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Abstract

We present the results of a model inversion algorithm for electrocorticography (ECoG) data

recorded during epileptic seizures. The states and parameters of neural mass models were

tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These

models provide an estimate of the effective connectivity within intracortical circuits over the

time course of seizures. Observing the dynamics of effective connectivity provides insight

into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly

stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mecha-

nisms amongst patients, and 3) different offset mechanisms for long and short seizures.

Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path

through the parameter space of a neural model. Furthermore, distinct sub-populations of

patients were identified based on characteristic motifs in the dynamics at seizure onset.

There were also distinct patterns between long and short duration seizures that were related

to seizure offset. Understanding how these different patterns of seizure evolution arise may

provide new insights into brain function and guide treatment for epilepsy, since specific ther-

apies may have preferential effects on the various parameters that could potentially be indi-

vidualized. Methods that unite computational models with data provide a powerful means to

generate testable hypotheses for further experimental research. This work provides a dem-

onstration that the hidden connectivity parameters of a neural mass model can be dynami-

cally inferred from data. Our results underscore the power of theoretical models to inform

epilepsy management. It is our hope that this work guides further efforts to apply computa-

tional models to clinical data.
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Author summary

A fundamental question in clinical neuroscience is how and why the brain generates epi-

leptic seizures. To address this problem it is important to unify theoretical models of sei-

zure mechanisms with clinical data. This study investigated a large database of human

epileptic seizure recordings. Model inversion was used to track seizure dynamics through

the lens of a mathematical model for cortical regions. These models can reveal the relative

activity and coupling between excitatory, inhibitory and pyramidal neural populations

that cannot be directly measured. Measuring cortical dynamics during seizures can pro-

vide insight into epilepsy, and facilitate new treatment strategies. Our analysis of connec-

tion strengths revealed important aspects of seizure onset and seizure termination. Our

findings have implications for understanding seizure mechanisms and treating epilepsy.

Introduction

Understanding how and why the brain generates spontaneous seizures is an unsolved problem

in neuroscience. The medical implications of seizures are profound, with over 50 million peo-

ple affected by epilepsy, and at least 30% not adequately controlled by available therapies [1].

Surgical treatment does not provide complete seizure freedom for all patients [2], and novel

drugs have not greatly improved on the level of seizure freedom that can be achieved [3]. On

the other hand, data-driven, computational techniques have shown early promise in obtaining

a more individualized picture of a patient’s seizures, which may shed new light on mechanisms

of seizures and lead to targeted treatment strategies [4, 5].

Patient-specific, computational models can provide unique insight into seizure mecha-

nisms, and are well accepted in the study of epilepsy [6]. In particular, lumped parameter neu-

ral mass models [7, 8] have been extensively used to investigate cortical activity during

epileptic seizures [9–11]. These models describe seizures as state transitions in the brain [12]

that arise from endogenous noise perturbations or ‘pathways through the parameter space’ of

a neural model [13]. Clinically, it is recognized that electrographic (EEG) recordings of sei-

zures show stereotypical changes in the signal morphology that are regarded as state changes

(i.e. between interictal, peri-ictal, and ictal states) [14]. Despite the ubiquity of neural mass

models to study seizure transitions, the translation of these theoretical insights into clinical

practice has not been widely realized.

The validation of neural network models to aid clinical decision making has made some

advances in diagnosis [15], and surgical planning [16–19]. Ideally model-based techniques can

also improve outcomes at earlier stage interventions, such as drug selection. Another area

models can aid treatment may be in seizure forecasting [20, 21], or the design of electrical

counter-stimulation (using model predictive control) [22–24]. A fundamental hurdle to over-

come is validating theoretical models of brain dynamics in a clinical setting. This hurdle largely

exists due to the difficulty of obtaining in vivo neural recordings from humans. Whilst simula-

tion has proven valuable to generate new hypotheses regarding the mechanisms of seizures, a

complete validation must unite empirical data with theoretical models and demonstrate that

models have predictive value, as well as being descriptive of the data [4, 5].

Model inversion is a powerful approach to combine patient-specific recordings with

accepted principles of brain structure and function encapsulated by the parameters of a neural

model [25]. Previous work has outlined a generalizable framework to estimate the most likely

states and parameters of a neural model given observed data [25]. For many years this problem

was intractable for non-linear neural models [26]. Previously, model inversion has relied upon
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simplifying assumptions, such as linearization, or sampling techniques [27]. Another approach

is to re-frame the problem, so that the objective is to find the most likely model to generate the

observed data. In this way, the estimation is conditioned on the model space, which is gener-

ally explored via some heuristic model selection criteria [28, 29]. Alternatively, the inversion

can be conditioned on the data, where the most likely model is identified using an assumed

density (Kalman) filter [30]. This approach has been validated for investigation of seizure

dynamics [31–33]. Recent advances have also incorporated a fast, semi-analytic solution to

handle the propagation of estimates through the non-linear neural mass equations [25, 34, 35].

Model inversion techniques that enable time-varying estimates of key parameters provide a

powerful means of inferring cortical mechanisms from functional neuroimaging data. This is

particularly true for EEG/ECoG data, which has high temporal resolution. The ability to

update estimates with each new data point can lead to insights into ictal dynamics that evolve

over fast time scales.

Statistical observations from data are also important to validate models of seizure transi-

tions. Some studies have investigated the distributions of times spent in different seizure states

[36]. Models that are predictive of higher-order statistics derived from many seizures are more

convincing than models which are only descriptive of (or fitted to) individual seizures [4]. An

important observation is that the distribution of times spent in the ictal state has a patient-spe-

cific peak [37], rather than a uniform distribution. These peaks indicate that patients have a

characteristic seizure duration, or trajectory length. Intriguingly, a subset of patients showed a

distinctly bimodal distribution of seizure durations, indicating two populations of seizures

(long and short) [37]. We hypothesize that these distributions reveal a crucial aspect of seizure

dynamics, which should not be neglected in computational modeling.

