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Abstract

Mutational robustness quantifies the effect of random mutations on fitness. When muta-

tional robustness is high, most mutations do not change fitness or have only a minor effect

on it. From the point of view of fitness landscapes, robust genotypes form neutral networks

of almost equal fitness. Using deterministic population models it has been shown that selec-

tion favors genotypes inside such networks, which results in increased mutational robust-

ness. Here we demonstrate that this effect is massively enhanced by recombination. Our

results are based on a detailed analysis of mesa-shaped fitness landscapes, where we

derive precise expressions for the dependence of the robustness on the landscape parame-

ters for recombining and non-recombining populations. In addition, we carry out numerical

simulations on different types of random holey landscapes as well as on an empirical fitness

landscape. We show that the mutational robustness of a genotype generally correlates with

its recombination weight, a new measure that quantifies the likelihood for the genotype to

arise from recombination. We argue that the favorable effect of recombination on mutational

robustness is a highly universal feature that may have played an important role in the emer-

gence and maintenance of mechanisms of genetic exchange.

Author summary

Two long-standing and seemingly unrelated puzzles in evolutionary biology concern the

ubiquity of sexual reproduction and the robustness of organisms against genetic perturba-

tions. Using a theoretical approach based on the concept of a fitness landscape, in this arti-

cle we argue that the two phenomena may in fact be closely related. In our setting the

hereditary information of an organism is encoded in its genotype, which determines it to

be either viable or non-viable, and robustness is defined as the fraction of mutations that

maintain viability. Previous work has demonstrated that the purging of non-viable geno-

types from the population by natural selection leads to a moderate increase in robustness.

Here we show that genetic recombination acting in combination with selection massively

enhances this effect, an observation that is largely independent of how genotypes are con-

nected by mutations. This suggests that the increase of robustness may be a major driver

underlying the evolution of sexual recombination and other forms of genetic exchange

throughout the living world.
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Introduction

The reshuffling of genetic material by recombination is a ubiquitous part of the evolutionary

process across the entire range of organismal complexity. Starting with viruses as the simplest

evolving entities, recombination occurs largely at random during the coinfection of a cell by

more than one virus strain [1]. For bacteria the mechanisms involved in recombination are

already more elaborate and present themselves in the form of transformation, transduction

and conjugation [2, 3]. In eukaryotic organisms, sexual reproduction is a nearly universal fea-

ture, and recombination is often a necessary condition for the creation of offspring. Although

its prevalence in nature is undeniable, the evolution and maintenance of sex is surprising since

compared to an asexual population, only half of a sexual population is able to bear offspring

and additionally a suitable partner needs to be found [4, 5]. Whereas the resulting two-fold

cost of sex applies only to organisms with differentiated sexes [6], the fact that genetic reshuffl-

ing may break up favorable genetic combinations or introduce harmful variants into the

genome poses a problem also to recombining microbes that reproduce asexually [7, 8]. Since

this dilemma was noticed early on in the development of evolutionary theory, many attempts

have been undertaken to identify evolutionary benefits of sex and recombination based on

general population genetic principles [9–19].

In this article we approach the evolutionary role of recombination from the perspective of

fitness landscapes. The fitness landscape is a mapping from genotype to fitness, which encodes

the epistatic interactions between mutations and provides a succinct representation of the pos-

sible evolutionary trajectories [20]. Previous computational studies addressing the effect of

recombination on populations evolving in epistatic fitness landscapes have revealed a rather

complex picture, where evolutionary adaptation can be impeded or facilitated depending on,

e.g., the structure of the landscape, the rate of recombination or the time frame of observation

[21–26].

Here we focus specifically on the possible benefit of recombination that derives from its

ability to enhance the mutational robustness of the population. A living system is said to be

robust if it is able to maintain its function in the presence of perturbations [27–31]. In the case

of mutational robustness these perturbations are genetic, and the robustness of a genotype is

quantified by the number of mutations that it can tolerate without an appreciable change in fit-

ness. Robust genotypes that are connected by mutations therefore form plateaux in the fitness

landscape that are commonly referred to as neutral networks [32–35]. Mutational robustness

is known to be abundant at various levels of biological organization, but its origins are not well

understood. In particular, it is not clear if mutational robustness should be viewed as an evolu-

tionary adaptation, or rather reflects the intrinsic structural constraints of living systems.

Arguments in favor of an adaptive origin of robustness were presented by van Nimwegen

et al. [32] and by Bornberg-Bauer and Chan [33], who showed that selection tends to concen-

trate populations in regions of a neutral network where robustness is higher than average.

Whereas this result is widely appreciated, the role of recombination for the evolution of

robustness has received much less attention. An early contribution that can be mentioned in

this context is due to Boerlijst et al. [36], who discuss the error threshold in a viral quasi-spe-

cies model with recombination and point out in a side note that “in sequence space recombina-
tion is always inwards pointing.” This observation was picked up by Wilke and Adami [37] in a

review on the evolution of mutational robustness, where they conjecture that the enhancement

of robustness by selection should be further amplified by recombination, because “recombina-
tion alone always creates sequences that are within the boundaries of the current mutant cloud.”

At about the same time, de Visser et al. discussed a mechanism based on the spreading of

robustness modifier alleles in recombining populations [27] (see also [38]).
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In fact indications of a positive effect of recombination on robustness had been reported

earlier in computational studies of the evolution of RNA secondary structure [39] and 2D lat-

tice proteins [40] in the presence and absence of recombination. In these systems the native

folding structure of a given sequence is determined by its global free energy minimum. Due to

the restricted number of attainable folds, most structures are degenerate in the sense that

many sequences fold into the same structure. These sequences form neutral networks in

sequence space. Xia and Levitt [40] consider two scenarios, in which the evolution of the

lattice proteins is dominated by mutation and by recombination, respectively. The results

show that in the latter case the concentration of thermodynamically stable protein sequences is

enhanced, which is qualitatively explained by the fact that recombination tends to focus the

sequences near the center of their respective neutral network. Therefore most often a single

mutation does not change the folding structure.

More recently, Azevedo et al. [41] used a model of gene regulatory networks to investigate

the origin of negative epistasis, which is a requirement for the advantage of recombination

according to the mutational deterministic hypothesis [13]. In this study a gene network is

encoded by a matrix of interaction coefficients. It is defined to be viable if its dynamics con-

verges to a stable expression pattern and non-viable otherwise. Thus the underlying fitness

landscape is again neutral. Based on their simulation results the authors argue that recombina-

tion of interaction matrices reduces the recombinational load, which in turn leads to an

increase of mutational robustness and induces negative epistasis as a byproduct. In effect,

then, recombination selects for conditions that favor its own maintenance. Other studies along

similar lines have been reviewed in [42]. Taken together they suggest that the positive effect

of recombination on robustness may be largely independent of the precise structure of the

space of genotypes or the genotype-phenotype map. Indeed, a related scenario has also been

described in the context of computational evolution of linear genetic programs [43].

Finally, in a numerical study that is similar to ours in spirit, Szöllősi and Derényi considered

the effect of recombination on the mutational robustness of populations evolving on different

types of neutral fitness landscapes [44]. Using neutral networks that were either generated at

random or based on RNA secondary structure, they found that recombination generally

enhances mutational robustness by a significant amount. Moreover, they showed that this

observation holds not only for infinite populations but also for finite populations, as long as

these are sufficiently polymorphic.

The goal of this article is to explain these scattered observations in a systematic and quanti-

tative way. For this purpose we begin by a detailed examination of the simplest conceivable set-

ting consisting of a haploid two-locus model with three viable and one lethal genotype [35].

We derive explicit expressions for the robustness as a function of the rates of mutation and

recombination that demonstrate the basic phenomenon and guide the exploration of more

complex situations. The two-locus results are then generalized to mesa landscapes with L dia-

llelic loci, where genotypes carrying up to kmutations are viable and of equal fitness [45–48].

Using a communal recombination scheme and previous results for multilocus mutation-selec-

tion models, we arrive at precise asymptotic results for the mutational robustness for large L
and small mutation rates. Subsequently two types of random holey landscape models are con-

sidered, including a novel class of sea-cliff landscapes in which the fraction of viable genotypes

depends on the distance to a reference sequence. For the isotropic percolation landscape ana-

lytic upper and lower bounds on the robustness are derived.

