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Abstract

In an inflammatory setting, macrophages can be polarized to an inflammatory M1 pheno-

type or to an anti-inflammatory M2 phenotype, as well as existing on a spectrum between

these two extremes. Dysfunction of this phenotypic switch can result in a population imbal-

ance that leads to chronic wounds or disease due to unresolved inflammation. Therapeu-

tic interventions that target macrophages have therefore been proposed and implemented

in diseases that feature chronic inflammation such as diabetes mellitus and atherosclero-

sis. We have developed a model for the sequential influx of immune cells in the peritoneal

cavity in response to a bacterial stimulus that includes macrophage polarization, with the

simplifying assumption that macrophages can be classified as M1 or M2. With this model,

we were able to reproduce the expected timing of sequential influx of immune cells and

mediators in a general inflammatory setting. We then fit this model to in vivo experimental

data obtained from a mouse peritonitis model of inflammation, which is widely used to

evaluate endogenous processes in response to an inflammatory stimulus. Model robust-

ness is explored with local structural and practical identifiability of the proposed model a

posteriori. Additionally, we perform sensitivity analysis that identifies the population of

apoptotic neutrophils as a key driver of the inflammatory process. Finally, we simulate

a selection of proposed therapies including points of intervention in the case of delayed

neutrophil apoptosis, which our model predicts will result in a sustained inflammatory

response. Our model can therefore provide hypothesis testing for therapeutic interven-

tions that target macrophage phenotype and predict outcomes to be validated by subse-

quent experimentation.
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Author summary

Using experimental data and mathematical analysis, we develop a model for the inflam-

matory response that includes macrophage polarization between M1 and M2 pheno-

types. Dysfunction of this phenotypic switch can disrupt the timely influx and egress of

immune cells during the healing process and lead to chronic wounds or disease. The

modulation of macrophage population has been suggested as a strategy to dampen

inflammation in diseases that feature chronic inflammation, such as diabetes and ath-

erosclerosis. It is therefore important that we learn more about which components of

the system drive the population level switch in phenotype. Our model is able to repro-

duce the expected timing of sequential influx of neutrophils and macrophages in

response to an inflammatory stimulus. Model parameters were estimated with weighted

least squares fitting to in vivo experimental data from a mouse model of peritonitis while

considering identifiability of parameter sets. We perform sensitivity analysis that identi-

fies primary drivers of the system, and predict the effects of variations in these key

parameters on immune cell populations.

Introduction

Macrophages play an essential role in both the progression and the resolution of inflammation.

These contradictory roles may be explained by the idea of a spectrum of macrophage pheno-

types, ranging from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype

at either extreme, with diverse subpopulations of macrophages in between [1–4]. Another pos-

sible explanation is that macrophages exhibit typically M1 or M2 type functions to varying

degrees at various points in time, or there are portions of each type present at each of the dif-

ferent phases of inflammation [5]. While this duality of purpose is not fully understood, it is

known that an imbalance between pro- and anti-inflammatory macrophage activities has been

linked to disordered healing and implicated in many inflammatory diseases. For example,

overpopulation of M1 macrophages can induce tissue injury [1], and the accumulation of M1s

in adipose tissue which secrete pro-inflammatory cytokines can lead to insulin resistance, dia-

betes, and atherosclerosis [6, 7]. Even M2 macrophages, which are thought of as resolving

inflammation, can cause disorders such as allergies, asthma, fibrosis, and excessive scarring

when present in large numbers [4]. There is also an increased association of M2 polarized mac-

rophages with solid tumor formation [8, 9].

All macrophages begin life as monocytes circulating in the bloodstream and, upon settling

into tissues and organs in the body, will adapt to their local environment. At an inflamed site,

monocytes are triggered to differentiate into macrophages in response to stimuli such as che-

mokines and cytokines in the environment, phagocytosis of apoptotic cells or debris, or the

presence of pathogen [1, 4, 7, 10, 11]. These first invading macrophages primarily activate to a

more M1 phenotype but, under normal conditions, M2 macrophages producing anti-inflam-

matory cytokines will eventually dominate, suppressing the inflammatory and Th1 adaptive

immune response, while promoting a Th2 response [4]. In response to infection or presence of

pathogens, neutrophils are the first immune cell to appear to facilitate removal. Subsequent

macrophage infiltration is essential for the removal of apoptotic neutrophils and continued

secretion of cytokines to further limit the effects of the invading pathogens [12].

This timely recruitment and egress of immune cells is central to the mounting of an appro-

priate immune response that resolves to restore tissue homeostasis. Dysfunction or disruption

of this response is the cause of essentially all chronic inflammatory diseases. Appropriate
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switching of phenotype of the overall macrophage population from initial M1 to M2 pheno-

type is critical for a balanced response. Knowledge of which subpopulations of macrophages to

modulate is therefore necessary for the development of interventions that can aid in the resolu-

tion of inflammation.

Mathematical modeling has been extensively applied to the problem of inflammation in a

variety of contexts such as wound healing [13–24] and atherosclerosis [25–32]. Deterministic

ordinary differential equations (ODEs) in particular have been used when the primary interest

is capturing time course and/or qualitative behavior at the cellular level. Reynolds et al. in 2006

[14] modeled the innate immune response to pathogen including activated phagocytes, level of

pathogen, tissue damage, and anti-inflammatory mediators and this model was modified to

apply to a local wound with the inclusion of fibroblast activity and the effect of tissue oxygen

levels in Menke et al. [17]. The work was further extended by Segal et al. in 2012 [20], adding

collagen accumulation as a means of tracking the healing progress. Cooper et al. [23] next

tracked macrophages and neutrophils specifically rather than a single variable representing

immune response. Phagocytosis of apoptotic neutrophils was considered a key driver of the

resolution of inflammation in models developed by Dunster et al. [22]. In a study analyzing

macrophage polarization following myocardial infarction, Wang et al. [21] tracked both M1

and M2 macrophages as well as pro- and anti-inflammatory mediators. Recent work by Lee

et al. [33] models M1 and M2 macrophage response to respiratory viral infection along with

epithelial cells, cytokines, and enzymes.

In this manuscript, we draw on the work done in these previous models to develop a new

computational model of inflammation that seeks, in part, to explain the relationship between

macrophage polarization and neutrophils. To our knowledge, our model is the first to include

both inflammatory M1s and resolving M2s that is fit to in vivo experimental data.

