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Abstract

The molecular makeup of the offspring of a dividing cell gradually becomes phenotypically

decorrelated from the parent cell by noise and regulatory mechanisms that amplify pheno-

typic heterogeneity. Such regulatory mechanisms form networks that contain thresholds

between phenotypes. Populations of cells can be poised near the threshold so that a subset

of the population probabilistically undergoes the phenotypic transition. We sought to char-

acterize the diversity of bacterial populations around a growth-modulating threshold via

analysis of the effect of non-genetic inheritance, similar to conditions that create antibiotic-

tolerant persister cells and other examples of bet hedging. Using simulations and experi-

mental lineage data in Escherichia coli, we present evidence that regulation of growth ampli-

fies the dependence of growth arrest on cellular lineage, causing clusters of related cells

undergo growth arrest in certain conditions. Our simulations predict that lineage correlations

and the sensitivity of growth to changes in toxin levels coincide in a critical regime. Below

the critical regime, the sizes of related growth arrested clusters are distributed exponentially,

while in the critical regime clusters sizes are more likely to become large. Furthermore, phe-

notypic diversity can be nearly as high as possible near the critical regime, but for most

parameter values it falls far below the theoretical limit. We conclude that lineage information

is indispensable for understanding regulation of cellular growth.

Author summary

One of the most important characteristics of a cell is whether it is growing. Actively grow-

ing cells can multiply exponentially. In the case of infections and cancer, growth causes

problems for the host organism. On the other hand, cells that have stopped growing can

allocate cellular resources toward different activities, such as bacteria surviving antibiotics

and tissues in multicellular organisms performing their physiological roles. Observing

small bacterial colonies in a microscope over time, we have found that cells closely related

to each other often have similar growth state. We were curious if lineage dependence was

an intrinsic property of growth regulation or if other factors were needed to explain this

effect. We therefore built a computational model of a growing and dividing cellular colony

with an encoded growth regulation network. We found that regulation of growth is
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sufficient for lineage dependence to emerge. We next asked if lineage dependence con-

strains how diverse the cellular population can become. We found that cellular diversity

can reach a peak that is nearly as high as possible near the conditions that have the highest

lineage dependence, but that most conditions do not permit such high diversity. We con-

clude that lineage is an important constraint and discuss how the growth arrest transition

is in some ways like a phase transition from physics, and in some ways strikingly different,

making it a unique phenomenon.

Introduction

The process of cellular growth is both the distinguishing feature of living matter and central to

the roles of regulatory networks from microbes to metazoa. Growth and division is also a pri-

mary source of phenotypic diversification. For instance, when a bacterial cell divides, and its

cellular contents become partitioned into two daughter cells, diffusible cytoplasmic compo-

nents are often randomly distributed into the daughter cells in a binomial distribution. Such

phenotypic diversification permits populations to be robust to unpredictably changing envi-

ronments, a phenomenon known as bet-hedging. A striking example of this effect is the regu-

lation of growth rate by toxins.

Most of the molecular content in the bacterial cytoplasm undergoes growth-mediated dilu-

tion (in some cases, such as most proteins, as the primary mechanism of degradation). Reduc-

tion in cellular growth rate by a cytoplasmic toxin, or other molecule with toxic effect, creates

an effective positive feedback loop, trapping some cells in a growth arrested state until they can

escape in changed conditions [1–3]. This mechanism is associated with antibiotic-tolerant per-

sister cells arising in the population, which cause difficulty in antibiotic treatment [4]. Various

feedback mechanisms are associated with growth bistability [5]. Thus, understanding the pro-

cesses that result in growth diversification is an important goal on the path to solving the

impending antibiotic resistance crisis.

Growth arrested cells typically represent a small subset of a bacterial population [6]. In E.

coli, growth arrested persister cells are associated with alterations in metabolic activity via the

stringent response [7, 8], and with efflux of antibiotics [9]. Depending on the mechanism of

induction, persister cell fractions can be spontaneously produced or respond to external

stresses [6]. Persistence in E. coli is associated with toxin-antitoxin systems and global meta-

bolic regulation [10], with a core mechanism of toxins that are neutralized by antitoxins [11]

(Fig 1A and 1B). The competing effects of toxin and antitoxin create a threshold in a stoichio-

metric effect via molecular titration that can cause conditional cooperativity of TA gene regu-

lation [12, 13]. When accounting for gene expression noise and proteolysis of antitoxins, free

toxin levels will gain sufficient concentration to result in a growth feedback mechanism that

ultimately induces growth arrest in above-threshold cells. The result is skewed phenotypic dis-

tributions, with a core fast-growing group of cells along with rarer, growth arrested cells, as

opposed to regression to mean levels observed in networks without the growth arrest threshold

(Fig 1C and 1D).