As a first step towards a unified explanation for the effect of recombination on mutational

robustness we introduce the concept of the recombination weight, which is a measure for the

likelihood of a genotype to arise from a recombination event. In analogy to the classic fitness

landscape concept in the context of selection [20], the recombination weight allows one to
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identify genotypes that are favored by recombination without referring to any specific evolu-

tionary dynamics. We show that recombination weight correlates with mutational robustness

for the landscape structures used in this work, thus providing a mechanistic basis for the

enhancement of robustness by recombination. Finally, using an empirical fitness landscape as

an example, we quantify the competition between selection and recombination as a function

of recombination rate. Throughout we describe the evolutionary dynamics by a deterministic,

discrete time model that will be introduced in the next section.

Models and methods

Genotype space

We consider a haploid genome with L loci and the corresponding genotype is represented by a

sequence σ = (σ1, σ2, . . ., σL) of length L. The index i labels genetic loci and each locus carries

an allele specified by σi. Here we rely on binary sequences, which means that there are only

two different alleles σi 2 {0, 1}. This can be either seen as a simplification in the sense that only

two alleles are assumed to exist, or in the sense that the genome consisting of all zeros describes

the wild type, and the 1’s in the sequence display mutations for which no further distinctions

are made.

The resulting genotype space is a hypercube of dimension L, where the 2L genotypes repre-

sent vertices, and two genotypes that differ at a single locus and are mutually reachable by a

point mutation are connected by an edge. A metric is introduced by the Hamming distance

dðs; kÞ ¼
X

i

ð1 � dsikiÞ; ð1Þ

which measures the number of point mutations that separate two genotypes σ and κ. Here and

in the following the Kronecker symbol is defined as δxy = 1 if x = y and δxy = 0 otherwise. The

genotype s at maximal distance dðs;sÞ ¼ L from a given genotype σ is called its antipodal,

and can be defined by si ¼ 1 � si. Finally, in order to generate a fitness landscape, a (Wrigh-

tian) fitness value wσ is assigned to each genotype.

Dynamics

The forces that drive evolution are selection, mutation and recombination. To model the

dynamics we use a deterministic, discrete-time model with non-overlapping generations,

which can be viewed as an infinite population limit of the Wright-Fisher model. Demographic

stochasticity or genetic drift is thus neglected. Numerical simulations of evolution on neutral

networks have shown that the infinite population dynamics is already observable for moderate

population sizes, which justifies this approximation [32, 44]. We will return to this point in the

Discussion.

Once the frequency fσ(t) of a genotype σ at generation t is given, the frequency at the next

generation is determined in three steps representing selection, mutation, and recombination.

After the selection step, the frequency qσ(t) is given as

qsðtÞ ¼
ws
wðtÞ

fsðtÞ; ð2Þ

where w �
P

s
wsfsðtÞ is the mean population fitness at generation t. After the mutation step,

the frequency pσ(t) is given as

psðtÞ ¼
X

k

UskqkðtÞ; ð3Þ
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where Uσκ is the probability that an individual with genotype κmutates to genotype σ in one

generation. Here, we assume that alleles at each locus mutate independently, and the mutation

probability μ is the same in both directions (0! 1 and 1! 0) and across loci. This leads to

the symmetric mutation matrix

Usk ¼ ð1 � mÞ
L� dðs;kÞ

mdðs;kÞ: ð4Þ

In order to incorporate recombination we have to consider the probability that two parents

with respective genotypes κ and τ beget a progeny with genotype σ by recombination. This is

represented by the following equation:

fsðt þ 1Þ ¼
X

kt

RsjktpkðtÞptðtÞ: ð5Þ

Descriptively speaking, two genotypes (κ and τ) are taken to recombine with a probability that

is equal to their frequency in the population (after selection and mutation). The probability for

the offspring genotype σ is then given by Rσ|κτ. These probabilities depend of course on the

parent genotypes κ and τ but also on the recombination scheme. Here we consider a uniform

and a one-point crossover scheme; see Fig 1 for a graphical representation. These two repre-

sent extremes in a spectrum of possible recombination schemes. Nevertheless we will show

that both lead to qualitatively similar results in the regimes of interest. In the case of uniform

crossover the recombination probabilities are given by

Rsjkt ¼
r
2L

YL

i

ðdsiki þ dsitiÞ

 !

þ
1 � r

2
dsk þ dstð Þ ð6Þ

and in the case of one point crossover the probabilities can be written as

Rsjkt ¼
r

2ðL � 1Þ

XL� 1

n¼1

Yn

m¼1

dsmkm

 !
YL

m¼nþ1

dsmtm

 !"

þ
Yn

m¼1

dsmtm

 !
YL

m¼nþ1

dsmkm

 !#

þ
1 � r

2
dsk þ dstð Þ:

ð7Þ

In both equations a variable r 2 [0, 1] appears which describes the recombination rate. For

r = 0 no recombination occurs and fσ(t + 1) is the same as pσ(t). For r = 1 recombination is a

necessary condition for the creation of offspring (obligate recombination). But also intermedi-

ate values of r can be chosen as they occur in nature, e.g., for bacteria and viruses.

In the following we are mostly interested in the equilibrium frequency distribution f �
s

of a

population, which is determined by the stationarity condition

fsðt þ 1Þ ¼ fsðtÞ ¼ f �s ð8Þ

for all genotypes σ.

Mutational robustness

From the point of view of fitness landscapes the occurrence of mutational robustness implies

that fitness values of neighboring genotypes are degenerate, giving rise to neutral networks in

genotype space [29, 32–35]. In order to model this situation we use two-level landscapes that

only differentiate between genotypes that are viable (wσ = 1) or lethal (wσ = 0). Any selective

advantage between viable genotypes is assumed to be negligible. The mutational robustness of
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a population can then be measured by the average fraction of viable point mutations in an

individual, which depends on the population distribution in genotype space [32–34]. It

increases if the population mainly adapts to genotypes for which most point mutations are via-

ble. Therefore we define mutational robustnessm as the average fraction of viable point muta-

tions of a population,

m �
X

s2V

msf
�

s
with ms �

ns
L
: ð9Þ

Here the sum is over the set V of all viable genotypes and nσ is the number of viable point

mutations of genotype σ. We will refer tomσ as the mutational robustness of the genotype. The

expression is normalized by the total number of loci L, since in an optimal setting the entire

population has L viable genotypic neighbors andmσ = 1 for all σ 2 V. The value ofm is thus

constrained to be in the range [0, 1]. We weight the genotypes by their stationary frequencies

f �
s

, since we want to determine the mutational robustness of populations that are in equilib-

rium with their environment.

Recombination weight

In order to elucidate the interplay of recombination and mutational robustness it will prove

helpful to introduce a representation of how recombination can transfer genotypes into each

other. The number of distinct genotypes that two recombining genotypes are able to create

depends on their Hamming distance. In particular, the recombination of two identical geno-

types does not create any novelty, whereas a genotype and its antipodal are able to generate all

possible genotypes through uniform crossover.

Here we introduce a measure which expresses how many pairs of viable genotypes are able

to recombine to a specific genotype. It is complementary to the mutational robustness, in the

sense that instead of counting the viable mutation neighbors of a genotype, the size of its

recombinational neighborhood of viable recombination pairs is determined. The recombina-

tional neighborhood depends on the recombination scheme and the distribution of viable

genotypes in the genotype space. For a given recombination scheme the probability for a geno-

type σ to be the outcome of recombination of two genotypes κ, τ is given by the recombination

Fig 1. Recombination schemes. In the one-point crossover scheme, the parent genotypes are cut once between two

randomly chosen loci and recombined to form the offspring. In the uniform crossover scheme, at each locus of the

offspring, an allele present in one of the parents is chosen at random.

https://doi.org/10.1371/journal.pcbi.1006884.g001
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tensor Rσ|κτ. The recombination weight λσ is therefore obtained by summing the recombination

tensor over all ordered pairs of viable genotypes,

ls ¼
1

2L

X

k2V;t2V

Rsjkt: ð10Þ

It can be seen from (5) that λσ = 1 when all genotypes are viable, and hence the normalization

by 2L ensures that the recombination weight lies in the range [0, 1]. Under this normalization,

the recombination weights sum to ∑σ λσ = |V|2/2L, where |V| stands for the number of viable

genotypes. In the following the genotype maximizing λσ will be referred to as the recombina-
tion center of the landscape.