Materials and methods

This work presents a large-scale, model-based investigation to address the question of how

multiple (long and short) seizure trajectories arise in the brain. Model inversion was per-

formed for the largest database of human seizures recorded in individual patients [38]. Using

this database, we have previously demonstrated that there are two populations of seizure dura-

tion [37]. The current study investigated different seizure pathways and mechanisms through

the lens of a neural mass model (using the formulation of Jansen and Rit, 1995 [8]). The fol-

lowing sections outline the data, model and estimation techniques. Further detail is provided

in S1 Appendix, and code is available online (https://github.com/pkaroly/Data-Driven-

Estimation).

Seizure data

Seizure mechanisms were investigated for continuously recorded ECoG from 12 patients with

focal epilepsy monitored during a previous clinical trial [38]. All subjects were implanted with

intracranial electrode arrays with a total of 16 platinum iridium contacts around the seizure

onset zone. The ECoG was sampled at 400 Hz and wirelessly relayed to an external, portable

personal advisory device. Seizure detection was automated and reviewed by expert clinicians.

This study used data from 3010 clinical seizures (average 250 per patient). Seizures were either

associated with confirmed clinical symptoms or were electrographically similar to clinical sei-

zures. Other epileptiform discharges without clinical symptoms were excluded. All seizures

had onset and offset labelled by expert epileptologists. For further details on the data collection

procedures the reader is referred to Cook et al. (2013) [38].

A similar procedure to that outlined by Cook et al. (2016) [37] was used to identify patients

with bimodal seizure durations. Both k-means clustering and Gaussian mixture model fitting
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were used to test for bimodality. Clusters were assigned for one, two and three seizure popula-

tions (based on the logarithm of seizure duration in seconds). The optimal number of clusters

was determined using gap criteria [39].

The current study used patients who had at least 20 seizures that had a lead time of one

hour. Recordings were used from five minutes before seizure onset, until one minute after sei-

zure offset. Seizures with telemetry dropouts were excluded from analysis. Data were bandpass

filtered (second-order, zero-phase Butterworth filter) from 1 Hz to 180 Hz with a notch filter

at 50 Hz (second-order, zero-phase Butterworth filter). The energy of the signal was computed

for a 1s sliding window (50% overlap) as energy ¼
PN

n¼1
x2.

Neural model

The states (mean membrane potentials) and parameters (synaptic connectivity strength) of

neural mass models were fitted to data recorded during epileptic seizures. The formulation of

the neural mass model in the following section is derived from the model introduced by Jansen

and Rit (1995) [8]), and has also been outlined in our previous work [33, 34]. The neural mass

model is suitable to model ECoG measured at this scale (electrodes approximately 5mm in

diameter with spacing on the order of centimeters), in line with similar neural models used to

describe EEG/MEG activity [10, 11, 40]. A single, independent neural model was fitted to each

ECoG channel (16 models in total). Neural models were not coupled between channels; hence,

estimates primarily captured local connection strengths within a single cortical region. The

input parameter, u described non-local inputs to the pyramidal population.

The Jansen and Rit model consists of three neural populations (excitatory, inhibitory and

pyramidal). Neural populations were described by their time varying mean membrane poten-

tial, vn, which is the sum of contributing mean post-synaptic potentials, vmn (post-synaptic and

pre-synaptic neural populations are indexed by n and m, respectively). For the current model,

the index n (post-synaptic) represents either pyramidal (p), excitatory (e) or inhibitory (i) pop-

ulations, as shown in Fig 1.

The post-synaptic potential, vmn arises from the convolution of the input firing rate, f(vn),

with the post-synaptic response kernel,

vmnðtÞ ¼ amn

Z t

� 1

hmnðt � t0Þ�ðvnðt
0ÞÞ dt0; ð1Þ

where αmn, which are the estimation parameters, represent lumped connectivities that incor-

porate average synaptic gain, number of connections, and average maximum firing rate of the

presynaptic populations. ϕ(vn) is the sigmoid function

� vð Þ ¼
1

2
erf

v � v0

B

� �

þ 1

� �

ð2Þ

where v0 = 6mV, and B = 0.0030 (as defined by Freestone et. al. (2014) [25]).

The convolution in Eq 1 can be written as two coupled, first-order, ordinary differential

equations,

dvmn

dt
¼ zmn

dzmn

dt
¼
amn

tmn
�mn �

2

tmn
zmn �

1

t2
mn

vmn:

ð3Þ

where τmn is a lumped time constant. The values of τep, τpe, and τpi were fixed to 10ms and the

value of τip to 20ms, as defined by Jansen & Rit (1995) [8].
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External (non-local) inputs to the pyramidal population are modeled as an additive term

affecting the pyramidal membrane potential,

vpðtÞ ¼ vpeðtÞ � vpiðtÞ þ uðtÞ: ð4Þ

The recorded ECoG for each channel, i, is derived from the average pyramidal membrane

potential of each independent neural mass model (resulting 16 disconnected models in the

Fig 1. Data driven estimation using a neural mass model. A. Histograms of seizure durations (log seconds) for the twelve patients

considered in this study, with examples of ECoG during a long and short seizure from a single patient, S8. B. Schematic of the neural

model. Each synapse is defined by a convolution kernel (converting pre-synaptic firing rates to post-synaptic membrane potentials).

