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Abstract

A common challenge in systems biology is quantifying the effects of unknown parameters

and estimating parameter values from data. For many systems, this task is computationally

intractable due to expensive model evaluations and large numbers of parameters. In this

work, we investigate a new method for performing sensitivity analysis and parameter esti-

mation of complex biological models using techniques from uncertainty quantification. The

primary advance is a significant improvement in computational efficiency from the replace-

ment of model simulation by evaluation of a polynomial surrogate model. We demonstrate

the method on two models of mating in budding yeast: a smaller ODE model of the heterotri-

meric G-protein cycle, and a larger spatial model of pheromone-induced cell polarization. A

small number of model simulations are used to fit the polynomial surrogates, which are then

used to calculate global parameter sensitivities. The surrogate models also allow rapid

Bayesian inference of the parameters via Markov chain Monte Carlo (MCMC) by eliminating

model simulations at each step. Application to the ODE model shows results consistent with

published single-point estimates for the model and data, with the added benefit of calculat-

ing the correlations between pairs of parameters. On the larger PDE model, the surrogate

models allowed convergence for the distribution of 15 parameters, which otherwise would

have been computationally prohibitive using simulations at each MCMC step. We inferred

parameter distributions that in certain cases peaked at values different from published val-

ues, and showed that a wide range of parameters would permit polarization in the model.

Strikingly our results suggested different diffusion constants for active versus inactive

Cdc42 to achieve good polarization, which is consistent with experimental observations in

another yeast species S. pombe.

Author summary

Mathematical models in systems biology often have many parameters, such as biochemi-

cal reaction rates, whose true values are unknown. When the number of parameters is

large, it becomes computationally difficult to analyze their effects and to estimate
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parameter values from experimental data. This is especially challenging when the model is

expensive to evaluate, which is the case for large spatial models. In this paper, we intro-

duce a methodology for using surrogate models to drastically reduce the cost of parameter

analysis in such models. By using a polynomial approximation to the full mathematical

model, parameter sensitivity analysis and parameter estimation can be performed without

the need for a large number of model evaluations. We explore the application of this

methodology to two models for yeast mating polarization. A simpler non-spatial model is

used to demonstrate the techniques and compare with published results, and a larger spa-

tial model is used to demonstrate the computational savings offered by this method.

Introduction

Mathematical models provide a more quantitative description of biological systems compared

to qualitative arrow diagrams. A major tool of mathematical modeling is differential equations

representing the dynamics of various components of the system which may be a cell, organism,

or ecosystem [1–3]. In models describing cellular dynamics, the components are typically dif-

ferent protein species, and their changing levels depend on the biochemical reactions between

the species [4, 5]. If spatial dynamics, such as diffusion and advection, are present and consid-

ered, partial differential equation (PDE) models must be used; otherwise, the system can be

modeled by ordinary differential equations (ODE).

One of the challenges in modeling is identifying the parameters from data [6, 7]. For cellu-

lar models these parameters include the kinetic rate constants in the various reaction terms, as

well as initial conditions of the modeled species. Two important tools of parameter analysis are

sensitivity analysis and parameter estimation. Parameter sensitivity analysis is used to quantify

the degree to which each parameter affects an output of interest. Two general types of sensitiv-

ity analysis, local and global sensitivity analysis, have been widely used. In local sensitivity anal-

ysis, sensitivities are evaluated at a single parameter set, whereas in global sensitivity analysis,

sensitivities are evaluated across the entire parameter space. These analyses have been widely

applied, such as to models in epidemiology [8–12], signalling pathways [13–15], physiology

[16], and wound healing [17].

For parameter estimation, two major approaches are Bayesian and maximum likelihood [7,

18]. The primary difference between these two is that Bayesian methods infer a probability dis-

tribution for the parameters based on the available data, whereas maximum likelihood meth-

ods will provide a single-point estimate. In systems biology, parameter estimation has been

widely applied, via both Bayesian inference [11, 19–21] and optimization methods [22–25]. An

important advantage of the Bayesian approach is a more explicit representation of the uncer-

tainty in the parameter estimates; however, that usually comes at a price of high computational

cost for estimating the distribution by extensive sampling.

In general, global sensitivity analysis and parameter estimation both require sampling of

the parameter space. For systems with large parameter counts, this can become very challeng-

ing due to the curse of dimensionality. Too many parameters can make sampling of the

parameter space computationally intractable, especially for partial differential equation models

that are expensive to solve. Many advances have been made in reducing computational cost in

the field of uncertainty quantification (UQ), which is concerned with the characterization and

reduction of uncertainty in mathematical models [26–28]. Polynomial approximation has

proven to be a key tool in uncertainty quantification. System outputs can be approximated by
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an orthogonal polynomial expansion (polynomial chaos), allowing for straight-forward com-

putation of statistical quantities [29].

In this paper, we apply a method for parameter sensitivity analysis and parameter

estimation that uses polynomial approximation to significantly reduce the computational

cost for large problems. A key step in the proposed method is the construction of a polyno-

mial surrogate model. This surrogate model allows for sampling methods to be applied with-

out the need to solve the full system for each sample. The use of surrogate models (e.g.

support vector machines) for biological systems has been explored previously in [16], and

the use of polynomial approximations for uncertainty analysis has been investigated in

[30, 31].

To demonstrate the capability of the proposed method, we apply it to models of yeast cell

polarization. Cell polarization is the process by which intracellular species (e.g. proteins)

become asymmetrically localized, which is fundamental to cellular processes such as cell divi-

sion, differentiation, and movement [32, 33]. Failure in polarization can lead to cell death or

dysfunction, and abnormal cell polarity is characteristic of cancer and may contribute to

tumor initiation [34]. Cell polarization has been extensively studied in the budding yeast

S. cerevisiae due to its pronounced polarity and genetic tractability [35, 36]. The models ana-

lyzed in this paper describe polarization in response to pheromone during mating in budding

yeast.

We consider two models: an ODE model for only one module of the system (the hetero-

trimeric G-protein cycle), and a spatial model that incorporates a larger signaling pathway

as well as membrane diffusion of the proteins. We will refer to these models as Model 1

and Model 2, respectively. Model 1 was proposed in [37] and has eight kinetic rate parame-

ters, six of which have been experimentally measured or approximated from the literature.

The remaining two parameters were estimated in [37] via an optimization method. This

model is used to demonstrate the method and for comparison with the previous results.

Model 2 is a mechanistic reaction-diffusion model, which is an extension of the model con-

sidered in [38]. This model has 35 unknown parameters. Parameter sensitivity analysis and

parameter estimation have not previously been performed for this model, in part due to the

large number of parameters. We seek to utilize polynomial surrogate models to quantify the

effects of the parameters on polarization and to infer the biologically reasonable parameter

values.

It should be noted that the results of parameter sensitivity and parameter estimation are

dependent on the assumed model structure. In systems biology there is often significant uncer-

tainty in the model structure itself. Some work has been done on quantifying the structural

uncertainty in models of biological networks and reconstructing networks from data [39–41].

However, this is beyond the scope of the present work and this source of uncertainty is not

addressed in this paper.