Since neutral landscapes only differentiate between viable (unit fitness) and lethal (zero

fitness) genotypes, the recombination weight (10) can alternatively be written as a sum over

all ordered pairs of genotypes whereby the recombination tensor is multiplied by the pair’s

respective fitness,

ls ¼
1

2L

X

k;t

Rsjktwkwt: ð11Þ

In this way the concept naturally generalizes to arbitrary fitness landscapes. In the absence of

recombination (r = 0) the recombination weight (11) of a genotype is simply proportional to

its fitness, ls ¼ ~wws, where ~w ¼ 2� L
P

s
ws is the unweighted average fitness. Within our

recombination schemes, the recombination tensor depends linearly on r and, by definition, so

does the recombination weight. Accordingly, for general r the recombination weight interpo-

lates linearly between the limiting values at r = 0 and r = 1. Since λσ for r = 0 is known, the

remaining task will be to find λσ for r = 1.

Results

In the following sections we investigate how mutational robustness depends on the mutation

and recombination rates. In order to test the generality of our results, we use, besides contrast-

ing recombination schemes, also different neutral landscape models such as the mesa [45–48]

and the percolation models [35, 49]. Additionally we introduce a more general landscape

named sea-cliff model, which combines elements of both the landscape models and contains

them as limiting cases. In the end, we discuss mutational robustness and its relation with

recombination weight for an empirical landscape.

Two-locus models are commonly used in population genetics to gain a foothold in under-

standing evolutionary scenarios involving multiple recombining loci [35, 38, 50–57]. Follow-

ing this tradition, we first discuss a two-locus model and then extend our results to multi-locus

models.

Two-locus model

The simplest fitness landscape to study the mutational robustness of a population would be the

haploid two-locus model in which all but one genotype are viable [35]; see Fig 2 for a graphical

representation of the model. In this setting the population gains mutational robustness if the

frequency of the genotype (0,0) for which both point mutations are viable increases relative to

the genotypes (0,1) and (1,0). This model has been analyzed previously using a unidirectional

mutation scheme where reversions 1! 0 are suppressed [58, 59]. As a consequence, selection

cannot contribute to mutational robustness because the genotype (0,0) goes extinct in the

Recombination and mutational robustness in neutral fitness landscapes
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absence of recombination. Here we consider the case of bidirectional, symmetric mutations in

which both selection and recombination contribute to robustness. A comparison of the two

mutation schemes is provided in S1 Appendix.

We proceed to solve the equilibrium condition Eq (8). Since the equilibrium genotype fre-

quencies f �
01

and f �
10

are the same due to the symmetry of the landscape and the mutation

scheme, the recombination step at stationarity reads

f �
00
¼ p00 � rðp00p11 � p10p01Þ , f0 ¼ p0 � rD;

f �
10=01
¼ p10=01 þ rðp00p11 � p10p01Þ , f1 ¼ p1 þ 2rD;

f �
11
¼ p11 � rðp00p11 � p10p01Þ , f2 ¼ p2 � rD;

ð12Þ

where pσ is the (equilibrium) frequency of genotype σ after the mutation step, fi and pi are the

corresponding lumped frequencies [60] of all genotypes with i 1’s, and D � p00p11 � p10p01 ¼

p0p2 � p2
1
=4 is the linkage disequilibrium after the mutation step. Notice that the one-point

and uniform crossover schemes give the same equation form except that the parameter ρ is

given by ρ = r in the case of one-point crossover and ρ = r/2 for uniform crossover. However,

we would like to emphasize that this is a mere coincidence of the two-locus model which dis-

appears as soon as L is larger than 2.

The lumped frequencies qi of all genotypes with i 1’s after the selection step are given by

q0 ¼
f0

1 � f2
; q1 ¼

f1
1 � f2

; q2 ¼ 0: ð13Þ

Fig 2. Two-locus model. Genotype (1,1) is lethal while the other three genotypes are viable with the same fitness.

Here, genotype (0,0) is most robust since both its single mutants are viable.

https://doi.org/10.1371/journal.pcbi.1006884.g002
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Applying the mutation step we obtain

p0 ¼ q0ð1 � mÞ
2
þ mð1 � mÞq1 ¼ mð1 � mÞ þ ð1 � mÞð1 � 2mÞq0;

p1 ¼ q1½ð1 � mÞ
2
þ m2� þ 2mð1 � mÞq0 ¼ 1 � 2mþ 2m2 � ð1 � 2mÞ

2q0;

p2 ¼ mð1 � mÞq1 þ m
2q0 ¼ mð1 � mÞ � mð1 � 2mÞq0;

D ¼ p0p2 � p2
1
=4 ¼ �

1

4
ð1 � 2mÞ

2
ð1 � q0Þ

2
;

ð14Þ

where we have used the normalization q0 + q1 = 1 to express the right hand sides in terms of

q0. Putting everything together, the problem is reduced to solving the following third order

polynomial equation for q0,

0 ¼ q0ð1 � f2Þ � f0 ¼ q0ð1 � p2 þ rDÞ � p0 þ rD

¼
r

4
ð1 � 2mÞ

2
ð1 � q0Þ

2
ð1þ q0Þ þ m 1 � 2q0 � q

2

0
� mð1 � 2q0Þð1þ q0Þ

� �
;

ð15Þ

from which we can in principle find exact analytic expressions for f �
s

. However, it is difficult to

extract useful information from the exact solution. In the following we will therefore provide

approximate solutions.

If we neglect recombination (ρ = 0), we obtain the following equilibrium genotype fre-

quency distribution:

f �
00
ðr ¼ 0Þ ¼

1 � m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 16mþ 9m2

p
�

1

2
2 � 5mþ 3m2ð Þ

�
ffiffiffi
2
p
� 1

� �
þ

5

2
� 2

ffiffiffi
2
p

� �

mþ O m2ð Þ;

f �
01=10
ðr ¼ 0Þ ¼

1

4
4 � 9mþ 6m2ð Þ �

1 � 2m

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 16mþ 9m2

p

� 1 �
1
ffiffiffi
2
p

� �

þ
3
ffiffiffi
2
p �

9

4

� �

mþ O m2ð Þ;

f �
11
ðr ¼ 0Þ ¼

m

2
4 � 3m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 16mþ 9m2

p� �
� 2 �

ffiffiffi
2
p� �

mþ O m2ð Þ:

ð16Þ

When ρ = 1, which corresponds to the one-point crossover scheme with r = 1, linkage equi-

librium (f00 f11 = f10 f01) is restored after one generation [55]. Accordingly, we can treat each

locus independently and get rather simple expressions for f �
s

as

f �
00
ðr ¼ 1Þ ¼

1

4
ð2þ m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p
Þ

2
� 1 � 2

ffiffiffi
m
p
þ 2mþ O m3=2

� �
;

f �
01=10
ðr ¼ 1Þ ¼

1

4
2þ m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p
� m

� �
�

ffiffiffi
m
p
�

3m

2
þ O m3=2

� �
;

f �
11
ðr ¼ 1Þ ¼

1

4
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p
� mÞ

2
� m � O m3=2

� �
:

ð17Þ

We depict the equilibrium solutions for the above two cases in Fig 3.

