1007347.g013

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 17 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g013
https://doi.org/10.1371/journal.pcbi.1007347

μ-vector of u as defined in [9]. Then, by [9, Lemma 5c], it follows that u and ϕ(u) are either

equal, or one of them is the single child of the other one; according to our definition of BTC

networks, this last possibility implies that one of them is a hybrid node and the other one is a

tree node, which is impossible if ϕ is an automorphism. Hence ϕ(u) = u for every node u.■
Proposition 12. Let ~N 1 and ~N 2 be two BTC networks, both obtained by one augmentation

operation applied to the same BTC network N. If either the kinds of operation or the feasible
pairs used to construct ~N 1 and ~N 2 are different, then ~N 1 and ~N 2 are not isomorphic.

Proof. Let us assume that ~N 1 and ~N 2 are isomorphic. Then, it is clear that they have the same

set of labels, and exactly one of them, say ℓ, is not a label of N. Since ~N 1 and ~N 2 are isomorphic,

the kind of ℓ is the same in both networks, which implies that the kind of augmentation opera-

tions used to construct ~N 1 and ~N 2 are the same. Also, since ~N 1 and ~N 2 are isomorphic, the

nodes in the respective recovering data of the reductions Rð ~Ni; ‘Þmust be linked by an isomor-

phism of phylogenetic networks. Therefore, and since by Lemma 11 BTC networks do not have

a nontrivial automorphism, the respective recovering data must be equal.■
The following proposition shows that the reduction procedure defined in the previous sub-

section can be reverted using the augmentation operations presented in this subsection.

Proposition 13. Let N be a BTC network and ℓ a leaf of N. Let N0 = R(N, ℓ), (S1, S2) its recov-
ering data, and ~N ¼ R� 1ðN 0; ‘; S1; S2Þ. Then, N and ~N are isomorphic.

Proof. It is straightforward to see that the operations T−1 and H−1 reverse the effects of T
and H, respectively. The only points worthy of attention correspond to the cases where the sin-

gle node in S1 appears in S2 (for reductions/augmentations of type T) or where there is a single

node in S1 with multiplicity two (for reductions/augmentations of type H). In the first case, the

augmentation process creates two elementary nodes, w1 and vi, connected by an arc (w1, vi),
which is the same situation as in N after the removal of the nodes in THð‘Þ. In the second case,

two elementary nodes τ1 and τ2 are created, connected by an arc, once again the same situation

as in N after the removal of the nodes in THð‘Þ.■
A direct consequence of the results in this subsection is the following theorem, which can

be used to generate in an effective way all BTC networks over a set of taxa. See Fig 14 for an

example.

Theorem 14. Let N 2 BT Cn be a BTC network over [n]. Then, N can be constructed from the
trivial network in BT C1 (with one node labeled by 1) by application of n − 1 augmentation oper-
ations, where at each step i, the leaf i + 1 is added. Moreover, these augmentation operations are
unique.

Proof. The existence is a direct consequence of Corollary 5 and Proposition 13. Unicity

comes from Propositions 10 and 12.■
It should be noted that very recently, other methods to generate all BTC networks over a set

of taxa have been proposed [5], but, to our knowledge, this is the first time that the networks

are generated with unicity. In previous attempts, an isomorphism check was needed after the

generation phase.

Bounding the number of networks

In this subsection, we shall first give bounds for the number of BTC networks that can be

obtained from a given one by means of augmentation operations. This will be done by bound-

ing the number of feasible pairs in such a network. Then, we shall find bounds for the number

of BTC networks with a fixed number n of leaves.

Let N be a BTC network over [n] with h hybrid nodes. From Lemma 6 we know that it has

t = 2n + h − 1 tree nodes, and that h� n − 1 and t� 3n − 2. In the following, we shall show

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 18 / 29

https://doi.org/10.1371/journal.pcbi.1007347

how to compute the number of pairs (S1, S2) satisfying all conditions of Definition 4, except for

Condition 3, via an auxiliary problem. Note that this will only give an upper bound for the

number of networks, since the pairs we find can produce networks with cycles.

An auxiliary problem. Let P(N, k) be the set of tuples of length k of tree nodes of N such

that (1) no pair of them are equal or siblings, and (2) none of them has a hybrid parent or

Fig 14. Construction of a BTC network. Example of a chain of augmentation operations that generate a BTC network.

https://doi.org/10.1371/journal.pcbi.1007347.g014

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 19 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g014
https://doi.org/10.1371/journal.pcbi.1007347

sibling. We indicate the number of such tuples as p(N, k) = |P(N, k)|, and since this number

will only depend on n, h and k, we indicate it also by p(n, h, k). We consider the problem of

computing p(n, h, k).