The structure of this paper is as follows. We first present the mathematical methods for sur-

rogate model construction and how to perform parameter sensitivity analysis and parameter

estimation using a polynomial surrogate. We then demonstrate the methods on Model 1, per-

forming sensitivity analysis and estimation in two cases: first, varying only the two free param-

eters, and second, varying all eight parameters. We then present Model 2 and use sensitivity

analysis to significantly reduce the parameter count. Bayesian parameter estimation is then

performed in the reduced parameter space. We discuss the computational savings afforded by

the use of a polynomial surrogate for parameter estimation in Model 2. Finally, we discuss bio-

logical implications of the results and future applications of the polynomial surrogates in

Bayesian model analysis.

Parameter uncertainty quantification for spatial models
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Methods

Surrogate model construction

Biological systems often possess many parameters whose true values are unknown. In order to

gain an understanding of the effects of each parameter, we need to sample the parameter

space. However, sampling a high-dimensional space is a difficult task. For example, in the next

section we consider a large PDE model with 35 parameters. In this case, even with only two

sample points in each dimension we would need 235 * O(1010) samples, and each sample

requires solving a PDE system. This makes direct sampling of the PDE impractical. Instead,

we may choose a scalar response function that quantifies an output of interest and by assuming

that this response function depends smoothly on the parameters, a polynomial can be fit using

far fewer sample points. Since we are performing parameter estimation, the response function

depends not only on what quantity is of interest but also on what experimental data are

available.

If multiple response functions are of interest (for example, different time points or different

values of some input), there are two options—one can either increase the number of variables

in the polynomial or use multiple polynomials. For example, if measurements are taken at sev-

eral time points t1,. . .,tk, then either t may be introduced as a variable of the polynomial or a

polynomial Pi can be fit for each time point (i = 1,. . ., k). The choice can be made based on

computational cost. If data are sparse, it is usually best to fit multiple polynomials, which is the

approach taken in this work. Once the polynomial is established, we can use it as a surrogate

for the full model so that sampling of the parameter space is far less expensive.

To perform the polynomial fitting, we use an orthogonal polynomial basis from the general-

ized polynomial chaos (gPC) approach [26, 29]. Thus the choice of basis for the polynomial

space depends on the assumed probability distribution of the parameters. For the examples

considered in this work, we assume that the parameters are independent and identically dis-

tributed, and uniformly distributed in a fixed range. This leads to the use of a Legendre poly-

nomial basis. All parameters are mapped to a standard reference interval of [−1, 1]. We do not

consider any other distributions, but the same principles can be applied if the parameters have

a Gaussian distribution (Hermite polynomials), Gamma distribution (Laguerre polynomials),

or Beta distribution (Jacobi polynomials).

Recall that the number of basis functions for the set of polynomials of degree up to d in n
variables is ð

nþd
n Þ. The polynomial coefficients can be solved for in a number of ways, depend-

ing on the number of samples available. If the number of samples is exactly ð
nþd
n Þ, then the coef-

ficients can be solved for by direct interpolation. This case should generally be avoided as

interpolation is notoriously prone to instability. If the number of samples is greater than ð
nþd
n Þ,

least squares approximation can be used. If the number of samples is less than ð
nþd
n Þ, which is

the case of interest for large problems, one may use compressed sensing methods to solve for

the coefficients [42]. This approach has been well established for UQ problems [43, 44].

The samples can be chosen in a variety of ways (e.g. uniform random sampling, sparse

grids, Latin hypercube sampling, etc.). A quasi-optimal sampling scheme for least squares

polynomial fitting has been explored in [45]. In the applications presented here, we use uni-

form random sampling. Details of the polynomial fitting are presented in Algorithm 1.

Algorithm 1 Polynomial fitting algorithm.
1. Determine the desired polynomial degree and how many samples can
reasonably be obtained.
2. Sample the parameter space using the sampling method of your choice.
The sampling method may depend on whether you are undersampling or

Parameter uncertainty quantification for spatial models
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oversampling (e.g. for oversampling, you may want to use quasi-optimal
points for least squares [45]).
3. Using the samples from step 2, set up a linear system Ax = b where x
is the vector of polynomial coefficients, A is a matrix whose entries
are the basis polynomials evaluated at the sample points (each row cor-
responds to one sample, each column corresponds to one basis polyno-
mial), and b is a column vector of the model output at the sample
points.
4. Solve for the coefficients. If undersampling, perform compressed
sensing with ℓ1-minimization. If oversampling, perform least-squares
fitting.

The accuracy of the polynomial can be estimated by cross-validation. In cross-validation,

the model is evaluated at additional sample points that were not used in the polynomial fitting.

The model output can then be compared with the polynomial value at those points to deter-

mine the error. One may also perform k-fold cross validation in which the total set of sample

points is partitioned into k equally sized subsets; call them Oi, i = 1,. . ., k. Cross-validation is

then performed k times. For each i, the samples in Oi are used to evaluate the error and the

remaining samples are used to fit the polynomial. The acceptable level of error will depend on

the particular application.

Parameter sensitivity analysis and parameter estimation

Once the polynomial surrogate model is constructed, it can be used to perform parameter sen-

sitivity analysis and parameter estimation (Fig 1). Any sensitivity or estimation method can be

applied using the polynomial surrogate model to decrease computational cost. In the work

presented here, the methods are as follows.

We define the sensitivity of a response function z(p1,. . ., pn) to a parameter pj as

Sj ¼ E @z
@pj

� �
. We refer to Sj as the sensitivity coefficient for pj. Note that, while the partial deriv-

ative is typically used for local sensitivity analysis, the expectation makes this a global measure

of sensitivity since @z
@pj

is integrated over the entire parameter space. Using the surrogate model,

the parameter sensitivities can be analytically computed by taking partial derivates and evalu-

ating Sj ¼
R

@z
@pj

dr, where ρ is the probability measure associated with the n-dimensional

parameter space.

We can then assess the importance of each parameter based on its sensitivity. If the

response is not sensitive to a parameter pj, then the dynamics of the model will likely remain

unchanged if pj is fixed. Further, pj may be non-identifiable so that multiple values can produce

an equally good fit to data. Thus, we may use the sensitivity analysis to decrease the parameter

count by fixing those parameters that have small sensitivity coefficients.

For parameter estimation, we use Markov chain Monte Carlo (MCMC) method with

Metropolis-Hastings algorithm [46]. MCMC is a method for sampling the posterior distribu-

tion of the parameters—that is, the parameter distribution that corresponds to the distribution

of the provided data, given an assumed prior distribution. For the prior distribution, we use

the parameter distribution that was assumed in the construction of the surrogate polynomial

(in this case, uniformly distributed within a range). This Bayesian approach to parameter esti-

mation provides both the most probable parameter set (or sets) as well as a characterization of

the parameter uncertainty.

MCMC methods have become a popular choice for parameter estimation in biological sys-

tems [21, 47, 48]. However, these methods are often prohibitively expensive for computation-

ally intensive models, since each sample in the Markov chain requires a model evaluation. By

using the polynomial surrogate, the cost is greatly reduced. Further, it has been shown that in

Parameter uncertainty quantification for spatial models
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the generalized polynomial chaos framework, the polynomial fit and the resulting posterior

distribution have similar convergence properties [49]. Thus, if the error in the polynomial fit is

small, we expect the error in the posterior distribution to also be small.

