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Abstract

Proteases are multifunctional, promiscuous enzymes that degrade proteins as well as pep-

tides and drive important processes in health and disease. Current technology has enabled

the construction of libraries of peptide substrates that detect protease activity, which pro-

vides valuable biological information. An ideal library would be orthogonal, such that each

protease only hydrolyzes one unique substrate, however this is impractical due to off-target

promiscuity (i.e., one protease targets multiple different substrates). Therefore, when a

library of probes is exposed to a cocktail of proteases, each protease activates multiple

probes, producing a convoluted signature. Computational methods for parsing these signa-

tures to estimate individual protease activities primarily use an extensive collection of all

possible protease-substrate combinations, which require impractical amounts of training

data when expanding to search for more candidate substrates. Here we provide a computa-

tional method for estimating protease activities efficiently by reducing the number of sub-

strates and clustering proteases with similar cleavage activities into families. We envision

that this method will be used to extract meaningful diagnostic information from biological

samples.

Author summary

The activity of enzymatic proteins, which are called proteases, drives numerous important

processes in health and disease: including cancer, immunity, and infectious disease. Many

labs have developed useful diagnostics by designing sensors that measure the activity of

these proteases. However, if we want to detect multiple proteases at the same time, it

becomes impractical to design sensors that only detect one protease. This is due to a
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phenomenon called protease promiscuity, which means that proteases will activate multi-

ple different sensors. Computational methods have been created to solve this problem,

but the challenge is that these often require large amounts of training data. Further,

completely different proteases may be detected by the same subset of sensors. In this

work, we design a computational method to overcome this problem by clustering similar

proteases into "subfamilies", which increases estimation accuracy. Further, our method

tests multiple combinations of sensors to maintain accuracy while minimizing the num-

ber of sensors used. Together, we envision that this work will increase the amount of use-

ful information we can extract from biological samples, which may lead to better clinical

diagnostics.

Introduction

Proteases are multifunctional enzymes that hydrolyze peptide bonds and are responsible for

maintaining health in processes ranging from immunity to blood homeostasis, but are also

drivers of diseases, including cancer and sepsis [1–10]. The ability to quantify the activity of

proteases–of which there are >550 –in humans on a larger scale may provide valuable biologi-

cal information, leading to improved diagnostic and therapeutic technologies. While Next

Generation Sequencing technologies provide the ability to rapidly assess mRNA transcript lev-

els of proteases, previous studies have shown a lack of correlation between expression and

enzyme activity [11–13]. For this reason, countless platforms have been developed to sense

and modulate protease activity both in vivo and in vitro, with the potential to extract useful

physiological information [10, 14–29]. However, to completely resolve an individual’s protease

landscape (i.e., >550 proteases) with current technology would require a library of equal size,

assuming all substrates are orthogonal (i.e., each protease hydrolyzes a unique substrate),

which is impractical at this scale (i.e., on the order of 102). Further, current activity probes

require experimental knowledge of protease-substrate specificity [30], which is difficult to

completely map out because proteases are promiscuous [8], which means one protease is capa-

ble of hydrolyzing multiple different substrate sequences. Therefore, independent protease sig-

natures become convolved when attempting to detect multiple proteases simultaneously,

making it difficult to quantify the relative activity of each protease [31]. Previous studies have

successfully developed computational algorithms to parse these signatures [32], but these

methods may become complicated when applied to proteases with similar signatures in terms

of their activities against substrates.

Here, to create a means for deconvolving protease signatures we develop a method, which

requires limited prior knowledge of protease-substrate specificity. We demonstrate this

method on a subset of blood proteases, including complement (e.g., C1r, MASP2, Factor D,

etc.) and coagulation (e.g., Factor IIa, XIa, etc.) proteases, which display a high-degree of pro-

miscuity and are involved in a range of hematological and immune disorders (i.e., clotting dis-

orders, complement deficiencies, etc.) [33, 34]. To overcome the challenge of scaling to larger

numbers of proteases, we use this method to improve experimental design by reducing the size

of the substrate library. Furthermore, we cluster proteases with similar substrate activities into

families, while maintaining high estimation accuracy. Under this framework, we lay the

groundwork for understanding multiplexed protease-substrate signatures on a large scale,

which may enable the future use of Massively Multiplexed Activity (MMA) libraries.
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Methods

To improve experimental design for deconvolving protease composition of protease mixtures,

we developed pipelines for estimating kinetic parameters from real experimental data, and

simulating in silico experimental data. In this Method section, we introduce the individual

components of the pipeline (Method "Cleavage dynamics approximation model" to "Quantify-

ing estimation accuracy via Root-Mean-Square Error (RMSE)"). We then apply the pipeline to

optimize the selection of substrates and cluster proteases into families (Method "Evaluating

deconvolution performance and optimizing substrate selection").