We compute first how many tree nodes are there that neither have a hybrid parent nor a

hybrid sibling. Since the single child of a hybrid node must be a tree node, there are h tree

nodes that have a hybrid parent. Note that each hybrid node has two siblings that must be tree

nodes; also, a tree node cannot be sibling of two different hybrid nodes; hence, there are 2h
tree nodes that have a hybrid sibling. Since there cannot be a tree node having the two proper-

ties (if it has a hybrid parent, then it does not have any hybrid sibling), there are 3h tree nodes

that are either a child or a sibling of a hybrid node. Then, the number of tree nodes that neither

have a hybrid parent nor a hybrid sibling is t − 3h = 2n − 2h − 1. Note that this set of nodes is

composed by the root of the network and pairs of tree nodes that are siblings.

Consider now the problem of counting the number of tuples (y1, . . ., yk) in this set that are

neither equal nor siblings. We distinguish two cases:

• If none of the nodes yi is the root of N, we start having 2n − 2h − 2 choices for y1, and at each

stage the number of choices decreases by two units. Hence, the number of choices is

p0ðn; h; kÞ ¼ ð2n � 2h � 2Þð2n � 2h � 4Þ � � � ð2n � 2h � 2kÞ

¼ 2kðn � h � 1Þðn � h � 2Þ � � � ðn � h � kÞ

¼ 2k ðn � h � 1Þ!

ðn � h � k � 1Þ!
:

• If one of the nodes yi is the root of N, then the process of constructing an element in P(N, k)

can be described as first choosing at which position i one puts the root, and then filling in

the remaining k − 1 positions with a tuple of the set P(N, k − 1) such that none of the nodes

is the root (which is what we have just computed). Hence, the number of possibilities is

p1ðn; h; kÞ ¼ k2k� 1 ðn � h � 1Þ!

ðn � h � kÞ!
:

Then we get that

pðn; h; kÞ ¼ p0ðn; h; kÞ þ p1ðn; h; kÞ

¼ 2k
ðn � h � 1Þ!

ðn � h � k � 1Þ!
þ k2k� 1 ðn � h � 1Þ!

ðn � h � kÞ!

Counting pairs satisfying conditions 1, 2 and 4H. Consider pairs (S1, S2) satisfying Con-

ditions 1, 2 and 4H. Recall that, since condition 4H implies that S1 and S2 cannot have elements

in common, Conditions 1 and 2 are simplified: no pair of nodes in S2 can be siblings and none

of them can either be the child of a hybrid node or have a hybrid sibling. Hence, the problem is

equivalent to finding a tuple (y1, . . ., yr−1) in P(N, r − 1) and then either a tree node τ1 or an

unordered pair {τ1, τ2} of different tree nodes, in either case disjoint from those in (y1, . . ., yr−1).

Once the tuple (y1, . . ., yr−1) is fixed, the number of tree nodes available for choosing τ1 and τ2

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 20 / 29

https://doi.org/10.1371/journal.pcbi.1007347

is t − r + 1 = 2n + h − r. Hence, the number of possible pairs is

FHðn; h; r � 1Þ ¼ FH;1ðn; h; r � 1Þ þ FH;2ðn; h; r � 1Þ;

where

FH;1ðn; h; r � 1Þ ¼ pðn; h; r � 1Þ � ð2nþ h � rÞ;

FH;2ðn; h; r � 1Þ ¼ pðn; h; r � 1Þ �
1

2
ð2nþ h � rÞð2nþ h � r � 1Þ:

Counting pairs satisfying conditions 1, 2 and 4T. The problem now is to count the ways

of choosing S1 = {τ1} and a tuple S2 = (y1, . . ., yr−1) satisfying Conditions 1, 2 and 4T. Now τ1

can appear in S2, and different possibilities arise, since it allows that one of the nodes in S2 has

a sibling in S2, or that it has a hybrid parent or sibling. We consider, thus, these different

possibilities:

• τ1 6¼ yi (for all i): This case is very similar to the one considered in the previous paragraph,

specifically the case where only a single node τ1 had to be taken. The number of possible

pairs is

FT;1ðn; h; r � 1Þ ¼ pðn; h; r � 1Þ � ð2nþ h � rÞ:

• τ1 = yi is a child or a sibling of a hybrid node: Choosing one of these pairs is equivalent to

first choosing the position i, then filling the other r − 2 positions with a tuple in P(N, r − 2),

and then choosing a node that is a child or sibling of a hybrid node to be put in the position

i. The number of ways to do this procedure is

FT;2ðn; h; r � 1Þ ¼ pðn; h; r � 2Þ � ðr � 1Þ � 3h;

since each hybrid node has a single child and two siblings, and none of these 3h nodes

appears twice, associated to two different hybrid nodes.