Motivated by observations on phenotypic inheritance [14–16] and the effects of lineage cor-

relations on daughter cell phenotypes [17–21], we asked how much phenotypic diversity could

be attained for various levels of endogenous growth regulation, and to what extent lineage

determines phenotypic outcomes. Based on our previous study [17], we hypothesized that a

higher chance of growth arrest amplifies the effects of cellular lineage on phenotypic

correlations.
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To explore this hypothesis, we used an established experimental model of threshold-based

growth arrest in E. coli to experimentally confirm lineage dependence. We then created a mini-

mal multiscale computational framework that allowed more extensive characterization of the

various growth regimes than were possible with time-lapse microscopy. Our computational

model represents the processes of cellular growth and division, with binomially distributed

inheritance of a simplified toxin-antitoxin-like system subject to stochastic molecular kinetics

in individual cells over time. We modeled a functional dependence of growth on toxin concen-

trations as an exponential function with a key parameter, α, that quantifies how toxic the toxin

is. We used various specific realizations of the framework to simulate growth of small bacterial

populations from a single common ancestor and growth regulation by the simulated toxin for

various toxin:antitoxin production ratios. Our computational results confirm and extend the

experimental results, showing that the bet-hedging regime results in complex lineage

structures.

These results show, for the first time, how important lineage is to growth regulation and

bet-hedging phenotypes involving growth. Consideration of lineage is now indispensable for

studies on phenotypic heterogeneity, phenotypic memory, and regulation of the growth arrest

transition. Finally, our results suggest that lineage space used in evolutionary [22] and multi-

cellular organism development studies [23] is an important concept to apply in studies of bac-

terial phenotype.

Fig 1. Simulated effects of a molecular network with an endogenous growth-regulating threshold in bacteria. a.

Simplified toxin-antitoxin module, depicting its interaction with cellular growth rate. b. Deterministic steady state

model predictions for a toxin with growth feedback. A regime with no deterministic molecular steady state (labeled

"Growth Arrest") arises when toxin production sufficiently exceeds the growth feedback-imposed threshold. Growth

rate is normalized to the maximum = 1. c. Binomial phenotypic inheritance at a constant molecule production rate.

With no effect on cellular growth rate, the population exhibits regression to the mean within a few generations of

division. d. With a discrete growth arrest threshold, the population becomes increasingly skewed over time. Box and

whisker plots represent median, interquartile range, and range of a population started from a single simulated cell.

Details on model implementation are presented in Supplemental Materials.

https://doi.org/10.1371/journal.pcbi.1006380.g001
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Results

Lineage dependence in an experimental model

We first sought to establish an empirical basis for growth arrest kinetics and threshold-based

amplification of lineage correlations. An established experimental model of threshold-based

growth arrest [17] provided a simple way to track growth in a lactose-sensitive strain of E. coli.
In this model, lactose stimulates growth at sufficiently low concentrations, but creates toxicity

in a subset of cells at high concentration that results growth arrest or death of those cells. Pres-

ently, the precise mechanism of toxicity is not known in this model, but the competing effects

of lactose import rate and processing rate are the most likely culprit, and the threshold-based

mechanism for growth arrest and persistence is established [17]. In the high-lactose condition,

bacterial colonies have a slow net growth rate and a high likelihood of any individual cell even-

tually undergoing growth arrest and/or death.

We used time-lapse fluorescence microscopy to track individual microcolonies in a micro-

fluidic device with constant perfusion of fresh minimal medium containing defined concentra-

tions of a single sugar as the sole carbon source. We used two carbon sources: a growth-arrest-

prone condition with a high lactose concentration (50 g/l), and a condition that does not

induce a growth arrest threshold, with a moderate glucose concentration (2 g/l) (Fig 2; S1 and

S2 Videos). As inferred from extension of cellular major axis length, cells grow exponentially

at heterogeneous rates (Figs 2A and 2B, 2E–2R and S1) and are capable of quickly shifting

between growth rates, e.g., from fast to slower or non-growing (Fig 2B and 2F). To identify

cases of mid-cell cycle shifts in growth rate, we fit each cell cycle to an exponential growth

model, applied Bonferroni correction to the resulting fit significance levels, and selected the

non-significant cases (S3 Fig). A constitutive fluorescent reporter provides clear visual evi-

dence of mother-daughter cell correlations only in the growth arrest-prone condition (Fig 2C

and 2G).