Each population is defined by a sigmoid function (converting mean membrane potential to average firing rate). C. Example estimation

time series of the five connectivity parameters during a long and short seizure for one patient. D. Deterministic forward simulation using

the estimated parameters in C (red lines mark actual seizure onset and offset).

https://doi.org/10.1371/journal.pcbi.1006403.g001
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estimation),

yiðtÞ ¼ vipðtÞ ð5Þ

The neural model can be expressed in matrix notation

_xðtÞ ¼ AxðtÞ þ B~�ðCxðtÞÞ; ð6Þ

where x 2 RNx is a state vector representing the postsynaptic membrane potentials generated

by each population synapse and their time derivatives. There are two states per synapse and Nx

= 2Ns is the total number of states, where, for Ns synaptic connections in the models, the state

vector is of the form,

x ¼ v1 z1 . . . vNs
zNs

� �>
:

The definitions of A, B, and C are provided in S1 Appendix.

The observation equation is of the form

yðtÞ ¼ HxðtÞ þ vðtÞ; ð7Þ

where H 2 RNx�Ny is the observation matrix, vðtÞ � N ð0;RÞ 2 RNy is the observation noise,

and Ny is the number of observations (here Ny = 1 as each neural mass model describes a single

ECoG channel). As our measurement function is linear, H is simply an index vector of zeros

and ones that defines the average pyramidal membrane potential given by Eq 4.

State and parameter estimation

A joint state (membrane potentials) and parameter (external input and connectivity strengths)

estimation algorithm was implemented for every sample of the recorded ECoG. To obtain esti-

mates it was necessary to augment the state-space representation of the neural model. To

define the augmented model, we first define a vector of parameters as

θ ¼ u ape api aip aep
� �>

:

The dynamics for the parameter are modeled as a random walk

_θ ¼ 0: ð8Þ

The state vector x and the parameter vector θ are concatenated to form the augmented state

vector,

ξ ¼ xT θT
� �>

: ð9Þ

Our augmented state-space model is

ξt ¼ Ayξt� 1 þ By�ðCyξt� 1Þ þ wt� 1; ð10Þ

where wt � N ð0;QÞ. The state vector ξ 2 RNx�1 and matrices Aθ, Bθ, and Cθ are 2 RNx�Nx and

have the form

Ay ¼
A 0

0 I

" #

;By ¼
B 0

0 0

" #

;Cy ¼
C 0

0 0

" #

: ð11Þ

For simplicity we will drop the subscript θ on the system matrices, as the remainder of the

equations refer to the augmented model.
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The estimation scheme uses an assumed density filter. This filter provides the minimum

mean squared error estimates for the states and parameters, under the assumption that the

underlying probability distribution is Gaussian (the assumed density). Formally stated, the

aim of estimation is to compute the most likely posterior distribution conditioned on previous

measurements,

ξ̂ þt ¼ E½ξtjy1
; y

2
; . . . ; yt� ð12Þ

P̂ þt ¼ E½ðξt � ξ̂þt Þðξt � ξ̂þt Þ
>
�; ð13Þ

The estimator proceeds in two stages; prediction and update. In prediction, the prior distri-

bution (obtained from the previous estimate) is propagated though the neural mass equations.

This step provides the so called a priori estimate, which is a Gaussian distribution with mean

and covariance,

ξ̂ �t ¼ E½ξt� 1jy1
; y

2
; . . . ; yt� 1

� ð14Þ

P̂ �t ¼ E½ðξt� 1 � ξ̂þt� 1
Þðξt� 1 � ξ̂þt� 1

Þ
>
�: ð15Þ

In the second stage, a Bayesian update is performed to shift the estimated posterior based

on the observed data, giving the a posteriori distribution,

ξ̂ þt ¼ ξ̂ �t þKt ðyt � Hξ̂ �t Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ECoG prediction error

:

P̂
þ

t ¼ ðI � KtHÞP̂
�

t ; ð16Þ

where K is the Kalman gain (readers are referred to [27] for a detailed description of the Kal-

man filter). After each time step, the a posteriori estimate becomes the prior distribution for

the next time step, and the filter proceeds.

In general, the Kalman filter equations do not have a solution for nonlinear model or mea-

surement functions. Previous efforts to use Kalman filtering on the nonlinear neural mass

model have relied on simplifying assumptions (either linearization of the model, or sampling

to estimate the posterior distribution). This work applied an exact, semi-analytic solution for

the mean and covariance of a multivariate Gaussian distribution transformed by the nonlinear

neural mass model. This solution provides the a priori estimate of the mean and covariance

(see S1 Appendix for details).

As the observation function is linear, the updated (a posteriori) mean and covariance are

obtained trivially using Eq 16.

The Kalman filter requires ξ̂þ
0

and P̂þ
0

to be initialized to provide the a posteriori state esti-

mate and state estimate covariance for time t = 0. The other parameters that must be initialized

are the model and measurement noise, Q and R, respectively. Further details of filter initializa-

tion are given in the S1 Appendix.

Results

Fig 1A shows an overview of the estimation scheme. The following sections present data from

twelve patients with focal epilepsy. The data consist of over 3000 clinical seizures (average 250

seizures per patient). Of these twelve patients, three showed bimodal distributions of seizure

durations (Patient 3, 8 and 11). Note that all patients showed that either one or two clusters

Seizure pathways
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were optimal for seizure durations, and for all patients, k-means and Gaussian mixture model-

ling aligned on the same optimal number of clusters.

Estimated connectivity within neural models describe seizure transitions

An assumed density filter was used to track the time-varying states and parameters of neural

mass models during every seizure (as seen in Fig 1). This estimation technique finds the most

likely model given the observed ECoG data. Importantly, the model is updated at every time

step, so there is no loss of temporal resolution. Estimated states were mean membrane poten-

tials, and parameters (alpha parameters in Fig 1B and 1C), which were the external input and

average synaptic strengths between pyramidal, non-pyramidal excitatory, and inhibitory neu-

ral populations. In this way, the neural models provided an estimate of the average activity and

effective connectivity within intracortical circuits [25]. We found that slow changes in the syn-

aptic connectivity parameters led to seizure transitions in the neural models. As seen in

Fig 1C, a deterministic forward simulation of neural models using time-varying connectivity

estimates reproduced the beginning and end of seizures.