• τ1 = yi is a sibling of some other node yj in S2: In this case one has to choose the positions i
and j where to put the pair of sibling nodes, fill the other r − 3 positions with a tuple in P(N,

r − 3), choose a pair of sibling tree nodes to take as yi and yj, and finally set τ1 = yi. The choice

of i and j can be done in (r − 1)(r − 2) different ways. The choice of the tuple of length r − 3

can be done in p(n, h, r − 3) ways; p1(n, h, r − 3) of them contain the root of N (and r − 4 tree

nodes with a sibling tree node) and p0(n, h, r − 3) do not contain the root (and contain r − 3

tree nodes with a sibling tree node). Once this is done, the number of available pairs of sibling

tree nodes is n − h − 1 − (r − 4) = n − h − r + 3, if the root of N was chosen, or n − h − 1 − (r −
3) = n − h − r + 2 otherwise. Hence, the total number of pairs is FT,3(n, h, r − 1) = FT,3, A(n, h,

r − 1) + FT,3,B(n, h, r − 1), corresponding to these two cases, with:

FT;3;Aðn; h; r � 1Þ ¼ ðr � 1Þðr � 2Þ � p1ðn; h; r � 3Þ � ð2n � 2h � 2r þ 6Þ;

FT;3;Bðn; h; r � 1Þ ¼ ðr � 1Þðr � 2Þ � p0ðn; h; r � 3Þ � ð2n � 2h � 2r þ 4Þ:

• τ1 = yi but none of the previous conditions hold: In this case one only has to take a tuple in

P(N, r − 1) and choose which of the r −1 nodes to take as τ1. The number of possible pairs is

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 21 / 29

https://doi.org/10.1371/journal.pcbi.1007347

then

FT;4ðn; h; r � 1Þ ¼ pðn; h; r � 1Þ � ðr � 1Þ:

Note that the four conditions above are mutually exclusive. Hence, the overall number of

possible pairs (S1, S2) is the sum of all numbers found:

FTðn; h; r � 1Þ ¼ FT;1ðn; h; r � 1Þ þ FT;2ðn; h; r � 1Þ þ FT;3ðn; h; r � 1Þ þ FT;4ðn; h; r � 1Þ:

Bounds for the number of networks. Each network N 2 BT Cn with h hybrid nodes,

appears as augmentation R−1(N0, n, S1, S2) of a unique network N 0 2 BT Cn� 1 with h0 hybrid

nodes, where S2 has length r − 1 = h − h0, if the augmentation is of type T, or r − 1 = h − h0 − 1

if it is of type H. If we call B(n, h) the number of networks in BT Cn with h hybrid nodes, and

since we have bounded the number of feasible pairs, we have that

Bðn; hÞ �
Xh

h0¼0

Bðn � 1; h0Þ � FTðn � 1; h0; h � h0Þþ

þ
Xh� 1

h0¼0

Bðn � 1; h0Þ � FHðn � 1; h0; h � h0 � 1Þ

Also, since the number of hybrid nodes in a BTC network with n leaves is at most n − 1, we

have that

jBT Cnj ¼
Xn� 1

h¼0

Bðn; hÞ;

and the expression above allows us to compute a bound for this number of networks. See Sub-

section Computational experiments for an experiment with these bounds.

The asymptotic formula jBT Cnj ¼ 22n log nþOðnÞ is given in [19], and both our experimental

results in Subsection Computational experiments for n� 8 and the bounds that we have com-

puted for n� 10 are coherent with this expression. However, the problem of finding a closed

expression for the asymptotic behaviour of our bounds is still open.

An application to phylogenetic reconstruction

Several models of reticulate evolution on biological sequences have been proposed in the

last decades, for example the displayed trees model [25], an extension of the multispecies

coalescent (MSC) to phylogenetic networks [26] and the ancestral recombination graph

model –ARG for short [27]– to only name a few. The associated problems are difficult to

solve and big efforts have been done by the community to provide practitioners with fast

algorithms.

Suppose we are given a BTC network N over a set of OTUs X, where each tree node is asso-

ciated with a word in an alphabet (for instance a DNA sequence) s(u) 2 S�. The pair (N, s)
can, for example, be the outcome of an ML search in the space of BTC networks given an align-

ment over X. Now, suppose we are given a new sequence and we want to update N to include

it, ensuring that the resulting network is still BTC. We may want to do this, for instance, to

update the network without redoing the whole ML search, or in a phylogenetic placement per-

spective (for example, we want to know where to place a given strain of a virus in N), or even

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 22 / 29

https://doi.org/10.1371/journal.pcbi.1007347

because we use a heuristic algorithm that reconstructs a network by adding one sequence at

the time.

We assume that a model of evolution is given, and we assume that we can compute the fol-

lowing probabilities:

1. Given s, s0 2 S�, PS(s, s0) is the probability that the sequence s evolved by descent with modi-

fication giving as a result the sequence s0.

2. Given s1, s2, s0 2 S�, PH(s1, s2, s0) is the probability that a hybridization between sequences s1
and s2 –possibly coupled with descent with modification– gives as result the sequence s0.

