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Abstract

Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence.

It is often assumed that such decisions are degraded by adding noise to a stimulus, or to the

neural systems involved in the decision making process itself. But it has been suggested

that adding an optimal amount of noise can, under appropriate conditions, enhance the qual-

ity of subthreshold signals in nonlinear systems, a phenomenon known as stochastic reso-

nance. Here we asked whether perceptual decisions made by human observers obey these

stochastic resonance principles, by adding noise directly to the visual cortex using transcra-

nial random noise stimulation (tRNS) while participants judged the direction of coherent

motion in random-dot kinematograms presented at the fovea. We found that adding tRNS

bilaterally to visual cortex enhanced decision-making when stimuli were just below percep-

tual threshold, but not when they were well below or above threshold. We modelled the data

under a drift diffusion framework, and showed that bilateral tRNS selectively increased the

drift rate parameter, which indexes the rate of evidence accumulation. Our study is the first

to provide causal evidence that perceptual decision-making is susceptible to a stochastic

resonance effect induced by tRNS, and to show that this effect arises from selective

enhancement of the rate of evidence accumulation for sub-threshold sensory events.

Author summary

Noise is usually thought of as being detrimental for perception and decision-making, but

recent work has revealed that under certain circumstances simple detection performance

can be enhanced when an optimal amount of noise is applied to the visual cortex non-

invasively using tRNS. Here we asked whether this stochastic resonance effect also applies

to a higher level perceptual decision-making task. We found that adding an optimal level

of neural noise to the visual cortex bilaterally enhanced decision-making, specifically for

below-threshold stimuli, consistent with a stochastic resonance effect. Computational
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modelling under a hierarchical drift diffusion framework revealed that the enhancement

of observers’ decision making with optimal noise arose from an increase in the rate of per-

ceptual evidence accumulation. The findings provide new evidence in support of stochas-

tic resonance as a neural mechanism through which weak stimuli can influence

perceptual decisions, and suggest a novel target for interventions in neurological patients.

Introduction

Noise is an intrinsic property of all biological systems [1]. Typically, noise is viewed as being

detrimental for neuronal computations and the behaviors they regulate [1, 2], including deci-

sion-making [3]. A key limiting factor in decision-making arises from noisy representations of

sensory evidence in the brain [4, 5]. On this view, noisy sensory information representations

are not optimal, and this leads to errors in decisions. However, small amounts of noise added

to a nonlinear system can increase stimulus quality by increasing the signal-to-noise ratio

(SNR)[6]. This phenomenon is known as stochastic resonance (Fig 1), and its expression has

been demonstrated in different sensory modalities [7–9]. Stochastic resonance occurs when an

optimal amount of noise is added to a sub-threshold signal, which makes the signal cross a

threshold and therefore enhances detection performance (Fig 1) [10–13].

Neurophysiologically, adding an optimal amount of noise to a subthreshold signal pushes

otherwise silent sensory neurons above the spiking threshold [7, 15, 16]. A common way of

adding noise in a stochastic resonance context is to add it directly to the sensory stimulus. In

such cases, however, the noise might simply increase peripheral receptor sensitivity [17],

which would not address the question of whether central neural processes in decision-making

are sensitive to a stochastic resonance mechanism. Recently, we showed that it is possible to

induce a stochastic resonance effect in a simple detection task when noise is added to the visual

cortex with transcranial random noise stimulation (tRNS [18]). Although the underlying neu-

ral mechanisms are not completely understood [19], single unit recordings in visual cortex

have revealed an increase in the SNR of neuronal spiking when an optimal level of noise is

applied to a visual stimulus [20], consistent with a stochastic resonance mechanism. This is

likely due to the recruitment of voltage-gated sodium channels by the noise [21–23]. Our pre-

vious study [18], together with several related investigations [24, 25], point to stochastic reso-

nance as an underlying mechanism by which non-invasive brain stimulation can enhance

behavioural performance when it is applied concurrently during task performance. Here we

go beyond these findings by asking whether higher-level perceptual decisions in a random-

dot-motion (RDM) task (see Fig 2) are susceptible to a stochastic resonance effect. The RDM

task has been widely used in studies of perceptual decision-making, and has well characterized

neural correlates [26, 27]. A recent study showed that RDM judgements are affected when

noise is added peripherally to a visual display [28], but it remains unclear whether an analo-

gous effect arises for noise administered centrally (i.e., to the cerebral cortex).