A key question is knowing when the MCMC has converged, meaning that the distribution

of the Markov chain samples has converged to the posterior distribution. Several convergence

diagnostics for MCMC have been proposed [50, 51]. We employ a simple test which is to run

multiple Markov chains from different initial parameter sets and compare the resulting distri-

butions. Roughly speaking, if the independent chains stabilize at the same distribution, then

the MCMC has converged. Since the chains are independent, they can be run in parallel to

save computing time. We choose MCMC over alternative sampling methods [20, 52, 53]

because of its efficiency. Since MCMC is based on a Markov chain, the samples tend toward

higher probability areas of the parameter space in contrast to schemes that may sample the

entire space.

Fig 1. Flowchart for parameter analysis described in methods. The polynomial fitting procedure is described in

Algorithm 1. The parameter space samples are generated by model simulation. The sensitivity analysis and parameter

estimation use the fitted surrogate polyomial.

https://doi.org/10.1371/journal.pcbi.1006181.g001
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All codes have been made publicly available on GitHub in the repository https://github.

com/chingshanchou/UQ-Yeast-Mating-Model.

Experimental techniques

The yeast strain CGY-021 is a derivative of W303-1A and contains the bar1Δ mutation that

prevents α-factor degradation by deletion of the Bar1 protease. GFP has been integrated geno-

mically at the C-terminus of Ste20 to create a Ste20-GFP fusion protein that is a fluorescent

reporter for active Cdc42 [54]. The genotype of the strain CGY-021 is MATa, can1-100, ade2-
1, leu2-3,-112, his3-11,-15, trp1-1, ura3-1, bar1::hisG, ste20Δ::STE20-GFP-HIS5.

Cells were cultured in YPD (yeast extract-peptone-dextrose) media supplemented with ade-

nine. Cells were treated for 60 minutes with 10 nM α-factor and then fixed with formaldehyde.

Visualization was performed using a 60x objective (NA = 1.4) on an Olympus Fluoview 1000

Spectral confocal microscope. The resulting images were analyzed in Matlab and the mem-

brane fluorescent intensity was quantified over the periphery of the cell to generate the polari-

zation profile that was averaged over 20 cells and converted into a polarization factor value.

Results

We apply the proposed method to two models of the yeast mating response. Haploid budding

yeast cells assume two mating types, a or α, and each secretes a pheromone (a-factor and α-fac-

tor, respectively) to attract the opposite type. We consider the response of an a-cell to α-factor,

although the two cases are nearly identical [55]. During the mating process, α-factor binds and

activates the α-factor receptors on the a-cell surface, which leads to a sequence of reactions

that results in the recruitment of polarization proteins to the cell membrane, causing the for-

mation of the mating projection. These reactions occur in two G-protein cycles (unidirectional

cycles formed by the activation and deactivation of G-proteins) which are the heterotrimeric

and Cdc42 G-protein cycles [36, 56, 57]. A description of these cycles can be found in [38],

and are summarized below.

First, the pheromone α-factor (L) binds the α-factor receptor (R) to form the receptor-

ligand complex (RL). This activates the heterotrimeric G-protein (G) to form active α-subunit

(Ga) and free Gβγ (Gbg). Gα can be deactivated to form inactive α-subunit (Gd), which binds

Gβγ to reform G. The free Gβγ then recruits Cdc24 (C24) to the cell membrane (C24m),

which activates Cdc42 (C42) to its active form (C42a). Active Cdc42 then binds the scaffold

protein Bem1 (B1) and recruits it to the membrane (B1m). Membrane-bound Bem1 is then

able to recruit more Cdc24 to the membrane, creating a positive feedback loop. In addition,

active Cdc42 turns on the kinase Cla4 (Cla4a), which inhibits Cdc42 activation by negatively

regulating Cdc24. The pathway is summarized in the schematic diagram in S1 Fig.

Two key features of this process are the positive and negative feedback loops. In the positive

feedback loop, membrane-bound Bem1 binds and activates Cdc24 which catalyzes the forma-

tion of active Cdc42 which binds more Bem1. In the negative feedback loop, active Cdc42 acti-

vates Cla4 which inhibits the membrane-bound Cdc24, leading to a lower activation rate of

Cdc42. Cdc42 is of particular interest since it plays a key role in establishing polarity and is

highly conserved from yeasts to humans [58].

Model 1: The heterotrimeric G-protein cycle

To demonstrate our methods, we first consider a simple model: an ODE model of the hetero-

trimeric G-protein cycle taken from [37]. These equations represent the first stage of the
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system that senses the input ligand (L) α-factor:

d½R�
dt
¼ � kRL½L�½R� þ kRLm½RL� � kRd0½R� þ kRs; ð1Þ

d½RL�
dt
¼ kRL½L�½R� � kRLm½RL� � kRd1½RL�; ð2Þ

d½G�
dt
¼ � kGa½RL�½G� þ kG1½Gd�½Gbg�; ð3Þ

d½Ga�
dt
¼ kGa½RL�½G� � kGd½Ga�; ð4Þ

where the k’s are reaction rates. Here, [Gd] = Gt − [G] − [Ga] and [Gbg] = Gt − [G], with Gt
being the total number of G-protein molecules per cell. The model output is the fraction of

free Gβγ (Gbg/Gt), and the time unit is seconds. The model contains 9 parameters (8 rate con-

stants and Gt), 7 of which were determined in [37] from experimental measurements and

information from the literature. The remaining two parameters (kGa and kGd) were fit to data

in [37] via least squares minimization. These parameter values are given in S1 Table. We focus

first on this two-parameter problem, and use the proposed methods to corroborate the pub-

lished parameter estimates. Later, we will allow all eight kinetic parameters to vary to deter-

mine if the same parameter estimates are obtained in the larger parameter space. In the

2-dimensional sensitivity analysis and parameter estimation, we will assume that the parame-

ters kGa and kGd are log-uniformly distributed in the intervals [10−7, 10−3] and [10−3, 10],

respectively, which span the relevant ranges for the parameters.

Construction of the polynomial surrogate model. Since the ultimate goal is parameter

estimation, the response functions of interest are those outputs for which we have experimen-

tal data. Using the data from [37], we have measurements of the free Gβγ fraction (Gbg/Gt) at

the time points and α-factor levels specified in S2 Table.

We first construct a polynomial surrogate model that approximates the ODE model which

allows us to sample the parameter space at a much lower computational cost. In this example,

we construct a set of polynomials in two variables (kGa and kGd), whose output represents Gbg/

Gt for the time-course and dose-response data. Since the dimension of the polynomial space is

relatively low, we can perform polynomial fitting by least squares approximation. To fit the

polynomial, we first map the parameter ranges to [−1, 1], and then fit the polynomial using a

Legendre basis (see Methods).

The degree of the polynomial as well as the number of points used for least squares fitting

can be adjusted depending on the error of the resulting polynomial. The error can be deter-

mined by calculating the difference between the polynomial and the simulated full model at

randomly sampled points using cross-validation. Since the number of samples may need to be

adjusted, it is best to use a sampling technique that allows for the sequential addition of points,

such as simple random sampling or Sobol sampling.