We first use ODEs to develop a computational model of the sequential influx of immune

cells in response to an external trigger to permit a system-level analysis of the processes. We

then parametrize the model by fitting to cell count data for neutrophils, M1 macrophages, and

M2 macrophages obtained from a mouse model of peritonitis, a well-accepted model to assess

inflammatory responses in vivo that is also widely used to evaluate the efficacy of targeted anti-

inflammatory interventions. This step entails finding a subset of identifiable parameters to esti-

mate and fixing those that were unidentifiable, a process that has many approaches across a

wide application area [34–39]. Once a final parameter set is estimated, we conduct a local sen-

sitivity analysis of the fitted model in order to gain an understanding of the primary controls

of the system. The results support the dependence of macrophage polarization on neutrophils

that has been hypothesized in the literature [1, 3, 40–42]. Finally, we use the model to test sev-

eral macrophage-targeted treatment scenarios that are hypothesized to dampen inflammation.

The resulting predictions could have implications in the development of treatment strategies

for chronic inflammation.

Materials and methods

Ethics statement

The use of animals for this study was approved by VCU IACUC and the approved protocol

number is AM10346 with an approval date of 4-14-18 and this approval will expire on 3-13-

2021. Isofluorane inhalation was used for euthanasia.

Experimental details

Induction of peritonitis by intraperitoneal injection of thioglycollate broth, which will facilitate

the rapid growth of bacteria in the peritoneal cavity, is a well-suited platform to monitor the
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influx of immune cells and also permits easy characterization of the infiltrating cells in a time

dependent manner. Peritoneal exudates were harvested from mice at 10 different time-points

over 7 days after a single intraperitoneal injection of 3% thioglycollate broth. The peritoneal

cavity was flushed with serum free RPMI medium. The cells were collected by brief centrifuga-

tion, re-suspended, and then stained with fluorescently conjugated antibodies to CD45,

CD11b, Ly6G (Gr-1), F4/80 and Ly6C and analyzed by flow cytometry to determine the distri-

bution of neutrophils, macrophages and Ly6CHi (M1) or Ly6CLo (M2) polarization [43].

While all leukocytes are CD45+, neutrophils and macrophages can be distinguished by the

presence of specific markers, namely Ly6G or Gr1 and CD11b or F4/80 on neutrophils and

macrophages, respectively. The macrophages in the peritoneal exudates can further be differ-

entiated into resident (CD11bHi and F4/80Hi), inflammatory M1 (CD11b+Ly6CHi) and anti-

inflammatory M2 (CD11b+Ly6CLo) phenotypes. The gating strategy and representative dot

plots and histograms used to identify individual cell populations are shown in Fig 1. Flow

cytometry data was analyzed using the FlowJo software and percent distribution of individual

cell type determined as described earlier [43]. The data collected from these experiments is

used to calibrate the model parameters (see Supporting Information).

Model development

The model developed in this manuscript tracks the signaling and resulting immune

response within the peritoneal cavity. We do not explicitly model the blood component and

Fig 1. Experimental details. Gating strategy and representative dot plots and histograms used to identify individual

cell populations.

https://doi.org/10.1371/journal.pcbi.1007172.g001
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all variables represent local levels. To create this model, previous models of immune

response to a wound [14, 20, 23] have been adapted to include polarization of macrophages

between phenotypes M1 and M2, transition of neutrophils to the apoptotic state, and the

injection of nutrient broth to induce growth of pathogen and stimulate immune response.

System variables include cell populations given by M1 (M1 macrophages), M2 (M2 macro-

phages), N (neutrophils), and AN (apoptotic neutrophils) as well as P (pathogen) and B
(inflammatory stimulus). We track the total cells for each population with units of 107 cells.

Model parameters for rates of activation, transition, decay, and interactions are specified in

Table 1. Units for many of the model parameters are given in terms of their associated vari-

able, since they are representative of immune functions such as cell signaling and mediators

for which units cannot be determined. The model is summarized in Fig 2 and described by

Eqs 1–6.

Table 1. Description of parameters and estimates for the full model.

Parameter Description Initial Estimate Bounds

P0 initial concentration of pathogen set equal to p1 (fixed)

B0 initial concentration of nutrient broth 1 × 103/cm3 (fixed)

kb destruction rate of B by P 10/day (fixed)

p1 pathogen carrying capacity 3 × 10−3/cm3 (1 × 10−6,1)

kpg growth rate of pathogen 35/day (10, 35)

kpn destruction rate of pathogen by N 0.295/N-units/day (0.11, 5)

kpm destruction rate of pathogen by macrophages 6.11/M-units/day (1, 10)

smr source of resting monocytes 21.440/M-units/day (8, 100)

μmr decay of resting monocytes 5.156/day (5,80)

km1p activation rate of M1 by P 1.00/M-units/day (1, 5)

km1n activation rate of M1 by N byproducts 0.025/M-units/day (0.01, 5)

km1an activation rate of M1 by AN 0.997/M-units/day (1 × 103, 5)

km1m1 activation rate of M1 by M1s and their cytokines 0.001/M-units/day (1 × 104, 5)

km2m1 transition rate of M2 to M1 0.117/M-units/day (0.01, 1)

μm1
� decay of M1 macrophages 6.956/day (1, 20)

km1m2
� transition rate of M1 to M2 8.281/M-units/day (0.1, 100)

km2m2
� activation rate of M2 by M2s and their cytokines 1.624/M-units/day (1 × 103, 5)

kc concentration of background anti-inflammatory 0.0125/M-units/day (fixed [14])

μm2 decay of M2 macrophages 8.271/day (1, 20)

snr� source of resting N 15.889/N-units/day (10, 100)

unr decay of resting N 3.978/day (1, 10)

knp� activation rate of N by P 3.703/N-units/day (1 × 103, 50)

knan activation rate of N by AN 0.607/N-units/day (0.0001, 5)

n1 level of N for 50% inhibition of M activity 0.156/N-units (0.01, 5)

kan transition rate of N to AN 7.108/N-units/day (1, 30)

kann destruction rate of AN by N 0.001/N-units/day (1 × 106, 0.01)

kanm1 destruction rate of AN by M1 2.898/N-units/day (0.1, 1 × 103)

kanm2
� destruction rate of AN by M1 87.080/N-units/day (5, 1 × 103)

μan secondary necrosis of AN 1.309/day (1, 15)

The value for kc was set to the value for sc, source of anti-inflammatory mediator, in Reynolds et al. [14]. To set bounds for parameter fitting, Latin Hypercube Sampling

was used to find parameter sets that resulted in a physiologically reasonable range of responses. This process is described in detail in Cooper et al. [23]. Parameters

included in the final subset of identifiable parameters, with all other parameters fixed, are marked with �, with final estimates given in Table 4.