It is important to also quantify estimation accuracy before proceeding. A full summary of

the model and estimation errors is given in the Supplementary Material. However, it is worth

noting briefly that errors between the estimated signal and real data were small (see S1 Fig).

The mean squared error ranged from 0.2-0.9 mV when averaged across all seizures (note that

the mean amplitude of the measured ECoG signal ranges from approximately 25-100mV).

The uncertainty (covariance) of state variables and parameters was also small (see S2 and S3

Figs), suggesting that key seizure activity was well described by the model, rather than by the

residuals. Across patients, the mean covariance ranged from 2-16% for state variables, and

from 0.1-10% for connectivity parameters (expressed as a percentage of the estimated value).

Numerical instability of the filter was occasionally observed (for all patients, instability

occurred for less than 1% of the data). Estimates that became unstable were removed from fur-

ther analysis.

Long and short seizures show distinct signal evolution

Fig 2 shows the average energy of recorded ECoG during every seizure (averaged across 16

electrode channels). Patients’ seizures showed strikingly consistent patterns of signal energy

between seizures. These patterns were generally time locked to seizure onset, as demonstrated

by the vertical alignment of energy changes (note that Patients 2, and 4 did not show a verti-

cally aligned onset pattern). Long and short seizures began similarly, but evolved differently

(see Patients 3, 8, and 11). Long seizures entered a secondary phase where energy increased.

Short seizures and the early phases of long seizures were characterized by an energy reduction

(note the darker vertical band following seizure onset). Some patients’ seizures only showed

the “long” stereotypical pattern with a high-energy phase (see Patients 2, 4, 6, 9, and 15).

Patient 13 had only low energy, stereotypical “short” seizures. Patient 7 had a large majority of

short seizures, with a small number evolving to have increased energy.

These two patterns of seizure energy suggest that long and short seizures reflect distinct

event types, each with a characteristic electrographic evolution. We hypothesized that these

stereotypical signal patterns represent two alternative seizure trajectories, which could be dif-

ferentiated by their onset and/or offset mechanisms. Note that although the average energy

(averaged across electrode channels) was presented, the observed patterns were consistent

across different channels. Full plots are provided in the Supplementary Material (S8 to

S19 Figs).

Seizure pathways
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Seizure trajectories

Fig 3 presents the dynamic estimation results for the five connectivity parameters of a neural

model during every seizure. Seizures followed a remarkably consistent trajectory through the

parameter space of the neural mass models, showing similar patterns across all events for an

individual. This indicates that seizure transitions follow a stereotypical pathway. Note that

transitions during the seizure are locked to the onset time (as demonstrated by the vertical

banding in parameter changes). A higher contrast (normalized) version of these patterns is

provided in S4 Fig, to more clearly expose connectivity patterns.

For all patients, the strongest ictal changes in connectivity strength occurred for in-going

connections to the pyramidal neurons (the first three columns of Fig 3). Conversely, outgoing

pyramidal connections (to inhibitory and excitatory neurons) were more stable over the dura-

tions of the seizures, demonstrated by values which were closer to zero (reflecting no change

from baseline), and less vertical patterning (reflecting no stereotypical transitions during sei-

zures). Patient 6 was one possible exception, showing some decrease in outgoing pyramidal

connections (6D and 6E).

Note that although neural models were fitted independently to all 16 electrode channels,

Fig 3 shows results for a single example channel per patient. The data associated with every

channel generates 60 full page figures, which are provided in an online repository (https://

github.com/pkaroly/Data-Driven-Estimation). The consistency of stereotypical patterns

between channels is investigated in the following sections.

Fig 2. Seizure energy. Average signal energy during evolution of seizures, sorted by duration, from 10s before seizure onset (marked by arrowhead) to

10s after seizure termination (according to clinicians’ marking). Red lines mark the divisions between long and short populations of seizures within

bimodal subjects. Energy for individual electrode channels is provided in the supplementary material.

https://doi.org/10.1371/journal.pcbi.1006403.g002
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Fig 4 shows the mean change in connectivity strength during seizures. A consistent motif

was a decrease followed by an increase in ingoing connections to the pyramidal population

(see columns A and C for Patients 1, 3, 6, 8, 9, and 15). Patient 11 showed the same motif, but

with connectivity strength always above baseline. Patients 7, 10, and 13 showed only decreases

in ingoing pyramidal connections. Patients 2 and 4 demonstrated only strengthened

connections.

There were three classes of ictal parameter transitions: decrease, increase, and decrease-

then-increase, where connections into the pyramidal populations were on average weaker,

stronger, or weakened then strengthened (compared to a pre-ictal baseline), respectively.