In Fig 2A, we use uniform random sampling to fit a 5th order polynomial. The error of the

polynomial stabilizes quite rapidly with the addition of more sample points, and settles to a

roughly constant standard deviation (with a mean near 0) when the number of sample points

is 4 times the number of basis polynomials. In Fig 2B, we fit polynomials of varying degree (up

to degree 10) using 1000 sample points. With this relatively large sample size, the standard

deviation of the polynomial error decreases as the polynomial degree grows. Thus, the polyno-

mial can be made more accurate by increasing the number of samples and the polynomial

Parameter uncertainty quantification for spatial models
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degree. It should be noted that for a small sample size, increasing the degree does not necessar-

ily improve the polynomial error due to extrapolation error and Runge’s phenomenon [59].

We plot the computational cost of the polynomial fitting as a function of number of samples

or polynomial degree at the bottom of Fig 2. We find that the cost is primarily determined by

sample size.

Sensitivity analysis reveals importance of kGa and kGd. For the sensitivity analysis and

parameter estimation, we use the 10th degree polynomial fit from 1000 sample points. Since

each data point in S2 Table acts as its own response function, we obtain 15 sensitivity coeffi-

cients for each parameter (one per response function). These coefficients are given in Table 1

along with their means which give an idea of the overall sensitivity of the system to the parame-

ters kGa and kGd. We observe from the sensitivity coefficients that a larger value of kGa is

associated with a larger value of Gbg/Gt for all of the data points, and a larger value of kGd is

associated with a smaller value of Gbg/Gt. Interestingly kGa has a larger effect on the output

than kGd, but both effects are substantial (magnitude between 0.1 and 1), and the sensitivities

of the data points are close to their mean.

Parameter estimation of kGa and kGd is in agreement with previous estimates. We per-

form parameter estimation using the data from [37] and described in S2 Table. Markov chain

Monte Carlo with a 10th degree polynomial surrogate generates the parameter distributions

shown in Fig 3A and 3B over a range of four orders of magnitude. The length of the Markov

chain is 106 steps with a burn-in period of 105 steps. The distribution has a single mode at

P� ¼ ðk�Ga; k
�
GdÞ ¼ ð7:1� 10� 6; 9:0� 10� 2Þ, which is close to the optimal (maximum likeli-

hood) estimate Popt = (1 × 10−5, 1.1 × 10−1) from [37]. The units for kGa and kGd are (molecules

per cell)−1s−1 and s−1, respectively. Simulating the model with P� produces a good fit to the

time-course and dose-response data shown in Fig 3C and 3D. The mean squared errors for P�

is 4.1 × 10−4, while the mean squared error for Popt is 1.3 × 10−4. Finally, plotting the two-

Fig 2. Polynomial errors. Error mean and standard deviation (measured using 100 random samples by cross-validation) for different

polynomial fits (top), and the cost to compute the polynomials (bottom). (A) 5th order polynomials fit using different numbers of sample

points. (B) Polynomials of varying degree using least squares fitting with 1000 points. Polynomial error is the average difference between the

polynomial and the model output, and the error bars indicate the standard deviation of the error over the 100 sample points.

https://doi.org/10.1371/journal.pcbi.1006181.g002
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dimensional distributions of kGa and kGd show that they are highly correlated with the highest

probability region lying along the diagonal (Fig 3B).

Allowing all 8 parameters to vary produces parameter estimates consistent with pub-

lished values. We now apply the same parameter estimation procedure to the G-protein

model allowing all 8 of the kinetic parameters to vary. In other words, we assume that all the

parameters are unknown and would like to use our model to estimate these parameters. The

parameters are assumed to be log-uniformly distributed in the ranges in S3 Table. All parame-

ter ranges span two orders of magnitude (the ranges for kGa and kGd are shrunk from the previ-

ous section but still contain P� and Popt).
For this problem we choose a 5th degree polynomial surrogate that allows oversampling;

the 5th degree polynomial space in 8 parameters has 1287 basis polynomials. We perform uni-

form random sampling on 1500 points generated by model simulation to construct the poly-

nomial by least squares fitting. The resulting polynomial has mean absolute error 2.5 × 10−2.

Using the polynomial as a surrogate for the full model, we compute parameter sensitivities

for the 8 parameters, and the mean sensitivities over the dataset are given in Table 2. As

expected, we observe that the output (Gbg/Gt) is most sensitive to kGa and kGd whose sensitivi-

ties decreased slightly compared to when the other 6 parameters are fixed.

Next, we perform parameter estimation on all 8 parameters and obtain the distributions in

Fig 4A. The distributions have a single relatively sharp peak for 4 parameters (kRL, kRd1, kGa,
and kGd), which correspond to the parameters with the highest sensitivities. The peak values in

these cases are close to the measured or estimated parameter values from [37]. The other 4

parameters possess broader distributions with the distribution for heterotrimeric G-protein

reassociation (kG1) being nearly flat consistent with its low sensitivity. The values of the rate

constants for receptor synthesis (kRs) and degradation (kRd0, kRd1) are somewhat lower than

the previous estimates. However, given the uncertainty in the parameter estimates, the differ-

ence is not statistically significant; the measured values are less than 1.5 standard deviations

away from the mean.

Table 1. Sensitivities of output (Gbg/Gt) to kGa and kGd based on a 10th degree polynomial fit. Sensitivity coeffi-

cients are given for different time points (T, secs) and α-factor concentrations (L, nM), as well as the overall mean.

Data points Sensitivity to kGa Sensitivity to kGd
L = 1000 T = 10 4.6 × 10−1 −2.4 × 10−1

L = 1000 T = 30 4.5 × 10−1 −3.0 × 10−1

L = 1000 T = 60 4.5 × 10−1 −3.4 × 10−1

L = 1000 T = 120 4.3 × 10−1 −3.7 × 10−1

L = 1000 T = 210 4.3 × 10−1 −4.0 × 10−1

L = 1000 T = 300 4.2 × 10−1 −4.0 × 10−1

L = 1000 T = 450 4.0 × 10−1 −4.0 × 10−1

L = 1000 T = 600 3.9 × 10−1 −4.0 × 10−1

L = 1 T = 60 3.5 × 10−1 −2.0 × 10−1

L = 2 T = 60 3.8 × 10−1 −2.3 × 10−1

L = 5 T = 60 4.2 × 10−1 −2.7 × 10−1

L = 10 T = 60 4.4 × 10−1 −2.9 × 10−1

L = 20 T = 60 4.4 × 10−1 −3.1 × 10−1

L = 50 T = 60 4.4 × 10−1 −3.2 × 10−1

L = 100 T = 60 4.5 × 10−1 −3.2 × 10−1

Mean sensitivity 4.2 × 10−1 −3.2 × 10−1

https://doi.org/10.1371/journal.pcbi.1006181.t001
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We determined the mean values for each parameter distribution to create the mean param-

eter set (Pmean), and simulated the model with these parameter values. This parameter set is

given in Table A in S1 Text. The resulting time-course and dose-response curves compared to

data are shown in Fig 4B. The mean squared error for the mean parameter set is 6.4 × 10−4,

which is close to the mean squared error for Popt (1.3 × 10−4).

