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Abstract

Research on human motor adaptation has often focused on how people adapt to self-gener-

ated or externally-influenced errors. Trial-by-trial adaptation is a person’s response to self-

generated errors. Externally-influenced errors applied as catch-trial perturbations are used

to calculate a person’s perturbation adaptation rate. Although these adaptation rates are

sometimes compared to one another, we show through simulation and empirical data that

the two metrics are distinct. We demonstrate that the trial-by-trial adaptation rate, often cal-

culated as a coefficient in a linear regression, is biased under typical conditions. We tested

12 able-bodied subjects moving a cursor on a screen using a computer mouse. Statistically

different adaptation rates arise when sub-sets of trials from different phases of learning are

analyzed from within a sequence of movement results. We propose a new approach to iden-

tify when a person’s learning has stabilized in order to identify steady-state movement trials

from which to calculate a more reliable trial-by-trial adaptation rate. Using a Bayesian model

of human movement, we show that this analysis approach is more consistent and provides

a more confident estimate than alternative approaches. Constraining analyses to steady-

state conditions will allow researchers to better decouple the multiple concurrent learning

processes that occur while a person makes goal-directed movements. Streamlining this

analysis may help broaden the impact of motor adaptation studies, perhaps even enhancing

their clinical usefulness.

Author summary

By observing the learning rate of a person making a movement under new conditions,

researchers can better understand how the nervous system handles uncertainty. Patients

suffering from motor deficits or using prostheses will often display different motor abili-

ties that can be observed as changes in error correction rates. Here we show that previous

approaches to determining error correction rates are affected by the overall learning rate
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within the subset of trials selected for analysis. We use real-world data collected from peo-

ple controlling a computer cursor and simulations of how a person’s nervous system oper-

ates to show the limitations of current approaches. We also present a new approach to

limit some of the biases with current motor analysis techniques.

Introduction

The way that people adapt their movements provides important insight into the motor learn-

ing processes of the brain [1–4]. Motor learning, and more specifically motor adaptation, is a

key aspect in the study of human movement, particularly in understanding its deficit and

developing corresponding rehabilitative strategies [5,6]. Adaptation rate is often discussed in

the literature, but that metric’s definition varies based on the context. Here we focus on trial-

by-trial adaptation, rather than block adaptation such as that quantified as the time constant of

an exponential fit to an individual’s movement data [1]. Trial-by-trial adaptation rates reflect

how the error on a given movement affects the proportion of error correction on the following

movement. Adaptation rates are often cited [2, 7–11] but are difficult to compare across condi-

tions and studies due to differences in quantities measured, movement amplitude, system

noise, and calculation methods.

A common approach to calculating dimensionless trial-by-trial adaptation rates is to run a

linear regression comparing data from sequential movement trials [2,8,9]. These unit-free val-

ues were thought to be unbiased and independent of error magnitude, observations supported

by state estimation Bayesian models [5]. In the absence of perturbations, adaptation to self-

generated error is often calculated as the first-order regression coefficient of the change in

error on the next trial versus the error on the current trial [7]. Adaptation to catch trial pertur-

bations is calculated similarly using the first-order regression coefficient of the movement

deviation (or error) versus the perturbation level [2,8,9]. These widely accepted approaches

output a result that has been variably described as the ‘learning rate’ [10], ‘adaptation rate’

[11], ‘adaptation gain’ [12], or ‘adaptation coefficient’ [3].

Using a linear regression to quantify trial-by-trial adaptation, however, is not without limi-

tations. To our knowledge there have been limited efforts to validate linear regression adapta-

tion rates with motor control models. The analysis does not capture the effect of correlated

errors beyond adjacent trials [4,12,13]. Further, reported adaptation rates represent the fusion

of multiple interacting learning processes, such as explicit and implicit learning [14,15], or fast

and slow processes [4,12]. In this work we will show that parameter estimation, often promi-

nent during initial motor adaptation trials, results in a biased regression coefficient. Thus, the

reporting of adaptation rates needs to be constrained and qualified; guidelines that we develop

here to identify when parameter estimation has stabilized.