We reconstructed the microcolony lineage in both conditions to quantify the effects of

non-genetic inheritance in this experiment (Fig 2D and 2H). The result of the growth arrest

threshold is a striking effect on the structure of the lineages. The growth arrest-prone lineage

shows distinct clusters of growth arrested or dead cells, and clusters of faster growing cells,

resulting in an asymmetric tree (Fig 2D). On the other hand, absent the growth arrest thresh-

old, the tree is nearly symmetric (Fig 2H). In the growth arrest prone condition, we classified

cells into being growth arrested or dead (apparent growth rate = 0) or actively growing. Of the

63 total cells in the final lineage, 16 (25.4%) were determined to be completely growth arrested

or dead at the final time point. We determined the pairwise lineage distance, defined as the

time since the most recent common ancestor, for three subsets: all cells, only growing cells,

and only growth arrested cells (S2 Fig). The all-growing and all-growth arrested subsets both

had significantly closer lineage distances compared to the all cells set (p< 0.05, Mann-Whitney

U). From these results, we conclude that lineage has a strong effect on phenotypic heterogene-

ity during colony development around a growth-modulating threshold.

Lineage dependence is reproduced in a simple computational branching

process model

To determine the minimal set of mechanisms necessary to reproduce the interactions between

threshold-based molecular regulation of growth rate and population dynamics, we created a

computational model containing cell agents growing and dividing at a typical rate for enteric

bacteria (30 minute doubling time), each with a cell volume and division upon doubling of the

volume. Each cell agent has embedded stochastic kinetics of a growth-inhibiting molecule
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(analogous to a toxin) and a neutralizing molecule that binds and prevents toxicity (analogous

to an antitoxin). As discussed in more detail in Methods, we assume toxin and antitoxin pro-

duction, growth-mediated dilution, and binding-unbinding kinetics of the molecules. We

used a phenomenological exponential function layer that translates between concentrations of

toxin and resultant growth rate, with a single parameter, α, that determines the level of

toxicity.

The key similarity between our experimental and computational approaches is the existence

of a threshold in the molecular network that determines the growth rate of the cell. There are

many potential mechanisms for such a threshold to arise, as discussed in the Introduction. We

do not claim that the mechanism implemented in the computational model is the same as the

experimental model. Rather, there is an underlying fundamental interplay between growth

regulation and lineage structure that we will show is conserved.

To determine the effect of the growth threshold on microcolony dynamics, we scanned the

rate of toxin production, keeping antitoxin production constant. (In most natural toxin-anti-

toxin systems, the antitoxin is unstable. We simulated this case as well, below). The simulations

were seeded with a single cell growing with excess antitoxin and permitted to grow for 100

simulation minutes before changing the toxin production rate to a positive value. After several

generations of growth, we found three qualitative regimes across different toxin production

rates: symmetrical growth with no or little growth arrest (toxin production rate 0–2.5 /min),

a critical regime with clusters of growing and growth arrested cells (toxin production rate

3–4.5 /min), and a regime of nearly instantaneous growth arrest (toxin production rate>4.5 /

min) with the colony trapped in its near-initial state. Fig 3 shows representative cases with

growth rate (Fig 3A) or toxin concentration (Fig 3B) depicted with coloring of each cell.

Sub-lineages of fast-growing and slow-growing cells are evident in the critical regime (with

toxin production rate 5–6 /min; Fig 3A). Lineage effects are also evident from toxin levels,

where there are sublineages escaping from entry into high toxin concentrations (blue clusters

in Fig 3B). The precise time of entry into growth arrest can have a large effect on toxin levels,

suggesting that growth rate is a more precise phenotype to follow for the study of lineage

effects in this system.

Lineage dependence is strongest in the critical regime

To quantitatively characterize the properties of growth transitions in our simple computa-

tional framework, we considered the fate of simulated microcolonies at 250 minutes of growth,

which is shortly before the fastest growing cases begin to become computationally intractable,

but after the population size is beyond the minimal requirement to be considered a microcol-

ony. Mean population growth rates and toxin concentrations across multiple (N = 100) repli-

cates reveal a growth-regulatable region flanked by regions of almost full growth and almost

complete growth arrest (Fig 4A). In the region where population growth is low but positive,

toxin concentrations increase monotonically but non-linearly with increases in toxin produc-

tion (Fig 4A).

Fig 2. Growth rate of E. coli B REL606 GFP+ cells prone to stochastic growth arrest in high lactose reveals lineage dependence. Numbers indicate time in

hours. a–d. Colony grown in a commercial microfluidic device with continuous perfusion of minimal medium containing 50 mg/ml lactose as described in

Methods. e–h. Colony grown with continuous perfusion of minimal medium containing 2 mg/ml glucose, which does not predispose cells to growth arrest. a,

e. Growth kinetics of a selection of cells. Individual trajectories are divided by cell division or different growth rates by a least-squares fit of the data to the

model L(t) = L0egt. b, f. Growth rates from exponential model fit. Vertical lines indicate cell division times for the corresponding trajectory color. c, g. Selected

frames of the time-lapse microscopy experiment. d, h. Lineages derived from time-lapse microscopy. Colors indicate growth rate. Lack of color indicates

insufficient data for a significant fit. Note asymmetry in d and symmetry in h.