The correlation between pairs of parameters can be calculated along with the individual dis-

tributions. A graphical representation of the correlations among the 8 parameters is given in

S2 Fig. Note that kGa and kGd are still strongly correlated. There are weaker correlations

between kRL and kRLm and between kRs and kRd1, which represent pairs of rate constants for

Fig 3. Parameter estimation of kGa and kGd in ODE model (1)–(4). Probability distributions are obtained via Markov chain Monte Carlo

and a 10th degree polynomial. (A) Distributions for individual parameters, normalized so that the total area is equal to 1. Red lines indicate

the optimal (maximum likelihood) parameter values Popt. (B) Colormap of the two-dimensional joint probability distribution of kGa and kGd
from the MCMC chain. Red indicates high probability along the diagonal; blue indicates low prsobability. (C, D) Model (blue) and

polynomial (red) outputs corresponding to parameter sets P� and Popt, respectively, compared with the data (black) from [37] for the time-

course (top) and dose-response (bottom) experiments.

https://doi.org/10.1371/journal.pcbi.1006181.g003
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opposing reactions in ligand binding/unbinding and receptor synthesis/degradation,

respectively.

Model 2: Mechanistic spatial model for yeast cell polarization

To capture the spatiotemporal dynamics of yeast cell polarization during mating, one needs a

mechanistic spatial model. In this model, protein spatial dynamics are driven by two

Table 2. Sensitivities of the ODE model output (Gbg/Gt) to all 8 kinetic parameters using a 5th degree surrogate

polynomial. Both mean sensitivities and the mean of the absolute value of the sensitivities are shown.

Parameter Mean sensitivity Mean abs. value of sensitivity

kRL 8.2 × 10−2 8.2 × 10−2

kRLm −3.2 × 10−2 3.2 × 10−2

kRs 9.2 × 10−3 1.2 × 10−2

kRd0 1.1 × 10−3 6.3 × 10−3

kRd1 −6.2 × 10−2 6.2 × 10−2

kG1 5.6 × 10−4 7.4 × 10−3

kGa 3.1 × 10−1 3.1 × 10−1

kGd −2.6 × 10−1 2.6 × 10−1

https://doi.org/10.1371/journal.pcbi.1006181.t002

Fig 4. MCMC results for ODE model (1)–(4). (A) Parameter distributions from ODE model (1)–(4) for all 8 kinetic parameters obtained via

MCMC. Red vertical lines indicate the parameter values from experiments or maximum likelihood estimates [37]. Markov chain length was 106

steps. (B) Model simulation and polynomial outputs using the mean parameter set from the 8-parameter MCMC compared with the time-

course (top) and dose-response (bottom) data.

https://doi.org/10.1371/journal.pcbi.1006181.g004
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processes: surface diffusion on the cell membrane and reactions with other proteins in the

system. This leads to a system of reaction-diffusion equations, similar to the model presented

in [38]. The first six equations represent the dynamics of the heterotrimeric G-protein cycle,

and the remaining equations represent the dynamics of the Cdc42 G-protein cycle. The dis-

tance unit is μm, the time unit is seconds, and concentration is measured as the number of

molecules per unit surface area or volume (except for the ligand L, which is measured in

nM).

@½R�
@t
¼ DRr

2

m½R� � kRL½L�½R� þ kRLm½RL� � kRd0½R� þ pskRs ð5Þ

@½RL�
@t
¼ DRLr

2

m½RL� þ kRL½L�½R� � kRLm½RL� � kRd1½RL� ð6Þ

@½G�
@t
¼ DGr

2

m½G� � kGa½RL�½G� þ kG1½Gd�½Gbg� ð7Þ

@½Ga�
@t
¼ DGar

2

m½Ga� þ kGa½RL�½G� � kGd½Ga� ð8Þ

@½Gbg�
@t

¼ DGbgr
2

m½Gbg� þ kGa½RL�½G� � kG1½Gd�½Gbg� ð9Þ

@½Gd�
@t
¼ DGdr

2

m½Gd� þ kGd½Ga� � kG1½Gd�½Gbg� ð10Þ

@½C24m�
@t

¼ DC24mr
2
m½C24m� þ k24cm0ðGbg�nÞ½C24c� þ k24cm1ðB1�Þ½C24c�

� k24mc½C24m� � k24d½Cla4a�½C24m�
ð11Þ

@½C42�

@t
¼ DC42r

2

m½C42� � k42a½C24m�½C42� þ k42d½C42a� ð12Þ

@½C42a�
@t

¼ DC42ar
2

m½C42a� þ k42a½C24m�½C42� � k42d½C42a� ð13Þ

@½B1m�
@t

¼ DB1mr
2

m½B1m� þ kB1cm½C42a�½B1c� � kB1mc½B1m� ð14Þ

@½Cla4a�
@t

¼ kCla4aðC42a�t Þ � kCla4d½Cla4a�: ð15Þ
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The coefficients are given by

B1� ¼
B1�t

1þ ðgGbg�n ½B1m�Þ� h
; B1�t ¼

R

S½B1m�ds
SA

; g ¼
SA

2
R

S½B1m�ds
;

Gbg�n ¼
1

1þ ðdðGbgnÞÞ
� q ; d ¼

SA
R

SðGbgnÞds
; ðGbgnÞ ¼

½Gbg�
½G�

0

;

C42a�t ¼
R

S½C42a�ds
SA

;

ps ¼
½C42a�
C42a�t

if C42a�t > 0; else ps ¼ 1;

where SA is the surface area of the cell. The initial conditions are given by

½R�
0
¼ Rt=SA; where Rt is the total amount of R;

½G�
0
¼ Gt=SA; where Gt is the total amount of G;

½C42�
0
¼ C42t=SA; where C42t is the total amount of C42;

½RL�
0
¼ 0; ½Ga�

0
¼ 0; ½C24m�

0
¼ 0; ½C42a�

0
¼ 0; ½B1m�

0
¼ 0:

½Gd� ¼ ½G�
0
� ½G� � ½Ga�;

½Gbg� ¼ ½G�
0
� ½G�:

The conservation equations are

V � ½C24c� ¼ C24t �

Z

S
½C24m�ds;

V � ½B1c� ¼ B1t �

Z

S
½B1m�ds;

where C24t and B1t are the total amounts of C24 and B1 respectively, V is the volume of the

cell, and [C24c] and [B1c] are the concentrations of C24 and B1, respectively, in the cytoplasm.

Thus the total amounts of Bem1 and Cdc24 are conserved. Estimates from previous work and

ranges for the parameters are given in Table 3.

In our numerical simulations, the cell membrane is simulated as a circle centered at the ori-

gin with radius 2 μm. The pheromone input is administered as a gradient from the positive x-

direction with midpoint of 10 nM and slope of 0.1 nM/μm. The surface diffusion of a quantity

W on a circle is given by

r2
mW ¼Wss

where s is an arc length parameter, ds2 = dx2 + dy2. The computational domain is parametrized

by α 2 [0, 2π], where α denotes the angle from the negative x-axis. The numerical method uti-

lizes a second order finite difference discretization for the spatial derivatives and an implicit

Crank-Nicolson method for the time derivative. The spatial mesh consists of 400 equally

spaced points. Each simulation is run to steady state (t = 1, 000s). More detail about the

numerical method can be found in the Supplementary Material (S2 Text).