https://doi.org/10.1371/journal.pcbi.1007172.t001
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Macrophages:

dM1

dt
¼

smrRM1ðP;N;M1;ANÞ
mmr þ RM1ðP;N;M1;ANÞ þ RM2ðM2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
activation=influx rate

� km1m2kanm1ANfiðM1;NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

switch to M2 from M1 per phagocytized AN

þ km2m1M2

zfflfflfflfflffl}|fflfflfflfflffl{
switch to M1 from M2

� mm1M1

zfflfflffl}|fflfflffl{
decay

ð1Þ

dM2

dt
¼

smrRM2ðM2Þ

mmr þ RM1ðP;N;M1;ANÞ þ RM2ðM2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
activation=influx rate

þ km1m2kanm1ANfiðM1;NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

switch rate from M1 per phagocytized AN

� km2m1M2

zfflfflfflfflffl}|fflfflfflfflffl{
switch from M2 to M1

� mm2M2

zfflfflffl}|fflfflffl{
decay

ð2Þ

where the activation/influx rates for M1 and M2 are given by

RM1 ¼ km1pP
zffl}|ffl{

activation by P

þ km1nN
zfflffl}|fflffl{

activation by byproducts of N

þ km1m1M1

zfflfflfflfflffl}|fflfflfflfflffl{
activation by M1s and their cytokines

þ km1anmanAN
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

activation by necrotic AN

RM2 ¼ km2m2M2

zfflfflfflfflffl}|fflfflfflfflffl{
activation by M2s and their cytokines

þ kc
z}|{

background anti� inflammatory cytokines

Fig 2. Model schematic. Model schematic for the inflammatory response with variables defined in the equations.

Arrows represent up-regulation and bars represent destruction or inhibition. Parameters in the schematic that are

included in the final subset of identifiable parameters appear in bold; additional non-interaction parameters that do

not appear in the schematic are given with the full subset in Table 4.

https://doi.org/10.1371/journal.pcbi.1007172.g002
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Neutrophils:

dN
dt
¼

snrRNðP;ANÞ
mnr þ RNðP;ANÞ

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
activation rate

� kanN
zffl}|ffl{
apoptosis

ð3Þ

dAN
dt
¼ kanN

zffl}|ffl{
apoptotis of N

� kanm1ANfiðM1;NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

removal by M1

� kanm2ANfiðM2;NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

removal by M2

� kannN
zffl}|ffl{

removal by N

� manAN
zfflfflffl}|fflfflffl{

secondary necrosis

ð4Þ

where the activation rate for neutrophils is

RN ¼ knpP
z}|{

activation by P

þ knanmanAN
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

activation by necrotic AN

Inflammatory Stimulus:

dP
dt
¼ kpgP 1 �

P
P1 þ B

� �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
logistic broth� dependent growth

� kpnPN
zfflffl}|fflffl{

removal by N

� kpmPfiðM1;NÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

removal by M1

� kpmPfiðM2;NÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

removal by M2

ð5Þ

dB
dt
¼ � kbBP

zfflfflffl}|fflfflffl{
consumption by P

ð6Þ

Inhibition function:

fiðx;NÞ ¼
x

1þ
N
n1

� �2

The healthy peritoneal cavity is impermeable and is assumed to be nearly sterile prior to

inflammatory stimulus, with very low levels of pathogen, and so has no immune cell influx.

Therefore, all of our immune cell variables have an initial condition of zero. The injection of

nutrient broth is assumed to stimulate a very rapid increase in pathogen growth that quickly

subsides as broth is consumed and pathogen is removed by macrophages and neutrophils.

This brief spike in pathogen modeled by Eqs 5 and 6 initiates the subsequent immune cell

response.

As in Cooper et al. [23], immune cells are assumed to activate and influx into the local envi-

ronment rapidly compared to other dynamics, so the quasi-steady state assumption is used.

This gives rise to Michaelis-Menten type activation and influx terms in Eqs 1–3. In addition,

we do not explicitly model cytokines but instead allow the production of immune cells to act

as an indicator of associated cytokine level.

Resting neutrophils are the first immune cells to arrive at the site of infection, rapidly

becoming activated by pathogen and the debris formed by apoptotic neutrophils at the rate

RN(P, AN). As neutrophils become laden with bacteria, they undergo apoptosis at rate kan.
Apoptotic neutrophils are then removed by M1s at rate kanm1, M2s at rate kanm2, and by active

Identifying parameters in a model of immune cell influx and macrophage polarization
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neutrophils at rate kann. We have chosen kann to be much smaller than both kanm1 and kanm2 as

appropriate for the case when both macrophages and neutrophils are present, but in the

absence of macrophages, the clearance of apoptotic cells by neutrophils may take on greater

importance [44, 45]. Apoptotic neutrophils that are not cleared undergo secondary necrosis at

rate μan, contributing to the positive feedback described in the neutrophil activation term RN.

Resting monocytes (MR) are next to arrive. The majority of these first monocytes differenti-

ate to an inflammatory M1 phenotype in response to pathogen, byproducts of neutrophils,

M1s and their cytokines, and cytokines spilled by necrotic apoptotic neutrophils at rate RM1(P,

N,M1, AN). Background levels of anti-inflammatory cytokines, kc (related to the anti-inflam-

matory source term in Reynolds et al. [14]), cause a small portion of monocytes to differentiate

to an M2 phenotype. Intrinsic decay is assumed to occur at rate μm1 in M1s and at rate μm2 in

M2s. M1s are assumed to be able to switch to M2s at rate km1m2, and this switch is assumed to

be promoted by the phagocytosis of apoptotic cells [1, 3, 42, 46]. Plasticity of macrophage phe-

notype is not fully understood, therefore, we allow for the possibility of a transition from M2

to M1 in Eq 1 at rate km2m1 as well. Late arriving monocytes are assumed to be able to activate

to the M2 phenotype in response to anti-inflammatory cytokines produced by M2s at rate

RM2(M2).

The inhibition term fi(x, N) models the inhibition of macrophage activity by neutrophils

due to oxidation of the environment. The same parameter, n1, is used to determine the level

at which the presence of neutrophils inhibit the macrophages regardless of phenotype (M1 or

M2) and what they are phagocytosing (pathogen or apoptotic neutrophils). This is due to the

simplifying assumption that all macrophages are inhibited the same by the oxidative stress in

the local environment.