The overall strategy for the deconvolution analysis consists of two optimization steps. The

first step consists of learning the cleavage dynamics of every combination of one protease and

one substrate by optimizing kinetic parameters for a modified Michaelis-Menten model [35,

36] (see details in Method "Modified Michaelis-Menten kinetics with saturation" and "Estimat-

ing kinetic parameters in the single-protease-single-substrate setting"). We then apply the

kinetic parameters learned in the first step to estimate the mixing coefficients, which represent

the individual concentrations of proteases in a mixture (see details in Method "Estimating mix-

ing coefficients with multiple proteases "). In the case where a sufficient number of substrates

are measured to deconvolve all individual proteases in a mixture, we screen for the optimal

subset of substrates in order to reduce the required number of substrates. When highly corre-

lated proteases exist in the mixture, which would require an impractically large number of sub-

strates for deconvolution, we cluster the proteases into families via hierarchical clustering to

enable deconvolution based on a reasonable number of substrates and achieve a higher accu-

racy at a lower resolution (Method "Evaluating deconvolution performance and optimizing

substrate selection").

Recombinant protease activity assay

We tested a total of seven recombinant proteases in the activity assays. Complement proteases

C1r (purity >90%), C1s (purity >95%), Complement Factor D (purity>90%), and Comple-

ment Factor I (purity>90%) were purchased from Sigma Aldrich. Complement protease

MASP2 (purity>97%) was purchased from Biomatik. Coagulation proteases Factor IIa (purity

>95%) and Factor XIa (purity >95%) were purchased from Haematologic Technologies. Ini-

tially, twenty peptide substrate sequences were curated from the literature, which represented

discoveries from phage display screens as well as sequencing of physiological substrates [37–

40]. We performed an initial screen with complement proteases which cleave after an arginine

residue to identify the seven sequences used in these experiments (Fig A in S1 Text). To obtain

the recombinant protease activity data, we first conjugated seven different c-terminus cysteine

synthetic peptide substrates to amine functionalized 2 μm magnetic microparticles with SIA

(i.e., succinimidyl iodoacetate), an amine-thiol crosslinker. The n-terminus of the peptides

each contains one of seven unique glu-fib mass barcodes (Table 1). We then incubated a cock-

tail of these seven substrates (> 50 nM) with each of the seven recombinant proteases individ-

ually at 37˚C on a spinner in PBS. At various time points between 0 and 400 minutes, we used

a magnetic separator to remove the microparticles from the supernatant, which contained the

hydrolyzed substrates plus mass barcodes. To provide a unique mass encoding for each of the

seven substrates, we produced a family of mass reporters from Glu-fib with an isobaric mass-

encoding strategy [41, 42]. By this method, all mass tags share the same parent mass so that

peptides can be efficiently collected (i.e., MS-1) during tandem mass spectrometry (MS/MS),

but can be differentiated after ion fragmentation (i.e., MS-2). Due to the fact that Glu-fib frag-

ments into C-terminal y-type ions, we made mass codes centered on the y6 ion (i.e., GFFSAR).

For each of the mass barcodes, we enriched the GFFSAR region with heavy amino acids,
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which resulted in sequences that varied by 1 Da each. To cancel out the resulting mass shifts,

we balanced the remaining region (i.e., EGVNDNEE) by isotope enrichment. Mass spectrome-

try was performed by Syneos Health (Morrisville, NC) to quantify the amount of cleaved sub-

strate at each time point. To summarize this method, 100 μL of sample volume and 25 μL of

internal standard solution were UV-treated for 2 hours, using a UVP Analytik Jena UV Cross-

linker CL-1000 oven. Sample cleanup was achieved using Mixed-mode anion exchange solid

phase extraction. Chromatographic separation was achieved using a Waters XBridge C18 col-

umn, with the mobile phase composed of 0.1% formic acid in water and acetonitrile/trifluor-

oethanol. A gradient of 5% to 60% organic content at 0.6 mL/min over 3 minutes was

employed. Analytes were analyzed using an AB Sciex 6500+ triple quadrupole mass spectrom-

eter monitoring in MRM mode with an electrospray source set to positive ion mode. The total

instrument run time was 5 minutes.