Surrogate model construction using an underdetermined fit. The quantity of interest in

this model is the extent of cell polarization, more specifically, the extent of active Cdc42 polari-

zation. Therefore, we consider a scalar function of active Cdc42 (C42a), which we call the
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polarization factor (PF) of active Cdc42, defined by

PFðC42aÞ ¼ 1 � 2
SpðC42aÞ

SA
;

where Sp(C42a) is the surface area at the front of the cell that encompasses half of the polarized

component C42a [60]. An unpolarized cell would have a PF of 0 and an infinitely polarized

cell would have a PF of 1. One disadvantage of this measure of polarization is that it considers

only the shape of the C42a curve and not the magnitude; thus PF may be close to 1 even if only

a small amount of Cdc42 is activated and localized. To remedy this issue, we introduce a cut-

Table 3. Parameter estimates and ranges from previous work. SA denotes cell surface area and V denotes cell volume. The distance unit is μm, the time unit is seconds,

and concentration is measured as the number of molecules per unit surface area or volume (unless otherwise specified).

Parameter Description Previous estimate Range Ref.

DR Diffusion of R 0.001 ±10% [60, 61]

DRL Diffusion of RL 0.001 ±10% [60, 61]

DG Diffusion of G 0.01 [0.005, 0.02] [60, 61]

DGa Diffusion of Ga 0.01 [0.005, 0.02] [60, 61]

DGbg Diffusion of Gbg 0.01 [0.005, 0.02] [60, 61]

DGd Diffusion of Gd 0.01 [0.005, 0.02] [60, 61]

DC24m Diffusion of C24m 0.01 [0.005, 0.02] [60, 61]

DC42 Diffusion of C42 0.01 [0.005, 0.02] [60, 61]

DC42a Diffusion of C42a 0.01 [0.005, 0.02] [60, 61]

DB1m Diffusion of B1m 0.01 [0.005, 0.02] [60, 61]

kRL RL association 2 × 10−3 nM−1s−1 ±10% [37]

kRLm RL dissociation 10−2 ±10% [37]

kRd0, kRd1 R internalization 4 × 10−4 ±10% [37]

kRs R synthesis 4/SA ±10% [37]

kGa G-protein activation 10−5 × SA ±10% [37]

kGd G-protein deactivation 0.1 ±10% [37]

kG1 Heterotrimer association 1 ±10% [37]

k42d Cdc42 deactivation 0.02 [0.02, 2] [60]

k42a Cdc42 activation 10−5 × SA [10−5, 10−3] × SA [60]

k24cm0 Gβγ recruitment of Cd24 0.04 × V/SA [0.004, 0.4] × V/SA [60]

k24cm1 Bem1 recruitment of Cdc24 3.3 × 10−3 × V [3.3 × 10−4, 3.3 × 10−2] × V [60]

k24mc Cdc24, membrane to cytoplasm 1 [0.1, 1] [60]

kB1mc Bem1, membrane to cytoplasm 0.01 [0.01, 1] [60]

kB1cm Bem1, cytoplasm to membrane 10−5 × V [10−5, 10−3] × V [60]

kCla4a Cla4 activation 0.006 [0.0006, 0.06] [60]

kCla4d Cla4 deactivation 0.01 [0.001, 0.1] [60]

k24d Negative regulation of Cdc42 cycle SA/3000 [0.1, 10] × SA/3000 [60]

q Hill coefficient for Gng�n 100 [1, 100] [38, 60]

h Hill coefficient for B1� 8 [1, 8] [38, 60]

C24t Total Cdc24 2000 [1000, 3000] [38]

B1t Total Bem1 3000 [2000, 5000] [38]

Rt Total receptor 10000 ±10% [38]

Gt Total G-protein 10000 ±10% [37]

C42t Total Cdc42 10000 [5000, 20000] [38]

https://doi.org/10.1371/journal.pcbi.1006181.t003
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off function:

z ¼ PFðC42aÞ �
ðaxÞn

1þ ðaxÞn
ð21Þ

where a ¼ 2�SA
C42t

and x = max(C42a). This cut-off function penalizes the cases in which the maxi-

mum amount of C42a is less than half of the initial value of C42. We choose the exponent to be

n = 5 to produce a reasonably sharp cut-off.

We perform polynomial fitting using a Legendre polynomial basis to fit the response func-

tion PF(C42a). The parameters q and h are mapped to [−1, 1] on a linear scale and all other

parameters are mapped to [−1, 1] on a log scale. We use a 5th order polynomial as our surro-

gate model. Recall that to fit a 5th degree polynomial for the full 35-dimensional parameter

space, we require at least ð
40
35Þ ¼ 658; 008 sample points for interpolation or least squares fit-

ting. Since each sample point involves simulating a large PDE model, we wish to decrease the

number of sample points to save computation time. However, decreasing the number of sam-

ple points results in an underdetermined system. One technique for solving such a system is

compressed sensing—in particular, ℓ1-minimization. We used ℓ1-MAGIC, a collection of

MATLAB subroutines by Emmanuel Candes, to perform ℓ1-minimization with quadratic con-

straints [62].

5, 000 points are used to fit a 5th order polynomial in the full 35-dimensional parameter

space. The accuracy of the polynomial is evaluated on an additional 500 uniformly random

points. A histogram of the errors between the model and polynomial is shown in S3 Fig. The

mean absolute error is 0.12 with most errors between -0.2 and 0.2.

Parameter sensitivity analysis helps to reduce number of free parameters. Once we

have established a polynomial surrogate model, we can analytically compute parameter sensi-

tivities. Assuming that each parameter is uniformly distributed in [−1, 1], the sensitivity of the

response function z to j-th parameter is Sj ¼ 1

2

� �35R

½� 1;1�35
@z
@yj
dy. Note that since the parameters

are all mapped to the same range, there is no inherent bias due to differing magnitudes of

parameter values. The parameter sensitivity coefficients for the full 35-parameter model are

given in S4 Table.

We observe that many of the parameters have small sensitivity coefficients, and the parame-

ters of primary importance are those associated with the Cdc42 cycle dynamics. Based on the

parameter sensitivities in S4 Table, we can reduce the parameter count by eliminating the

parameters to which polarization is least sensitive. If we consider only the parameters whose

sensitivity coefficients are greater than 0.01, we are left with only 15 parameters: B1t, k24d, C24t,

kCla4a, kCla4d, kB1cm, k24cm0, kB1mc, Dc42a, h, Dc42, q, k42d, k24cm1, and k42a.

In this 15-dimensional subspace, we can again perform polynomial fitting to obtain a surro-

gate model. We use 6000 points to fit a 5th order polynomial using ℓ1-minimization. We per-

form 12-fold cross validation to analyze the error in the polynomial fit, and find that the mean

absolute error is 0.14. A histogram of the error in the polynomial approximation is given in

S4 Fig. Using this reduced model, we may again compute the parameter sensitivities. The

resulting sensitivities are given in Table 4, and are largely consistent with the parameter sensi-

tivities from the full 35-parameter model. Surprisingly, the diffusion constants Dc42a and Dc42

have high sensitivities along with the parameters directly involved in the Bem1-Cdc24-Cdc42

positive feedback loop activating Cdc42.