Advances in Bayesian modeling have given us a better understanding of the underlying

organizational principles driving human motor behavior [16,17]. Non-adapting state-space-

only estimators have been used to quantify adaptation [18–21] but these models may be too

simple for rehabilitation contexts to fully capture the performance dynamics of the human

nervous system. While learning a new task, a human will update estimates of the system’s

parameters such as the mass being moved or environmental parameters like wind, gravity,

visual rotation or a force field in order to improve motor planning and performance [22,23].

Here we adopt a hierarchical Kalman filter model that adds a parameter estimation filter to the

state estimator in a motor control framework [5,17,24]. We use this model to simulate motor

learning processes and to further explore approaches to adaptation rate analysis.

Steady-state adaptation analysis
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In this study we use computational modeling results and human motor data to develop a

standardized approach to calculating bias-free adaptation rates. We first establish that trial-by-

trial adaptation rates and perturbation adaptation rates represent fundamentally different met-

rics and cannot be directly compared. Then we demonstrate that trial-by-trial adaptation rates

are confounded by overall learning rates. We develop an expanding window optimization

approach to identify when the overall learning rate has stabilized in order to calculate an unbi-

ased trial-by-trial adaptation rate. This steady-state trial analysis protocol is shown to produce

adaptation rates that are more consistent and with less uncertainty than analyses of alternative

trials sets. This computational and empirical study provides a clear path towards developing a

more reliable and meaningful way to quantify human motor performance that could improve

clinical motor assessments.

Results

Learning processes are often observed by measuring adaptation to catch-trial perturbations

(Fig 1A). Without forewarning during an experiment, a person’s sequential movements are

perturbed on intermittent trials. The perturbation adaptation rate is calculated as the first-

order coefficient of the linear regression of error on the next trial versus perturbation on the

current trial (Fig 1B). This contrasts with the definition of trial-by-trial adaptation that is rep-

resented by the first-order coefficient of the change in error to the next trial versus the error

on the current trial. Typically, trial-by-trial adaptation is completed on unperturbed datasets,

but for direct comparison to Fig 1B, we compute this regression for each set of unperturbed

trials (Fig 1C). Each perturbation effectively resets the parameter estimation, so the short trial

blocks analyzed capture some of the dynamic learning processes observed during initial trial

exposure. To improve clarity, all adaptation rates in this study are reported as inverted values

(i.e. negative coefficients are reported as positive adaptation rates).

The analysis methods of the two adaptation rates produce different results when run on the

same movement data. Results from a Bayesian hierarchical Kalman filter model of human

motor adaptation show that trial-by-trial adaptation rates are significantly higher than pertur-

bation adaptation rates (Fig 2A, t-test: p<0.001, two-tailed paired t-test). These simulation

results were qualitatively matched by results obtained analyzing human movement data (Fig

2B, p<0.001, two-tailed paired t-test) [25].

Under steady-state conditions, the trial-by-trial adaptation rates and perturbation adapta-

tion rates approach different values. We ran our simulation with extreme noise parameters

(Q>5, R = 0) so that the Kalman gain of the state-estimation filter approached one and the

Kalman gain of the parameter-estimation filter approached zero. Under these extreme condi-

tions, the trial-by-trial adaptation rate in unperturbed trials approached a value of one. The

perturbation adaptation rate of movement trials with catch-trial perturbations approached a

value of zero (regardless of perturbation frequency). The distinct results of the two adaptation

rate calculation methods at simulated steady state show that they are not capturing the same

quantitative measure. The two resulting adaptation rates cannot be directly compared, as has

been done previously [5].