For each tree node t of N, we let ϕt: S� ! [0, 1] be the function defined as follows. If t is the

root of N, then ϕt is the constant function equal to 1. Otherwise, if the single parent p of t is a

tree node, then ϕt(s) = PS(s(p), s). If p is a hybrid node with parents g1, g2, then ϕt(s) = PH(s(g1),

s(g2), s). That is, ϕt(s) is the probability that a given sequence s is the result of the evolution of

the sequences at the parent node (or grandparents, in case of hybrid parent) of t.
Now, we want to extend N to another BTC network in order to include an extant OTU

ℓ =2 X identified by its sequence sℓ 2 S�, while keeping the sequences associated to all tree nodes

of N. According to the results presented in this paper, we need to identify the augmentation

operation R−1(N, ℓ; S1, S2) that has to be applied, and determine the sequences at the newly cre-

ated tree nodes. If the operation to be applied is of type T, that is, ~N ¼ T � 1ðN; ‘; S1; S2Þ, we

need to find certain nodes τ1, y1, . . ., yr−1, with the additional condition that S1 = {τ1} and S2 =

(y1, . . ., yr−1) form a T-feasible pair. Analogously, if it is of type H, ~N ¼ H� 1ðN; ‘; S1; S2Þ, then

S1 = {τ1, τ2} and S2 = (y1, . . ., yr−1) must form a H-feasible pair.

Intuitively, the node τ1 in case of an augmentation of type T, or the nodes τ1 and τ2 in case

of type H, have to be chosen in order to maximize the probability of appearance of the new

OTU, while the other nodes appear in order to give a better explanation of the corresponding

sequences by means of hybridization with the lineage leading to ℓ.
We present here an heuristic to find the augmentation operation, together with the assign-

ment of sequences to new tree nodes, that deploys this intuitive idea:

1. Assume that an augmentation of type T is going to take place. To determine τ1, for each

tree node t of N, we find a sequence σ(t) 2 S� that maximizes

pðtÞ ¼ �tðsðtÞÞ � PSðsðtÞ; sðtÞÞ � PSðsðtÞ; s‘Þ:

The rationale behind this expression is that we look for the best way to divide the arc enter-

ing t to add the new taxon with sequence sℓ as child of the newly created node. See Fig 15

(left) for a depiction of this. Then τ1 is a node with the maximum value of π over all nodes

of N, that is the best location where to hang sℓ in N. For future reference, let σT = σ(τ1), πT =

π(τ1) and ST
1
¼ ft1g.

2. Assume that an augmentation of type H is going to take place. To determine τ1, τ2, for each

unordered pair of tree nodes {t1, t2} ≔ t of N, we find sequences σ1(t), σ2(t) 2 S� that maxi-

mize

pðtÞ ¼ �t1
ðs1ðtÞÞ � PSðs1ðtÞ; sðt1ÞÞ � �t2

ðs2ðtÞÞ � PSðs2ðtÞ; sðt2ÞÞ � PHðs1ðtÞ; s2ðtÞ; s‘Þ

See Fig 15(right). The rationale for this choice is the same as in the previous point.

Let τ = {τ1, τ2} be a pair with maximum value of π. For future reference, let

sH ¼ ðsH
1
; sH

2
Þ ¼ ðs1ðτÞ; s2ðτÞÞ, πH = π(τ) and SH

1
¼ τ.

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 23 / 29

https://doi.org/10.1371/journal.pcbi.1007347

3. If πT� πH, we opt for an augmentation of type T and we let S1 ¼ ST
1
; otherwise, we opt for

an augmentation of type H and we let S1 ¼ SH
1

. The tree nodes in R−1(N, ℓ; S1, ;) that were

present in N keep their sequences. Moreover, in case of an augmentation of type T, we sub-

divide the arc entering τ1 via a new node w1 associated to the sequence σT and we add a new

leaf ℓ with sequence sℓ as child of w1. In case of an augmentation of type H, we subdivide

the arcs entering τ1 and τ2 via two new nodes w1, w2 that are assigned to the two sequences

sH
1
; sH

2
; then, we add a new hybrid node with parents w1 and w2 and having as child a new

leaf ℓ with sequence sℓ.

4. For each k� 1, we assume that y1, . . ., yk−1 are already determined. Let C be the set of tree

nodes y such that (S1, (y1, . . ., yk−1, y)) is a feasible pair. To determine yk we proceed as

follows:

• If k = 1 and we opted for a type H augmentation, for each y 2 C with parent p, we find a

sequence σ(y) that maximizes

pðyÞ ¼ PHðsH1 ; s
H
2
; sðyÞÞ � PHðsðyÞ; sðpÞ; sðyÞÞ � PSðsðyÞ; s‘Þ:

See Fig 16(left). Notice that we have assumed that p is a tree node; if p was a hybrid node,

Fig 15. A depiction of the notations used in the text to define the function π to maximize for finding τ1 (left, type T
augmentation) and {τ1, τ2} (right, type H augmentation). Although in the figure p, p1 and p2 are depicted as tree nodes, they can as

well be hybrid nodes.

https://doi.org/10.1371/journal.pcbi.1007347.g015

Fig 16. A depiction of the notations used in the text to define the function π to maximize for finding yk, respectively for a type

H augmentation (left) and a type T augmentation (right), assuming that y1, . . ., yk−1 are already determined.

https://doi.org/10.1371/journal.pcbi.1007347.g016

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 24 / 29

https://doi.org/10.1371/journal.pcbi.1007347.g015
https://doi.org/10.1371/journal.pcbi.1007347.g016
https://doi.org/10.1371/journal.pcbi.1007347

and this case is really exceptional because of the definition of feasible pair, then the compu-

tation above, and the one in the next item, should be adapted. If κ(y) = π(y) − PS(s(p), s(y))

PHðsH1 ; s
H
2
; s‘Þ is negative, we remove y from C since this means that the hypothesis of the

existence of a hybridization just above y is less likely than its absence.