In addition to measuring the influence of central noise on perceptual decisions, we also

investigated which aspects of the decision process itself are sensitive to stochastic resonance

using drift diffusion modelling (DDM; see Fig 2 [29, 30]). Such modelling approaches have

been very successful in describing both human and animal behavior [29]. Under the DDM

framework, performance improvements can occur via a change in the decision criterion (i.e.,

the bound separation), or through an increase in the rate of evidence accumulation (i.e., the

drift rate; [29]). In the current study, an increase in bound separation would suggest that the

stochastic resonance effect is driven by a change in the decision criterion, whereas an increase
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in drift rate would suggest an improvement in the quality of sensory evidence on which the

decision is based. In addition, if the stochastic resonance model applies to perceptual decision-

making, then the addition of relatively small amounts of noise should enhance discrimination

performance for coherent motion trials in which the signal is just below threshold, but not for

trials in which the signal is well below or above threshold [8].

Finally, previous brain imaging studies have shown that visual motion stimuli elicit bilateral

activation of extrastriate visual cortex [31–33]. By contrast, application of non-invasive brain

Fig 1. Stochastic resonance occurs when an optimal level of noise is added to a subthreshold signal. In this example

the signal alone (red sinusoid) remains below the perceptual threshold (dotted line). Adding an optimal amount of

noise (gray line) periodically raises the stimulus above the system threshold. If the added noise is too weak, the

threshold is not crossed. Conversely, if the noise is too strong the signal remains buried and cannot be discriminated

from the noise [14].

https://doi.org/10.1371/journal.pcbi.1006301.g001

Fig 2. A: Schematic of the drift diffusion modelling (DDM) framework used to model perceptual decision-making in

the dot motion task. In the model, evidence is accumulated over time until a response boundary is crossed. t is the

non-decision time, which includes the time taken to execute a motor response. v is the drift rate, which reflects the rate

at which sensory evidence is accumulated. This parameter is taken as an index of the quality of sensory information. a
represents the boundary separation (correct at the top, incorrect at the bottom), indicating how much information is

needed to make a decision. B: Schematic of the random dot-motion task in which participants judged whether signal

dots moved on average to the left or right. Task difficulty was titrated by altering the proportion of coherently moving

dots (shown with arrows attached, for purposes of illustration) amongst randomly moving dots. In this example the

coherent motion is rightward, but in the experiment the dots were equally likely to move toward the left or right. The

circles surrounding the dot stimuli are shown here for illustration only, and were not present in the actual displays.

https://doi.org/10.1371/journal.pcbi.1006301.g002
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stimulation over left hemisphere visual areas has been shown to have larger effects on motion

discrimination than equivalent stimulation over right hemisphere regions [34–36]. We there-

fore applied tRNS over visual cortex bilaterally and unilaterally (left and right), across separate

experiments, to determine whether any stochastic resonance effect can be induced by stimulat-

ing the two hemispheres in combination or alone.

Our results show that adding an optimal amount of noise to the visual cortex bilaterally

enhances perceptual decision making in the RDM task, consistent with the stochastic reso-

nance hypothesis. Performance deteriorated with larger amounts of noise, and the effect was

not evident during unilateral hemispheric stimulation. Modelling of observers’ responses

under the drift diffusion framework revealed that the improvement in performance with opti-

mal noise was associated with a reliable increase in the drift rate parameter, implying an

increase in the rate of evidence accumulation.

Results

Experiment 1: Effect of bilateral visual cortex stimulation on perceptual

decision-making

In Experiment 1, we stimulated the visual cortex bilaterally with tRNS in 15 participants. The

coherence levels of 3% and 6% were subthreshold for both the group as a whole, and for the

individual observers (average detection performance < 63%), i.e., performance was below the

detection threshold, which corresponded to 75% correct in our task. For each observer we

determined an individual discrimination threshold in the noise-free trials, and showed that

this was above 6% coherence in all individuals. As shown in the left panel in Fig 3, for the 6%

coherence condition, which was just below threshold in the no-tRNS condition, motion dis-

crimination performance improved when tRNS was applied at a relatively low intensity,

whereas performance remained unaffected for the other coherence levels and noise intensities.