Now, the mutational robustness

m ¼
1

2
ð2f �

00
þ f �

10
þ f �

01
Þ ¼ f �

00
þ f �

10
¼ f0 þ

1

2
f1 ð18Þ
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for the above two cases is obtained as

mðm; r ¼ 0Þ ¼
1

4
ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 16mþ 9m2

p
Þ �

1
ffiffiffi
2
p �

1
ffiffiffi
2
p �

1

4

� �

mþ Oðm2Þ; ð19Þ

mðm; r ¼ 1Þ ¼
1

2
ð2þ m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p
Þ � 1 �

ffiffiffi
m
p
þ
m

2
þ Oðm3=2Þ; ð20Þ

which is depicted in Fig 4. These results encapsulate in a simple form the main topic of this

paper. Selection alone (ρ = 0) leads to a moderate increase of robustness from the baseline

valuem ¼ 1

2
corresponding to a random distribution over genotypes, which is attained at

Fig 3. Equilibrium genotype frequencies in the two locus model. Genotype frequencies in the stationary state are shown as a function of mutation rate for (A)

strong recombination (ρ = 1) and (B) no recombination (ρ = 0).

https://doi.org/10.1371/journal.pcbi.1006884.g003

Fig 4. Mutational robustness as a function of mutation rate. The figure shows the robustness in the two-locus model

at ρ = 0 and ρ = 1. Recombination leads to a massive enhancement of robustness for small mutation rates.

https://doi.org/10.1371/journal.pcbi.1006884.g004
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m ¼ 1

2
, tom ¼ 1ffiffi

2
p for μ! 0. In contrast, for recombining populations (ρ = 1) robustness is

massively enhanced at small mutation rates due to the strong frequency increase of the most

robust genotype (0,0) and reaches the maximal valuem = 1 at μ = 0. The underlying mecha-

nism is analogous to Kondrashov’s deterministic mutation hypothesis, which posits that

recombination makes selection against deleterious mutations more effective when these

interact synergistically [13]. In the present case recombination increases the frequency of

the double mutant genotype (1, 1), which is subsequently purged by selection, and thereby

effectively drives the frequency of the allele 1 at both loci to zero. The enhancement of the

frequency of the genotype (0,0) by recombination is also reflected in the recombination

weights, which take on the values

l00 ¼
3

4
þ
r

4
; l01 ¼ l10 ¼

3

4
�
r

4
; l11 ¼

r

4
: ð21Þ

Thus the genotype (0,0) is the recombination center of the two-locus landscape.

Next we investigate how mutational robustness varies with μ for intermediate recombina-

tion rates, assuming that μ is small. As can be seen from Eq (15), the asymptotic behavior of

the solution for small ρ and μ depends on which of the two parameters is smaller. We first con-

sider the case ρ� μ� 1. Defining l = ρ/(4μ)� 1, Eq (15) is approximated by

0 ¼ lð1 � q0Þ
2
ð1þ q0Þ þ 1 � 2q0 � q2

0
� mð1 � 2q0Þð1þ q0Þ; ð22Þ

where we kept terms up to O(μ), since we have not determined whether l is smaller than μ or

not. Since q0 ¼
ffiffiffi
2
p
� 1 is the solution of Eq (22) for l = μ = 0, we set q0 ¼

ffiffiffi
2
p
� 1þ alþ bm

and solve the equation to leading order, which gives

q0 �
ffiffiffi
2
p
� 1þ 3 � 2

ffiffiffi
2
p� �

l �
3

2
�

ffiffiffi
2
p

� �

m: ð23Þ

The mutational robustness then follows as

m ¼ f0 þ
f1
2
¼

1

2
þ
p0 � p2

2
¼

1

2
þ ð1 � 2mÞ

q0

2
�

1
ffiffiffi
2
p þ

3 � 2
ffiffiffi
2
p

2
l �

1
ffiffiffi
2
p �

1

4

� �

m; ð24Þ

which is consistent with our previous result for ρ = 0; see Eq (19). We note that in this regime

it is sufficient for the recombination rate to be of order O(μ2) to compensate the negative effect

of mutations on mutational robustness, as the two effects cancel when ρ = ρc with

rc ¼ 2ð5þ 4
ffiffiffi
2
p
Þm2 � 21:3� m2: ð25Þ

In the regime ρ� μ, Eq (15) is approximated as

ð1 � 4mÞð1 � q0Þ
2
ð1þ q0Þ þ sð1 � 2q0 � q2

0
Þ ¼ 0; ð26Þ

with s = 4μ/ρ. Again we have kept terms up to O(μ) because μ and s are of the same order if ρ =

O(1). Since the solution of Eq (26) for μ = s = 0 is q0 = 1, we set q0 = 1 − α with α� 1. Inserting

this into Eq (26), we get a �
ffiffi
s
p

. Since α� μ, q0 ¼ 1 �
ffiffi
s
p

is the approximate solution to lead-

ing order. Hence

m ¼
1

2
þ ð1 � 2mÞ

q0

2
� 1 �

ffiffiffi
s
4

r

¼ 1 �

ffiffiffi
m

r

r

; ð27Þ

which is again consistent with our previous result for ρ = 1 in Eq (20). The square root
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dependence on μ/ρ derives from the corresponding behavior of the genotype frequency f �
00

and

has been noticed previously in the model with unidirectional mutations [58, 59].

For arbitrary ρ and μ, we have to use the full Eq (15). Fig 5 illustrates the behaviour of muta-

tional robustness as a function of the recombination rate for different mutation rates and both

recombination schemes. For small μ, a low rate of recombination suffices to bring the robust-

ness close to its maximal valuem = 1. More precisely, according to Eq (27), a robustnessm> 1

− � is reached for recombination rates ρ> μ/�2.

To summarize, we have seen that analytic results for the two-locus model are easily attain-

able. For multi-locus models it is much more challenging to derive analytical results, particu-

larly in the presence of recombination. By way of contrast the dynamics induced only by

mutation and selection are easier to understand: While mutations increase the genotype diver-

sity in the population, fitter ones grow in frequency through selection, which reduces diversity.

Although one might expect that recombination would increase diversity, a number of studies

have shown that recombination is more likely to impede the divergence of populations.

Recombining populations tend to cluster on single genotypes or in a limited region of a geno-

type space and furthermore the waiting times for peak shifts in multipeaked fitness landscapes

diverge at a critical recombination rate [22, 26, 54–56, 61]. The results for the two-locus model

presented above are consistent with this behaviour, as the genotype heterogeneity of the popu-

lation decreases with increasing recombination rate (S1 Fig).

In the following we will investigate how the focusing effect of recombination enhances the

mutational robustness of the population in three different multi-locus models.

Mesa landscape

In the mesa landscape it is assumed that up to a certain number k of mutations all genotypes

are functional and have unit fitness, whereas genotypes with more than kmutations are lethal

Fig 5. Mutational robustness as a function of recombination rate. The figure shows the mutational robustness for one-point crossover (mopc) and

uniform crossover (muc) and three different values of the mutation rate μ. When mutations are rare, a small amount of recombination is sufficient to

significantly increase mutational robustness.

https://doi.org/10.1371/journal.pcbi.1006884.g005
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and have fitness zero [48]. Hence the fitness landscape is defined as

ws ¼

(
1; if ds � k;

0; otherwise;
ð28Þ

where dσ is the Hamming distance to the wild-type sequence (0, 0, . . ., 0) or, equivalently, the

number of loci with allele 1. We will refer to k as the mesa width or as the critical Hamming

distance.

Such a scenario can for example be observed in the evolution of regulatory motifs, where

the fitness depends on the binding affinity of the regulatory proteins and dσ corresponds to the

number of mismatches compared to the original binding motif [45, 47]. The two-locus model

discussed in the preceding section corresponds to the mesa landscape with critical Hamming

distance k = 1 and sequence length L = 2. Here we ask to what extent the behavior observed for

the two-locus model generalizes to longer sequences and variable k. Numerical simulations

suggest that the strong increase of mutational robustness with recombination rate indeed per-

sists in the general setting, and the particular recombination scheme seems to have only a

minor influence; see Fig 6.

Whereas an analytical treatment for general L, k and intermediate recombination rates

appears to be out of reach, accurate approximations are available in the limiting case of strong

recombination or of no recombination, assuming mutation rate is small. The full derivations

for both cases can be found in S1 Appendix. In the following we summarize the main results.

Strong recombination. In the limit of strong recombination we demand linkage equilib-

rium after each recombination step. This is satisfied if we use the so-called communal recom-

bination scheme [62]. In this scheme an individual is not the offspring of a pair of parents.