For the remainder of this study we shift to focus solely on trial-by-trial adaptation rates, an

experimental paradigm that shows promise for clinical use [26] if the interaction of multiple

learning processes can be disentangled [4]. The lag-1 autocorrelation coefficient has also been

used to quantify human motor performance [27–29]. Since the trial-by-trial adaptation analy-

sis and lag-1 autocorrelation results are mathematically-related (S1 Appendix), we focus only

on trial-by-trial adaptation rates in this study.

Steady-state adaptation analysis
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Trial-by-trial adaptation is often analyzed using a record of movement errors from a

sequential set of movements without catch-trial perturbations [5,27] (Fig 3A). During a

Fig 1. Single subject movement data with analysis of perturbation adaptation and trial-by-trial adaptation rates. (a) Trial-by-trial angular error data for a

block of 80 consecutive movements of a human subject controlling a cursor with electromyographic signals. Red points indicate the trial and magnitude of

catch-trial perturbations. Data from Subject ID# 2016–127 from Shehata et al. [25]. (b) Linear regression of Errorn+1vs. Errorn for trials in a. Red line indicates

line of best fit whose slope (-0.32) is defined as the perturbation adaptation rate. (c) Linear regression of ΔError vs. Error for each consecutive sequence of

unperturbed trials between perturbations. The trial-by-trial adaptation rate (-1.20) is calculated as the mean of all regression coefficients.

https://doi.org/10.1371/journal.pcbi.1006501.g001

Fig 2. Perturbation adaptation and trial-by-trial adaptation rates are different. (a) Simulated data generated using

a Bayesian learner model shows a significant difference between predicted perturbation adaptation rate and trial-by-

trial adaptation rate (��� = p<0.001, two-tailed paired t-test). (b) Empirical results from 10 human subjects [25] show

the same significant difference between adaptation rate analysis results (��� = p<0.001, two-tailed paired t-test).

https://doi.org/10.1371/journal.pcbi.1006501.g002

Steady-state adaptation analysis
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standard adaptation study, a typical set of movement data of sequential trials consists of two

phases: 1. the initial trial phase when errors are high and parameter estimation errors are cor-

respondingly high, and 2. the steady-state phase when μ(error)� 0 and parameter estimates

approach actual system parameters (Fig 3). As in Fig 1C, trial-by-trial adaptation rates are cal-

culated as the first-order coefficient of a linear regression of the relationship between the

change in error and error [5] (see Methods; Fig 3B and 3C).

Fig 3. Single subject movement data and adaptation rate quantification. (a) Trial-by-trial endpoint error data (one

degree-of-freedom) for a block of 70 consecutive movements of a human subject controlling an on-screen cursor with

a computer mouse. (b) Linear regression of ΔError vs. Error for initial trials in a. Red line indicates line of best fit

whose slope (-0.69) is defined as the adaptation rate. ΔError = Errori+1-Errori. (c) Linear regression of ΔError vs. Error

for steady-state trials in a. The regression coefficient equals -1.11.

https://doi.org/10.1371/journal.pcbi.1006501.g003

Fig 4. Adaptation rate depends on trial-set analyzed. Adaptation rate calculated from the last 30 trials of a 70-trial

sequence of movements was significantly higher than the result from the first 30 trials for simulated experiments (a)

and empirical data (b) (�� = p<0.01, ��� = p<0.001, two-tailed paired t-test).

https://doi.org/10.1371/journal.pcbi.1006501.g004

Steady-state adaptation analysis
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We collected empirical movement data from 12 human subjects (one individual’s data

shown in Fig 3). Participants moved a cursor on a screen, constrained along a horizontal line,

using a computer mouse to hit a target. End-point only position feedback was provided to pre-

vent feedback-driven online corrections and sub-movements, and reduce the influence of

implicit learning processes [14]. Participants completed a sequence of 70 movement trials and

were asked to try to hit the target with each movement.

We observed differences in regression coefficients when analyzing initial trials and steady-

state trials (Fig 4). Even for the same system and the same sequential block of trials, different

trial subsets resulted in statistically different adaptation rates (p<0.01, two-tailed paired t-test).