Cleavage dynamics approximation model

Michaelis-Menten kinetics as the approximation of cleavage dynamics

d½S�
dt
¼ � a½ �V

½S�n

½S�n þ Kn
ð1Þ

[S]: the remaining amount uncleaved substrate, [S] 2 [0,1], [S]t = 0 = 1

V: the maximal rate of the reaction at the saturating substrate

concentration

K: the substrate concentration when the reaction rate reaches half of V
n: the order of reaction

[α]: concentration of a protease

We use the Michaelis-Menten kinetics as the base model to approximate the cleavage

dynamics [35, 36]. We add the mixing coefficient [α] (i.e., the concentration of a protease) is

Table 1. Mass-barcoded peptide substrate sequences. Table describing the sequences of the mass-barcoded peptide substrates along with their chemical modifications.

ANP was used as a photocleavable linker to enable rapid detachment from the microparticles. 5-FAM was used for rapid quantification via fluorescence. Isotope enrich-

ment modifications were used to distinguish mass barcodes for quantification with mass spectrometry.

Substrate

Name

Peptide sequence (N terminus on left)� Modifications��

CC01 e(�aa)(�aa)ndneeGFFsAr(ANP)K(5-FAM)

GGLQRIYKC

1st �aa = Gly(13C2); 2nd �aa = Val(U13C5,15N)

CC02 eG(�aa)ndneeGF(�aa)s(�aa)r(ANP)K(5-FAM)

GGKSVARTLLVKC

1st �aa = Val(U13C5,15N); 2nd �aa = Phe(15N); 3rd �aa = Ala(15N)

CC03 e(�aa)(�aa)ndneeGFFs(�aa)r(ANP)K(5-FAM)

GGQRQRIIGGC

1st �aa = Gly(U13C2,15N); 2nd �aa = Val(15N); 3rd �aa = Ala (U13C3,15N)

CC04 e(�aa)Vndnee(�aa)FFs(�aa)r(ANP)K(5-FAM)

GGKYLGRSYKVC

1st �aa = Gly(13C2); 2nd �aa = Gly(13C2); 3rd �aa = Ala(U13C3,15N)

CC05 eGVndnee(�aa)(�aa)Fs(�aa)r(ANP)K(5-FAM)

GGGLQRALEIC

1st �aa = Gly(U13C2,15N); 2nd �aa = Phe(15N); 3rd �aa = Ala(U13C3,15N)

CC06 e(�aa)(�aa)ndnee(�aa)(�aa)(�aa)s(�aa)r(ANP)K

(5-FAM)GGKTTGGRIYGGC

1st �aa = Gly(13C2); 2nd �aa = Val(U13C5,15N); 3rd �aa = Gly(U13C2,15N); 4th �aa = Phe

(15N); 5th �aa = Phe(15N); 6th �aa = Ala(15N); still include ANP and K5-FAM

CC07 eG(�aa)ndnee(�aa)(�aa)Fs(�aa)r(ANP)K(5-FAM)

GGQARGGSC

1st �aa = Val(U13C5,15N); 2nd �aa = Gly(U13C2,15N); 3rd �aa = Phe(15N); 4th �aa = Ala

(U13C3,15N)

�ANP = Photocleavable linker 3-Amino-3-(2-nitrophenyl)propionic acid

�5-FAM = 5—Carboxyfluorescein

��Modifications represent heavy amino acids (i.e., isotope enrichment)

https://doi.org/10.1371/journal.pcbi.1006909.t001
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added to the original Michaelis-Menten model. On the left-hand side (LHS) of Eq (1), d[S]/dt
represents the rate of change of the remaining uncleaved substrate. At t = 0, d[S]/dt is negative,

which means that the substrate is being cleaved and [S] will decrease. As [S] decreases, the

cleaving process slows down until [S] arrives at 0, where the reaction stops due to the depletion

of the uncleaved substrates. However, in real experimental data, we noticed persistent non-

zero saturation levels of uncleaved substrates, which motivated a modification of the model by

adding a saturation term β (see details in Method "Modified Michaelis-Menten kinetics with

saturation").

Modified Michaelis-Menten kinetics with saturation. Eq (2) is the modified Michaelis-

Menten model for approximating the changing rate of one uncleaved substrate species when

reacting with one protease. β is the saturation term representing the concentration of

uncleaved substrate at which the reaction stops (when S = β, the RHS becomes 0). In subse-

quent discussions, we refer to V, K, n, and β as kinetic parameters, and [α] as the concentration

mixing coefficient.

d½S�
dt
¼ � a½ �V

½S � b�n

½S � b�n þ Kn
ð2Þ

[S] 2 [β,1], [S]t = 0 = 1.