• If k> 1 or we opted for a type T augmentation, for each y 2 C with parent p, we find a

sequence σ(y) that maximizes

pðyÞ ¼ PSðsðyk� 1Þ; sðyÞÞ � PHðsðyÞ; sðpÞ; sðyÞÞ � PSðsðyÞ; s‘Þ;

where in case that k = 1 (and hence we opted for a type T augmentation), we let y0 = τ1. See

Fig 16(right). If κ(y) = π(y) − PS(s(p), s(y))PS(σ(yk−1), sℓ) is negative, we remove y from C as

in the previous case.

Then, if C is empty we output the network ~N ¼ R� 1ðN; ‘; S1; ðy1; . . . ; yk� 1ÞÞ. Otherwise, let

yk the node that maximizes κ. Then, we create a new tree node uk on the arc entering ℓ –associ-

ating the sequence σ(yk) to it– and we subdivide the arc entering yk by a new hybrid node with

second parent uk. The tree nodes in R−1(N, ℓ; S1, (y1, . . ., yk−1, yk)) that appeared in R−1(N, ℓ; S1,

(y1, . . ., yk−1)) keep their associated sequence.

We emphasize that we do not claim that the heuristic we present here gives a global opti-

mum. In fact, usually a sequence of optimal choices does not lead to a global optimum. The

analysis, and eventually improvement, of this method of reconstruction is left as future work.

Example 1. We consider a simple model of evolution where:

• OTUs are represented by words of length 4 in the alphabet S = {A, B, C}.

• For speciation we assume a simple Jukes-Cantor model of evolution on the characters A, B,

C so that PS(s, s0) = μd(1 − 2μ)4−d, where d = d(s, s0) is the Hamming distance between s and

s0 and μ< 1/3 is a parameter of the model.

• In this toy example, we model hybridizations as if they were plain recombinations where half

of the hybrid sequence comes from one parent and the other half from the other. So, given

two sequences s1 ¼ ðs1
1
; s1

2
; s1

3
; s1

4
Þ and s2 ¼ ðs2

1
; s2

2
; s2

3
; s2

4
Þ, PH(s1, s2, s0) = 1/2 if s0 ¼ ðs1

1
; s1

2
; s2

3
; s2

4
Þ

or s0 ¼ ðs2
1
; s2

2
; s1

3
; s1

4
Þ, and PH(s1, s2, s0) = 0 otherwise.

We consider three species, with sequences

sðaÞ ¼ AAAC; sðbÞ ¼ BBCC; sðgÞ ¼ BBBB:

The network N (which is in fact a tree) that fits these extant OTUs best, together with an

optimal assignment of sequences to all nodes is shown in Fig 17(left).

Now, we wish to extend N in order to add a new OTU with sequence

sðdÞ ¼ AACC:

We thus proceed as discussed in the previous pages:

1. If we assume an augmentation of type T, it is not difficult to see that an optimal choice for

τ1 and its corresponding sequence σT are respectively α and AAAC, with π(α) = μ2(1 −
2μ)10.

2. If we explore the different possibilities for an augmentation of type H, we find that the

best choice is {τ1, τ2} = {α, β} with sequences AAAB and BBCC and with value π({τ1, τ2}) =

μ3(1 − 2μ)13/2.

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 25 / 29

https://doi.org/10.1371/journal.pcbi.1007347

3. Since μ< 1/3, we get that π(α)> π({α, β}) and we opt for the augmentation N0 = T−1(N, δ;

{α}, ;) shown in Fig 17(middle).

4. Now we want to find the right choice for y1, if any. All nodes except the least common

ancestor (in N0) of α and δ are in C. Taking any node y 2 C different from β we get that κ
(y)< 0 and hence they are not good candidates. If we take y = β, taking into account that μ
< 1/3, we find an optimal sequence σ(β) = AACC. The value of π(β) corresponds to three

different evolution processes: two mutations, from AAAC to AACC and from AACC to

AACC, and a hybridization of the sequences AACC and BBBB to BBCC, and hence we get

π(β) = (1 − 2μ)7 μ/2. Now, this value must be compared with the probability of evolution

without this hybridization, i.e. the probability of speciations from BBBB to BBCC and from

AAAC to AACC which is μ3(1 − 2μ)5. Since (1 − 2μ)7 μ/2 > μ3(1 − 2μ)5 (assuming that μ<
0.2928, which is a reasonable assumption) we conclude that the network N1 = T−1(N, δ; {α},

(β)), depicted in Fig 17(right), is a better explanation than N0. Hence, we let y1 = β.

5. If we repeat the procedure in the previous step, we find that no hybridization improves the

probability of the sequences, giving as final result the network ~N ¼ T � 1ðN; d; fag; ðbÞÞ in

Fig 17(right).