These results were observed in data generated by the Bayesian learner model for a 12 subject

simulation (p<0.001, two-tailed paired t-test; Fig 4A) and confirmed with analysis of human

motor data (Fig 4B). All twelve human participants had a higher adaptation rate during

steady-state trials compared to rates calculated from initial trials. Analysis of human data from

another study [30] resulted in the same observed difference between trial-by-trial adaptation

rates (S1 Fig). Results from a 10,000 subject simulation also resulted in a significantly higher

adaptation rate for steady-state trials (μ = 1.13) than for initial trials (μ = 0.57; p<0.01, two-

tailed paired t-test).

The main difference between initial and steady-state movement trials is the mismatch

between the system’s parameters and the person’s estimate of those parameters. In our experi-

mental setup, the mouse sensitivity, which was set unexpectedly low, would be the major sys-

tem parameter affecting the cursor’s movement. During initial trials, the participant would be

learning the mouse sensitivity by observing sensory prediction errors. Initially the mouse sen-

sitivity estimation would not match the actual mouse sensitivity resulting in movement errors.

This parameter misestimation is slowly corrected as learning progresses. During steady-state

trials, the parameter learning has stabilized as the difference between the mouse sensitivity and

the user’s estimate of the mouse sensitivity is minimized. Steady-state conditions allow for the

calculation of a trial-by-trial adaptation rate that is unbiased by parameter misestimation.

The theory and data suggest that steady-state adaptation rates should be more consistent

than those calculated using initial movement trials. But the question remains, how does a

researcher know when steady-state has been reached? Some may suggest that steady-state

occurs when error is minimized. This may sometimes be true but there could be times when

there is zero mean error but internal model uncertainty, i.e. Pprm in the model (see Eq 7 in

Methods), is still high. We next sought to develop a way to identify steady-state trials objec-

tively in order to calculate trial-by-trial adaptation rates that were not corrupted by large

parameter updates during early movement trials.

We developed a post-hoc analysis protocol that utilizes an expanding window technique to

identify the steady state trials in a set of movement data (Fig 5A). Starting with the last ten tri-

als of a person’s movement endpoint data—the smallest window suitable for trial-by-trial

adaptation rate analysis—a robust linear regression is run with the first-order coefficient con-

strained to zero. The range of the 95% confidence interval of the offset is computed (essentially

the robust mean). On the next iteration of the analysis, the window is expanded by one trial

(i.e. to include the last 11 trials) and the offset confidence interval is recomputed. This is

repeated with sequentially expanding windows until the last computation is run on a set of

movement data that spans all trials. The trial window for which the confidence interval of the

offset is minimized is identified as the steady-state trial set (Fig 5B). The trial-by-trial adapta-

tion rate is then calculated using a robust linear regression across these trials. The standardized

approach was able to identify a reasonable set of steady state trials across all human subjects

(S2 Fig).

Steady-state adaptation analysis
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After developing the standardized protocol, we sought to compare the new approach with

alternative analysis techniques. Using the Bayesian learner simulation, we simulated move-

ment experiments with different initial parameter estimates. The learner was controlling a sin-

gle degree of freedom movement with a single parameter: a control gain equivalent to the

Fig 5. Novel protocol to identify steady state trials for adaptation analysis. (a) The expanding window protocol can

identify the steady-state trials from a set of human movement data. (b) The start of the steady state trial set (which

always ends at the last trial) is calculated as the point where the range of the 95% confidence interval of the offset of a

zero-order robust linear regression is minimized. The minimum window size is 10 trials, thus the last potential starting

trial plotted is trial number 60.

https://doi.org/10.1371/journal.pcbi.1006501.g005

Fig 6. Steady state trial-by-trial adaptation rates show improved consistency. (a) As the initial gain estimate of the

Bayesian learner model is varied, the resulting trial-by-trial adaptation rate calculated using the identified steady state

trials remains consistent. (b) As the initial gain estimate is varied, the trial-by-trial adaptation rate calculated across all

trials varies.