β 2 [0,1]

To generalize Eq (2) for modeling the dynamics of substrate cleavage by mixtures of prote-

ases, subscripts i and j are introduced in Eq (3), which models the changing rate of the

uncleaved substrates when reacting with multiple proteases.

d½Si�
dt
¼ �

P
j aj

h i
Vij
½Si � bij�

nij

½Si�
nij þ Kij

nij
ð3Þ

[Si], i = 1, 2, 3, . . ., M

[αj], j = 1, 2, 3, . . ., N, 8 j: [αj]> = 0

[Si] is the amount of uncleaved substrates of the ith substrate in the substrate library. [αj] is

the concentration of jth protease in the mixture. Let M be the number of substrates and N be

the number of proteases. Eq (3) assumes that no synergistic or antagonistic effect is involved

among various proteases within the protease mixture when cleaving substrates.

Simulating in silico experiments

Simulating single-protease-single-substrate data. Given [S]t = 0 = 1, [α] = 1, and a set of

specific kinetic parameter values (V, K, n, β), the amount of remaining uncleaved substrate

[S]t = tz at a specific time t = tz can be calculated by numerically solving Eq (2). The kinetic

parameter values are either randomly generated or estimated from real experimental data

under single-protease-single-substrate setting (Method "Estimating kinetic parameters in the

single-protease-single-substrate setting"). Let Q be the number of measurement time points,

t = tz (z = 1, 2, . . ., Q). This simulation generates a Q×1 data vector representing the simulated

amounts of the uncleaved substrate at Q time points for the single-protease-single-substrate

scenario.

Simulating data with multiple proteases

Given a library of M -substrates and a mixture of N -proteases, coefficient [αj] as the concen-

tration of jth protease in the mixture, and (Vij, Kij, nij, βij) as kinetic parameters for the reaction

between the ith substrate and the jth protease, the amount of remaining uncleaved ith substrate

Deconvolving multiplexed protease signatures
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[Si]t = tz at a specific time t = tz can be calculated by numerically integrating Eq (3). The values

of the kinetic parameters and mixing coefficients are either randomly generated or estimated

from real experimental data (Method "Estimating mixing coefficients with multiple prote-

ases"). This simulation generates an M×Q matrix as the simulated data.

Estimating kinetic parameters and mixing coefficients

Estimating kinetic parameters in the single-protease-single-substrate setting. For each

single-protease-single-substrate combination, we measure/simulate reaction products at Q
time points after reaction starts, resulting in a data vector Y with dimension Q×1. In addition

to simulated in silico experiments (Method "Simulating single-protease-single-substrate data"),

Y can also be collected from real experiments under the single-protease-single-substrate set-

ting. The problem of estimating the kinetic parameters can be formulated as the following

optimization problem:

minimize
V;K;n;b

PQ
z¼1
ðyz � 1 �

R tz
0
V

½S � b�n

½S � b�n þ Kn
dt

� �

Þ
2

ð4Þ

Using the “active-set” algorithm [43–45], this optimization problem leads to one set of

kinetic parameters that can best fit the data Y of the specific protease-substrate combination

(details see S2 Text). For a collection of single-protease-single-substrate settings of M sub-

strates and N proteases, optimization is performed for each of the M×N combinations, result-

ing in kinetic parameter matrices (V, K, n, β), each of which has a dimension of M×N.

Estimating mixing coefficients with multiple proteases. Once kinetic parameters for all

single-protease-single-substrate combinations have been estimated, we move to estimate the

mixing coefficients of proteases in a protease mixture. Let M be the number of substrates, N be

the number of proteases in the mixture, and Q be the number of measurement times for the

reaction between each substrate and the mixture. The problem of estimating the mixing coeffi-

cients can be formulated into an optimization problem as follows:

minimize
a1 ;...aN

PM
i¼1

PQ
z¼1
ðyi;z � ð1 �

PN
j¼1

R tz
0
ajVij

½Si � bij�
nij

½Si � bij�
nij þ Knij

dtÞÞ2 ð5Þ

[Si], i = 1, 2, 3, . . ., M

[αj], j = 1, 2, 3, . . ., N, 8 j: [αj]> = 0

Y is an M×Q data matrix either generated from in silico simulation (Method "Simulating

data with multiple proteases") or collected from real experiment under the multi-proteases set-

ting. This optimization problem, solved by “active-set” algorithm [43–45], generates estima-

tions of the mixing coefficients of proteases in the mixture (details see S2 Text).

Quantifying estimation accuracy via Root-Mean-Square Error (RMSE)

Once estimated mixing coefficients of a protease mixture have been obtained, the estimation

accuracy is evaluated by the root-mean-square error (RMSE) metric. This metric is commonly

used in machine learning to quantify accuracy for regression analysis [46]. An example of

quantifying estimation error using RMSE is in Table 2.