Rather, its genotype is aggregated by choosing the allele at each locus from a randomly selected

parent. Hence the probability of occurrence of an allele at each locus in the offspring genotype

after recombination is given by the corresponding allele frequency of the whole population,

Fig 6. Mutational robustness in a mesa landscape as a function of recombination rate. Data points are obtained by

numerically iterating the selection-mutation-recombination dynamics until the equilibrium state is reached. The

parameters of the mesa landscape are L = 6, k = 2 and the mutation rate is μ = 0.001.

https://doi.org/10.1371/journal.pcbi.1006884.g006
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which is precisely the definition of linkage equilibrium. In order to obtain an approximation

for the mutational robustness we further assume that the mutation rate μ is small, which in

turn implies a low frequency of mutant alleles. Following the derivation in S1 Appendix this

leads us to the expression

mcr � 1 �
L � 1

k

� �1=ðkþ1Þ

mk=ðkþ1Þ þ
k

kþ 1
m; ð29Þ

which can be approximated as

mcr � 1 � Uk=ðkþ1Þðk!Þ� 1=ðkþ1Þ
þ

k
kþ 1

m ð30Þ

for L� k, where U = Lμ is the genome-wide mutation rate and the subscript signifies the com-

munal recombination scheme. Using Eq (29) and setting L = 2 and k = 1 we retrieve the result

(20) for the two-locus model. Furthermore comparing Eqs (29) and (30) to numerical simula-

tions of communal recombination illustrates their validity for large L (S2 Fig). If we use uni-

form crossover and one-point crossover instead of communal recombination, the numerical

simulations suggest that the leading behaviour of 1 −m is still a function of U = Lμ with the

same exponent k/(k + 1), which supports the universality of our findings with respect to the

recombination scheme; see S3 Fig.

No recombination. In order to obtain analytical results in the absence of recombination

we assume that the mutation rate is small enough that only a single point mutation occurs in

one generation. This condition is fulfilled if U = Lμ� 1. Interestingly, we observe that in this

regime the equilibrium frequencies after selection are independent of U. Therefore also the

mutational robustness after selection, denoted byMnr, is independent of U. The relation

between mutational robustness after selection (Mnr) and after mutation (mnr) is given by

mnr ¼ Mnrð1 � UÞ þM2
nrU; ð31Þ

which makes it suffice to findMnr.

Assuming k/L� 1 it is possible to link the set of stationarity conditions to the Hermite

polynomialsHn(x). This yields an approximation for the mutational robustness after selection

as

Mnr ¼

ffiffiffiffi
yk
L

r

þ oðL� 1=2Þ; ð32Þ

where
ffiffiffiffiffiffiffiffiffi
yk=2

p
is the largest zero ofHk+1(x). Correspondingly, the mutational robustness after

mutation is

mnr ¼

ffiffiffiffi
yk
L

r

ð1 � UÞ þ
yk
L
U: ð33Þ

A comparison to the exact solutions forMnr, which have been obtained up to k = 4, confirms

this approximation. If we further assume that 1� k� L, we find yk� 4k, which leads to

mnr ¼ 2

ffiffiffi
k
L

r

ð1 � UÞ þ 4
k
L
U: ð34Þ

Recombination and mutational robustness in neutral fitness landscapes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006884 August 15, 2019 14 / 31

https://doi.org/10.1371/journal.pcbi.1006884


Results for the joint limit k, L!1 at fixed ratio x = k/L can be obtained from the analysis

of Ref. [48], which yields

Mnr ¼

(
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 � xÞ

p
; if x < 1=2;

1; if x � 1=2

ð35Þ

and therefore

mnr ¼

(
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 � xÞ

p
ð1 � UÞ þ 4xð1 � xÞU; if x < 1=2;

1; if x � 1=2:

ð36Þ

The leading behaviour for small x coincides with Eq (34). A comparison of the approximations

to numerical solutions is given in S4 Fig.

Comparison of the two cases. It is instructive to compare the results obtained above to

the mutational robustnessm0 of a uniform population distribution. For the latter we assume

that all viable genotypes have the same frequency and all lethal genotypes have frequency zero.

For the mesa model this yields

m0ðL; kÞ ¼
1

Pk
i¼0

L
i

� �
L
k

� �
k
L
þ
Xk� 1

i¼0

L
i

� �" #

� min ½2k=L; 1�; ð37Þ

where the last approximation is valid for L!1. In S5 Fig the behavior ofm0,mnr andmcr is

depicted as a function of various model parameters. Similar to the results obtained for the two-

locus model, we see that selection gives rise to a moderate increase of robustness (from 2k/L
to 2

ffiffiffiffiffiffiffiffi
k=L

p
for 1� k� L), but recombination has a much stronger effect and leads to values

close to the maximal robustnessm = 1 for a broad range of conditions.

To elucidate the underlying mechanism, it is helpful to consider the shape of the equilib-

rium frequency distributions in genotype space (Fig 7). The combinatorial increase of the

number of genotypes with increasing dσ generates a strong entropic force that selection alone

cannot efficiently counteract. As a consequence, the non-recombining population distribution

is localized near the brink of the mesa at dσ = k [48]. In contrast, the contracting property of

recombination [44] allows it to localize the population in the interior of the fitness plateau

where most genotypes are surrounded by viable mutants.

S6 Fig shows the corresponding recombination weight profile. Similar to the genotype fre-

quencies in Fig 7(B) the recombination weight decays rapidly with increasing Hamming dis-

tance for r> 0, but the decay appears to be faster than exponential. Interestingly, at d = k the

recombination weight decreases with increasing r [see also Eq (21)]. The method used to com-

pute λσ for large mesa landscapes is explained in S1 Appendix.

Percolation landscapes

In the percolation landscape genotypes are randomly chosen to be viable (wσ = 1) with proba-

bility p and lethal (wσ = 0) with probability 1 − p. An interesting property of the percolation

model is the emergence of two different landscape regimes [49, 63–65]. Above the percolation

threshold pc, viable genotypes connected by single mutational steps form a cluster that extends

over the whole landscape, whereas below pc only isolated small clusters appear. Since the per-

colation threshold depends inversely on the sequence length, pc � 1

L, for large L a small fraction

of viable genotypes suffices to create large neutral networks. This allows a population to evolve

to distant genotypes without going through lethal regions, and correspondingly the percola-

tion model is often used to study speciation [35, 49]. A network representation of the
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percolation model is shown in Fig 8. The algorithm used to generate this visual representation

is explained in S1 Appendix.

Fig 9 shows three exemplary stationary genotype frequency distributions on the landscape

depicted in Fig 8. In the absence of recombination the equilibrium frequency distribution is

unique, but in the presence of recombination the non-linearity of the dynamics implies that

multiple stationary states may exist [54, 55, 61]. Fig 9 displays two stationary distributions for

r = 1 which are accessed from different initial conditions. It is visually apparent that the recom-

bining populations are concentrated on a small number of highly connected genotypes, lead-

ing to a significant increase of mutational robustness.

To quantify this effect, the average mutational robustnessm is calculated as a function of

the recombination rate according to the following numerical protocol:

• A percolation landscape for given L and p is generated and the initial population is distrib-

uted uniformly among all genotypes.

• The population is evolved in the absence of recombination (r = 0) until the unique equilib-

rium frequency distribution is reached, for which the mutational robustnessm is calculated.

• Next the recombination rate is increased by predefined increments. After increasing r, the

population is again evolved using the stationary state obtained before the increment of r as

the initial condition, until it reaches a new stationary state for which the mutational robust-

ness is measured.

• When the recombination rate has reached r = 1, a new percolation landscape is generated

and the process starts all over again. This is done for an adjustable number of runs over

which the average is taken.

Fig 7. Equilibrium genotype distributions in a mesa landscape for strongly and non-recombining populations. Stationary states for populations with communal

recombination and no recombination have been computed by assuming that only single point mutations occur withU = 0.01. Landscape parameters are L = 1000 and

k = 100. The resulting mutational robustness ismnr� 0.572 for the non-recombining population andmcr� 1.000 for communal recombination. (A) Lumped

mutation class frequencies on linear scales. In the absence of recombination the majority of the population is located at the critical Hamming distance d = k, whereas

in the case of strong recombination the distribution is broader and shifted away from the brink of the mesa. (B) Genotype frequencies on semi-logarithmic scales. In

both cases the genotype frequencies decrease exponentially with the Hamming distance to the wild type, but the distribution has much more weight at small distances

in the case of recombination.

https://doi.org/10.1371/journal.pcbi.1006884.g007
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The results of such a computation are shown in Fig 10. Similar to the mesa landscapes, a

strong increase of mutational robustness is observed already for small rates of recombination,

and the effect is largely independent of the recombination scheme. However, in contrast to the

mesa landscape the robustness does not reach its maximal valuem = 1 for r = 1 and small μ.

This reflects the fact that maximally connected genotypes withmσ = 1 are very rare at this par-

ticular value of p.