Computational experiments

The algorithms in this paper have been implemented in python using the python library Phy-

loNetworks [28]. This implementation, together with the sources for the experiments that we

comment in this subsection can be downloaded from https://github.com/bielcardona/

TCGenerators.

Exhaustive and sequential construction of networks in BT Cn. We have implemented

both the exhaustive and sequential construction of BTC networks with n leaves. The number

of such networks increases very rapidly, and hence the exhaustive construction is not feasible

for n� 8. For n� 7 we generated all the networks in BT Cn; see Table 1 for the number of

such networks. For n = 8 we could not compute them all, since there are around twelve trillion

of such networks: We took uniform samples of networks in BT C7 and computed their

Fig 17. The networks considered in Example 1. We start with a tree on three leaves (left), chose a type T augmentation and find the

best choice for τ1 (middle) and the best choice for the vector (y1, . . ., yk) (right, here k = 1).

https://doi.org/10.1371/journal.pcbi.1007347.g017

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 26 / 29

https://github.com/bielcardona/TCGenerators
https://github.com/bielcardona/TCGenerators
https://doi.org/10.1371/journal.pcbi.1007347.g017
https://doi.org/10.1371/journal.pcbi.1007347

respective offspring, and repeated this procedure until the average number of offsprings per

network stabilized up to 4 digits; this allowed us to give the estimate for jBT C8j.

Random construction of networks in BT Cn. We have implemented the following con-

struction, that does not generate networks uniformly, but is the closest we could get to it. We

start with the network N1 with a single node labeled by 1. At each stage i = 1, . . ., n − 1, we

explicitly find all feasible pairs inside Ni and choose at random and uniformly one of them to

generate the network Ni+1. This procedure generates all possible networks in BT Cn, but not

uniformly, since different networks over the same set of taxa may have different numbers of

feasible pairs.

Computation of bounds for jBT Cnj. Finally, we have implemented the recursive compu-

tation for the upper bounds of jBT Cnj using the bounds for the offsprings of BTC networks

found previously. The results for n up to 10 are given in Table 1, where it is observed that, at

least for small values of n, the true number of networks and the upper bounds have the same

order of magnitude.

Discussion

The main result of this paper is a systematic way of recursively generating, with unicity, all BTC

networks with a given number of leaves. This procedure relies on a pair of reduction/augmen-

tation operations that generalize analogous operations for phylogenetic trees. Indeed, given a

(rooted, binary) phylogenetic tree over [n], we can obtain a phylogenetic tree over [n − 1] by

deleting the leaf labeled by n and removing the elementary node that this deletion generates.

Conversely, given a tree T over [n − 1] and one of its nodes u, we can construct a tree over [n]

by simply hanging a pendant leaf labeled by n to the single incoming arc of u. Since different

choices for T and u give different trees over [n], this gives a recursive procedure to generate,

with unicity, all binary rooted phylogenetic trees over a given set of taxa: we start with the leaf

labeled by 1, then we add the leaf labeled by 2, then the leaf labeled by 3 in all possible ways,

and so on. Biologically, we can think of this procedure as follows: Once the evolutionary history

of a given set of OTUs is correctly established (notice that, in practice, we can never be sure

that we got the correct tree, but here we suppose we do) and modeled by a phylogenetic tree,

extending this evolutionary history to consider a “new” OTU n consists in finding where to

place n in the tree, i.e. finding the speciation event that leads to the diversification of n.

Unfortunately, when working with classes of phylogenetic networks, the removal of a single

leaf (and of all elementary nodes created by this removal) does not necessarily give a phyloge-

netic network within the same class. In the case of BTC networks, we were able to find the

Table 1. Exact number of BTC networks over [n] for n = 1, . . ., 7, an estimate for n = 8, and their upper bounds for n� 10.

n jBT Cnj upper bound

1 1 1

2 3 3

3 66 85

4 4,059 7,442

5 496,710 1,317,098

6 101,833,875 387,405,870

7 31,538,916,360 169,781,857,790

8 ’ 12,000,000,000,000 103,409,407,515,286

9 ? 83,400,205,845,281,275

10 ? 85,947,517,732,640,544,027

https://doi.org/10.1371/journal.pcbi.1007347.t001

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 27 / 29

https://doi.org/10.1371/journal.pcbi.1007347.t001
https://doi.org/10.1371/journal.pcbi.1007347

minimal set of nodes that one must remove so that, after their deletion and that of all elemen-

tary nodes created by this removal, one gets a BTC network with one leaf less. As in the case of

trees, given a BTC network over [n − 1] and some set of nodes with certain restrictions (i.e. the

feasible pairs S1 and S2) we can construct a BTC network over [n] leaves, in such a way that dif-

ferent choices for the BTC network or for the feasible pair give different BTC networks over

[n]. Hence, we find a procedure to recursively generate all BTC networks over a given set of

taxa. Biologically, we can think of this procedure as an extension of what can happen when

adding a new OTU n to a phylogenetic tree: here the diversification of n can involve a reticu-

lated event (when n is added as hybrid node) and the ancestors of n participate to |S2| reticu-

lated events, which were impossible to detect before the introduction of n.