Evaluating deconvolution performance and optimizing substrate selection

Given the kinetic parameter values of the reactions between a set of proteases and a set of sub-

strates, we would like to evaluate whether we can accurately deconvolve mixtures of the prote-

ases by measuring their cleaving activities against the substrates. We first simulate the in silico

Deconvolving multiplexed protease signatures
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experimental data corresponding to the single-protease-single-substrate scenario (Eq 2) and

simulate the in silico experimental data for protease mixtures reacting with multiple substrates

(Eq 3). We then estimate the kinetic parameter values based on the simulated single-protease-

single-substrate data (Eq 4). Finally, we estimate the mixing coefficients based on the estimated

kinetic parameters and the simulated experimental data for protease mixtures reacting with

multiple substrates (Eq 5), and evaluate the deconvolution accuracy using RMSE. In this analy-

sis pipeline, we choose to estimate the single-protease-single-substrate kinetic parameters

because the true kinetic parameter values are often unavailable in practice. Using this pipeline,

we can evaluate the expected deconvolution performance for a given set of proteases using a

given set of substrates and then derive optimal experimental designs for choosing the most

suitable substrates for deconvolving the protease mixtures.

Results

Recombinant protease substrate specificity

To obtain kinetic protease activity data we incubated 7 serum proteases from the complement

and coagulation cascades with 7 protease substrates (Fig 1). These results showed that while each

protease hydrolyzed the library of probes with different velocities, each signature was not neces-

sarily linearly independent. Interestingly, certain proteases that showed similar activity toward

the panel of substrates are involved in different physiological processes. For example, MASP2

and CFI showed similar activity signatures against this panel of substrates, although each are

involved in different pathways of the complement system (e.g., MASP2 is in the lectin pathway,

CFI is in the alternative pathway). In other words, this demonstrates that proteases may be related

at the activity level, but may be involved in different physiological processes. Additionally, each

protease showed unique early saturation levels, which we characterized with the parameter β.

Validating the RMSE for evaluating protease deconvolution

To verify the efficacy of using root mean squared error (RMSE) to approximate estimation

accuracy, we simulated a series of 2-protease mixtures with increasing levels of similarity

Table 2. The first row is true α in P mixtures, of which each has N proteases. The second row is estimated α. The RMSEs for individual proteases (R1, . . ., RN) are calcu-

lated in the third row, and the overall RMSE will be the average of all individual RMSEs. In the simulation setting, P is the number of repetitions we applied. The repetition

time is P = 200.

Protease 1 Protease 2 . . . Protease N

True α a11

a 12

. . .

a1P

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

a21

a 22

. . .

a2P

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

. . .
aN1

aN2

. . .

aNP

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Estimated â â11

â 12

. . .

â1P

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

â21

â 22

. . .

â2P

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

. . .
âN1

â N2

. . .

âNP

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

RMSE (Protease)
R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

k¼1
ðâ1k � a1kÞ

2

P

r

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

k¼1
ðâ2k � a2kÞ

2

P

r . . .

RN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

k¼1
ðâNk � aNkÞ

2

P

r

RMSE (overall)
Roverall ¼

PN

j¼1
Rj

N

https://doi.org/10.1371/journal.pcbi.1006909.t002
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Fig 1. Recombinant protease cleavage assays of seven complement and coagulation cascade proteins. From left to right, top to bottom, abbreviations are: Complement

proteins C1r and C1s, MASP2, Coagulation Factor IIa, Complement Factor D, Complement Factor I, and Coagulation Factor XIa. Each trace represents a different

peptide substrate (CC01–07).

https://doi.org/10.1371/journal.pcbi.1006909.g001

Fig 2. RMSE reflected the level of difficulties in deconvolution of the simulated protease mixtures. The x-axis represents the similarity between

the two proteases in the mixture. A higher similarity between proteases led to a higher correlation between their cleavage dynamics, and thus higher

difficulty in deconvolution. The y-axis was the RMSE of the estimated mixing coefficients. For each substrates-proteases setting, repetition P = 200

was used to calculate the corresponding reported RMSE. Each curve represented a simulation series with a different number of substrates. A smaller

number of substrates corresponded to more difficult situations for deconvolution analysis.

https://doi.org/10.1371/journal.pcbi.1006909.g002
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between the two proteases, which represented deconvolution problems with an increasing

level of difficulty. In the simulations, the number of observed time points Q was 2, which

matched our experimental time points shown in Fig 1. More specifically, we first simulated

two proteases (p1,p2) by randomly generating their kinetic parameters against multiple sub-

strates. Since the kinetic parameters were randomly generated, these two proteases were inde-

pendent of each other. We then generated a series of intermediate proteases by linearly

combining the two sets of kinetic parameters: p3 = λp1+(1−λ)p2, λ = 0,0.05,0.1,0.15,. . .,1. After

that, we (1) simulated substrate cleavage data of protein mixtures of p1 and p3 defined by vary-

ing values for λ, (2) performed optimizations to estimate the mixing coefficients of the mix-

tures, and (3) applied RMSE to evaluate the estimation accuracy. Intuitively, the estimation

problem is more difficult for cases where the mixed proteases are highly correlated (λ close to

1). In addition, we simulated cases with varying numbers of substrates (i.e., 2–7 substrates)

and, in general, the more substrates that were measured, the easier it was to deconvolve the

protease mixtures. In these simulations, the RMSE is expected to be larger for more difficult

cases, and smaller for relatively easier cases.