Parameter estimation

Cell count data is given in units of 107 cells. The model given by Eqs 1–6 was fit to experimen-

tal data using the trust region method within PottersWheel, a MATLAB toolbox for parameter

estimation [47]. The trust region approach uses the lsqnonlin algorithm of MATLAB’s optimi-

zation toolbox, which allows for the specification of bounds on the parameter space to be

searched. Bounds for each parameter are given in Table 1.

The fitting procedure was then performed iteratively via weighted least squares with merit

function

w2ð~pÞ ¼
Xn

i¼1

yi � yðti;~pÞ
s�i

� �2

ð7Þ

with~p the vector of estimated parameters, yi the observations, yðti;~pÞ the model predictions

given the parameter estimates, s�i the standard errors, and n equal to the total number of obser-

vations over all response variables. Minimizing w2ð~pÞ=2 is equivalent to maximizing the log-

likelihood

logLð~pjydataÞ ¼ �
X

i

ðydatai � y
model
i Þ

2

2s2
i

� N log
ffiffiffiffiffiffi
2p
p

�
X

i

logsi

since only the first term is parameter-dependant [47].

Fitting was performed in logarithmic parameter space since some parameter bounds span

several orders of magnitude. This local optimization routine seeks parameters that minimize

the sum of squared errors between the data and model predictions while accounting for vari-

ance. Since each observable N,M1, and M2 has high standard deviations for measurements
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taken at time points near the maximum, weighting by these standard deviations would result

in compliance with many models. We chose instead to use error model σi = 0.05yi + 0.1max

(y), assuming 5% uncertainty at each time point and 10% overall uncertainty relative to the

maximum of each observable.

At each step of the fitting process, parameter estimations were performed iteratively to

ensure minimization of the merit function. Results at each step were analyzed to determine

free and fixed parameters and to narrow the search for an identifiable subset of parameters as

described in the Results section.

Goodness-of-fit measures

Under the assumption that residuals between the data and model predictions are Gaussian dis-

tributed, the log-likelihood is distributed like a χ2 distribution with N −M degrees of freedom,

with N data points and M parameters being estimated [47]. PottersWheel calculates a χ2 p-

value after each fit for the null hypothesis that (1) the model sufficiently explains the data, (2)

true standard deviations do not exceed standard deviation estimates, and (3) the residuals are

normally distributed [47].

PottersWheel also calculates the Akaike Information Criterion AIC ¼ � 2 logLþ 2p for a

model with p parameters [48]. Given two models under consideration, the one with the lowest

AIC value is preferred.

Results

With the general model developed, we next estimate model parameters, analyze sensitivity of

model characteristics to perturbations in the parameters and, finally, predict changes in neu-

trophil and macrophage behavior in response to parameter variations.

Determination of an identifiable subset of model parameters for

estimation

Structural identifiability (SI) is a prerequisite for model prediction [49], while numerical or

practical identifiability is required to determine confidence intervals around parameter esti-

mates and ensure that the connection between the dynamic model and the data model is suffi-

ciently strong for prediction. Determining which parameters can be uniquely determined, or

at least limited to a finite range of possible values, is also a critical step in informing further

experimentation. This process includes selecting parameters that significantly impact model

outputs as well as defining interactions between parameters that can influence parameter esti-

mates obtained during fitting. In this section, we analyze local parameter identifiability as out-

lined in the steps below and in Fig 3:

1. Estimate all parameters.

• Use the fitted model to generate the discretized sensitivity matrix S.

2. Fix insensitive parameters.

• Use S to rank parameters by sensitivity.

• Set a threshold such that parameters with sensitivity below the threshold (insensitive) are

fixed and parameters with sensitivity above the threshold (sensitive) are analyzed in Step 3.

3. Select low collinearity group of parameters as identifiable (ID) subset.

Identifying parameters in a model of immune cell influx and macrophage polarization
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• Check for pairwise correlations between parameters by deriving an approximate correla-

tion matrix from S.

• Check for collinearity between groups of parameters with a collinearity index (CI) mea-

sure. Set a threshold such that groups of parameters with CI above the threshold are con-

sidered collinear. Groups of parameters with CI below the threshold are considered

identifiable subsets.

4. Estimate identifiable (ID) subset of parameters.

• One identifiable subset of parameters is selected to be estimated.

• The remaining parameters are fixed.

Model parameters were estimated using a maximum likelihood equivalent criterion and

trust region search algorithm as described (see Materials and methods). Since reducing param-

eters to be estimated can be considered a form of model reduction [50], we refer to our final

model with 6 estimated parameters as the “identifiable” model versus the “full” model with all

24 parameters estimated in the comparisons below.

First, we performed parameter estimation on the full model. For all three observable model

outputs (N, M1, and M2) sampled at 10 time points with 24 model parameters, a 30 × 24 dis-

cretized sensitivity matrix S is produced. To test structural identifiability of the model a poste-
riori, we generated these matrices at a variety of locations in parameter space within the

bounds given in Table 1 and found the rank and the singular values for each. Since each of

these matrices was determined to have full column rank and no zero singular values, we con-

cluded that the model is locally SI [51] within the bounds we had set for parameter estimation.

Next, we ranked the impact of each parameter on all three observable model outputs (N,

M1, and M2) by calculating a root mean square sensitivity measure, as defined in Brun et al.

[34], for each column j of the normalized sensitivity matrix as

RMSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

pj
yi

@yi
@pj

 !2
v
u
u
t :

Fig 3. Steps to estimate an identifiable subset of parameters. Step 1 (gray): estimate all parameters and generate a

discretized sensitivity matrix from the fitted model. Step 2 (pink): Fix parameters that fall below a determined

sensitivity threshold. Step 3 (blue): Select one group of low collinearity (identifiable) parameters. Step 4 (green):

Estimate the chosen identifiable subset and fix all other parameters.

https://doi.org/10.1371/journal.pcbi.1007172.g003
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Parameter j is deemed insensitive if RMSj is less than 5% of the value of the maximum RMS
value calculated over all parameters. By this measure, 8 parameters were deemed insensitive, as

shown in Fig 4, and fixed at their nominal values.

We had determined that all singular values were greater than zero, indicating SI, but only 6

of the 24 singular values obtained had values with order of magnitude greater than zero. If we

consider the very small singular values essentially zero for the purpose of rank calculation (in

order to reduce problems with numerical identifiability) this gives rank(S) = 6, and since rank

(S) can be used to identify the number of parameters that can be included in an identifiable

subset [36, 50], a subset of size 6 is suggested. The parameter estimation problem was therefore

reduced to finding identifiable subsets of size 6 out of the 16 sensitive parameters.