For the analysis, we calculated the group %correct-choice-index (%CCI) for each coherence

level and each tRNS intensity by dividing the %correct motion-direction responses under

tRNS by the %correct responses when no tRNS was applied (baseline), as given in the follow-

ing formula:

ð%CCIÞ ¼ %CorrðiÞ=%CorrðzeronoiseÞ

where i denotes each of the 4 tested noise intensities.

There was a significant interaction between coherence level and tRNS-intensity (F(12,156)

= 2.47 p< 0.01, Cohen’s f = 0.43). To isolate the source of this interaction, one-way ANOVAs

were conducted for each coherence level separately. For the 6% coherence condition only (red

symbols in Fig 3), performance was significantly affected by the different tRNS intensities (F

(3,39) = 3.56 p = 0.02 Cohen’s f = 0.52). There were no other significant main effects or inter-

actions for the coherence conditions of 3%, 12%, 25% or 50%. Post-hoc tests were conducted

to compare performance in the 6% coherence condition at each noise level against the baseline.

All p-values were corrected for multiple comparisons. These comparisons revealed that a tRNS

intensity of .25mA significantly enhanced motion discrimination performance relative to base-

line (t(13) = 3.39 pcorrected < 0.02). A similar enhancement was evident for the 6% coherence

level at an intensity of .375mA, but this effect did not survive our stringent correction for mul-

tiple comparisons, (t(13) = 2.53, pcorrected > 0.1). These results suggest that perceptual deci-

sion-making for sensory stimuli that are just below threshold can be improved by adding a

small amount of neural noise over bilateral visual cortex, consistent with predictions arising

from the stochastic resonance hypothesis [8].
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We used the hierarchical drift diffusion model ((HDDM, [37]) to determine which aspect

of decision-making was affected by tRNS. As shown in the right panel of Fig 3, the drift rate

was markedly affected by tRNS for the 6% coherence condition, whereas it was relatively unaf-

fected for the remaining coherence levels. We submitted the drift-rate parameter to a 5 x 4

repeated measures ANOVA. This analysis revealed a significant main effect of tRNS-intensity

(F(3,39) = 2.85, p = 0.049) and of coherence level (F(4,52) = 3.18, p = 0.02 on drift rate, as well

as a significant tRNS-intensity x coherence level interaction (F(12,156) = 3.22, p< .01, Cohen’s

f = 0.47). To isolate the source of the significant interaction, one-way ANOVAs were con-

ducted for each coherence level separately. Consistent with the behavioral data, there was a sig-

nificant effect of tRNS intensity on the drift rate in the 6% coherence condition (F(3,39) =

5.63, p< .01, Cohen’s f = .58), but no significant effects for the other coherence levels were

observed (3%, 12%, 25%, 50%). Adding higher amounts of noise to the 6% coherence condi-

tion resulted in a decrease in both behavioural performance and the drift rate (see Fig 3). This

inverted U-shaped relationship between performance and noise level is a key signature of the

stochastic resonance effect [8, 38].

Post-hoc tests were conducted to compare performance in the 6% coherence condition

against the baseline for each noise level. For the tRNS intensity of .25mA, the drift rate for the

6% coherence condition was significantly higher than baseline (t(13) = 3.44, pcorrected < 0.02,

corrected for multiple-comparisons). A similar benefit for the 6% coherence condition was

apparent for the tRNS intensity of .375mA, but this effect did not survive correction for multi-

ple comparisons (t(13) = 2.55, p = 0.1). Separate 5 x 4 repeated measures ANOVAs revealed no

significant effects for the bound-separation parameter (all p> 0.06), and no significant effects

for non-decision time (all p > 0.13).

Previous studies of visual motion discrimination have shown reliable effects of offline tran-

scranial electrical stimulation—as opposed to the online effects reported here—following uni-

lateral stimulation of left or right visual cortex in isolation [34, 39, 40]. We therefore

conducted two further experiments to determine whether the stochastic resonance effects we

observed for bilateral tRNS in Experiment 1 also arise for unilateral visual stimulation. We also

modelled the current spread for the electrode montage used in each experiment using the Sim-

Nibs toolbox [41]. The modelling results revealed that the bilateral electrode montage affected

the visual cortex in both hemispheres, whereas the unilateral configurations affected one hemi-

sphere (left or right) only (see Fig 4).