Author Contributions

Conceptualization: Gabriel Cardona.

Formal analysis: Gabriel Cardona, Joan Carles Pons, Celine Scornavacca.

Investigation: Gabriel Cardona, Joan Carles Pons, Celine Scornavacca.

Methodology: Gabriel Cardona, Joan Carles Pons, Celine Scornavacca.

Software: Gabriel Cardona.

Supervision: Gabriel Cardona.

Visualization: Gabriel Cardona, Joan Carles Pons, Celine Scornavacca.

Writing – original draft: Gabriel Cardona, Joan Carles Pons, Celine Scornavacca.

References
1. Maddison WP. Gene Trees in Species Trees. Systematic Biology. 1997; 46(3):523–536. https://doi.org/

10.1093/sysbio/46.3.523

2. Scornavacca C, Huson DH. A Survey of Combinatorial Methods for Phylogenetic Networks. Genome

Biology and Evolution. 2010; 3:23–35. https://doi.org/10.1093/gbe/evq077 PMID: 21081312

3. Semple C, Baroni M, Steel M. Hybrids in Real Time. Systematic Biology. 2006; 55(1):46–56. https://doi.

org/10.1080/10635150500431197 PMID: 16507523

4. Baroni M, Semple C, Steel M. A Framework for Representing Reticulate Evolution. Annals of Combina-

torics. 2005; 8(4):391–408. https://doi.org/10.1007/s00026-004-0228-0

5. Erdos PL, Semple C, Steel M. A class of phylogenetic networks reconstructable from ancestral profiles;

2019. Available from: https://arxiv.org/abs/1901.04064v1.

6. Gusfield D, Eddhu S, Langley C. Efficient Reconstruction of Phylogenetic Networks with Constrained

Recombination. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics. CSB’03.

Washington, DC, USA: IEEE Computer Society; 2003. p. 363–. Available from: http://dl.acm.org/

citation.cfm?id=937976.938101.

7. Huson DH, Klöpper TH. Beyond Galled Trees—Decomposition and Computation of Galled Networks.

In: Speed T, Huang H, editors. Research in Computational Molecular Biology. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2007. p. 211–225. Available from: https://doi.org/10.1007/978-3-540-

71681-5_15.

8. van Iersel L, Kelk S. Constructing the Simplest Possible Phylogenetic Network from Triplets. Algorith-

mica. 2011; 60(2):207–235. https://doi.org/10.1007/s00453-009-9333-0

9. Cardona G, Rosselló F, Valiente G. Comparison of Tree-Child Phylogenetic Networks. IEEE/ACM

Transactions on Computational Biology and Bioinformatics. 2009; 6(4):552–569. https://doi.org/10.

1109/TCBB.2007.70270 PMID: 19875855

10. Francis AR, Steel M. Which phylogenetic networks are merely trees with additional arcs? Systematic

biology. 2015; 64(5):768–777. https://doi.org/10.1093/sysbio/syv037 PMID: 26070685

11. Cardona G, Pons JC, Rosselló F. A reconstruction problem for a class of phylogenetic networks with lat-

eral gene transfers. Algorithms for Molecular Biology. 2015; 10(1):28. https://doi.org/10.1186/s13015-

015-0059-z PMID: 26691555

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 28 / 29

https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1093/gbe/evq077
http://www.ncbi.nlm.nih.gov/pubmed/21081312
https://doi.org/10.1080/10635150500431197
https://doi.org/10.1080/10635150500431197
http://www.ncbi.nlm.nih.gov/pubmed/16507523
https://doi.org/10.1007/s00026-004-0228-0
https://arxiv.org/abs/1901.04064v1
http://dl.acm.org/citation.cfm?id=937976.938101
http://dl.acm.org/citation.cfm?id=937976.938101
https://doi.org/10.1007/978-3-540-71681-5_15
https://doi.org/10.1007/978-3-540-71681-5_15
https://doi.org/10.1007/s00453-009-9333-0
https://doi.org/10.1109/TCBB.2007.70270
https://doi.org/10.1109/TCBB.2007.70270
http://www.ncbi.nlm.nih.gov/pubmed/19875855
https://doi.org/10.1093/sysbio/syv037
http://www.ncbi.nlm.nih.gov/pubmed/26070685
https://doi.org/10.1186/s13015-015-0059-z
https://doi.org/10.1186/s13015-015-0059-z
http://www.ncbi.nlm.nih.gov/pubmed/26691555
https://doi.org/10.1371/journal.pcbi.1007347

12. van Iersel L, Semple C, Steel M. Locating a tree in a phylogenetic network. Information Processing Let-

ters. 2010; 110(23):1037–1043. https://doi.org/10.1016/j.ipl.2010.07.027

13. van Iersel L, Moulton V. Trinets encode tree-child and level-2 phylogenetic networks. Journal of Mathe-

matical Biology. 2014; 68(7):1707–1729. https://doi.org/10.1007/s00285-013-0683-5 PMID: 23680992

14. Semple C. Phylogenetic Networks with Every Embedded Phylogenetic Tree a Base Tree. Bulletin of

Mathematical Biology. 2016; 78(1):132–137. https://doi.org/10.1007/s11538-015-0132-2 PMID:

26670315

15. Bordewich M, Semple C, Tokac N. Constructing Tree-Child Networks from Distance Matrices. Algorith-

mica. 2018; 80(8):2240–2259. https://doi.org/10.1007/s00453-017-0320-6

16. Gambette P, van Iersel L, Jones M, Lafond M, Pardi F, Scornavacca Celine. Rearrangement Moves on

Rooted Phylogenetic Networks. PLoS Computational Biology 2017; 8(13):e1005611. https://doi.org/10.