https://doi.org/10.1371/journal.pcbi.1006380.g002
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To quantify the amount of lineage information shared by pairs of cells in their phenotypes,

we calculated mutual information between phenotypic differences between pairs of cells and

pairwise lineage distance. From each simulation, we sampled one pair of cells randomly to

Fig 3. Simulated lineages over a range of toxin production rates. Time proceeds downward in each lineage and begins at the onset of toxin production (t = 100 h).

a. Lineage growth rate superimposed on the lineages. b. Free toxin concentration superimposed on the lineage. Lineages for production rates 3.5 /min and higher are

plotted with wider trajectories for visibility.

https://doi.org/10.1371/journal.pcbi.1006380.g003

Fig 4. Growth, lineage information, and diversity of simulated cellular lineages at various rates of toxin

production at 4 h. a. Average cellular growth rates (red) and toxin concentrations (blue) 150 minutes after onset of

stress are proportional to toxin production rate, with distinct growth regulation regimes. Error bars indicate standard

deviation. b. Mutual information between cell pair growth rate differences, in red (or toxin concentration difference, in

blue) and their lineage distance reveals a lineage-dependent effect on cellular phenotypes near the regulatable region. c.

Dispersion of average growth rate for low toxin production rates. Vertical bar represents the peak mutual information

depicted in panel b. d. Growth rate distributions in the population at various toxin production rates as indicated. Red

represents the mean frequency at a given growth rate; blue, standard deviation in the frequency.

https://doi.org/10.1371/journal.pcbi.1006380.g004
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ensure independent, identically distributed samples and performed a resampling procedure

100 times to increase the confidence in our estimate. This was done for absolute growth rate

differences and absolute toxin concentration differences (Fig 4B). Various studies of have

found mutual information between different points on a lattice to be indicative of a phase tran-

sition [24, 25]. While our model may not exhibit a true phase transition, our mutual informa-

tion estimator reveals a similar peak for both growth rate and toxin concentrations in the

critical regime, where the population growth rate is most sensitive to changes in toxin produc-

tion rates.

Distributions of growth rates reveal the underlying population structure not evident from

mean growth rates shown in Fig 4A. Distributions that emerge from the model include uni-

formly fast (Fig 4C, top left in Fig 4D) or slow growing (Fig 4C, bottom right in Fig 4D), het-

erogeneous between fast and slow growing (top right and bottom left in Fig 4D), and long-

tailed with a peak at slow growth (bottom left in Fig 4D).

Fluctuating cell growth dynamics in the critical regime

To examine a further indicator of criticality in this system, we calculated the dynamics of

growing cell numbers below (toxin production rate 0–2.5 /min), near (toxin production rate

3–4.5 /min), and above the regulatable region (toxin production rate>4.5 /min) of growth

rate. With toxin production well below the regulatable region, the predicted cell growth

becomes equivalent to an uncoupled case where toxin has no effect on growth.

Growing cell numbers show variability between simulation replicates near the critical

region (Fig 5A). Over time, the dynamics of the mean number of growing cells approaches

exponential growth at low toxin production rates, critical growth at intermediate toxin pro-

duction rates (as shown in Fig 5A), and extinction (elimination of all growth) at high toxin

production rates. Mean cell numbers in critical growth show persistent oscillations that

dampen as the simulated growth rates become decorrelated by noise (Fig 5A). As toxin pro-

duction approaches the critical regime, some cells accumulate high toxin and, depending on

individual cellular toxin accumulation, subsets of the population will enter the exponential or

extinction phase. Thus, the time required to conform to the exponential or extinction regimes

is high in the critical regime, reminiscent longer relaxation times observed near critical points

in other models [e.g. 26]. Autocorrelations of growing cell numbers at lag times after the onset

of toxin production reveal this effect. For example, high autocorrelation around lag time 100

min in critical regime (vertical dotted line) signifies growth remaining correlated for a longer

time compared to the autocorrelation at toxin production rate 3.0 /min. The presence of more

than two zeroes in the absolute autocorrelations indicates the oscillatory regime (Fig 5B).

Attainable levels of phenotypic heterogeneity under lineage constraints

If lineage is capable of constraining the attainable phenotypes of offspring cells, it stands to rea-

son that the amount of phenotypic heterogeneity attainable in a microcolony is lowered by

lineage dependence in systems that generate heterogeneity by diversifying growth rates. It is

difficult to generalize what constitutes meaningful diversity in growth rates; small changes

may or may not be important to fitness in the long run, but the importance of the distinction

between growth arrested and fast-growing cells is clear. Therefore, we used two possible defini-

tions of meaningful diversity: in one, arbitrarily small changes in growth rate or toxin concen-

tration are meaningful. In the other extreme, we assumed that only growing versus non-

growing cells (or high versus low toxin) is a meaningful distinction.