https://doi.org/10.1371/journal.pcbi.1006501.g006

Steady-state adaptation analysis
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mouse sensitivity in the empirical study. We varied the initial controller gain and calculated

the trial-by-trial adaptation rates across all trials, the last 30 trials, and the steady-state trials

identified by the expanding window protocol (Fig 5). The novel approach results (Fig 6A)

were more consistent than the analysis of all trials (Fig 6B) and similar to the analysis of the

last 30 trials (S3 Fig). The range of the 95% confidence interval of the regression coefficient

representing the trial-by-trial adaptation rate was lower for the steady-state trials than for anal-

ysis of the last 30 trials (Fig 7). Calculation of trial-by-trial adaptation rates from steady state

trials produced more consistent and more confident estimates compared to the other trial sets

analyzed.

With these results we have demonstrated a shortcoming of the conventional approach to

calculating trial-by-trial adaptation rates. We first found that trial-by-trial adaptation rates are

fundamentally distinct from perturbation adaptation rates. Then we provided evidence for a

bias in trial-by-trial adaptation based on the trial set analyzed. We presented a novel analysis

protocol that results in more consistent and more confident trial-by-trial adaptation rates. Our

findings are predicted by a Bayesian learner model and supported by analysis of human move-

ment data.

Discussion

Here we have demonstrated with empirical and simulated data that the conventional approach

to calculating trial-by-trial adaptation rates is biased. The dimensionless adaptation rate was

previously considered to be an effective metric to compare results across experimental condi-

tions, an assumption supported by static, single-layer models [19,31]. Here we show an inher-

ent bias in the technique, results predicted in simulation using a hierarchical Kalman filter

model describing human nervous system operation and confirmed with the analysis of human

motor data. We showed that trial-by-trial adaptation rates are biased by the interacting effect

of system learning. According to our Bayesian simulation results, initial system parameter mis-

estimation had a major effect on the calculated adaptation rate. State-space only models [17,

19] fail to capture this characteristic of human motor planning and execution. Importantly, we

propose a solution: a standardized analysis technique to objectively identify steady-state move-

ment trials for more consistent and accurate results.

Fig 7. Steady state trial-by-trial adaptation rates show improved estimation confidence. The range of the 95%

confidence interval of the regression coefficient representing the trial-by-trial adaptation rate is narrower when

analyzing the identified steady-state trials compared to analysis of a constant number of trials (30) at the end of the

experiment.

https://doi.org/10.1371/journal.pcbi.1006501.g007

Steady-state adaptation analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006501 December 26, 2018 8 / 15

https://doi.org/10.1371/journal.pcbi.1006501.g007
https://doi.org/10.1371/journal.pcbi.1006501


Empirical and simulation results show that the trial-by-trial adaptation rate is a biased met-

ric. The overall learning (i.e. improvement of parameter estimation) in a trial-set of sequential

movement trials affects the adaptation rate calculated across those trials. The empirical evi-

dence is convincing, providing strong statistical support for this observation. A Bayesian simu-

lation comprising a hierarchical Kalman filter model that has been supported empirically

elsewhere [5] reproduces this adaptation rate bias observed between initial and steady-state

trial analysis.

Results from the hierarchical Bayesian estimator suggest an explanation for this adaptation

analysis bias: initial trial analysis suffers from the confounding influence of parameter misesti-

mation. We suggest that trial-by-trial adaptation rates must be considered under steady-state

conditions only, after the learning curve has reached an asymptote. Only steady-state adapta-

tion rates are unaffected by parameter estimation errors and can be compared across subjects

and experimental conditions.

Other factors not explored in this study may have affected the difference observed between

initial and steady-state adaptation rates. For example, changing participant strategies or differ-

ent weightings between explicit and implicit learning processes could have contributed to the

observed differences [32]. We sought to reduce the effect of implicit learning processes by pro-

viding end-point only feedback in the human motor experiment [14].