These classes aligned well with the stereotypical seizure evolution patterns that were identified

based on signal energy (Fig 2). For instance, “decrease-then-increase” patients (1, 3, 6, 8, 9,

Fig 3. Estimated changes in parameter trajectories during every seizure. Each subpanel represents the connectivity strength for all seizures (sorted by

duration) of a single representative channel for each patient (P1: Ch3, P2: Ch1, P3: Ch2, P4: Ch2, P6: 7, P7: Ch15, P8: Ch11, P9: Ch4, P10: Ch13, P11:

Ch9, P13: Ch5, P15: Ch1). Data for all channels is provided online (https://github.com/pkaroly/Data-Driven-Estimation/tree/master/figures/

connectivity). Parameters are expressed as a percentage change from their pre-ictal background values (where zero reflects no change from the pre-ictal

period). The pre-ictal period was defined from two minutes to one minute before seizure onset. Red lines mark the divisions between long and short

populations of seizures within bimodal subjects.

https://doi.org/10.1371/journal.pcbi.1006403.g003
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Fig 4. Average changes in parameter trajectories. Each subpanel represents the mean connectivity strength (averaged across seizures)

for each patient (grey shading represents the 95% confidence bounds of the mean). For each patient a single representative channel was

chosen (P1: Ch3, P2: Ch1, P3: Ch2, P4: Ch2, P6: 7, P7: Ch15, P8: Ch11, P9: Ch4, P10: Ch13, P11: Ch9, P13: Ch5, P15: Ch1). Data for all

channels is provided online (https://github.com/pkaroly/Data-Driven-Estimation/tree/master/figures/connectivity). Parameters are

expressed as a percentage change from their pre-ictal background values (where zero reflects no change from the pre-ictal period). The

pre-ictal period was defined from two minutes to one minute before seizure onset. Significant (p< 0.05) changes are marked in blue

(decrease from baseline) and red (increase from baseline) at the top of each plot. Bimodal patients are shown with red labels. Columns

from A-E show the connectivity parameters: A) external input to pyramidal neurons, B) inhibitory to pyramidal connectivity, C)

excitatory to pyramidal connectivity, D) pyramidal to excitatory connectiviy, E) pyramidal to inhibitory connectiviy.

https://doi.org/10.1371/journal.pcbi.1006403.g004
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and 15) showed long seizures that began with lower energy and evolved into a higher energy

state. The “increase” patients (2 and 4) showed primarily high energy seizures without an obvi-

ous alignment to seizure onset. The “decrease” patients (7, 10, and 13) showed short, low-

energy seizures.

Outgoing connections from pyramidal cells to excitatory/inhibitory populations showed lit-

tle to no change. For some patients (2, 4, 9 and 10), a slight increase in pyramidal to inhibitory

strength was observed.

Fig 5 shows the average seizure trajectory for all channels. Trajectories were qualitatively

similar across channels. Most subjects showed focal patterns in which a subset of channels

demonstrated connectivity changes during seizures while other channels did not have signifi-

cantly increased or decreased connectivity during seizures (compared to a pre-ictal baseline

period). Such patterns were not surprising, given that all subjects had focal seizures, which typ-

ically appear first on a subset of EEG channels before spreading. Apart from focal connectivity

changes, there was some inter-channel variability at the ends of seizures. Subject 6 showed

some channels with increased connection strengths and others with decreased strengths. Sub-

ject 9 showed increased inhibitory connections across most channels but decreased inhibition

on a subset of channels (Fig 5, subpanel 9B), that occurred toward the ends of seizures. Overall,

significant changes in connectivity (above or below baseline) followed the same stereotypical,

patient-specific pattern across all channels. Exceptions to this consistency were observed for a

few subjects in the later stage of seizures (significant changes are shown in Supplementary

Material S6 Fig). In other words, there were no channels with markedly different trajectories;

changes in connectivity were either in the same direction or showed no significant change

from baseline. This consistency supports the finding of characteristic pathways of epileptic sei-

zures, although these pathways were only observed on a subset of (possibly focal) channels,

while other channels did not show altered connectivity patterns during seizures.

Seizure transitions

Overall, there was no difference in the average connection strength trajectories for long com-

pared with short seizures (when connections were averaged across seizures in the long and

short populations, respectively; see S5 Fig for details). Therefore, we hypothesized that short

and long seizures were primarily differentiated by termination (i.e. both types follow a similar

path from onset, with short seizures terminating earlier). This hypothesis was tested by mea-

suring the correlation between connection strength (now averaged across 16 electrode chan-

nels) and seizure duration before onset and offset (correlation results were qualitatively similar

when evaluated for individual electrode channels, and are provided in S7 Fig).

Fig 6 shows that almost no patients showed significant correlation between seizure duration

and onset dynamics. In other words, there was no relationship between average connection

strength and seizure duration at the outset (measured over a 5s window prior to seizure onset).

However, at 5s before seizure offset, there were strong correlations for all connections. In gen-

eral, longer seizures were associated with increased excitatory inputs and decreased inhibition

to the pyramidal cells. Bimodal patients (3, 8, 10, and 11) all showed a similar relationship

between connectivity strength and seizure duration. Four other patients also showed signifi-

cant correlations; therefore, correlations do not arise purely because of the two duration

populations.

Discussion

Analysis of seizure energy (Fig 2) suggests there are two broad categories of focal seizures:

short (low energy) and long (high energy) seizures. Estimation of patients’ seizure trajectories

Seizure pathways
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Fig 5. Inter-channel changes in parameter trajectories. Each subpanel represents the mean connectivity strength (averaged across

seizures) for all channels (y-axis) for each patient. Parameters are expressed as a percentage change from their pre-ictal background

values (where zero reflects no change from the pre-ictal period). The pre-ictal period was defined from two minutes to one minute

before seizure onset. Significant changes are shown in the Supplementary Material (S6 Fig). Columns from A-E show the connectivity

parameters: A) external input to pyramidal neurons, B) inhibitory to pyramidal connectivity, C) excitatory to pyramidal connectivity, D)

pyramidal to excitatory connectiviy, E) pyramidal to inhibitory connectiviy.

https://doi.org/10.1371/journal.pcbi.1006403.g005
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through the parameter space of a neural model revealed characteristic mechanisms underlying

these different energy states (Fig 3). During the low energy phase of seizures, estimation

showed decreased connectivity strength of ingoing connections to pyramidal cells. Seizures

with high energy showed increased connection strength. This pattern was maintained as sei-

zures evolved through time, with several patients showing a motif of decreased then increased

connection strengths, corresponding to low energy seizures that evolved into a high-energy

state.