We quantified the phenotypic heterogeneity as information entropy (base 2), binning the

simulated cells according to the two definitions of diversity (Fig 6). We calculated the
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maximum entropy in the fine-grained binning case by assuming each cell had a unique value.

Note that the maximum entropy is extensive, decreasing with lower total cell count (Fig 6A).

In the binary case, the maximum entropy is simply 1 bit. Regardless of the definition used, the

peak entropy of the population can get surprisingly close to the maximum entropy. Note that

peak entropy of growth rate nearly coincides with peak mutual information between growth

rate differences and lineage distance (Fig 6, vertical line). However, entropy away from this

peak sharply decreases from the maximum. In the critical regime, population heterogeneity is

affected by two key factors: sensitivity of growth rate to toxin and lineage dependence. Given

that we observed higher lineage dependence in the critical regime, the key question here is

whether this dependence reduces the possible attainable heterogeneity in bet-hedging. The

entropy plot (Fig 6) shows that sensitivity of growth rate to toxin dominates and thus pheno-

typic heterogeneity is maximal at when the lineage is most structured.

Growth regulation as a criterion for lineage dependence

To explore the generality of our results, we created models with variations on the original, and

tested for lineage dependence.

The first set of variations test two simplifications in the primary model: stability of the anti-

toxin, and bursty production of the molecular species. While we regard the model to be a gen-

eral threshold-based growth control mechanism, it is worthwhile to determine if a toxin-

antitoxin module with unstable antitoxin qualitatively reproduces our main results. Varying

the stability of the antitoxin, we indeed found the same qualitative results (S4A Fig). Similarly,

Fig 5. Critical slowing down of growing cell dynamics. a. Growing cell numbers over time in individual simulations

(blue-green lines) and averaged between them (red line) reveals persistent dampening oscillations in the critical

regime. b. Mean absolute autocorrelations near the critical regime. Δt, lag time after onset of toxin production. Toxin

production rates with three zeroes indicate oscillatory solutions that converge slowly to the regimes of exponential

growth or extinction. Vertical dashed line indicates peak lineage-growth rate mutual information; see Fig 4. N = 100

simulations for each toxin production rate.

https://doi.org/10.1371/journal.pcbi.1006380.g005
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simulating bursts of gene expression producing toxin and antitoxin produced the same quali-

tative results (S4B Fig).

Our next model variation was to vary the effect of growth regulation, increasing it (α = 0.3

in g(T,t); see Methods below) and abolishing it completely (α = 0 in g(T,t)). As expected, a

larger quantitative effect of toxin preserved the main results, but shifted the toxin concentra-

tion necessary to see the lineage dependence (S4C Fig). Abolishing growth regulation elimi-

nated the peak in mutual information, and thus lineage dependence (S4D Fig).

Distributions of growth arrested cluster sizes

Large clusters of growth arrested cells could have effects on the spatial development of bacterial

colonies, as daughter cells tend to be correlated in space as well. We therefore asked what growth

arrested cluster size distributions arise in the region where there is high mutual information

between growth rate and lineage distance. We performed 10,000 simulations each and clustered

the end-point populations according to lineage neighbors having similar growth rate (with a cut-

off of 0.01 /h to be considered growth arrested). Resulting clusters were pooled across simulations

of the same parameter set. We present distributions of raw absolute cluster size, not normalized.

Below the critical regime, the absolute cluster size distribution is nearly exponential (Fig 7,

red line with exponential fit as gray dashed line). As the probability of growth arrest increases

(with high toxin production rate), the distributions diverge from exponential to make large

clusters of growth arrested cells more likely (Fig 7). At higher toxin production rates, the distri-

bution is bimodal between large clusters and single growth arrested cells.

Fig 6. Entropy of growth rates and toxin concentrations at 250 min. Vertical line indicates the point of highest

lineage-dependent mutual information between growth rate and lineage distance. a. Fine-grained binning. b. Binary

binning into growing-non growing or high-low toxin concentration. Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pcbi.1006380.g006
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Discussion

Regulation of growth is a central part of phenotypic control. Many factors can control growth

rate, including extrinsic conditions such as starvation, and intrinsic regulators of growth that

often operate with a threshold-based mechanism. Using an experimental model of threshold-

based growth arrest arising from metabolic toxicity, we tracked cell growth in a bacterial

microcolony with a high probability of undergoing the growth arrest transition, and a colony

grown in a condition that does not display the threshold-based growth arrest. We found sev-

eral large, discrete shifts in growth rate to occur at a faster timescale than our 5-minute record-

ing intervals (Fig 2). Quantifying the lineage dependence of cellular growth phenotype, we

found that growth arrested or dead cells tend to be clustered in the lineage, as do fast-growing

cells. The difference in lineage shapes between the growth arrest-prone and non-growth arrest

prone conditions is striking (Fig 2D and 2H).