The estimated correlation matrix for the sensitive subset of parameters, shown in Fig 5,

shows a large number of dependencies between pairs of parameters. Effects of nearly linearly

dependent parameters on output are pairwise indistinguishable and cannot be reliably esti-

mated, due to compensating effects by changes in other parameters in the group. In addition

to discovering pairwise parameter relationships, we sought a minimally correlated group of 6

parameters. A measure that applies to parameter subsets of any size is the collinearity index

defined by Brun et al. [34] as

CI ¼
1
ffiffiffi
l
p

k

where λk is the smallest eigenvalue of �STk �Sk and �S is a submatrix of S containing the sensitivity

vectors for parameters in subset K. In practical terms, changes in model output caused by a

change in parameter pj can be compensated for by other parameters by up to 1

CI (e.g., for

CI = 20 a change in output caused by a change in pj can be compensated for up to 5% by other

parameters in subset K) [34]. A cutoff of CI = 20 was used to select subsets of parameters with

low collinearity.

Collinearity indices were calculated for parameter subsets of increasing size as described in

Brun et al. [34], using code in the VisId MATLAB toolbox [35]. Thirteen parameter pairs that

Fig 4. Parameter importance ranking (RMS) for full and identifiable model. We ranked the impact of each

parameter on all three observable model outputs (N,M1, andM2) by calculating a root mean square sensitivity

measure, as defined in Brun et al. [34]. The sensitivity threshold was set at 5% of the maximum RMS value calculated

over all parameters. Eight parameters in the full model were thus deemed insensitive and fixed in step 2 of our

identifiability analysis. The inset plot shows RMS values for the identifiable model.

https://doi.org/10.1371/journal.pcbi.1007172.g004
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were found highly correlated by this measure are shown in Table 2; others are not shown due

to the large number of collinear groups (for example, there were 68 highly collinear parameter

subsets of size 3). No subsets of size greater than 6 met our criteria for low collinearity between

parameters. In all, 25 parameter subsets of size 6 met our criteria, involving 10 different param-

eters (shown in Table 3).

Fig 5. Correlation matrix plot for the full model. An approximate correlation matrix was obtained from the Fisher

Information Matrix for the sensitive subset of parameters and used to visualize correlations. There are many significant

linear correlations (greater than 0.7) between sensitive parameters that appear as black or white squares on the off

diagonal.

https://doi.org/10.1371/journal.pcbi.1007172.g005

Table 2. Pairwise collinearity indices.

Parameter Pair CI

km1m2, kanm1 67.98

snr, unr 47.04

snr, knan 46.16

unr, knan 43.50

kan, knan 28.28

snr, kan 26.79

kan, unr 25.79

unr, uan 25.13

n1, knan 24.84

kan, n1 24.20

snr, uan 24.14

uan, knan 20.77

snr, n1 20.16

Pairs of parameters were considered collinear (highly correlated) if CI> 20.

https://doi.org/10.1371/journal.pcbi.1007172.t002
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In selecting one of these parameter subsets to be estimated in an identifiable model, we con-

sidered several factors. First, from a practical standpoint, it was desirable to choose parameters

that may be reasonably estimated from currently available data and also that we hope to vary

in future simulated experiments. Next, we sought to both minimize the CI and maximize the

sum of the RMS sensitivity measures over all of the parameters in the subset. Minimizing the

CI reduces the likelihood of parameter dependencies interfering with optimization, while

choosing the subset with the most sensitive parameters should require the smallest adjustment

to their values [50].

The chosen identifiable subset of 6 parameters is shown in Table 4 along with pointwise

95% confidence intervals calculated based on the approximate Hessian matrix of the objective

function given in Eq 7, as described in Maiwald et al. [47]. The fit of the identifiable model

to M1, M2, and neutrophil data along with state variable predictions for pathogen, nutrient

broth, and apoptotic neutrophils are shown in Fig 6. A plot of the differences between model

predictions and observations is available in the Supporting Information.

Table 3. All identifiable parameter subsets of size 6.

Parameter group Collinearity Index

snr, smr, μm1, km1m2, knp, kanm2 18.492

snr, smr, μm1, knp, kanm1, kanm2 18.915

snr, smr, μm2, km1m2, knp, kanm2 18.726

snr, smr, μm2, knp, kanm1, kanm2 19.281

snr, smr, km1m2, knp, kanm2, km2m2 18.197

snr, smr, km1m2, knp, kanm2, km1an 19.170

snr, smr, knp, kanm1, kanm2, km2m2 18.562

snr, smr, knp, kanm1, kanm2, km1an 19.815

snr, μmr, μm1, km1m2, knp, kanm2 18.009

snr, μmr, μm1, knp, kanm1, kanm2 18.311

snr, μmr, μm1, knp, kanm2, km1an 19.060

snr, μmr, km1m2, knp, kanm2, km2m2 18.606

snr, μmr, km1m2, knp, kanm2, km1an 18.323

snr, μmr, knp, kanm1, kanm2, km2m2 19.032

snr, μmr, knp, kanm1, kanm2, km1an 18.741

snr, μm1, μm2, km1m2, knp, kanm2 18.370

snr, μm1, μm2, knp, kanm1, kanm2 18.800

snr, μm1, μm2, knp, kanm2, km1an 19.984

snr, μm1, km1m2, knp, kanm2, km2m2 18.207

snr, μm1, knp, kanm1, kanm2, km2m2 18.567

snr, μm1, knp, kanm2, km2m2, km1an 19.251

snr, μm2, km1m2, knp, kanm2, km1an 18.610

snr, μm2, knp, kanm1, kanm2, km1an 19.121

snr, km1m2, knp, kanm2, km2m2, km1an 18.364

snr, knp, kanm1, kanm2, km2m2, km1an 18.771

A subset of sensitive parameters was considered identifiable if its collinearity index was below 20. Of these twenty-

five identifiable subsets of size 6 (generated from 10 parameters), we chose one subset to estimate given in Table 4.

With our choice, we sought to both minimize the CI and maximize the sum of the RMS sensitivity measures over all

of the parameters in a subset containing parameters that may be reasonably estimated from currently available data

and that we hope to vary in future simulated experiments.

https://doi.org/10.1371/journal.pcbi.1007172.t003
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Goodness-of-fit

The full model, with 24 parameters estimated, and the identifiable model, with 6 parameters

estimated, are compared with respect to goodness-of-fit using the Akaike information crite-

rion (AIC) and χ2 test (see Methods) in Table 5. By these measures, the data is best explained

by the identifiable model even though the difference in χ2 metric value between models is

small. There is close agreement between model predictions and observations achieved with

our obtained parameters, however, we remark that there is some dependency between fixed

and estimated parameters and that there are inherent limitations in estimating parameters

with limited experimental data. Therefore, these estimates should be taken as conditional, and

we can determine which fixed parameters they may be conditioned on by viewing the profile

likelihood [37, 52, 53].