Based on their characteristic seizure durations three patient subtypes were defined; those

with exclusively short, exclusively long, or bimodal populations of seizure types. Understand-

ing how these different patterns of seizure evolution arise may provide new insights into brain

function, and guide treatment for epilepsy, as specific therapies may have preferential effects

on the various parameters that could potentially be individualized. This study showed that

long and short seizures reflect different underlying mechanisms in a neural model. Mechanis-

tic differences arose almost exclusively before seizure offset, and were not evident prior to

onset (Fig 6). Therefore, we conclude that seizures follow the same trajectory until termina-

tion. Apart from a bimodal distinction, connectivity patterns were strikingly similar during

the evolution of each patient’s seizures; although highly patient-specific. This suggests that,

once initiated, seizures follow an individualized and deterministic path through the parameter

space of a neural model. It is remarkable to see these parametric pathways maintained across

hundreds of seizures (see Fig 3), and over many years recording duration.

Seizure mechanisms

Patients were classified into three groups of connectivity patterns during seizures (seen in

Fig 4): increased, decreased, and decreased-then-increased strength of ingoing connections to

pyramidal cells. These parameter shifts may relate to distinct mechanisms of seizure onset. For

Fig 6. Correlation between connectivity and seizure duration. Correlation was measured between seizure duration

and average connectivity strength (averaged across electrode channels) taken 5s before seizure onset (Panel A), and 5s

before seizure offset (Panel B). Only significant correlation values are shown (p< 0.05). A Bonferroni correction for

multiple comparisons was performed before computing significance, where the 0.05 significance level was divided by

60 (12 patients and 5 parameters).

https://doi.org/10.1371/journal.pcbi.1006403.g006
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the decrease, and decrease-then-increase patterns we speculate that seizures arise from either

under-regulation or disinhibition of pyramidal neurons. The corresponding rebound of con-

nection strength (in the decrease-then-increase group) may be linked to a regulatory mecha-

nism that was not triggered for patients with shorter seizures (in the decrease group). Previous

work using the neural mass model confirms that inhibitory populations are likely to play a role

in generating epileptiform activity, with the time scale of inhibitory dynamics also highly rele-

vant [10]. There were also two patients who showed only increased connection strength to

pyramidal cells (in Fig 4, Patient 2 showed all connections were increased and Patient 4

showed an increase of excitatory inputs). For these patients, seizures may have been driven by

over-excitation of pyramidal neurons.

There is a lack of consensus as to whether noisy fluctuations (multi-stability) or determin-

istic parameter changes (bifurcations) drive seizure onset/offset [4]. Other mechanisms, such

as intermittency, may also be involved in seizure transitions [41, 42]. This study demonstrated

that the transitions of connectivity parameters were locked to the onset of seizures, and not the

offset (i.e. the patterns in Figs 3 and 2 arise when the seizures are aligned by start time, rather

than end time). This finding suggests that there is a deterministic process conditioned on the

start time of the seizure, whereas the lead up to seizure offset showed more stochasticity. Based

on these results we speculate that seizure onset is more likely to occur through a deterministic

process (as in a bifurcation), where the brain state is driven across some ‘point of no return’.

Offset is more likely to result from noisy fluctuations. Other studies have hypothesized that sei-

zures terminate as the result of a bifurcation [43, 44]. However, the brain’s state during a sei-

zure may merely approach a critical transition, without crossing over [45]. Therefore, it is

possible to observe signs of critical slowing (as in (Kramer et al., 2012)) yet still have seizure

termination driven by noise [4, 46, 47].

The presence of characteristic seizure durations should inform theoretical approaches to

modeling seizure transitions. For instance, in a bistable regime, where noisy fluctuations drive

the transition between a fixed point and oscillatory (‘seizure-like’) state, characteristic dwell

times can emerge for the different states [4, 46, 47]. Dwell times provide one candidate mecha-

nism for characteristic seizure durations. Bimodal populations in some patients suggest that

the brain can support two distinct seizure trajectories (short and long). It has been shown

experimentally that different durations of seizures may arise as the result of distinct onset sti-

muli [48]. Explanations for multiple seizure types can also be derived from computational

models. For instance, different background stability properties in a cortical model can result in

two distinct types of seizures [49]. Multiple seizure trajectories can also arise from different

onset bifurcations [43]. Similarly, multiple offset bifurcations could terminate seizures earlier

or later, giving two populations of duration. The results of this work suggest that long and

short seizures arise from distinct mechanisms of seizure termination. This hypothesis is sup-

ported by a recent study from Payne et al. (2018), which found that long and short seizures

were associated with different durations of post-ictal suppression [50].

Clinical implications

Knowledge of parameter transitions within neural models can increase the information

extracted from EEG, informing new hypotheses of seizure mechanisms and guiding clinical

practice. There is some evidence to suggest that the clinical classification of a seizure is predict-

able soon after its onset [51], in other words, the evolution of a seizure may be somewhat pre-

determined. Our results support the existence of predictable seizure types, and provide

additional metrics (based on the parameters of a neural model) that may extend our under-

standing of traditional seizure types. The consistency of neural model parameters over many
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seizures suggests that, for some patients, seizure trajectories are established via repetition. The

notion of ‘learned epilepsy’ [52], is an interesting interpretation of epileptogenesis whereby the

abnormal process is learning and spontaneously repeating a pathological sequence, rather than

the sequence itself (all brains can support seizures). For some patients, successful treatment

strategies may involve disrupting or even reversing memorization of the seizure, rather than

addressing an underlying cause [52]. On the other hand, the current results (Fig 3) also showed

that seizure pathways were highly patient-specific and not all subjects’ trajectories were con-

served over time.