Parameter estimation using yeast cell polarization data. We wished to estimate the

model parameters that could produce polarization by fitting to experimental data. The key spe-

cies in yeast polarization is active Cdc42 (C42a) which we can monitor using the reporter

Ste20-GFP, a fusion protein that binds active Cdc42 and possesses a fluorescent tag [54]. We
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treat yeast cells containing Ste20-GFP with 10 nM of α-factor for 60 min to correspond to the

steady-state polarization in the model. We assess the spatial distribution of Ste20-GFP by con-

focal microscopy of fixed cells, followed by quantitative image processing (see Methods). The

Ste20-GFP polarization profile is converted into a polarization factor to be compared with the

model simulations.

With these data, we can perform parameter estimation using the 15-parameter polynomial

surrogate model and an MCMC method. Fig 5 shows the parameter distributions obtained via

MCMC with Markov chain length 2 × 106. As done in the ODE model, the correlation coeffi-

cients between parameters can be calculated and they are displayed graphically in S5 Fig.

There are a few key observations. First, there is significant uncertainty in many of the parame-

ters (particularly those with small sensitivity coefficients). This implies that, given the current

data, we are not able to infer much information about the parameters. The broad distributions

also suggest that a wide range of parameter values are compatible with polarization in the

model. Second, we see that several of the parameters tend toward the boundary (e.g. k42a, k42d,

Dc42, Dc42a), indicating that the parameter ranges should be extended. In particular, a faster dif-

fusion constant for inactive Cdc42 (Dc42) and a slower diffusion constant for active Cdc42

(Dc42a) promote polarization. Lastly, we see that the parameters are not strongly correlated,

with the exception of some correlation between k42a and k42d and between h and q.

Identifying an optimal parameter set for the PDE model. Sometimes it is desirable to

obtain a single best parameter estimate (e.g. maximum likelihood) to visualize how closely the

model can fit the data, and to determine the parameter values at that best fit. In this example,

due to the large amount of uncertainty in the parameter distributions, there is no clear choice

for such a point estimate. In fact, given the limited data relative to the large number of parame-

ters, multiple “best” parameter estimates may exist. One approach is to take the mean of the

MCMC iterates (Pmean) as was done with the ODE model in the previous section. This parame-

ter set and its corresponding polarization factor are given in Table B in S1 Text. However, the

large degree of parametric uncertainty suggests this estimate may not produce a good fit.

Another option is to use an optimization method such as simulated annealing to improve

upon Pmean which is used as the starting point. Note that the polynomial surrogate model

Table 4. Sensitivity coefficients, in order of ascending magnitude, for the reduced 15-parameter PDE model based

on a 5th order polynomial fit using 6,000 sample points.

Parameter Sensitivity

k24d 1.4 × 10−3

kCla4a −4.0 × 10−3

k24cm0 −1.3 × 10−2

B1t 1.7 × 10−2

kCla4d 2.5 × 10−2

C24t 4.4 × 10−2

kB1cm 5.5 × 10−2

kB1mc −5.6 × 10−2

Dc42a −5.9 × 10−2

q 6.1 × 10−2

Dc42 7.0 × 10−2

h 7.7 × 10−2

k24cm1 9.8 × 10−2

k42d −1.3 × 10−1

k42a 1.4 × 10−1

https://doi.org/10.1371/journal.pcbi.1006181.t004
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greatly speeds up this optimization. Fig 6 shows the steady state solutions for both the MCMC

mean and a parameter set identified via simulated annealing (SA). Indeed, the SA gives a better

fit to the data (PFSA = 0.64, PFmean = 0.57, PFdata = 0.87; see Supplement for parameter sets).

However, the broadness of the model simulations compared to the experimental data suggests

that the model structure is unable to capture the sharp polarization observed in the cell. One

possible explanation is unmodeled dynamics. Nevertheless, the Bayesian parameter estimation

provides valuable information about the range of parameters in the model that allow polariza-

tion, the most likely parameter values, and the uncertainty in the parameters given the current

data.

Discussion

In this work we apply novel methods from uncertainty quantification to perform parameter

sensitivity analysis and parameter estimation of two models of yeast mating. The central inno-

vation is the construction of polynomial surrogate models to replace simulation for calculating

the model output. We demonstrate the accuracy of the polynomials by cross-validation on ran-

dom sample points left out from the polynomial fitting. For Bayesian parameter estimation,

the method provides a dramatic reduction in computational cost.

Fig 5. MCMC results for PDE model. Parameter distributions based on MCMC with chain length 2 × 106 for the reduced

15-parameter PDE model. The parameter range is a log-scale except for the parameters q and h which span a linear scale.

https://doi.org/10.1371/journal.pcbi.1006181.g005
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Computational speed-up

Typically, MCMC requires a model evaluation at every iteration. Since our Markov chain

length for the 15-parameter model was 2 × 106, we would require 2 × 106 evaluations of the

PDE model to steady state. It would likely take even more iterations for the MCMC to con-

verge for the full 35-parameter model. The PDE is solved with an implicit method imple-

mented in Fortran, and each evaluation takes 40-60 minutes of CPU time. Thus, the full

MCMC would require at least *200 years of CPU time. Further, MCMC is not inherently par-

allelizable, although advancements have been made in parallel MCMC methods [63–66].

Using the polynomial surrogate, we are able to practically eliminate the cost of MCMC by

evaluating only a polynomial at each MCMC iteration. Computing a chain of length of 2 × 106

takes only a few hours in MATLAB. In place of this cost, we must evaluate the full PDE model

at the sample points used to fit the polynomial. For our full 35-parameter model, we use 5000

sample points to fit a polynomial to perform the sensitivity analysis. We then are able to reduce

the parameter count to 15, and use 6000 additional samples to fit a polynomial in the reduced

parameter space. Thus we require 11,000 model evaluations in total. There is also some cost to

fit the polynomial via ℓ1-minimization, which is of the order of several hours. The time

required to evaluate the polynomial is considered to be negligible compared to the time

required to solve the PDE. Thus we have a roughly 180-fold reduction in computational cost

compared to the MCMC without a polynomial surrogate. In addition, the samples are

Fig 6. MCMC vs. optimization results. Steady state solutions for the mean parameter set from the MCMC (solid

black) and a parameter set identified via simulated annealing (dashed black). Polarization is depicted by the

concentration of active Cdc42 (C42a, number of molecules/μm2) over the angular range [−π, π]. The mean

polarization of the experimental data (n = 20 cells) is shown in blue in arbitrary units. A sample cell, treated with 10

nM α-factor for 60 min, shows the membrane polarization profile of Ste20-GFP, a reporter for active Cdc42 (upper

left). Scale bar = 2 μm.

https://doi.org/10.1371/journal.pcbi.1006181.g006
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independent so that the model evaluations to produce these samples can easily be computed in

parallel.