Fig 3. Effects of transcranial random noise stimulation (tRNS) on perceptual decision-making in the dot-motion

discrimination task for bilateral stimulation. The left panel shows performance for each motion coherence level as a

function of tRNS intensity. The right panel shows the drift rate derived from modelling of the data shown in the

corresponding plot to the left. �pcorrected < 0.05.

https://doi.org/10.1371/journal.pcbi.1006301.g003
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Experiments 2 and 3—Effect of unilateral visual cortex stimulation on

perceptual decision-making

Fig 5A and 5B show the behavioral results for Experiments 2 and 3. Neither left nor right uni-

lateral tRNS influenced visual discrimination performance or the drift rate derived from the

HDDM.

To characterize these data statistically, we employed the same analytic approach as in

Experiment 1 (bilateral stimulation), for both the behavioral data and the drift diffusion

modelling. There was no significant interaction between stimulation intensity and coherence

level for either left unilateral or right unilateral visual cortex stimulation (p> .05 for all key

comparisons). Thus, there was no evidence for a stochastic resonance effect as observed during

bilateral stimulation in Experiment 1 (see also S1 Fig).

Discussion

We found that adding an optimal amount of noise bilaterally to the visual cortex can enhance

perceptual decision-making in a motion discrimination task, particularly for stimuli that are

just subthreshold (6% coherence), as predicted by the stochastic resonance hypothesis [8]. By

contrast, there was no reliable effect of tRNS on stimuli that were above or well below thresh-

old, again consistent with the stochastic resonance account. When modeled as a drift-diffusion

process, the tRNS-induced performance improvement for 6% coherence displays coincided

with an increase in the rate of evidence accumulation for these displays only, reflected as a

change in the model’s drift-rate parameter. The same model revealed no change in either

bound-separation or non-decision time, suggesting that an optimal level of neural noise exclu-

sively improves perceptual decision-making by enhancing sensory information quality,

Fig 4. Electrode pad montages and modelled electrical field strength (normE) for each of the three tRNS

experiments. A. Bilateral visual cortex stimulation (Experiment 1). B. Left visual cortex stimulation (Experiment 2). C.

Right visual cortex stimulation (Experiment 3).

https://doi.org/10.1371/journal.pcbi.1006301.g004
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consistent with a stochastic resonance account [7–9]. Our results cannot be attributed to a

speed-accuracy trade-off in observers’ responses, as the DDM controls for any such effects

[42].

All tRNS intensities and motion coherence levels were randomized over participants to

account for any fatigue, aftereffects or learning effects across conditions. It has been demon-

strated that continuous application of at least 5-minutes of tRNS over the motor cortex can

increase motor cortex excitability [43]. The effects we report here are unlikely to be due to

changes in general cortical excitability, however, as it has previously been demonstrated that

cathodal tDCS influences neuronal processing in motion sensitive areas, irrespective of the

coherence level of visual stimuli [44]. By contrast, here we found a specific effect of tRNS on

perceptual judgements for subthreshold motion coherence levels only.

There was no evidence for a stochastic resonance effect when noise was applied unilaterally

to the visual cortex. The absence of an enhancement effect for unilateral tRNS was not due to

differences in baseline performance between the groups: discrimination performance in the

6% coherence condition was similar across experiments (Experiment 1–60%; Experiment

2–58%; Experiment 3–57%). Modelling of the electrical field for each electrode montage (Fig

4) indicated a higher peak current when the tRNS was applied bilaterally than in the unilateral

stimulation conditions. It is unlikely that this apparent difference in current densities pre-

vented a stochastic resonance effect for the unilateral stimulation conditions, however, because

the same absolute current densities during bilateral stimulation were also reached during uni-

lateral stimulation, but simply at higher tRNS intensities (see S1 Table).