The profile likelihood approach for analyzing identifiability fixes a parameter pi at values

over a specified range, re-estimating all other parameters at each point [52]:

w2
PLðpiÞ ¼ min

pj 6¼i
½w2ðpÞ�:

Table 4. Parameter values and 95% pointwise confidence intervals for identifiable model.

Parameter Estimate 95% CI

μm1 6.83 (5.45, 8.54)

km1m2 8.62 (5.56, 13.4)

km2m2 1.59 (0.86, 1.96)

snr 16.4 (16.0, 16.8)

knp 3.10 (1.68, 5.65)

kanm2 91.0 (66.4, 125)

Remaining parameters were fixed at values given in Table 1.

https://doi.org/10.1371/journal.pcbi.1007172.t004

Fig 6. Model predictions for the identifiable model. Model response variable predictions for M1 macrophage (M1),

M2 macrophage (M2), and neutrophil (N) counts are plotted versus mean observed values and standard errors. Model

state variable predictions for levels of pathogen (P) and nutrient (B) and apoptotic neutrophil (AN) counts are plotted

on the same axis. The blue axis applies to pathogen and apoptotic neutrophils. The red axis applies to nutrient broth.

https://doi.org/10.1371/journal.pcbi.1007172.g006
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Using the profile likelihood, it is possible to trace out the functional form of identifiable com-

binations of parameters, and this information can be used in re-parametrization [36, 37].

However, this requires reducing extra degrees of freedom in the estimated parameters in order

to avoid compensation effects. [37]. Even with collinearities present, it is possible to get an idea

of compensation effects between parameters during fitting by observing how estimated param-

eters change over the profiled parameter. This can be important in determining whether esti-

mated parameters are conditional on parameters that were fixed prior to fitting [34]. We have

plotted the profile likelihoods of parameters in the identifiable subset versus other parameters

that change significantly over the profile likelihood (see Supporting Information).

Sensitivity analysis

The impact that both fixed and estimated parameters have on predictions forM1 and M2

macrophages was analyzed with one-at-a-time sensitivity analysis. We focused our analysis on

these two observable outputs since our goal is to identify drivers of population level phenotype

switch in macrophages. In applying this method, we increased each parameter by a factor of

1.001 of its baseline value while holding all other parameters at their baseline values to deter-

mine the effects on the M1 and M2 characteristics shown in Figs 7 and 8. The sensitivity of

characteristic f with respect to parameter p is then estimated as s = (f(1.001 � p) − f(p))/(1.001 �

p − p) � p/f using the PottersWheel MATLAB toolbox [47]. The parameter is then reset to

its baseline value and the process is repeated for the next parameter, until sensitivity of all

parameters is analyzed. Baseline values for parameters that were fixed during fitting are given

in Table 1 and baseline estimated parameter values are given in Table 4. Baseline characteris-

tics of each cell type are shown in Figs 7 and 8, along with sensitivities of each characteristic to

variations in each parameter. Since parameters are varied individually, this analysis does not

take into account interactions between variables that may influence model results in unex-

pected ways if more than one parameter is varied simultaneously. Taken with the above cau-

tion, however, we can gain some insight into which factors may drive macrophage phenotype

balance.

The most influential parameters on M1 behavior are snr and smr (availability of resting neu-

trophils and monocytes), kpg (behavior of inflammatory stimulus), km1p and knp (response of

M1s and neutrophils to inflammatory stimulus), and uan (rate of secondary necrosis of neutro-

phils). In the present context, M1s are primarily activated by initial inflammatory stimulus and

necrosis of apoptotic neutrophils that have not been phagocytosed. This supports the hypothe-

sis that effective clearance of apoptotic cells is important in the resolution of inflammation [1,

40, 46, 54–59]. If our parameter estimates had been obtained by fitting to data from chronic

inflammation, feedback from existing M1s and the pro-inflammatory byproducts of existing

Table 5. Goodness-of-fit statistics.

np χ2 p-value AIC

Full model 24 19.325 0.003 122.462

Identifiable model 6 15.473 0.906 82.61

In the full model, 24 parameters were estimated. After identifiability analysis, estimated parameters were reduced to 6

and the remaining parameters were fixed prior to fitting. The reduction in estimated parameters improved the

weighted least squares merit function value (χ2), increased p-value on a χ2 test indicating that the identifiable model

sufficiently explains the data, and lowered the estimated amount of information lost between the model and the data

by the Aikake Information Criterion (AIC) measure.

https://doi.org/10.1371/journal.pcbi.1007172.t005
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neutrophils would likely be greater contributors to M1 response. Negatively related to magni-

tude of M1 response are parameters μm1 (decay or efflux rate of M1s) and n1 (the level of neu-

trophils required to inhibit macrophage activity by 50%). As the threshold for inhibition of

M1s increases, the magnitude of the M1 population decreases because less M1s are required to

mount an adequate response.

Fig 7. Baseline characteristics for M1 and sensitivity of characteristics to parameter variations. The M1 transient

curve and its characteristics are plotted for the baseline parameter values given in Tables 1 and 4. Parameter sensitivity

plots show the effects on M1 characteristics of varying model parameters one-at-a-time by a factor of 1.001 of its

baseline value while holding all other parameters at their baseline values. Insensitive parameters, which have zero

sensitivity for all characteristics, are not shown.

https://doi.org/10.1371/journal.pcbi.1007172.g007
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The importance of neutrophils and neutrophil apoptosis in mounting a timely and suffi-

cient M2 response is evidenced by the high sensitivity of M2 peak timing and amplitude to

neutrophil-associated parameters snr, uan, kan, knp, unr, n1, kanm1, kanm2, and knan. The magni-

tude of the M2 population peak is also strongly positively associated with km1m2 (switch rate

from M1s) and km2m2 (feedback from existing M2s). Increasing rates of decay or efflux for rest-

ing monocytes (μmr) and resting neutrophils (unr) diminishes M2 population magnitude, as

Fig 8. Baseline characteristics for M2 and sensitivity of characteristics to parameter variations. The M2 transient

curve and its characteristics are plotted for baseline parameter values given in Tables 1 and 4. Parameter sensitivity

plots show the effects on M2 characteristics of varying model parameters one-at-a-time by a factor of 1.001 of its

baseline value while holding all other parameters at their baseline values. Insensitive parameters, which have zero

sensitivity for all characteristics, are not shown.

https://doi.org/10.1371/journal.pcbi.1007172.g008
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does reduced M1 activation by pathogen (km1p), indicating M2 dependence on the population

size of other immune cells.