Fig 8. Network representation of a percolation landscape. The figure shows a percolation landscape with L = 8 loci

and a fraction p = 0.2 of viable genotypes. Viable genotypes at Hamming distance d = 1 are connected by edges, and

the node area of a genotype σ is proportional to l
6

s
, where the recombination weight λσ is defined in Eq (10). The

recombination center is the genotype with the largest recombination weight.

https://doi.org/10.1371/journal.pcbi.1006884.g008

Fig 9. Stationary states in a percolation landscape. The figure shows three different stationary population distributions in the percolation landscape

depicted in Fig 8. Node areas are proportional to the stationary frequency of the respective genotype in the population, and the edge width eσ,τ between

neighboring genotypes is proportional to the frequency of the more populated one, es;t /max½f �
s
; f �
t
�. (A) Unique stationary state of a non-recombining

population. (B,C) Stationary states for recombining populations undergoing uniform crossover with r = 1. The recombination center (purple) is the most

populated genotype in (A,B), but not in (C). In all cases the mutation rate is μ = 0.01.

https://doi.org/10.1371/journal.pcbi.1006884.g009
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For the purpose of comparison we also determined the average mutational robustnessm0

of a uniform population distribution for the percolation model. Conditioned on the number

v = |V| of viable genotypes and assuming that v� 1, we havem0(v, L) = n(v, L)/L, where n(v, L)

is the average number of viable neighbors of a viable genotype. The latter is given by the

expression

nðL; vÞ ¼
ðv � 1ÞL
2L � 1

; ð38Þ

since for a given viable genotype there are v − 1 remaining genotypes, each of which has the

probability L/(2L − 1) to be a neighboring one. Taking into account that the number of viable

genotypes is binomially distributed with parameter p and that the empty hypercube (v = 0)

should yieldm0 = 0 we obtain

m0 ¼
X2L

v¼1

ðv � 1Þ

2L � 1

2L

v

� �

pvð1 � pÞ2
L � v
¼

2Lp � 1þ ð1 � pÞ2
L

2L � 1
; ð39Þ

which simplifies tom0 ¼ p when 2Lp� 1. Note that the condition 2Lp� 1 is naturally satis-

fied beyond the percolation threshold.

Fig 11 illustrates that the dynamics induced by mutation and selection already increase

mutational robustness compared tom0 and that the addition of recombination even further

increases mutational robustness for all values of p. The figure also displays the expected maxi-

mum number of viable neighbors of any genotype in the landscape,mmax, which provides an

upper bound on the robustness. The fact that the numerically determined robustness remains

below this bound for all p shows that the ability of recombination to locate the most connected

genotype is limited. In S1 Appendix it is shown that limL!1mmax ¼ 1 for p > 1

2
.

Fig 10. Average mutational robustness in the percolation landscape as a function of recombination rate.

Mutational robustness is computed for 250 randomly generated percolation landscapes with L = 6 and p = 0.4, and the

results are averaged to obtainmðrÞ. The mutation rate is μ = 0.001.

https://doi.org/10.1371/journal.pcbi.1006884.g010
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As outlined above, the algorithm used to generate Figs 10 and 11 computes the mutational

robustness of a particular stationary frequency distribution of the recombining population

which is smoothly connected to the unique non-recombining stationary state. Although one

expects this state to be representative in the sense of being reachable from many initial condi-

tions, for large enough r there can be multiple stationary states that will generally display dif-

ferent robustness (see Fig 9). To illustrate this point, S7 Fig shows the results of a simulation of

the percolation model where all stationary states were identified using localized initial condi-

tions, and the mutational robustness was computed separately for each state. Whereas on aver-

age the mutational robustness is always enhanced by recombination, there are rare instances

when recombination reduces the robustness compared to the non-recombining case. This

may happen, for example, if recombination traps the population on a small island of viable

genotypes [22, 26, 55, 56].

Sea-cliff landscapes

In this section we introduce a novel class of fitness-landscape models (to be called sea-cliff

landscapes) that interpolates between the mesa and percolation landscapes. Similar to the

mesa landscape, the fitness values of the sea-cliff model are determined by the distance to a ref-

erence genotype κ�. The model differs from the mesa landscape in that it is not assumed that

all genotypes have zero fitness beyond a certain number of mutations. Instead, the likelihood

for a mutation to be lethal (to “fall off the cliff”) is taken to increase with the Hamming dis-

tance from the reference genotype. This is mathematically realized by a Heaviside step

function θ(x) that contains an uncorrelated random contribution ησ and the distance measure

Fig 11. Mutational robustness in the percolation landscape as a function of the fraction of viable genotypes. The

robustness for recombining (mðr ¼ 1Þ) and non-recombining (mðr ¼ 0Þ) populations is obtained by averaging over

6800 randomly generated landscapes with L = 6 and μ = 0.001. In the same way the average maximal robustnessmmax
is estimated. The full line shows the analytic expression (39) for the robustness of a uniformly distributed population.

https://doi.org/10.1371/journal.pcbi.1006884.g011
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d(σ, κ�),

ws ¼ y½Zs � dðs;k�Þ� ¼

(
1; if Zs > dðs;k�Þ;

0; if Zs < dðs;k�Þ:
ð40Þ

This construction is similar in spirit to the definition of the Rough-Mount-Fuji model [66, 67].

The average shape of the landscape can be tuned by the mean c and the standard deviation s
of the distribution of the random variables ησ, which we assume to be Gaussian in the follow-

ing. The average fitness at distance d from the reference sequence is then given by

wðdÞ ¼ Probðws ¼ 1Þ ¼
1

2
1 � erf

d � c
s
ffiffiffi
2
p

� �� �

; ð41Þ

where erf(x) is the error function. Note that the mesa landscape is reproduced if we take the

limit s! 0 for fixed c in the range k< c< k + 1 and the percolation landscape is reproduced if

we take a joint limit s, |c|!1 with c/s fixed.

To fix c and s we introduce two distances d< and and d> such that wðd<Þ ¼ 0:99 and

wðd>Þ ¼ 0:01, which leads to the relations

c ¼
1

2
ðd< þ d>Þ and s � 0:215ðd> � d<Þ: ð42Þ

The model can be generalized to include several predefined reference sequences,

wðsÞ ¼ y
X

k�

y½Zs;k� � dðs;k
�Þ�

( )

; ð43Þ

which allows to create a genotype space with several highly connected clusters. Depending on

the Hamming distance between the reference sequences and the variables c and s, clusters can

be isolated or connected by viable mutations.

Fig 12 shows stationary states in the absence and presence of recombination for two differ-

ent sea-cliff landscapes with one and two reference genotypes, respectively. Similar to the

other landscape models, mutational robustness increases strongly with recombination, due to

a population concentration within a neutral cluster. In the presence of two reference genotypes

the recombining population should be concentrated within a single cluster. Otherwise lethal

genotypes would be predominantly created through recombination of genotypes on different

clusters. This observation can also be interpreted in the context of speciation due to genetic

incompatibilities [49, 61]. Without recombination genotypes on both clusters have a nonvan-

ishing frequency, but still the larger cluster is more populated. In contrast to the percolation

landscape, robustness reaches a value close to unity for large r, because highly connected geno-

types are abundant close to the reference sequence (S8 Fig).

Mutational robustness and recombination weight

Comparing Figs 6 and 10 and S8 Fig, the dependence of mutational robustness on the recom-

bination rate is seen to be strikingly similar. Despite the very different landscape topographies,

in all cases a small amount of recombination gives rise to a massive increase in robustness

compared to the non-recombining baseline. For the mesa landscape this effect can be plausibly

attributed to the focusing property of recombination, which counteracts the entropic spread-

ing towards the fitness brink and localizes the population inside the plateau of viable geno-

types. In the case of the holey landscapes, however, it is not evident that focusing the
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population towards the center of its genotypic range will on average increase robustness, since

viable and lethal genotypes are randomly interspersed.

To establish the relation between recombination and mutational robustness on the level of

individual genotypes, in Fig 13 we plot the recombination weight of each genotype against its

robustnessmσ. A clear positive correlation between the two quantities is observed both for per-

colation and sea-cliff landscapes. Additionally we differentiate between viable and lethal geno-

types. In the percolation landscape viable genotypes are uniformly distributed in the genotype

space, which implies that lethal and viable genotypes have on average the same number of via-

ble point-mutations. Nevertheless the recombination weight of viable genotypes is larger. The

fitness of a genotype influences its own recombination weight, because the genotype itself is a

possible parental genotype in the recombination event.