Fig 5. Effects of transcranial random noise stimulation (tRNS) on perceptual decision-making in the dot-motion

discrimination task for unilateral stimulation of the left visual cortex (A) and right visual cortex (B). The left

panels show performance for each motion coherence level as a function of tRNS intensity. The right panels show the

drift rate derived from modelling of the data shown in the corresponding plots to the left.

https://doi.org/10.1371/journal.pcbi.1006301.g005
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The visual stimuli employed in our motion discrimination task were always presented in

the centre of the screen (i.e., at the fovea), and thus would have been processed initially by

visual areas in both the left and right hemispheres [45] as early cortical areas receive visual

information from the contralateral hemifield. It is also known that area V5/MT receives

information from both visual hemifields [46, 47]. It is likely, therefore, that in the motion

discrimination task employed here, areas V1 and V5/MT in both hemispheres would need to

be recruited for successful performance. Based on our findings, it seems reasonable to

hypothesise that visual areas in both hemispheres must be stimulated concurrently with

tRNS for the stochastic resonance effect to occur. A study by Boulinguez and colleagues sug-

gests that most human observers have a right hemisphere dominance for processing of visual

motion stimuli, and non-invasive brain stimulation can enhance these individual asymme-

tries [48]. We did not test our participants for the presence of such asymmetries for visual

motion perception, but it is possible that the absence of a stochastic resonance effect with

unilateral stimulation was due to a mixture of right- and left-hemisphere dominant individ-

uals in our sample.

Because of the relatively diffuse nature of transcranial electrical stimulation in general

[49], it is not possible to determine the specific anatomical regions that mediate the stochas-

tic resonance effect we observed. The primary visual cortex (V1) [50] and motion area V5/

MT are both crucial for the processing of dynamically moving visual stimuli [51–53]. These

two areas are highly interconnected, so our bilateral stimulation protocol might have

impacted motion processing in area V5/MT, enhanced signal quality in area V1, or both.

Further work using more focal stimulation techniques (e.g., transcranial magnetic stimula-

tion) will be needed to pinpoint the visual areas responsible for the stochastic resonance

effects we report here.

Recently, animal work has shown that optogenetic-noise-photostimulation of the barrel

cortex in mice enhances both evoked-field and spike-firing responses to mechanical stimula-

tion of the whiskers [54, 55]. Optogenetic-noise-photostimulation could be used in combina-

tion with a decision task in mice [56] to further investigate the mechanism underlying our

observed behavioral effect in human perceptual-decision making.

Our results are in line with recent work which employed a similar motion-discrimination

task to show that decision-making is sensitive to the addition of external noise to visual motion

stimuli [28]. Future studies could investigate whether there is an interaction between external

noise added to a visual motion stimulus, as used in [28], and central noise delivered via tRNS

over the visual cortex. If external and central noise affect a common underlying mechanism,

then their combination should yield an interacting influence on the SR effect. By contrast, if

external and central noise have separate underlying causes, their influence on the SR effect

should vary independently.

Our findings suggest that a stochastic resonance effect can be induced in a decision-mak-

ing task when noise is directly applied to the visual cortex with tRNS [24, 25]. Moreover,

ours is the first study to show that this stochastic resonance effect enhances the quality of

information processing as indicated by an accelerated rate of evidence accumulation. Many

daily activities depend on our ability to decide upon appropriate actions based on available

sensory information, e.g., judging the speed of oncoming traffic to decide whether it is safe

to cross the road. Even subtle impairments of perceptual decision making are likely to have a

negative impact on daily functioning. Our findings could be applied to enhance perceptual

decision making in people with developmental [57] or acquired [58] neurological impair-

ments, in the elderly [59], or even potentially amongst those in specialised professional and

sports settings.
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Materials and methods

Ethics

The study was approved by The University of Queensland Human Research Ethics Committee

and the Kantonale Ethik Komission Zurich, Switzerland, and was conducted in accordance

with the Declaration of Helsinki.

Participants

To select an appropriate sample size for the study, we conducted a power analysis (G�Power

version 3.1.3, [60]). This indicated that a sample of 10 participants would be sufficient to detect

a significant effect on discrimination performance in a repeated-measures ANOVA with a

power of 0.80 for an α level of 0.05. This estimate was based on an effect size (Cohen’s d: 0.77)

derived from our previous work on the influence of tRNS on detecting weak visual signals

[18]. We chose to err on the side of caution, and tested 15 participants in each of the three

experiments (bilateral, unilateral left and unilateral right stimulation). Thus, a total of 45

healthy adults participated in the study overall (28 males, aged: 18–27 years, mean age = 22.5

years). All participants had normal or corrected-to-normal vision, and met the inclusion crite-

ria for tRNS as assessed by a checklist prior to the experiment [61]. Written informed consent

was obtained for all participants.