Given the need to focus on steady-state trial-by-trial adaptation rates, we provide an

expanding-window analysis technique to identify movements for which learning has stabi-

lized. The approach identifies the trial set for which the confidence interval range of the esti-

mate of the zero-slope robust regression offset coefficient is minimized. This confidence

interval range will be lower when the variability of the data has stabilized but it also tends to

decrease as more trials are analyzed. The result is a standardized estimate of steady state trials.

By only considering adaptation rates from steady-state trials, meaningful comparisons can be

made across subjects and experiments. The expanding-window approach to adaptation rate

analysis represents a more consistent technique to be used by researchers in the field of human

motor learning.

Differences observed between trial-by-trial adaptation rates and perturbation adaptation

rates show that these are distinct quantities with different meanings. Trial-by-trial adaptation

rates approach one under true steady-state conditions. Perturbation adaptation rates approach

zero under true steady-state conditions. These two adaptation rates can both provide insight

into a person’s motor performance but are quantitatively distinct and should not be compared

to one another.

Moreover, trial-by-trial adaptation rates should not be used in perturbation studies. The

perturbations reset the parameter estimation filter leading to post-perturbation trials with pro-

nounced parameter misestimation. The trial-by-trial adaptation rate is affected by the initial

trial bias and would not provide consistent results in perturbation studies.

One limitation of this study is that we assume a Bayesian model underlying movement gen-

eration. Recent evidence supports this assumption for many conditions [2,17] but there are

exceptions [33]. The simulation results may be affected by the level of complexity of the model.

A simpler state-space only model may be able to match the performance of the hierarchical

Kalman filter model in certain conditions [19]. Alternatively, a broader model to capture the

multiple time scales of learning driven by error history [12] or the recruitment of motor primi-

tives driven by prospective error [34] could have been used. However, in steady-state condi-

tions, the target for the analysis technique we propose, the slower learning processes have

likely stabilized and the complexity of these models may not be necessary [12,34]. We also do

not consider other learning processes such as use-dependent plasticity or operant conditioning

Steady-state adaptation analysis
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[1]. Nevertheless, the hierarchical Kalman filter model seems to capture aspects of human

motor performance at a level of detail that are relevant for clinical contexts.

Additional human experiments could be used to further test the Bayesian model adopted in

this study. Although there exist empirical data of humans making movements with different

levels of control and feedback noise [5,28], a careful study of this adaptation rate bias under

these different noise scenarios would be insightful, especially to apply findings to neurorehabil-

itation contexts. We would expect more difficult motor tasks to be impacted even more by the

initial vs. steady-state trial bias of trial-by-trial adaptation rate analysis. This hypothesis should

be tested. Additional empirical work should aim to expand our understanding of human

motor performance while also assessing the validity of Bayesian motor control models.

Ultimately this work has important applications in the clinical assessment of human move-

ments. By more precisely measuring motor performance, without bias, we can make more

accurate descriptions of human motor planning and execution. Improving adaptation rate

analysis and interpretation is important for the field of movement neuroscience. The improved

adaptation rate analysis we have presented will help advance basic motor control understand-

ing that can directly impact the development of motor assessments [35], clinical rehabilitation

techniques [36], and even biomimetic robots [37].

Methods

Ethics statement

Research with human subjects was completed with the approval and oversight of the Univer-

sity of New Brunswick’s Research Ethics Board and the U.S. Department of the Navy’s Human

Research Protection Program.

Subject recruitment

Twelve able-bodied right-handed volunteer study participants [mean age = 26.75yrs,

range = 21-49yrs, 7 females] were recruited by word-of-mouth. Written informed consent was

obtained from each participant before completing the experiment.