We therefore sought the simplest possible model of microcolony growth dynamics that

reproduces the effect. Our basic model captures single-cell biochemical kinetics on one scale

(microscopic) interfacing population growth dynamics on another scale (macroscopic). We

found striking phenotypic lineage dependence to emerge with the following criteria: (i) growth

rate dependence on a toxin; (ii) stochastic dynamics around a cellular threshold embedded

within the network; (iii) kinetic parameters calibrated so that the population average growth

rate is near the regulatable region.

As the probability of cellular transition to growth arrest increases, the mutual information

between growth rate and lineage distance increases to a peak, then decreases as the simulated

microcolony reaches the condition of immediate growth arrest. This transition bears a resem-

blance to a phase transition, with correlation of microscopic length scales peaking at the criti-

cal boundary. Here, the correlation length is in lineage space: we have assumed no traditional

spatial information about the cells in the simulation.

Fig 7. Distribution of growth arrested cluster sizes in simulated lineages. Clusters are exponentially distributed

below the critical region (red line, simulation; gray dashed line, exponential fit ae–bc for cluster sizes c) but diverge from

an exponential distribution near the critical region, eventually becoming bimodal (purple, blue, green, and orange

lines). Each parameter set was simulated 10,000 times. a. Raw probability distributions. b. Probability distributions

normalized to the probability of cluster size 1.

https://doi.org/10.1371/journal.pcbi.1006380.g007
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Lineage space is a binary tree growing with extinction probability based on microscopic

dynamics. Distances are modified by dynamical growth rates, which explains why a higher

probability of heterogeneous growth results in structured trees. Thus, relating persister and

other threshold-based growth arrest mechanisms to the established mathematics of branching

processes [27, 28] is an important direction for microbial physiology.

After 100 simulated minutes we imposed a continuous rate of increased toxin production (or

antitoxin degradation, in one derived model) on the developing microcolony. The constant input

of more toxin created an irreversible threshold. Once a cell crosses the growth arrest threshold,

there is an irreversible stoppage of growth that arises from toxin growth feedback. The growth

arrest condition can then be considered an absorbing state. Continuous transitions from active to

absorbing states are generically characterized by the scaling properties of critical directed percola-

tion [29–31]. Our model qualitatively reproduces characteristics of directed percolation, including

longer relaxation times near the critical region (Fig 5) and different regimes of growth arrested

cluster size distribution (Fig 7). However, the dimensionality of the space is unclear, and may be

shaped by the probability of growth arrest. Thus, we are doubtful that bet hedging quantitatively

conforms to the classic criteria for directed percolation.

If lineages impart spatial structure onto growth phenotypes, then do they impose an upper

limit to the level of phenotypic heterogeneity that can be attained by a microcolony? The popu-

lation is most sensitive to fluctuations directly in the region with the highest lineage depen-

dence, the latter of which appears to imply a dampening of phenotypic heterogeneity.

However, multiple methods of measuring total population entropy suggest that the population

can still approach the maximum total entropy in cases where growth rates are both finely-

binned and binned into only two phenotypes–growing and growth arrested (Fig 6). Heteroge-

neity is reduced as the population reaches either extreme of high or low average toxin level.

Thus, counterintuitively, a more highly structured lineage yields a higher level of heterogene-

ity. Lineage plays an interesting role in determining the phenotypes of extant growing cells,

but it does not appear to restrict what phenotypes can be attained.

The purely intracellular phenomena considered here allow lineage to be the only type of

space considered. However, closely related cells in many conditions, such as surface-attached

conditions or channels, will be physically closer together as well. In many bacterial colonies

with a substantial chance of endogenous and exogenous conditions interacting to determine

the growth arrest transition (such as quorum sensing), an information metric that includes

components of both real space and lineage space will need to be considered.

Methods

Cell culture conditions

E. coli B REL606 lacI−PlacO1-GFP was grown from -80˚ C cryogenic culture for 18 h in LB

medium in a shaking incubator (37˚ C), acclimatized by incubating in Davis minimal medium

containing either 50 mg/ml lactose (DMlac50) or 2 mg/ml glucose (DMglc2) for 24 h, and

resuspended either in fresh DMlac50 or DMglc2 culture, respectively, for 3 hours before begin-

ning time-lapse microscopy.