Simulations

Our objective in this work is to identify key drivers of macrophage phenotype balance during

the inflammatory response, in order to identify potential clinical targets. Therefore we now

perturb parameters from fitted values in order to view effects on model behavior and simulate

therapeutic targeting of macrophages for intervention in the early inflammatory process criti-

cal to disease progression, as has been proposed [60–62].

One proposed strategy to dampen inflammation is to directly polarize M1 macrophages to

an M2 phenotype [60]. To evaluate the effects of varying the transition rate of M1 to M2, we

varied parameter km1m2 over 10 linearly spaced values within a factor of 1 ±.3 of its baseline

value. The model predicts that increasing km1m2 has a small effect on M1 magnitude of

response while increasing the magnitude of M2 response, which is expected. However, the

time course of both macrophage populations is predicted to be shortened due to a higher

transition rate; whether this results in faster resolution of inflammation or an insufficient M2

population for a subsequent proliferation or repair phase may depend on the nature and mag-

nitude of the inflammatory stimulus.

Next, we simulated a change in the apoptosis rate of neutrophils, kan, based on our

hypothesis that efferocytosis (phagocytic removal of apoptotic and necrotic cells) is a key

driver of macrophage phenotype change and that this requires a sufficiently sized population

of apoptotic cells [1, 3, 40–42]. Dysregulation of neutrophil population level and turnover is

known to be a direct contributor to human inflammatory and autoimmune diseases such as

coronary artery disease, rheumatoid arthritis, acute arterial occlusions, gout, asthma, and

many others [63, 64]. Macrophages themselves are known to modulate neutrophil lifespan

by releasing cytokines that can delay apoptosis [65] and some microbial pathogens delay or

accelerate neutrophil apoptosis to promote their own growth [63]. From the results in Fig 9,

we note that modulating the size kan has some interesting effects. In the biologically unlikely

case where kan = 0 and there is no population of apoptotic neutrophils available for efferocy-

tosis, neutrophils remain the dominant immune cell. For low values of kan, sustained inflam-

mation appears to be the result of too many inflammatory neutrophil byproducts and the

low M2 population levels. Midrange kan values were determined during fitting to produce a

normal response, while higher kan levels seem to produce faster resolution similar to increas-

ing the transition rate km1m2. This is unsurprising given the dependency of the second term

of Eq 1 on km1m2, kanm1, and AN, which tracks the size of the apoptotic neutrophil popula-

tion. Yet the magnitude of the effects of modulating kan versus acting on transition directly

via km1m2 are predicted to diverge for lower values, with the former providing more dramatic

changes.

To explore points of intervention in the case of delayed neutrophil apoptosis, we set kan =

5.56. This results in sustained inflammation as shown in Fig 9, and changes in sensitivity to

parameters across this bistability is also shown in Fig 10. For example, with delayed neutrophil

apoptosis (unhealthy case), the number of M1s remaining at day 7 becomes strongly positively

associated with parameter snr (influx rate of resting neutrophils) and the number of M2s

remaining at day 7 becomes negatively associated with increased μm2.

By changing these as shown in Fig 11 we are able to resolve inflammation in spite of

impaired neutrophil apoptosis. Modulating resting neutrophils by either reducing influx (sim-

ulated by lowering the value of snr) or increasing decay or efflux (simulated by increasing the

value of unr) returns all immune cell populations to homeostasis. However, reducing decay or
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Fig 9. Results of perturbations in parameter kan. Parameter kan, which models the rate of neutrophil apoptosis, was

varied around its baseline value of kan = 7.108. The effects of variations on M1, M2, and neutrophils are shown. Values

lower than baseline lead to a sustained inflammatory response from all immune cells while higher values shorten the

time course of each.

https://doi.org/10.1371/journal.pcbi.1007172.g009

Fig 10. Sensitivity of M1 and M2 characteristics to parameter variations in the case of delayed neutrophil apoptosis (unhealthy

response) versus a healthy response. Predictions and sensitivities for a healthy response are plotted in blue, while predictions and

sensitivities for an unhealthy response are plotted in red. A healthy M1 and M2 response that resolves, with all parameters at baseline

values given in Tables 1 and 4 (including kan = 7.108), is plotted versus an unhealthy, sustained M1 and M2 response resulting from

reducing the value of parameter kan to 5.56 while holding all other parameters constant. The bar charts compare the associated

sensitivity of M1 and M2 characteristics to parameter variations in the healthy case versus the unhealthy case. Insensitive parameters,

which have zero sensitivity for all characteristics, are not shown.

https://doi.org/10.1371/journal.pcbi.1007172.g010
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efflux of M2s (by lowering the value of μm2) led to a resolution of inflammation but a sustained

M2 population that could potentially be problematic.

Finally, we simulated reducing availability of monocytes for recruitment by reducing

monocyte source parameter, smr, by 1/2 at early versus late time points (16 hours or 5 days) to

compare effects as shown in Fig 12. Resulting predictions support what has been demonstrated

experimentally: that intervening at early timepoints to block or reduce monocyte recruitment

and their subsequent differentiation to inflammatory macrophages can actually impair resolu-

tion of inflammation [60, 66, 67].

Discussion

Modulating macrophage subpopulations has been proposed as a strategy to resolve inflamma-

tion [60–62, 68], but the mechanisms driving macrophage phenotypic switch are not well

understood. In this work we have developed a model that includes macrophage polarization

during inflammation. To our knowledge, it is the first model of its kind to be fit to in vivo
experimental data. Our model allows some insight into key drivers of macrophage population

shift over the time course of inflammation and allows us to predict the effects of therapies tar-

geting macrophages.