Neural mass models have the potential to highlight the relative contributions of excitatory

versus inhibitory connections during seizures. This information can guide whether GABAer-

gic or glutamatergic drugs are required. Previous studies using neural mass models have dem-

onstrated alterations in the balance of excitation and inhibition estimated from data recorded

during seizures [40, 53, 54]. The current estimation technique enables previous efforts to be

extended to investigate a large number of seizures. Some patients showed decreased inhibition

at seizure onset, whereas others demonstrated increased excitation (Fig 4), potentially warrant-

ing different therapies. Furthermore, patients with two duration populations may require dif-

ferent strategies to terminate their seizures. Knowing in advance when two adjunct therapies

are needed is an important clinical insight that can provide crucial benefits to patients with

drug refractory epilepsy. This study found that long seizures were correlated with lower inhibi-

tion and higher excitation (in one patient, the reverse was the case), which can guide electrical

stimulation designed to precipitate early termination of seizures.

The presented model inversion technique and results have wide-ranging applications. The

parameter estimates were consistent across many seizures. Until now, it has not been possible

to show consistency of models of seizure transition in ECoG due to the limited availability of

long-term seizure recordings. Results also generalized across patients. Although the cohort of

12 patients was not large, prior studies have restricted model inversion of seizures to only one

or two patients [13, 55–58]. Another important aspect is that the techniques can be generalized

across models. The estimation filter is not specially formulated for the Jansen and Rit model

used in this study but can be generalized to any model that uses the basic matrix representation

provided in the derivation (see Supplementary Materiall S1 Appendix). That is, the approach

can be applied to any combination of coupled neural populations or indeed any network

model that can be represented by a linear component and a non-linear sigmoidal (error func-

tion) coupling term.

Limitations and future work

Data driven modeling may provide the opportunity to identify which drug could be helpful for

different classes of seizure, as different mechanisms of anti-epileptic drug action may preferen-

tially effect the various connectivity parameters, though further validation of model predic-

tions is needed to translate estimation results to clinical practice. Levels of AEDs have been

related to features of the EEG signal [59, 60]. Therefore, it may be possible to extend this rela-

tionship to predicting the mode of action of an AED from an individual’s EEG. The time scale

of connectivity changes may also be highly relevant to suppressing epileptic activity [10].

Future work should extend estimation to include time constants and investigate the utility of

the outlined neural parameters to detect and predict drug action.

This study provided estimates of independent neural circuits for each channel of ECoG.

Previous studies using coupled neural mass models have highlighted the importance of inter-

channel interactions, particularly for seizure propagation [61]. However, this work considered

local coupling as potentially more relevant to capture the onset of focal seizures. Non-local
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effects were described by the lumped input parameter, u, rather than explicitly by inter-model

connections. It is possible that long and short seizures could be differentiated earlier based on

inter-channel connectivity patterns. Future work will focus on extending the estimation algo-

rithm for non-locally connected neural regions. An inverse solution to the time-varying,

multi-scale network problem is not trivial and is likely to require additional constraints. For

example, structural MRI data may inform prior probabilities of connection strength [58]. Indi-

vidual neural models can also be coupled within a larger scale network [15]. The approach

taken by Schmidt et. al. (2016) can be adapted to set prior probabilities, or otherwise constrain

the propagation of an assumed density (Kalman) filter.

The challenge of large-scale model inversion is relatively well understood [4, 26]. A more

recent problem in EEG analysis is the challenge of dealing with very high dimensional data.

This study involved separate dimensions for model parameters, seizures, patients, electrode

channels, and time. Distilling insights from such a large dataset is computationally intensive.

To provide some insight into this problem, the estimation results presented were 1.5TB in size.

Generation of each figure can take up to a week to complete for all patients. The use of “big

data” techniques for EEG are becoming more relevant to the study of epilepsy [62]. It is impor-

tant that tools for large scale analysis of EEG are made clinically available. The model inversion

technique presented in this work is generalizable and freely available (https://github.com/

pkaroly/Data-Driven-Estimation).

It is important to note that the presented results are only valid insofar as the connectivity

parameters of a neural model capture the relevant dynamics underlying seizure transitions.

The use of neural mass model to investigate seizures has gained wide acceptance among epi-

lepsy researchers [11, 63–65]. Tracking excitatory and inhibitory strengths within a network is

considered highly relevant to understanding and treating seizures [66]. The ability to infer

directional connections (differentiate between in-going and outgoing pyramidal connections)

is also an important feature of model inversion compared with alternative graph inference

measures. The estimation method was previously validated on simulated data [25]. Neverthe-

less, it is highly challenging to quantify the accuracy of the model reconstructions from real

data, where there is no ground truth. The results showed that the difference between recon-

structed and actual ECoG was small (Supplementary S1, S2 and S3 Figs). The consistency of

results across many seizures provides evidence that the estimation can give overarching insight

into mechanisms of patients’ seizures. It is our hope that this study provides a stepping stone

towards a fully validated model inversion framework to guide the clinical management of epi-

lepsy. Future experimental work should investigate whether modulating connectivity strengths

in a stereotypical fashion does lead to different energy and/or duration of seizures, as predicted

by the current analysis.

Conclusion

This work provided a demonstration that the hidden local connectivity parameters of a neural

mass model can be dynamically inferred from ECoG. Our results showed that seizures follow

stereotypical pathways through parameter space. It is apparent that once a seizure has begun, a

predefined sequence of states must be traversed before termination. For a subset of patients,

there were two routes (short and long) to seizure termination. Short and long seizures began

the same way but showed distinct offset mechanisms. Finally, the connectivity patterns at sei-

zure onset showed common motifs across patients. These distinct sub-groups of onset mecha-

nisms may suggest targeted treatment.