In non-neutral fitness landscapes the redistribution of the population through recombina-

tion competes with selection responding to fitness differences, and the generalized definition

(11) of the recombination weight captures this interplay. To exemplify the relation between

recombination weight and mutational robustness in this broader context, we use an empirical

fitness landscape for the filamentary fungus Aspergillus niger originally obtained in [68]. In a

nutshell, two strains of A. niger (N411 and N890) were fused to a diploid which is unstable and

creates two haploids by random chromosome arrangement. Both strains are isogenic to each

Fig 12. Stationary states in two different sea-cliff landscapes with and without recombination. (A,B) A single reference

genotype with landscape parameters L = 8, d< = 1 and d> = 6. (C,D) Two reference genotypes which are antipodal to each

other with landscape parameters L = 8, d< = 2 and d> = 4.2. (A,C) Stationary frequency distribution in the absence of

recombination. (B,D) Stationary frequency distribution with uniform crossover and r = 1. In all cases node areas are

proportional to genotype frequencies, and the recombination center is marked in blue. The edge width between neighboring

genotypes is proportional to the frequency of the more populated one. The mutation rate is μ = 0.01.

https://doi.org/10.1371/journal.pcbi.1006884.g012
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other, except that N890 has 8 marker mutations on different chromosomes, which were

induced by low UV-radiation. Through this process 28 = 256 haploid segregants can theoreti-

cally be created of which 186 were isolated in the experiment. As a result of a statistical analysis

it was concluded that the missing 70 haploids have zero fitness [69].

In order to illustrate the fitness landscape, a network representation is employed where

genotypes are arranged in a plane according to their fitness and their Hamming distance to the

wild type, which in this case is the genotype of maximal fitness. In Fig 14A and 14B node sizes

are adjusted to the recombination weights and mutational robustness of genotypes, respec-

tively, in order to display the distribution of these quantities. In accordance with the analyses

for neutral fitness landscapes, a clear correlation between the recombination weights and

mutational robustness is shown in Fig 14C. Since fitness values are not binary we further con-

sider the correlation between the recombination weights and fitness values (Fig 14D). The

recombination center is one of the maximally robust genotypes withmσ = 1, but it is not the

fittest within this group. The wild type has maximal fitness but, by comparison, lower robust-

ness (mσ = 7/8).

Fig 15 highlights how the recombination weights change as a function of the recombination

rate and how this affects the stationary state of a population. For small recombination rates the

recombination weight of each genotype mainly depends on its own fitness, and therefore the

wild type coincides with the recombination center. With increasing recombination rate the

connectivity of the surrounding genotype network becomes more important and the recombi-

nation center switches to a genotype at Hamming distance d = 2. In contrast to the numerical

protocol described previously, in the simulations used to generate Fig 15D–15F the population

is reset to a uniform distribution before the recombination rate is increased. Otherwise the

population would continue to adapt to the wild type, which has the highest fitness and from

Fig 13. Mutational robustness correlates with recombination weight. The recombination weight of genotypes is plotted against their mutational robustness for (A)

a percolation landscape with parameters L = 8, p = 0.4 and (B) a sea-cliff landscape with parameters L = 8, d< = 2, d> = 6. For the evaluation of the recombination

weight (10), uniform crossover at rate r = 1 is assumed.

https://doi.org/10.1371/journal.pcbi.1006884.g013

Recombination and mutational robustness in neutral fitness landscapes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006884 August 15, 2019 22 / 31

https://doi.org/10.1371/journal.pcbi.1006884.g013
https://doi.org/10.1371/journal.pcbi.1006884


which it cannot escape because of peak trapping [22, 26]. Starting from an initially uniform

distribution the population will adapt to one of three possible final genotypes which depend

on the recombination rate. For small and large recombination rates the most abundant geno-

type coincides with the recombination center (Fig 15D and 15F), whereas for intermediate

recombination rates the population chooses another genotype that is also located at Hamming

distance d = 2 but has higher fitness (Fig 15E). The recombination center ultimately dominates

the population, not only because it is maximally connected (mσ = 1), but also because the geno-

types that it is connected to have high fitness. In this sense the sequence of transitions in the

most abundant genotype that occur with increasing recombination rate is akin to the scenario

described previously in non-recombining populations as the “survival of the flattest” [48, 70].

Along this sequence mutational robustness increases monotonically whereas the average fit-

ness of the population actually declines (S9 Fig).

Fig 14. The empirical A. niger fitness landscape. (A,B) Two-dimensional network representation of the fitness landscape with node sizes determined by the

mutational robustnessmσ and the recombination weight λσ, respectively. In order to make the differences between genotypes more conspicuous, the node area is

chosen proportional to the sixth power of these quantities. The recombination weight is evaluated for uniform crossover with r = 1, and the recombination center is

highlighted in purple. (C,D) Recombination weight plotted against mutational robustness and genotype fitness, respectively. Lethal genotypes with wσ = 0 appear only

in panel D.

https://doi.org/10.1371/journal.pcbi.1006884.g014
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Discussion

Despite a century of research into the evolutionary bases of recombination, a general mecha-

nism explaining the ubiquity of genetic exchange throughout the domains of life has not been

found [17, 18]. Even within the idealized scenario of a population evolving in a fixed environ-

ment, whether or not recombination speeds up adaptation and leads to higher fitness levels

depends in a complicated way on the structure of the fitness landscape and the parameters of

the evolutionary dynamics [21–26].

The most important finding of the present work is that, by comparison, the effect of recom-

bination on mutational robustness is much simpler and highly universal. Irrespective of the

number of loci, the structure of the fitness landscape or the recombination scheme, recombi-

nation leads to a significant increase of robustness that is usually much stronger than the previ-

ously identified effect of selection [32–34]. This suggests that the evolution of recombination

may be closely linked to the evolution of robustness, and that similar selective benefits are

involved in the two cases. Although the relation of robustness to evolutionary fitness is subtle

and not fully understood [27], it has been convincingly argued that robustness enhances evol-

vability and hence becomes adaptive in changing environments [29, 31, 71, 72]. A common

perspective on recombination, robustness and evolvability can help to develop novel hypothe-

ses about the evolutionary origins of these phenomena that can be tested in future computa-

tional or empirical studies.

Fig 15. Recombination weights and stationary states at different recombination rates. (A-C) Two-dimensional network representation of the A. niger fitness

landscape with node areas proportional to the sixth power of the recombination weight for recombination rates r = 0, r = 0.4 and r = 1, respectively. (D-F) Two-

dimensional network representation of the A. niger fitness landscape with node areas proportional to the stationary genotype frequency at the same recombination

rates and mutation rate μ = 0.005. The edge width between neighboring genotypes is proportional to the frequency of the more populated one.

https://doi.org/10.1371/journal.pcbi.1006884.g015
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On a quantitative level, we have shown that robustness generally depends on the ratio of

recombination to mutation rates, and that the robustness-enhancing effect saturates when r�
μ. This observation highlights the importance of r/μ as an evolutionary parameter. Interest-

ingly, even in bacteria and archaea, which have traditionally been regarded as essentially

non-recombining, the majority of species displays values of r/μ that are significantly larger

than one [73–75]. Similarly, a recent study of the evolution of Siphoviridae phages revealed a

ratio of recombination events to mutational substitutions of about 24 [76]. In eukaryotes this

ratio is expected to be considerably higher [40]. This indicates that most organisms maintain a

rate of recombination that is sufficient to reap its evolutionary benefits in terms of increased

robustness.

In order to clarify the mechanism through which recombination enhances robustness, we

have introduced the concept of the recombination weight, which is a measure for the likeli-

hood of a genotype to arise from the recombination of two viable parental genotypes. The

recombination weight defines a “recombination landscape” over the space of genotypes which

is similar in spirit to, but distinct from, previous mathematical approaches to conceptualizing

the way in which recombining populations navigate a fitness landscape [77]. It is complemen-

tary to the more commonly used notion of a recombination load, which refers to the likelihood

for a viable genotype to recombine to a lethal one [41, 42]. In many cases the maximum of the

recombination weight correctly predicts the most populated genotype in a recombining popu-

lation at low mutation rate. Moreover, the concept generalizes to non-neutral landscapes and

thus permits to address situations where selection and recombination compete.