Transcranial random noise stimulation (tRNS)

Each participant received four tRNS noise intensities twice (.25mA, .375mA, .5mA and

.75mA; all delivered at frequencies between 100 and 640 Hz). Noise intensity order was ran-

domized across participants. The tRNS was applied with a 0mA offset, and was applied for 20

trials followed by 20 trials of no-stimulation. This order was counterbalanced across partici-

pants. The tRNS was delivered via a battery-driven electrical stimulator (version DC-Stimula-

tor PLUS, neuro-Conn). The maximum current density was 46.87 μA/cm2, which is well

within published safety limits [60]. Electroconductive gel was applied to the contact side of the

electrode (4 x 4 cm) to reduce skin impedance. In Experiment 1, the visual cortex was stimu-

lated bilaterally, with electrodes placed 3.5 cm above the inion and 6.5 cm left and right of the

midline in the sagittal plane. These coordinates were selected based on previous brain imaging

and stimulation studies that investigated the offline aftereffects of transcranial current stimula-

tion (tCS) on a motion detection task [35, 62–66]. In Experiment 2, the stimulation electrode

was placed over the left visual cortex (positioned as described for Experiment 1), and the refer-

ence electrode was placed over the vertex (Cz in the 10–20 EEG-system). In Experiment 3, the

stimulation electrode was placed at the homologous location over the right visual cortex, and

the reference electrode was placed at the vertex as in Experiment 2.

Visual decision-making task

All experiments took place in a dark and quiet room. Visual stimuli were generated using Matlab

8.0 (2012b) and the Psychophysics Toolbox [67–69], and were presented using a Dell PC

(T3400) running Windows XP with a NVIDIA Quadro FX 1700 graphics card. Stimuli were pre-

sented on an Asus VG428QE color monitor with a resolution of 1920x1080 pixels, and a refresh

rate of 60 Hz. The luminance of the monitor was gamma-corrected with a maximum intensity of

316.5 cd/m2 and minimum of 0.33 cd/m2. Viewing distance was maintained at 62 cm using a

chinrest, meaning the display subtended 46˚ x 27˚ (1.5’ per pixel). We employed a two-alterna-

tive, forced-choice random-dot motion discrimination task [51, 70] in which participants judged

the direction (leftward or rightward) of the coherently moving dots as quickly and as accurately
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as possible. Each block of 20 trials began with the presentation of a central fixation cross (2 s).

On each trial, the fixation cross was presented for 200 ms. The motion stimulus then appeared,

and consisted of 100 square dots (3 x 3’) within an aperture (radius 4.1˚) at the centre of the

screen. The dots were randomly positioned within the aperture on the first frame before rigidly

translating at 1.5 deg/s. If a dot was going to move outside the aperture on the next frame, it was

wrapped to the opposite side of the aperture. The dot-motion display remained visible until

response, up to a maximum duration of 3 s. Participants indicated their choices by pressing the

left or right ‘shift’ key on a standard keyboard with the left or right index finger, respectively. If

the participants did not respond within 3 s, the motion stimulus was extinguished, and the trial

was counted as incorrect and excluded from further analysis. Participants were provided with

immediate auditory feedback. A low-pitched tone indicated a correct response, a high-pitched

tone an incorrect response, and a prolonged low-pitched tone indicated a response that was too

slow (i.e.,> 3 s). A new trial commenced 2 s after the previous response.

A method of constant stimuli was used to determine global motion sensitivity. A propor-

tion of the dots moved coherently to the left or right, and the remaining dots moved in random

directions. Thus, for example, a coherence level of 3% indicates a display in which 3% of the

dots translated coherently (left or right, depending on the trial), while the remaining 97% of

dots moved in random directions. Five logarithmically spaced coherence levels (3%, 6%, 12%,

25% and 50%) were chosen, consistent with previous work [71]. The dots had a limited lifetime

of 5 frames. In keeping with a common convention [72], half of the dots were black and half of

the dots were white, all of which were presented on a mid-gray background.