In Fig 2, the horizontal axis represented the λ value for generating the protease p3, which

meant that simulation cases from left to right had an increasing level of similarity between pro-

teases p1 and p3, and thus had an increasing level of difficulty for deconvolving protease mix-

tures of the two proteases. Each curve represented a different series of simulations with a

particular number of substrates. In Fig 2, the simulation series with a larger number of sub-

strates led to smaller RMSEs. Note that the 2- and 3-substrates curves largely overlapped, and

the 5-, 6-, and 7-substrates curves also largely overlapped. In each simulated series with a spe-

cific number of substrates, the RMSE increased in general with respect to the horizontal axis

that represented an increasing level of difficulty. In the 2- and 3-substrates curves, the changes

of RMSE were not monotonic. This was mainly because, with a limited number of substrates in

the simulation, λ around 0.5 already represented quite difficult situations that led to very large

RMSE with high variance. For the subsequent larger λ values representing even more difficult

situations, the slight decrease of the subsequent RMSEs was due to the high variance when the

RMSE was large. Overall, the observed RMSEs showed expected trends with respect to the level

of difficulty of the simulated cases, validating that the RMSE is a useful evaluation metric.

Optimizing choices of substrates

To demonstrate the feasibility of optimizing choices of substrates, we considered 3 proteases

and 7 substrates, with their single-protease-single-substrate kinetic parameters randomly gen-

erated. We first evaluated the accuracy for deconvolving mixtures of the 3 proteases using all 7

substrates, which resulted in low RMSE as shown by the right-most point on the dashed-circle

line in Fig 3. We then removed one substrate and evaluated the RMSE for deconvolution with

6 substrates. All 7 possibilities were evaluated, and the best RMSE was reported as the second

right-most point on the dashed line, which was virtually the same as the 7-substrate scenario.

We iterated this analysis, removing one substrate that had the least impact on RMSE in each

iteration, until only 2 substrates remained. As shown in Fig 3, the RMSE remained low until

the number of substrates reduced from 3 to 2. This was because the single-protease-single-sub-

strate kinetic parameters were randomly generated, which represented 3 proteases that had

independent substrate cleavage activities. In other words, at least three substrates were needed

to estimate the activity of 3 independent proteases.

We performed two sets of similar analyses using 3 of the 7 proteases and the 7 substrates in

our real experimental data in section "Recombinant Protease Substrate Specificity". One set of

analyses was based on proteases MASP2, C1r, and F2, which were from 3 different proteases
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families, and the other set of analyses was based on proteases MASP2, CFI, and CFD, which

were highly correlated in terms of their substrate cleavage dynamics. The single-protease-sin-

gle-substrate kinetic parameters were estimated from real experimental data. All subsequent

analyses were the same as the above where kinetic parameters were randomly generated. As

shown by the dotted-triangle curve in Fig 3, deconvolving the three highly correlated proteases

was quite difficult with large the RMSE regardless of how many substrates were used. The dot-

ted-square curve in Fig 3 was similar to the analysis where kinetic parameters were randomly

generated, indicating that the three proteases from different protease families had relative inde-

pendent cleavage dynamics against the substrates. Interestingly, the performance actually

improved in both dotted curves when the number of substrates reduced from 7 to 5 (or 4). This

was because the first few substrates being removed had extremely similar cleavage dynamics

against all the proteases (details in Figs B-G in S3 Text). Those substrates were not only unin-

formative but also sources of confusion for the deconvolution analysis. Therefore, effective

deconvolution of protease mixtures required a decent number of substrates with uncorrelated

cleavage dynamics against the proteases. However, correlated substrate cleavage dynamics is

ubiquitous, especially among proteases in the same physiological family. When deconvolving

mixtures containing highly correlated proteases, even a large number of substrates may not lead

to satisfactory deconvolution performances. This motivated us to investigate a less ambitious

goal of deconvolving protease families, instead of deconvolving individual proteases.