Provided recombination weight is correlated with mutational robustness for the individual

genotypes, this explains the positive effect of recombination on the population-level robust-

ness. Whether or not such a correlation exists will generally depend on the structure of the fit-

ness landscapes. For simple neutral landscapes such as the mesa landscape it is an immediate

consequence of the focusing property of recombination, but for more complex neutral net-

works the relationship between the two quantities is nontrivial and needs to be studied on

a case-by-case basis. Although a positive correlation was observed numerically both for the

holey landscapes and the empirical landscape considered in this work, it is not difficult to con-

struct landscapes where the genotypes with high recombination weight are not highly robust.

As a simple but instructive example, in S10 Fig we show results for an ‘atoll’ landscape where a

ring of viable genotypes surrounds a central hole of lethals.

Throughout this work the effects of genetic drift have been neglected. We expect that our

results will be applicable to finite populations as long as the population is sufficiently diverse

rather than being monomorphic. This requires the population-wide mutation rate NμL to be

much larger than unity [32, 44]. If NμL� 1 the population is almost always monomorphic

and recombination has no effect. In this regime the population explores the fitness landscape

as a random walker and the observed mutational robustness is the uniform robustnessm0. In

S11 Fig we present the results of finite population simulations on a mesa landscape, which

show a sharp transition from the random walk regime to the behavior predicted by the deter-

ministic theory when NμL� 1.

Future work should be directed towards extending the present investigation to more real-

istic genotype-phenotype maps arising, for example, from the secondary structures of bio-

polymers such as RNA or proteins [39, 40, 44], or from simple genetic, metabolic or logical

networks [29, 41, 43, 78]. There is ample evidence from numerical studies that a favorable

effect of recombination on mutational robustness is present also in these more complex sys-

tems, but a detailed analysis of the underlying mechanism has not been carried out. This

would entail, in particular, the generalization to genotype spaces composed of sequences
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carrying more than two alleles per site. We expect that at least part of the analysis for the

mesa landscapes carries over to this setting, and in fact some results for the non-recombin-

ing case have already been obtained [48]. More importantly, the role of the topology of

the corresponding neutral networks in shaping the correlation between recombination

weight and robustness needs to be explored systematically. Research along these lines will

help to corroborate the relationship between recombination and robustness that we have

sketched, and to further elucidate the origins of these two pervasive features of biological

evolution.

Supporting information

S1 Appendix. This appendix contains detailed derivations of analytic results presented in

the main text.

(PDF)

S1 Fig. Population heterogeneity decreases with increasing recombination rate. The figure

shows the entropy of the genotype frequency distribution in the two-locus model defined as

S ¼ �
P

s
f �
s
ln ðf �

s
Þ. For small mutation rates the strongly recombining population primarily

consists of a single genotype, which implies that S! 0.

(PDF)

S2 Fig. Mutational robustness for the mesa landscape with communal recombination. The

figure compares the analytic approximations in Eqs (29) and (30) to the numerical solution of

the stationary genotype frequency distribution for the communal recombination scheme. The

two panels show the mutational robustness as a function of the genome-wide mutation rate in

linear (A) and double-logarithmic (B) scales, respectively. The parameters of the mesa land-

scape are L = 30 and k = 3.

(PDF)

S3 Fig. Mutational robustness in a mesa landscape with different recombination schemes.

The figure compares the analytic results for communal recombination (mcr) with numerical

data obtained using uniform crossover (muc) and one-point crossover (mopc) at r = 1. The

landscape parameters are L = 5, k = 2 and robustness is plotted as a function of the genome-

wide mutation rate Lμ. (A) Mutational robustness on linear scales. (B) Double-logarithmic

plot of 1 −m vs. Lμ, illustrating the power-law behavior 1 −m� (Lμ)b with the exponent b =

k/(k + 1) = 2/3 predicted by the analysis of the communal recombination model.

(PDF)

S4 Fig. Mutational robustness for the mesa landscape in the absence of recombination. The

figure compares the analytic predictions in Eqs (35) and (36) to the numerical solution for the

genotype frequency distribution in the absence of recombination. The two panels show the

mutational robustness (A) after selection and (B) after mutation as a function of the scaled

mesa width x0 = k/L for L = 1000 and U = 0.01.

(PDF)

S5 Fig. Mutational robustness in mesa landscapes with and without recombination.

Numerical results for communal recombination (mcr) and no recombination (mnr) are shown

as dots. The mutational robustnessm0 of a uniformly distributed population, given by Eq (37),

as well as the analytic expressions Eqs (30) and (36) are depicted as lines. (A) Robustness as a

function of mutation rate U = Lμ for a landscape with L = 1000 and k = 10. (B) Robustness as a

function of mesa width k at fixed L = 1000 and U = Lμ = 0.01. (C) Robustness as a function of
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genome length L at fixed k = 10 and U = 0.01. (D) Robustness as a function of genome length L
at fixed k = 10 and μ = 0.001.

(PDF)

S6 Fig. Recombination weight in a mesa landscape. The parameters of the mesa landscape

are L = 100 and k = 10. For r = 0 the recombination weight is directly proportional to the fit-

ness and hence equal for all viable genotypes. Already small rates of recombination are suffi-

cient to redistribute the recombination weight such that the weight of genotypes with small

Hamming distance is strongly enhanced. Beyond d = 20 the recombination weight is identi-

cally zero, since the recombinant of two viable genotypes cannot carry more than 2kmuta-

tions.

(PDF)

S7 Fig. Mutational robustness for different stationary states within a percolation land-

scape. The figure compares the mutational robustness of non-recombining (r = 0) and recom-

bining (r = 1) populations on individual realizations of the percolation model with L = 6 and

three values of p. In order to obtain different stationary states we used localized initial popula-

tion distributions of the form fτ(0) = δτσ for all genotypes with mutational robustnessmσ 6¼ 0

and propagated them until stationarity. Since the stationary populations are usually highly

concentrated for large r and small μ, this is a natural choice in order to access all stationary

states. Each data point represents the robustness of the recombining populationm(r = 1) for a

particular stationary state. Data points within the same landscape are plotted above the corre-

sponding unique robustness of the non-recombining populationm(r = 0) and connected by a

vertical line. The orange crosses show the average over all initial conditions.

(PDF)

S8 Fig. Average mutational robustness in the sea-cliff landscape as a function of recombi-

nation rate. Mutational robustness is computed for 200 randomly generated sea-cliff land-

scapes with parameters L = 6, d< = 1 and d> = 5, and the results are averaged to obtainmðrÞ.
The mutation rate is μ = 0.001.

(PDF)

S9 Fig. Mutational robustness and average fitness in the empirical A. niger fitness land-

scape. The mutational robustness and the population-averaged fitness in the stationary state

are computed as a function of recombination rate by evolving the population from a uniform

initial genotype distribution at mutation rate μ = 0.005. Jumps mark changes in the most popu-

lated genotype.

(PDF)

S10 Fig. Recombination on an atoll landscape. This landscape is similar to the mesa land-

scape but includes an inner critical radius within which genotypes are lethal. In this example

the inner radius is chosen to be 1 such that only the wild type is lethal. The outer radius is 2

and the sequence length is L = 7. The recombination rate is r = 1 and the mutation rate is μ =

0.001. The frequencies fn of the stationary state at the same Hamming distance n are lumped

together. The population is concentrated at distance 1 which is most robust since only one

point mutation is lethal, but the recombination center coincides with the lethal wild type. This

example shows that the correlation between recombination weight and mutational robustness

depends on the topology of the neutral network.

(PDF)

S11 Fig. Finite population size effects. The figure shows the mutational robustness in a mesa

landscape with parameter L = 6, k = 2 as a function of mutation rate. The finite population
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results were obtained using Wright-Fisher dynamics for N = 1000 individuals. For small muta-

tion rates such that NμL� 1 the monomorphic population performs a random walk among

viable genotypes, which leads to the uniform mutational robustnessm0 given by Eq (37)

(green dashed line). In this regime recombination cannot have any effect. For NμL> 1 the

robustness rises sharply to the value predicted by the infinite population approach. At the max-

imal mutation rate μ = 0.5 the population is uniformly distributed among all (lethal or viable)

genotypes after the mutation step and recombination has again no effect.

(PDF)
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