To measure the effects of tRNS on visual motion discrimination, participants performed 10

blocks of 200 trials each, with different tRNS intensities. The first and the last blocks contained

no tRNS. The four tRNS levels (.25mA, .375mA, .5mA and .75mA) were applied twice each in

blocks 2–9, in random order. The first block served as practice, and the data obtained were not

included in the analyses. Each block contained 200 motion discrimination trials, with an equal

number of presentations of each motion coherence level, presented in a pseudo-randomized

order (the total length of each block was ~ 6 mins). To minimize any build-up of tRNS effects,

stimulation was applied for 20 trials before being turned off for the next 20 trials within each

block. Coherence levels for stimulator-on and stimulator-off trials were balanced for each

observer, and were combined during data analysis. Including electrode setup and data collec-

tion, the entire experiment took around 90 minutes per participant.

Data analysis

The same statistical procedures were used in all three experiments. In each experiment, one

participant was excluded (3 in total) because the individual did not reach 80% correct

responses in the highest coherence condition. The α level was set to 0.05 for all tests, adjusting

for multiple comparisons using the Bonferroni correction. We used the same procedure to

quantify the stochastic resonance effect as in our previous paper [18]. By normalizing the data

to the mean of the noise-free trials, which were interspersed with active tRNS trials throughout

the experiment, we were able to rule out any contribution from practice, learning or fatigue.

The normalized behavioral data were subjected to a repeated-measures ANOVA with the fac-

tors of coherence level (5 levels: 3%, 6%, 12%, 25% and 50%) and tRNS-intensity (4 levels:

.25mA, .375mA, .5mA and .75mA).

Computational modelling

Drift diffusion modeling (DDM) has been employed widely to disentangle the different com-

ponent processes involved in simple decision-making tasks [29, 73]. It captures three distinct
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stages of the decision process: (i) boundary separation, which indicates how much evidence

must be accumulated before a response is made; (ii) information accumulation rate (‘drift

rate’), which is a measure of how rapidly evidence is accumulated and depends on the quality

of evidence in the stimulus, such that easier decisions result in a higher drift rate; and (iii)

non-decision time, which is the time required to encode the stimulus and execute an appropri-

ate motor response [29]. We used the hierarchical drift diffusion model (HDDM) to fit the

DDM parameters to the data [37]. The HDDM uses a Bayesian method for estimating the

DDM parameters, which allows simultaneous estimation of group and subject parameters. A

benefit of the HDDM is that it outperforms other approaches when a small number of trials is

available [74].

We took a similar approach in our implementation of the HDDM as Herz and colleagues

[75]. We fixed the starting parameter, z (also known as the bias parameter), to 0.5, which is

chance level in a 2-AFC task. We modelled the data with the drift rate, bound separation and

non-decision time as free parameters. We obtained parameter estimates for the conditions

noise-on/noise-off, coherence level and tRNS intensity. We normalized the obtained parame-

ters to the zero-noise (no tRNS) trials. This normalization procedure was the same as for the

correct choice index (CCI) data. Markov-chain Monte Carlo sampling methods were used for

accurate Bayesian approximation of the posterior distribution of parameters (generating 20,000

samples, discarding 10,000 samples as burn-in, and keeping every fifth subsequent sample). We

visually inspected all traces of model parameters, their autocorrelation and computed the R-hat

(Gelman-Rubin) convergence statistics to ensure that the models had properly converged [37].

All R-hat values were below 1.1, verifying that convergence had been achieved [76]. For each

experiment, we plotted observed and predicted RTs for the 10, 30, 50, 70 and 90 percentile of

trials (i.e., for the fastest 10% of trials, fastest 30% of trials, etc.) against the cumulative probabil-

ity (see S2 Fig). These results indicated that the HDDM provided a good prediction of the

observed data. The parameter estimates for bound separation and non-decision time (NDT)

are shown in S1 Fig. As a sanity check we also plotted the drift rate against motion coherence

level (S3 Fig). As expected, the drift rate increased with increasing motion coherence. This pro-

vides further confirmation that our model provided an appropriate fit to the data.

Current modelling

We used the SimNibs toolbox to model current flow in the brain [41]. The modelling results

revealed that the bilateral electrode setup affected the visual cortex in both hemispheres,

whereas the unilateral stimulation affected one hemisphere (left or right) only (see Fig 4). The

SimNibs modelling approach does not provide any frequency-specific information. To deter-

mine whether the chosen tRNS frequencies (100–640 Hz) reached the cortex, we estimated the

electrical field strength at frequencies between 100 and 500 Hz, in steps of 50 Hz, with Spheres

2.0 [77]. The estimated electrical field strengths can polarize somatic membranes (polarization

<0.3 mV per V/m electrical field [78]) and modulate network activity at low stimulation inten-

sities (0.2 V/m, [79, 80]). The electrical field strengths obtained with this modelling approach

are estimates of the amount of current that reached the cortex (see S1 Table). A recent study

suggested that these results might be overestimated due to possible inaccurate resistance esti-

mates for different tissues [81], but even very low electrical fields (0.2 V/m) are able to influ-

ence network activity.