Deconvolving protease families

As mentioned above, deconvolving protease mixtures can be challenging and may require an

impractically large number of substrates when proteases with highly correlated substrate

Fig 3. Influence of substrate library’s size on the deconvolution accuracy. The x-axis represented the number of substrates applied for

deconvolution and the y-axis represented the resulting RMSE. The dashed curve with circles represented RMSE for deconvolving mixtures of three

simulated proteases that are independent, and showed increased RMSE as the number of substrates decreased from 7 down to 2. The dotted curves

with squares and with triangles represented RMSE for deconvolving mixtures of three real proteases that are slightly correlated and highly correlated

accordingly, where the RMSEs were relatively high even when the number of substrates was 7. Repetition time P = 200 was applied for each

substrates-proteases setting. Discussion regarding the decrease of RMSE when reducing the number of substrates were discussed in Supplementary

Figure B—G.

https://doi.org/10.1371/journal.pcbi.1006909.g003
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cleavage dynamics exist in the mixture. Therefore, we proposed to verify the efficacy of cluster-

ing highly correlated proteases into families, and deconvolving the activity signatures by esti-

mating the mixing concentration of the protease families, rather than individual proteases.

Deconvolving simulated protease families

We first simulated a scenario with 9 proteases and 7 substrates, in which the 9 proteases

formed three families. Each family contained 3 highly correlated proteases, but the families

were independent of each other. To generate the 3 highly correlated proteases in one family in
silico, we took a similar strategy as described in Section "Validating the RMSE for evaluating

protease deconvolution". For each protease family, we randomly generated the kinetic parame-

ters of 3 proteases (p1, p2, and p3) cleaving 7 substrates, and then generated 2 proteases p4 and

p5 that correlated p1 using the following combinations p4 = λp1+(1−λ)p2, and p5 = λp1+(1−λ)

p3. Proteases p1, p4 and p5 form the family. Here, λ was either 0.9 or 0.6, representing a prote-

ases family containing highly correlated proteases or moderately correlated proteases. We

repeated the above three times to generate the kinetic parameters for the three families of

proteases.

After generating the single-protease-single-substrate kinetic parameters with family struc-

tures, we simulated data for the single-protease-single-substrate setting and the multi-prote-

ases-multi-substrates setting. We then evaluated the performance for deconvolving the 9

individual proteases using 3, 5, or 7 substrates. Fig 4A and 4C showed scatter plots of the true

simulated mixing coefficients versus the estimated mixing coefficients, where the estimation

performance was poor. The only exception was the case in the third plot of Fig 4C, where the

protease was moderately correlated (λ = 0.6) and the number of substrates was 7. This was the

least challenging case simulated here for deconvolving individual proteases, where the esti-

mated mixing coefficients roughly tracked the true mixing coefficients. Overall, with the pres-

ence of correlated proteases, although the protease families were independent, it was difficult

to deconvolve the mixing coefficients of the individual proteases.

Using the same simulated data as above, we evaluated the possibility for deconvolving pro-

tease families. In order to perform deconvolution at the protease family level, we used Eq (4)

to estimate one set of kinetic parameters for each family, by treating the simulated single-pro-

tease-single-substrate data for protease members in the same family as replicates of a "repre-

sentative" protease for the family. After estimating the kinetic parameters for the three

protease families, we then optimized Eq (5) to estimate the mixing coefficient of the protease

families. Ideally, the estimated mixing coefficient for one protease family should approximate

the sum of the true mixing coefficients of members in the family, which was indeed what we

observed in the results shown in Fig 4B and 4D. Meanwhile, the performance difference

between Fig 4B and 4D indicated that successful deconvolution of protease families required

members within each family to be decently correlated. This analysis demonstrated the feasibil-

ity of accurately deconvolving protease families, while the deconvolution of individual prote-

ases was difficult.

Deconvolving protease families derived from real data

To further validate the idea of deconvolving protease families, we used the real single-prote-

ase-single-substrate data in Section "Recombinant Protease Substrate Specificity". We repre-

sented each protease by a vector containing the collection of all data points for this protease in

the single-protease-single-substrate assays in Fig 1. We then clustered proteases by agglomera-

tive hierarchical clustering using single linkage and Euclidean Distance. To group the prote-

ases into families, we chose a cut-off value for distance to be 0.6. This allowed us to cluster
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proteases with correlated hydrolytic activities into the same family. After the clustering analy-

sis, we grouped the 7 individual proteases into 4 computationally-derived families: (1) Com-

plement protein MASP2 (lectin pathway) and Complement Factor I and D (alternative

pathway), (2) Complement proteins C1r and C1s (classical pathway), (3) Coagulation factor

IIa, and (4) Coagulation factor XIa. (Fig 5). Our results showed that the computationally-

derived clusters reflect the physiological pathways they are involved in (i.e., group 1 and 2 are

complement pathways and group 3 and 4 are coagulation pathways). This is also reflected at

the sequence level, where clustered proteases C1r and C1s share 38.5% sequence identity while

C1s shares only 27.9% and 31.2% identity with CFD and F11, respectively [47].