Techniques that unify neural mass models with data provide the means to address some of

the unanswered hypotheses pertaining to epileptic dynamics. For example, theoretical studies

Seizure pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006403 October 11, 2018 17 / 24

https://github.com/pkaroly/Data-Driven-Estimation
https://github.com/pkaroly/Data-Driven-Estimation
https://doi.org/10.1371/journal.pcbi.1006403


have hypothesized that seizure trajectories are “innate”, or “repeatable” [13, 52]. The current

results confirm that seizure pathways are indeed patient-specific and highly stereotyped. It has

also been suggested that there are limited classes of onset mechanisms for seizures [43]. The

current results show that there does appear to be a limited number of seizure onset “motifs”

among patients. Finally, our group had previously hypothesized that long and short seizures

reflect distinct cortical mechanisms [37]. The current results demonstrate that long and short

seizures follow the same pathways but have different termination mechanisms. These results

underscore the power of theoretical models to shed light on seizure mechanisms. It is our hope

that these insights guide further modeling studies and may even prove to be directly translat-

able into clinical practice.

Supporting information

S1 Appendix. Neural model estimation.

(PDF)

S1 Fig. Mean squared error between measured and estimated ECoG. Distribution of average

(across 16 channels) mean squared error of the estimated ECoG for all patients. Box plots

show mean (circle), inter-quartile ranges (black square), 5%-95% ranges (black line), and outli-

ers (black dots) over all seizures for that subject. Mean of the error distributions ranged from

0.2 to 0.9 mV (note that the mean amplitude of the measured ECoG signal ranges from

approximately 25—100mV).

(PNG)

S2 Fig. State estimation covariance. Distribution of average (across 16 channels) estimation

error for the post-synaptic potential state variables. Covariance is expressed as a percentage of

the estimate value. Each subplot shows the results for a given subject. Box plots show mean

(circle), inter-quartile ranges (black square), 5%-95% ranges (black line), and outliers (black

dots) over all seizures for that subject. Mean of the covariance distributions ranged from 2% to

16%.

(PNG)

S3 Fig. Parameter estimation covariance. Distribution of average (across 16 channels) esti-

mation error for the synaptic connectivity parameters. Covariance is expressed as a percentage

of the estimate value. Each subplot shows the results for a given subject. Box plots show mean

(circle), inter-quartile ranges (black square), 5%-95% ranges (black line), and outliers (black

dots) over all seizures for that subject. Mean of the covariance distributions ranged from 0.1%

to 10%.

(PNG)

S4 Fig. Estimated changes in parameter trajectories during every seizure. Each subpanel

represents the connectivity strength for all seizures (sorted by duration) from each patient.

Parameters are expressed as a normalised percentage change from their pre-ictal background

values (where 0 reflects no change from the pre-ictal period). Values are normalised, so -1 and

1 represent the minimal and maximal change for each individual parameter (i.e. absolute value

comparisons between parameters cannot be made). The minimal and maximal parameter val-

ues were computed across all seizures for each individual patient. The pre-ictal period was

defined from 2 minutes to 1 minute before seizure onset.

(PNG)

S5 Fig. Average changes in parameter trajectories for long and short seizures. Each sub-

panel represents the mean connectivity strength (averaged across long and short seizures
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separately) from each patient (shading represents the 95% confidence bounds of the mean).

Parameters are expressed as a percentage change from their pre-ictal background values

(where 0 reflects no change from the pre-ictal period). The pre-ictal period was defined from 2

minutes to 1 minute before seizure onset. Significant (p< 0.05) differences between long and

short trajectories are marked in black above each plot.

(PNG)

S6 Fig. Significant changes in average parameter trajectories for all channels. Each sub-

panel represents the significance of changes in mean connectivity strength (averaged across

seizures, x-axis) for all channels (y-axis) from each patient. Parameters were expressed as a per-

centage change from their pre-ictal background values (shown in Fig 5). Significant (p< 0.05)

increase in connectivity strength is shown in red, and significant decrease is shown in blue.

Columns from A-E show the connectivity parameters: A) external input to pyramidal neurons,

B) inhibitory to pyramidal connectivity, C) excitatory to pyramidal connectivity, D) pyramidal

to excitatory connectiviy, E) pyramidal to inhibitory connectiviy.

(PNG)

S7 Fig. Correlation between connectivity and seizure duration. Correlation was measured

between seizure duration and average connectivity strength taken 5s before seizure onset

(Panel A), and 5s before seizure offset (Panel B). For each patient and parameter one coloured

vertical bar is shown per channel (16 electrodes). Only significant correlation values are shown

(p< 0.05). A Bonferonni correction for multiple comparisons was performed before comput-

ing significance, where the 5% significance level was divided by 60 (12 patients and 5 parame-

ters).

(PNG)

S8 Fig. Seizure energy for Patient 1. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S9 Fig. Seizure energy for Patient 2. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S10 Fig. Seizure energy for Patient 3. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S11 Fig. Seizure energy for Patient 4. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S12 Fig. Seizure energy for Patient 6. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure
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termination (according to clinicians’ marking). Energy was computed for a 1s sliding window

(50% overlap).

(TIF)

S13 Fig. Seizure energy for Patient 7. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S14 Fig. Seizure energy for Patient 8. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S15 Fig. Seizure energy for Patient 9. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S16 Fig. Seizure energy for Patient 10. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S17 Fig. Seizure energy for Patient 11. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S18 Fig. Seizure energy for Patient 13. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)

S19 Fig. Seizure energy for Patient 15. Signal energy during evolution of seizures, sorted by

duration, from 10s before seizure onset (marked by arrowhead) to 10s after seizure termina-

tion (according to clinicians’ marking). Energy was computed for a 1s sliding window (50%

overlap).

(TIF)
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