Additional analysis

Analysis of the baseline data in all three experiments revealed no significant interaction

between coherence level and tRNS intensity (repeated-measures ANOVA with a within-
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subjects factor of coherence level and between-subjects factor of experiment, F(2,39) = 1.15, p

> .32), suggesting that the stochastic resonance-effect observed in Experiment 1 was not

driven by differences in baseline performance between the three experiments. Across all three

experiments, there was a highly significant main effect of coherence level on performance, as

expected. For completeness, we also report here a small number of significant main effects

which seem to be unrelated to the central stochastic resonance hypothesis under examination

in this study. First, there was a small but consistent main effect of tRNS intensity on accuracy

during right visual cortex stimulation, F(3,39) = 3.13 p = .036, Cohen’s f = 0.49. Post-hoc con-

trasts revealed that this effect was driven by overall poorer performance for the .25mA tRNS

intensity, regardless of motion coherence level, t(69) = -2.78 pcorrected < 0.03. This decrease in

performance was mirrored by a significant main effect of tRNS-intensity on drift rate (see S1

Fig), (F(3,39) = 4.54 p< .01, Cohen’s f = 0.59, which was again specific to the .25mA tRNS

intensity, (t(69) = 2.67 pcorrected = .04), regardless of motion coherence level. Second, there was

a significant main effect of coherence level on bound-separation during stimulation of the

right visual cortex, F(4,52) = 3.09 p = .024, Cohen’s f = 0.4 (see S1 Fig). Post-hoc tests showed

that the bounds were significantly closer together for the highest (50%) coherence condition, t

(55) = 3.16 pcorrected < .04, relative to baseline), but there were no significant effects on bound

separation for the other coherence levels. Although these effects were statistically significant,

there was no interaction between tRNS-intensity and stimulus coherence level, which is a hall-

mark of the stochastic resonance effect. Moreover, it is important to note that these unspecific

effects only occurred for right visual cortex stimulation. In that experiment there was no evi-

dence for a stochastic resonance effect.

Supporting information

S1 Fig. The HDDM results for the bounds and non-decision times (NDT) for Experiments

1–3. (A) Bilateral visual cortex stimulation. (B) Left visual cortex stimulation. (C) Right visual

cortex stimulation. In the right unilateral stimulation condition, there was a significant main

effect of coherence level on bound-separation F(4,52) = 3.088, p = 0.024, Cohen’s f: 0.4. Post-

hoc tests showed that the bounds were significantly closer together for the highest (50%)

coherence condition, t(55) = -3.157, p< .01. There were no other significant effects for the

bounds or non-decision times. �pcorrected < 0.05.

(TIFF)

S2 Fig. Quantile probability plots of mean response times in the motion discrimination

task, plotted separately for the three stimulation conditions in Experiments 1, 2 and 3. (A)

Bilateral visual cortex stimulation. (B) Left visual cortex stimulation. (C) Right visual cortex

stimulation. Observed response times for five quantiles (10, 30, 50, 70 and 90%) are shown in

blue, plotted as a function of their cumulative probability. Red symbols show predicted quan-

tile means, with error bars indicating the standard deviation of the posterior predictive distri-

bution of the model. The plots show that the hierarchical drift diffusion model provides a good

fit to the data, and that the mean response times are comparable across the experiments.

(TIFF)

S3 Fig. Plot of average drift rates in the bilateral visual cortex stimulation condition for

different motion-coherence levels. As expected the drift rate increases with increasing coher-

ence.

(TIFF)

S1 Table. Modelled electrical field strengths for different transcranial electrical current

stimulation intensities and frequencies. The modelling suggests that all stimulation
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frequencies were transmitted to the brain, and that the current applied was of sufficient inten-

sity to reach the cortex (V/m). Neuronal membranes can be polarized by 0.3 mV per V/m elec-

trical field strength [78] and network activity can be modulated at intensities from 0.2 V/m

[79, 80]).
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