After that, we performed the same analysis as above, including simulation of the multi-pro-

tease-multi-substrate data, estimation of the kinetic parameters for the protease families, and

estimation of the mixing coefficients for the protease families. We also performed deconvolu-

tion for the individual proteases. As shown in Fig 6, the deconvolution of the individual prote-

ases performed poorly, while the estimated mixing coefficients of the protease families

Fig 4. Comparison between deconvolution of individual proteases and deconvolution of protease families. The x axis represented the estimated

mixing coefficients. The y axis represented the true simulated mixing coefficients. Consider mixtures of 9 proteases from 3 independent families that

contain highly correlated proteases within each family. (a) When deconvolving the 9 individual proteases, the estimated mixing coefficients for the

individual proteases showed poor agreements with their true simulated values, regardless of whether 3, 5, or 7 substrates were used. (b) When

deconvolving the 3 protease families, the estimated mixing coefficients for the protease families showed high agreement with the sum of the family

members’ true mixing coefficients. (c-d) Simulation of protease families that contain moderately correlated proteases showed similar results, where

deconvolution of individual proteases was difficult but deconvolution of protease families was accurate.

https://doi.org/10.1371/journal.pcbi.1006909.g004
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decently tracked the simulated true mixing coefficients. The deconvolution accuracy of these

protease families was lower than the above analysis of randomly generated kinetic parameters.

This was because the randomly generated kinetic parameters led to simulated protease families

that were independent of each other, whereas the protease families derived from real data were

not as independent. Since human proteases are known to organize in a nested hierarchy of

protease families and subfamilies, the correlation among them makes deconvolution of

Fig 5. Hierarchical clustering of individual proteases led to 4 families. MASP2+CFI+CFD formed the most strongly

correlated family, C1r + C1s formed the moderately correlated family, and F11 and F2 each served as its own family.

https://doi.org/10.1371/journal.pcbi.1006909.g005

Fig 6. Performances of estimating representative families and individual proteases using the same 7 proteases. (a) Deconvolution of 7 individual

proteases was no better than a random guess since the scatter dots spread out widely on the horizontal direction. (b) After clustering 7 individual

proteases into 4 protease families as shown in Fig 5, deconvolution accuracy increased, with mixing coefficients of protease families being close to the

sum of individual mixing coefficients within according protease families.

https://doi.org/10.1371/journal.pcbi.1006909.g006
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individual protease cumbersome and impractical. This analysis provides a practical alternative

for sensing and characterizing protease activities at the level of protease families.

Discussion

While significant advances in measuring large amounts of biological information have been

made by using genome-wide sequencing techniques, the lack of correlation between expres-

sion and activity is a major limitation [13]. Further, the primary drivers of physiological pro-

cesses in health and disease are enzymes (e.g., proteases, kinases), meaning valuable

information is stored in the real-time activity of these proteins. One of the major challenges in

scaling up to multiplexed libraries for protease activity analysis is substrate design, due to the

difficulty of screening for specific substrates. Due to the promiscuity of proteases, the goal of

designing substrates with both high sensitivity and high specificity for all human proteases is

experimentally challenging. To date, the major advancements in this substrate design include

multiplex substrate profiling by mass spectrometry (MSP-MS) [48–50] and randomized sub-

strate screens with phage display [51], as well as computational approaches for receptor-ligand

prediction [52, 53]. Here, we present a framework for evaluating the activity contributions of

individual proteases within a complex mixture with minimal substrate design. However, the

MSP-MS and phage display methods provide the ability to develop peptide substrates for pro-

teases ad hoc, which we envision could be combined with our algorithm to enable more strate-

gic control over the foundational protease signatures. Further, these methods provide the

ability to identify the dominant proteases in a biological sample, which could also be used to

pre-emptively narrow our list of target proteases.

Fundamentally, however, human proteases are organized in a hierarchy of protease families

that consist of proteases with highly correlated activities against many substrates. Deconvolu-

tion of highly correlated proteases would require an impractically large number of substrates.

Therefore, we propose to cluster highly correlated proteases into families, and estimate the rel-

ative activity contributions of these families. We demonstrated the feasibility of accurately

deconvolving protease families when the deconvolution of individual proteases was difficult.

We envision that this may allow for the rapid characterization and investigation of physiologi-

cally relevant protease families, which can effectively screen the entire protease landscape

before homing in on specific protease targets.
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