1371/journal.pcbi.1005611

17. Pardi F, Scornavacca C. Reconstructible phylogenetic networks: do not distinguish the indistinguish-

able. PLoS computational biology. 2015; 11(4):e1004135. https://doi.org/10.1371/journal.pcbi.1004135

PMID: 25849429

18. Gunawan AD, Rathin J, Zhang L. Counting and Enumerating Galled Networks. arXiv e-prints. 2018; p.

arXiv:1812.08569.

19. McDiarmid C, Semple C, Welsh D. Counting Phylogenetic Networks. Annals of Combinatorics. 2015;

19(1):205–224. https://doi.org/10.1007/s00026-015-0260-2

20. Fuchs M, Gittenberger B, Mansouri M. Counting Phylogenetic Networks with Few Reticulation Vertices:

Tree-Child and Normal Networks. arXiv e-prints. 2018; p. arXiv:1803.11325.

21. Cardona G, Llabrés M, Rosselló F, Valiente G. A distance metric for a class of tree-sibling phylogenetic

networks. Bioinformatics. 2008; 24(13):1481–1488. https://doi.org/10.1093/bioinformatics/btn231

PMID: 18477576

22. Cardona G, Llabrés M, Rosselló F, Valiente G. Metrics for phylogenetic networks II: Nodal and triplets

metrics. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2009; 6(3):454–469.

https://doi.org/10.1109/TCBB.2008.127 PMID: 19644173

23. Oldman J, Wu T, Van Iersel L, Moulton V. Trilonet: piecing together small networks to reconstruct reticu-

late evolutionary histories. Molecular biology and evolution. 2016; 33(8):2151–2162. https://doi.org/10.

1093/molbev/msw068 PMID: 27189565

24. Huber KT, Van Iersel L, Moulton V, Scornavacca C, Wu T. Reconstructing phylogenetic level-1 net-

works from nondense binet and trinet sets. Algorithmica. 2017; 77(1):173–200. https://doi.org/10.1007/

s00453-015-0069-8

25. Jin G, Nakhleh L, Snir S, Tuller T. Maximum likelihood of phylogenetic networks. Bioinformatics. 2006;

22(21):2604–2611. https://doi.org/10.1093/bioinformatics/btl452 PMID: 16928736

26. Meng C, Kubatko LS. Detecting hybrid speciation in the presence of incomplete lineage sorting using

gene tree incongruence: a model. Theoretical population biology. 2009; 75(1):35–45. https://doi.org/10.

1016/j.tpb.2008.10.004 PMID: 19038278

27. Gusfield D. ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phyloge-

netic networks. MIT press; 2014.

28. Cardona G, Sánchez D. PhyloNetworks: A Python library for phylogenetic networks; 2012. Available

from: https://pypi.org/project/phylonetwork/.

Generation of Binary Tree-Child phylogenetic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007347 September 11, 2019 29 / 29

https://doi.org/10.1016/j.ipl.2010.07.027
https://doi.org/10.1007/s00285-013-0683-5
http://www.ncbi.nlm.nih.gov/pubmed/23680992
https://doi.org/10.1007/s11538-015-0132-2
http://www.ncbi.nlm.nih.gov/pubmed/26670315
https://doi.org/10.1007/s00453-017-0320-6
https://doi.org/10.1371/journal.pcbi.1005611
https://doi.org/10.1371/journal.pcbi.1005611
https://doi.org/10.1371/journal.pcbi.1004135
http://www.ncbi.nlm.nih.gov/pubmed/25849429
https://doi.org/10.1007/s00026-015-0260-2
https://doi.org/10.1093/bioinformatics/btn231
http://www.ncbi.nlm.nih.gov/pubmed/18477576
https://doi.org/10.1109/TCBB.2008.127
http://www.ncbi.nlm.nih.gov/pubmed/19644173
https://doi.org/10.1093/molbev/msw068
https://doi.org/10.1093/molbev/msw068
http://www.ncbi.nlm.nih.gov/pubmed/27189565
https://doi.org/10.1007/s00453-015-0069-8
https://doi.org/10.1007/s00453-015-0069-8
https://doi.org/10.1093/bioinformatics/btl452
http://www.ncbi.nlm.nih.gov/pubmed/16928736
https://doi.org/10.1016/j.tpb.2008.10.004
https://doi.org/10.1016/j.tpb.2008.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19038278
https://pypi.org/project/phylonetwork/
https://doi.org/10.1371/journal.pcbi.1007347