The computational savings in the ODE test model are not as dramatic, since the ODE

model is inexpensive to solve. In numerical tests for the 2-parameter ODE model with a 10th

degree polynomial surrogate, we found a 20% reduction in CPU time in evaluating the polyno-

mial vs. evaluating the model directly. In the 8-parameter model with a 5th degree polynomial

surrogate, we found a more than 10-fold reduction in CPU time; we believe the greater reduc-

tion in cost is afforded by the lower polynomial degree. The computational savings afforded by

using polynomial surrogates will vary depending on the ODE solver, the degree of the polyno-

mials, and the time step required to solve the ODE. Whether a problem warrants the use of

surrogate models will generally depend on the cost of evaluating the original model, the num-

ber of sample (data) points required for accurate parameter estimation, and the polynomial

degree required to fit the model output.

Possible limitations of uncertainty quantification methodology

The primary challenge with the method is constructing accurate polynomials. As we demon-

strate in the ODE example, more sample points and a higher degree polynomial produce

greater accuracy. One concern is the ability of the surrogate polynomials to describe highly

nonlinear relationships between parameters and outputs arising from bifurcations. If the

model output is discontinuous with respect to the parameters, for example, then the model

output will not be well-approximated by polynomials. This issue may exist in the PDE model

presented here, since it has previously been shown that the model for some parameter values

possesses multistability contributing to the polarization [60]; thus the steady state behavior is

discontinuous with respect to the initial conditions. The 5th degree polynomial surrogate

produces an error of 0.1 to 0.2. It is likely we can reduce the error by employing more sample

points or by using a higher degree polynomial. Alternatively, one can take advantage of

Design of Experiments methods [67] to pick more informative sample points to decrease the

error. However, we will still not be able to capture the discontinuous nature of the model

output.

Another issue is that one may make false assumptions in determining a response function.

In the PDE model we choose a response function that quantifies the cell polarization at steady

state, and thus we are assuming that the system settles to a steady state. While this seems to be

a reasonable assumption for the system presented here, this may not always be the case. If a

system has periodic solutions rather than a stable steady state in some region of the parameter

space, then one would need to carefully consider how to build an appropriate response func-

tion. Unfortunately, it is not always clear a priori whether such solutions exist for a given

system.

Finally, a third issue is the combinatorial increase in the number of polynomial coefficients

as the number of parameters increases. The 5th degree polynomial for the 35 parameter model

possesses 658,008 coefficients and a 100 parameter 5th degree polynomial would possess over

75 million coefficients. For the PDE model we employ compressed sensing methods (ℓ1-mini-

mization) that allow undersampling to fit higher dimensional polynomials from larger models

with fewer sample points. It is possible to adopt advanced sparse regression methods such as

ℓ1-ℓ2 minimization [68] to further reduce the number of required model evaluations. A second

approach is explore optimal sample set design such as the optimal sample selection strategy

[45] that, for any given number of samples (model evaluations), finds the parameter sample

points to provide a polynomial surrogate nearly as accurate as the one obtained by a much

larger number of model evaluations.
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Parameter analysis of yeast mating models yields biological insights

In the yeast G-protein ODE model, the parameter distributions inferred from the time-course

and dose-response data are consistent with the parameter estimates and experimental mea-

surements from [37]. For example, the peaks for kGa and kGd are very close to the previous

maximum likelihood estimates. Interestingly, the parameter estimates for kRL and kRLm are

close to the measured values found in [37], but they are at least one to two orders of magnitude

larger than the estimated values from three other groups [69–71]. One possible explanation is

the use of fluorescent analogs of α-factor in some of the earlier work, but this discrepancy

needs to be addressed in future work.

The PDE model shows broad distributions for nearly all 15 parameters examined indicating

that a wide range of parameter values are compatible with good polarization of active Cdc42.

The fact that the feasible region of the parameter q, representing the cooperativity of the inter-

action between Gβγ and Cdc24, spans the full range from 1 to 100 demonstrates that the high

value (q = 100) previously used in the model [38] is not necessary for polarization, and that

lower values (e.g. q = 1 to 10) are almost equally probable. These lower cooperativity values

corresponding to smaller Hill exponents are more plausible from a mechanistic standpoint. In

addition, several parameters (k24cm1, k42a, k42d, Dc42, and Dc42a) show peaks at one or the other

side of the distribution indicating that the previous estimates may miss the most likely parame-

ter range. The diffusion constants Dc42 and Dc42a were assigned the same value in our previous

model [38, 61], but in this work Dc42 shows a preference for higher values, whereas Dc42a

shows a preference for lower values. Recent measurements by Bendezú et al. [72] in the fission

yeast S. pombe found that inactive Cdc42 had a 10-fold faster diffusion rate than active Cdc42

consistent with the trends in our parameter distributions.

This work also highlights the inability of the current PDE model to produce the sharp

polarization peak of active Cdc42 observed in cells. One explanation is that the model is miss-

ing important dynamics or positive feedback mechanisms that enhance cell polarization. In

the future, we plan to include additional spatial dynamics such as the polarized transport of

Cdc42 to the front of the projection, which is absent from the model.

The broadness of the obtained parameter distributions also implies that the current data are

insufficient to obtain tight parameter estimates. In this study we focused on identifying param-

eter values that would produce polarization in the model versus an unpolarized state. Further

data can be collected tracking the spatial dynamics of the other species in the model such as

Gβγ, Cdc24, and Bem1 in both wild-type and mutant yeast strains. The additional data along

with model modifications should result in narrower parameter distributions and a better fit to

the total system dynamics.

Application of polynomial surrogates to other model analysis methods

In our analysis, we presented only the sensitivity measure Sj ¼ E @z
@pj

� �
. The advantage of this

sensitivity measure is its simplicity; it is easy to compute analytically when z is a known func-

tion and it usually provides a good measure of sensitivity when the relationship between z and

pj is monotonic. However, if the relationship between z and pj is non-monotonic or highly

nonlinear, Sj may not be a desirable measure. In these cases, other measures of sensitivity may

be a better choice such as variance-based sensitivity measures or the partial rank correlation

coefficient [8, 73]. The use of polynomial chaos expansions to approximate variance-based

sensitivities has been explored previously in [31]. Other derivative-based sensitivity measures

have also been proposed [74], which can be computed analytically using the polynomial chaos

expansion.
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Polynomial surrogates may also be used in methods for parameter estimation not addressed

in this paper. In principle, polynomial surrogates can be applied to any type of model for

which parameter ranges are known, and for any sampling-based method that requires model

evaluations. By fitting polynomials to the quantities for which data is available, every model

evaluation in a computational method can be replaced by a polynomial evaluation. While we

have demonstrated this here only in the context of a Markov chain Monte Carlo method, the

same principles may be used to accelerate the computations involved in other Bayesian meth-

ods for parameter estimation, such as rejection sampling and sequential Monte Carlo.

Yet another potential application of polynomial surrogates is to accelerate methods for

Bayesian model selection. The idea behind Bayesian model selection is that we can recover a

probability distribution for a model index parameter m enumerating different models, provid-

ing information on the likelihoods of the candidate models given the available data. In essence

this is still a parameter estimation problem, and established methods for parameter estimation

can be adapted for model selection. Polynomial surrogates can be used to accelerate these

methods which include Bayesian rejection sampling, sequential Monte Carlo, population

annealing, and MCMC [20, 52, 53, 75, 76]. Model selection is of great importance in systems

biology since uncertainty in the model structure may significantly impact the conclusions of

parameter inference [39].
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