Microscopy and image analysis

We used an Olympus IX81 inverted fluorescence microscope with an incubated imaging

chamber (Olympus, Tokyo, Japan). The chamber with objective was pre-heated, bacterial cul-

tures were added to a pre-heated CellAsic ONIX microfluidic plate (Millipore, Billerica, Mas-

sachusetts) at an approximate OD450 of 0.005, and a continuous media flow of 1 psi DMlac50

or DMglc2 was maintained for the duration of the experiment. Images in brightfield and green
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fluorescence (488 nm stimulation / 509 nm emission) channels were captured every 5 minutes

with a 4k CMOS camera, followed by ZDC autofocus. For the DMlac50 experiment, we used a

100x oil immersion objective. Due to technical issues with the objective, we used a 60x air

objective for the DMglc2 experiment. Thus, the pixel lengths of the cells between the two

experiments should not be directly compared.

Images were cropped after identifying a stable microcolony originating from a single cell.

We developed a semi-supervised cell tracking algorithm in Mathematica (Wolfram Research,

Champaign, Illinois) with manually input cell division times and cell lengths. From this infor-

mation, we reconstructed the lineage and approximated growth rates with exponential growth

models. When mapping the growth rates to the lineages in Fig 2, we approximated growth

rates of cells with non-significant exponential fits using piecewise linear regression as reviewed

in [32].

Multiscale growth simulation framework

To capture the minimal mechanisms necessary that recapitulate non-genetic inheritance and

effects of cellular lineage, we created a multiscale growth simulation framework with individ-

ual cell agents, each containing a molecular network of interacting proteins, referred to as

toxin and antitoxin, with toxin affecting cellular growth rate.

We track the simulated number of toxin and antitoxin molecules as well as cell volumes for

each cell agent across time. In the next time step, t+δt, the number of toxin and antitoxin mole-

cules are determined by stochastic simulation (below) and are updated for that cell. Cellular

growth rates are set by a deterministic function of the toxin concentration (#/vol). The change

in the volume (δv) in δt is determined by the amount of toxin present at that time. When cell

volume doubles, the number of each molecule is distributed binomially into the two daughter

cells. From that time on, the two daughter cells are labeled as different cells and are iterated in

the same way. We initiate each simulation as a single cell with no toxin and allow growth for a

few generations (100 minutes) before applying toxin production rate (or antitoxin degradation

rate) of a given quantity. The primary purpose of this model is to capture the qualitative effect

of the growth arrest threshold, so several important details about the biophysics of kinetics in

growing cells were omitted, such as the effects of chromosome replication and the volume

dependence of bimolecular stochastic reaction propensities.

Estimation of mutual information from simulated lineages

We sought to develop a sampling methodology to ensure independent, identically distributed

samples from lineage simulations to estimate the mutual information between lineage distance

d and phenotypic differences between pairs of cells φ. Phenotypic differences (φ) could be

growth rate or intracellular toxin concentration. To do so, we performed 100 independent

simulations in each condition, and randomly drew a single pair of cells from each lineage.

Our estimate of mutual information was calculated from the resulting distribution of i.i.d.

samples: I D;Fð Þ ¼
P

φ2F

P
d2Dpðd;φÞ log

2
ð

pðd;φÞ
pðdÞpðφÞÞ. A more accurate estimate of absolute

mutual information may extrapolate to an infinite sample size. In our case, the relative mutual

information between different locations in parameter space suffices to demonstrate the exis-

tence of a strong lineage dependence for certain parameter ranges. To estimate the uncertainty

of our relative mutual information estimate, we resampled 100 cell pairs with replacement

and present the resulting mean ± standard deviation. Entropy was calculated by HðXÞ ¼
�
Pn

i¼1
pðxiÞ log2pðxiÞ, where p(xi) represents the probability mass function of a discrete vari-

able X. X could be growth rate or toxin concentration.
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Stochastic toxin-antitoxin threshold model

We considered a simple network consisting of three variables: toxin, antitoxin and toxin-anti-

toxin bound complex. Possible reaction events are synthesis of toxin and antitoxin, and bind-

ing and unbinding between toxin and antitoxin molecules. The reaction scheme for the basic

model is:

!
kt T!

gðT;tÞ

!
ka A!

gðT;tÞ

T þ AÐ
kb

ku
TA!

gðT;tÞ

The parameter kt is the toxin production rate varied in the simulations. Antitoxin production

parameter, ka, is kept constant (ka = 4.2 /min) to allow the production ratio of toxin and anti-

toxin to be changed. Growth-mediated loss is implemented through g(T, t) which is a function

of the cell volume in the algorithm (below). Parameters kb and ku are binding and unbinding

rates; kb = 0.1 and ku = 0.1 throughout. In the most basic model, each species is considered

long-lived on the timescales of the simulation, so we do not consider any additional degrada-

tion processes. Variations on this model are discussed in Results.