Experimental setup

Hardware and mouse sensitivity settings have been reported elsewhere [26]. Subjects used a

mouse with reduced sensitivity to move a cursor on the left side of a screen, constrained along

a horizontal line, to land on a target on the right side of the screen. Endpoint only cursor posi-

tion feedback was provided: the cursor disappeared after movement onset and reappeared at

the end of the movement. Participants moved at their own pace and the movement distance

was two-thirds of the lateral span of the screen (on-screen distance of 34.6 cm or 1282 pixels).

All participants were naïve to the task and the mouse sensitivity settings. Each participant

completed a block of 70 sequential movement trials. Testing lasted about 5–7 minutes.

Simulations

All simulations were run in MATLAB. Each simulated experiment consisted of 70 movement

trials, matching the empirical experiment length. All data are plotted as medians with error

bars representing the 25–75% interquartile range, unless specified otherwise.

Steady-state adaptation analysis
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Data generation

A hierarchical Kalman filter model [5,17] was used to generate simulated movement data. The

movement endpoint position on the first simulated trial was calculated as

x½1� ¼
x0 � g
ĝ ½1�
þ E; ½1�

where x1 is the actual endpoint position on trial 1, x0 is the target distance, g is the gain of the

controller, ĝ 1 is the estimated gain of the controller on trial 1, and E is a noise term calculated

from a Gaussian random number with a mean of zero and a variance of Q. The controller gain

in the mouse cursor study is equivalent to the mouse sensitivity. In the catch-trial perturbation

data we analyzed [25,38], the controller gain is equivalent to the EMG control gain.

A sensory observation, z[1], was then calculated as

z½1� ¼ x½1� þ V; ½2�

where V is a noise term calculated from a Gaussian random number with a mean of zero and a

variance of R.

The user’s perception of where they land, x̂ ½1�, will be a fusion between their expected value

(x0) and their sensory observation (z[1]), and may be represented as a state-space Kalman filter

update as

x̂ ½1� ¼ x0 þ KSðz½1� � x0Þ; ½3�

where Ks is the state-space Kalman gain. The Kalman gain, constrained to a value between

zero and one, is calculated for the single time-step endpoint-only feedback conditions as

KS ¼
Q

Qþ R
; ½4�

which assumes that the state estimate uncertainty is equivalent to the controller variance, Q,

due to a forgetting factor of one, and that the observation matrix is equal to one.

For each trial after the first, the estimated gain was updated in response to the error between

where the user was trying to land (x0) and where they perceived that they landed (x̂i) as

ĝ ½iþ1� ¼ ĝ ½i� þ KPðx̂ ½i� � x0Þ; ½5�

where i is the trial number and Kp is the Kalman gain of the parameter estimation filter. The

parameter estimation Kalman gain is iteratively updated as

Kp½iþ1� ¼
Pprm½iþ1�

Pprm½iþ1� þ Rprm
; ½6�

where Rprm is the sum of Q and R, and Pprm is updated as

Pprm½iþ1� ¼ Pprm½i�ðI � Kp½i�Þ þ Qprm½iþ1�; ½7�

where Qprm, the trial’s parameter uncertainty, is calculated as

Qprm½iþ1� ¼
ðx½i� � x0Þ2

Pprm½i� þ Rprm
: ½8�

In light of the updated gain from Eq 5, the user’s subsequent endpoint position (x), sensory

observation (z) and perception of endpoint position (x̂) are simulated as was done for the first
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006501 December 26, 2018 11 / 15

https://doi.org/10.1371/journal.pcbi.1006501


trial with Eqs 1–3 using the generalized equations

x½iþ1� ¼
x0 � g
ĝ ½iþ1�

þ E; ½9�

z½iþ1� ¼ x½iþ1� þ V; ½10�

x̂ ½iþ1� ¼ x0 þ KSðz½iþ1� � x0Þ: ½11�

Parameter settings

For the systematic testing of different initial controller gain values (Figs 6 and 7, S3 Fig), all

parameters were held constant except for those indicated in the text and figures. Constant

parameter values for Figs 6 and 7 and S3 Fig were: Q = 0.01; R = 0.01; Pprm-initial = 0.01; x0 = 1;

gain = 1. Each plotted point in Figs 6 and 7 and S3 Fig represents the median of 1,000 experi-

ments run for that set of initial parameter values. For Fig 2A, the parameter values were:

Q = 0.05; R = 0.07; Pprm-initial = 0.02; x0 = 1; gain = 1, initial gain estimate = 0.5.