The experimental data used to fit this mathematical model was obtained from the widely

studied peritonitis model of inflammation. In addition to recapitulating the influx and egress

of inflammatory cells in response to stimulus-induced inflammation, this model is also exten-

sively used to assess the involvement of endogenous processes in mounting as well resolving

the inflammatory processes. In recent studies, the pro-inflammatory role of human proteinase

3 (PR3) during acute inflammatory responses by modulating neutrophil accumulation and the

underlying mechanisms were almost entirely determined using a zymosan-induced peritonitis

model [69]. Extending the investigations into endogenously produced pro-resolving lipid

Fig 11. Parameter variations that resolve inflammation in the case of delayed neutrophil apoptosis. Reducing the

value of parameter kan from baseline while holding all other parameters constant leads to sustained inflammation. We

resolved inflammation in this case by varying each of three parameters separately: μm2, unr, or snr. All immune cells

return to low levels if resting neutrophil influx or decay is modulated, while a population of M2 macrophages persists if

M2s are directly targeted to resolve the inflammation.

https://doi.org/10.1371/journal.pcbi.1007172.g011
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mediators, Ramon et al. not only identified PCTR1, a member of the protectin family as a

potent monocyte/macrophage agonist but also established the therapeutic potential of PCTR1

supplementation in resolving inflammation using microbial-induced peritonitis in mice [70].

Similarly, Juhas et al. confirmed the ability of RX-207 to reduce neutrophil migration using

thioglycollate-induced peritonitis [71]. These examples not only underscore the importance of

developing a mathematical model based on experimental data from mouse peritonitis, but also

provide the rationale and future application of such a model for evaluating and predicting out-

comes to be validated by subsequent experimentation.

The process of parameter selection is fully elucidated (see Results). Parameter estimation

was carefully conducted such that unidentifiable parameters were fixed and the confounding

effects of parameter interactions were reduced in order to obtain an identifiable subset

of parameters of interest for estimation. We also stipulate that other, equally viable, identifi-

able subsets could have been estimated (see Table 3) and that estimated parameters may be

conditional on parameters that were previously fixed. It is important to acknowledge that

parameters chosen for estimation will depend on the experimental context and available

measurements.

It is hypothesized that efferocytosis of apoptotic cells is an important determinant of macro-

phage phenotype [1, 3, 40–42], and our sensitivity analysis supports the dependence of macro-

phage behavior on neutrophils. Our analysis indicates that timing and magnitude of the M2

response in particular is closely related to neutrophil dynamics.

We simulated several treatment scenarios targeting macrophages both directly and indi-

rectly. We compared the effects of targeting macrophage transition rate directly (in the model

via parameter km1m2) versus varying neutrophil apoptosis rate, kan, in order to increase the

population of apoptotic cells available for macrophage efferocytosis. A shorter time course of

both M1 and M2 response is predicted in both cases; whether this indicates fast resolution or

Fig 12. Predicted effects of reducing source of monocytes smr. The effects of the baseline case of a constant influx of

resting monocytes (that will differentiate into macrophages) is compared to the effects of reducing influx of monocytes

at an early timepoint (16 hours) versus a late timepoint (5 days). Early intervention leads to sustained inflammation

while late intervention leads to an increase in neutrophils.

https://doi.org/10.1371/journal.pcbi.1007172.g012
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introduces the possibility of an insufficient M2 population given a sustained pathogen insult

or injury requires further examination.

Our model predicts that timing may be critical in blocking or reducing availability of

monocytes in order to reduce the inflammatory M1 response, as has been proposed, and that

this could lead to chronic inflammation. These effects have been observed in an experimental

setting as well [60, 66, 67].

Since pro- and anti-inflammatory mediators could not be measured experimentally, we

instead used cellular feedback loops to describe their contribution to inflammatory processes.

The future addition of parameters such as local production/levels of pro- or anti-inflammatory

mediators that likely influence the function of infiltrated immune cells will further fine-tune

this model. It is noteworthy that using the mouse model of peritonitis, Dequine et al. demon-

strated that local TNFR1 signaling modulated neutrophils for increased cytokine production

with implications on neutrophil recruitment and egress [72]. Further experimentation is also

likely to allow a larger identifiable subset of parameters, especially if cytokines associated with

the various cell types are explicitly measured, giving a stronger connection between available

data and feedback loop components in the model.

In future work, this peritonitis model will be extended to the case of early atherosclerosis.

In addition to the routinely monitored changes in serum lipid profiles, changes in monocytosis

as well as increased circulation of pro-inflammatory mediators are also causally related to ath-

erogenesis and chronic unresolved inflammation is recognized as an underlying cause of mul-

tiple metabolic diseases. It is noteworthy that Angsana et al. reported a positive correlation

between delayed clearance of macrophages from the peritoneal cavity and atherosclerotic pla-

que burden [73] and Feige et al. showed that a small molecule lecinoxoid (VB-201) which

reduced monocyte migration in a peritonitis model, also reduced atheroma development [74].

These studies underscore the predictive value of computational models based on cellular

influx/egress from the peritoneal cavity.

Chronic inflammatory diseases in general require timely peaks and ebbs in immune cell

response in order for homeostastis to be restored; particularly in macrophages, which include

subpopulations that either contribute to or resolve inflammation. In the case of atherosclerosis,

this phenotype switching is believed to be critical to a balanced response to hyperlipidemia.

Our extended model will be able to provide hypothesis testing for points of intervention in ath-

erosclerosis that target macrophage phenotype. Jacinto et al. have recently demonstrated the

importance of extra-arterial contributors such as functionality of monocytes in aggravation of

atherosclerosis under normocholesterolemic conditions emphasizing the need for the inclu-

sion of such measures into predictive models [75]. This work could also be extended to other

disease systems that feature chronic inflammation, and the modeling of variables pathogen

and nutrient broth could be replaced by an inflammatory stimulus input function f(t) that is

more general and applicable to pathogen insult or injury.

In conclusion, data presented herein describes the development of a computational model

of the sequential influx of immune cells in response to an external trigger and fitting this

model to experimental data obtained from a well-established in vivo model of inflammatory

response namely peritonitis. Fine tuning this model with inclusion of other systemic parame-

ters related to inflammation will permit the future application to chronic inflammatory dis-

eases with dysfunctional resolution of inflammation.
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S1 Figures. Model predictions versus observations and profile likelihood plots. Model pre-

dictions versus observations are plotted for M1 macrophages (M1), M2 macrophages (M2),

and neutrophils (N). Data points are labeled with time (in days).

(PDF)

S1 File. MATLAB model definition file for PottersWheel toolbox. Installation of the Pot-
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The authors did not contribute to the development of the software.
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(XLS)
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S4 File. MATLAB main model file. This MATLAB script (solve_sys_ODEs.m) solves the sys-

tem of ODEs presented in this paper and plots model predictions versus data.
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S5 File. MATLAB model ODEs. This MATLAB function encodes the system of ODEs pre-

sented in this paper and is called by the main model file.
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S6 File. MATLAB data file. This MATLAB file contains the data presented in this paper and

is called by the main model file.
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