The relationship between toxin concentration and cellular growth rate, the most phenome-

nological part of the framework, captures the interface between molecular and population

dynamic scales. We reasoned that, while some random factors may reduce or increase the effect

of toxin, the generality with which toxin affects global protein synthesis rates [11, 33–37] means

that many stochastic effects will cancel, resulting in a nearly deterministic relationship. Because

toxin levels generally halt ongoing processes without significant delay [38–41], we approxi-

mated the effect of a given toxin level to be instantaneous. This assumption is supported by our

experimental results, which show shifts in growth rate faster than the 5 minute intervals mea-

sured (Fig 2). We thus constructed a deterministic function to reflect the functional dependence

of growth on toxin concentrations: g(T,t) = λe-αT(t)/O(t), where α is a parameter that represents

the toxicity of the toxin, T. We used α = 0, 0.1 and 0.3 to represent cases with no toxicity, mod-

erate toxicity, and high toxicity, respectively. Python scripts are given in S1–S3 Models.

Simplified computational model of binomial inheritance

To illustrate the effects of growth arrest on distributions of growth-modulating cytoplasmic

contents (Fig 1), we created a simplified computational model with constant production, con-

stant sub-threshold generation times, and binomially distributed molecular contents between

two daughter cells. One simulation for each initial condition was run for 12 generations, with

10 molecules produced per generation, and a growth arrest threshold of 20 molecules. Initial

conditions were 0, 10, 20, or 30 molecules. A second case with no threshold was simulated

with the same parameters and initial conditions. The Mathematica code is given in S4 Model.

Deterministic molecular-scale model as a basis for growth feedback

The exact functional dependency of growth on toxin is unknown. In our stochastic simulation

framework, we considered an exponential dependence of growth on toxin. Fig 1B depicts a

deterministic model of toxin growth feedback by a free toxin as follows: _T ¼ kt � g y

yþT, where

kt is the toxin production rate, γ is the maximum growth rate, and θ determines the toxicity

level of the toxin. We chose the Hill form for the deterministic model because it has a closed-

form steady state. The steady state is T̂ ¼ kt

g�
kt
y

. When kt/θ> γ, there is no steady state at this
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scale and the containing cell is expected to enter growth arrest. This simple model demon-

strates the basis for growth feedback-induced growth arrest in a single cell. For Fig 1B, parame-

ters are: kt = 4.2 /min, γ = 0.023, and θ = 100 molecules. We note that the basic growth arrest

threshold effect readily emerges in both Hill and exponential model forms, and likely a variety

of other mathematical forms.

Supporting information

S1 Video. E. coli microcolony undergoing frequent growth arrest. Time-lapse fluorescence

microscopy of a cell lineage of Escherichia coli B. REL606 lacI−PlacO1-GFP in DMlac50. Cells

are tracked and measured as indicated. Numbers represent time (minutes) after the first

frame. Experimental details are given in Methods.

(MOV)

S2 Video. E. coli microcolony growing without the growth arrest threshold. Time-lapse

fluorescence microscopy of a cell lineage of Escherichia coli B. REL606 lacI−PlacO1-GFP in

DMglc2. Cells are tracked and measured as indicated. Numbers represent time (minutes) after

the first frame. Experimental details are given in Methods.

(MOV)

S1 Fig. Growth trajectories for all cells in the microcolony depicted in Fig 2A–2D.

(PDF)

S2 Fig. Probability distribution of lineage distance (time since most recent common ances-

tor) for the experimental lineage. All cells (a), only non-growth-arrested cells (b), and only

growth-arrested cells (c) in the lineage shown in Fig 2D. p< 0.01 for growth-arrested cells to

not to have lower lineage distances versus either of the other two groups (one-tailed Mann-

Whitney U test).

(PDF)

S3 Fig. Non-exponential cell length trajectories. Lengths of growth arrest-prone cells

between divisions were tested for a significant fit to an exponential growth model in the

growth arrest-prone condition. These cases failed the significance test with a Bonferroni-

adjusted α = 0.05 (adjusted value = 0.000424).

(PDF)

S4 Fig. Computational model extensions preserve the central results. a. Altering toxin deg-

radation rates to represent the precise mechanism of toxin-antitoxin systems. b. Altering toxin

and antitoxin production so that they are bursty with a telegraph (ON-OFF) model. c. Increas-

ing toxicity with parameter α = 0.3. d. Eliminating growth feedback (α = 0) eliminates the peak

of mutual information along with the lack of macroscopic growth regulation.

(PDF)

S1 Model. Python script for simulating lineages with stochastic simulation of the intracel-

lular toxin-antitoxin system.

(PY)

S2 Model. Python script for simulating lineages with stochastic simulation of the intracellular

toxin-antitoxin system with bursty telegraph model of toxin and antitoxin production.

(PY)

S3 Model. Python script for simulating lineages with stochastic simulation of the intracel-

lular toxin-antitoxin system with fast degradation of the antitoxin.

(PY)
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S4 Model. Simplified computational model of binomial inheritance Mathematica file.

(NB)

S1 Data. Data used to generate plots in Fig 3.

(XLSX)
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