Adaptation–linear regression

Similar to other studies [3,5], we calculated the trial-by-trial adaptation rate as the first-order

coefficient of a linear regression calculated as

erroriþ1 � errori ¼ b0 þ b1 � errori; ½12�

where errori is the movement error on the ith trial, and b1 is the adaptation rate. b0 is the inter-

cept and usually close to zero. Except in the demonstration of the regression approach in Fig 3,

we use a robust regression to calculate trial-by-trial adaptation rates utilizing the ‘RobustOpts’

option in MATLAB’s fitlm function.

Perturbation analysis

To analyze trial-by-trial adaptation in response to a perturbation, we calculated the adaptation

rate on each contiguous string of trials following a perturbation. For each experiment, we

report the mean across all subsets of analyzed trials. We compared these values to the results

obtained from the same trial sets using a perturbation study regression comparing error versus

perturbation level [2]. In the simulation data (Fig 2A), experiment length (80 trials) and per-

turbation frequency (one perturbation occurring on the 6th, 7th or 8th trial of every 8-trial

block) were set to match those of the empirical data (Fig 2B) [25,38]. The simulation perturba-

tion level was set at 50% of the movement distance implemented as a shift in the simulated

movement’s endpoint position at Eq 1. Mathematically, these constant perturbations were

added similarly to the Gaussian distributed control noise. Self-generated error was determined

by the combined effect of control noise and parameter misestimation.

Steady-state analysis

We estimated the steady-state trials (i.e. when parameter learning stabilized) from a set of

movement data using an expanding window protocol. First, a robust linear regression was run

to fit an offset to the sequential endpoint position data. The range of the confidence interval of

the estimated offset was recorded (with the slope, or first-order coefficient, constrained to zero

the offset is essentially the robust mean). The first window analyzed contained the last 10

movement trials. Ten was considered the smallest number of trials to be selected for calculat-

ing the trial-by-trial adaptation rate. The first regression was run again using the last 11 trials,
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then the last 12 trials, and so on until the window of analyzed trials spanned all movement tri-

als. The trial window for which the 95% confidence interval of the offset was minimized was

considered to be the best sample of steady-state trials. This is the trial set for which a horizontal

line was the best fit of the movement data indicating that ongoing parameter learning was

minimized. The adaptation rate was then calculated using this identified set of trials using the

approach described previously (see the ‘Adaptation–linear regression’ section).

Data and code

Empirical data displayed in Figs 1 and 2B are from Shehata et al. [25] and are available here:

https://doi.org/10.5061/dryad.v12f25n [38]. Data in S1 Fig are from Ikegami et al. [30]. Empir-

ical data in Figs 3, 4B, 5 and S2 were collected in this study. These data, analysis code and simu-

lation code are available from the Dryad Digital Repository (https://doi.org/10.5061/dryad.

vd561).

Supporting information

S1 Appendix. Mathematical derivation demonstrating the relationship between linear

regression and autocorrelation analysis techniques.

(DOCX)

S1 Fig. Initial vs. steady state trial-by-trial adaptation rates for subjects from Ikegami et al.

2012 [31]. Same as Fig 4B but for a different dataset.

(PNG)

S2 Fig. Steady-state trial identification from all 12 human subjects. Same as Fig 5A but for

all subjects tested.

(PNG)

S3 Fig. Steady state trial-by-trial adaptation rates using the last 30 trials. As the initial gain

estimate of the Bayesian learner model is varied, the resulting trial-by-trial adaptation rate cal-

culated using the last 30 trials remains consistent, similar to the steady-state trial analysis

results in Fig 6A.

(PNG)
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