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Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatogra-

phy-mass spectrometry (LC-MS), the most established platform to perform metabolomics.

In contrast to LC-MS however, NMR data is predominantly being processed with commer-

cial software. Meanwhile its data processing remains tedious and dependent on user

interventions. As a follow-up to speaq, a previously released workflow for NMR spectral

alignment and quantitation, we present speaq 2.0. This completely revised framework to

automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw

spectra with minimal information loss or user interaction. The tool offers a fast and easy

workflow that starts with the common approach of peak-picking, followed by grouping,

thus avoiding the binning step. This yields a matrix consisting of features, samples and

peak values that can be conveniently processed either by using included multivariate sta-

tistical functions or by using many other recently developed methods for NMR data analy-

sis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but

is also compatible with other NMR frameworks or complementary LC-MS workflows. The

methods are benchmarked using a simulated dataset and two publicly available datasets.

speaq 2.0 is distributed through the existing speaq R package to provide a complete solu-

tion for NMR data processing. The package and the code for the presented case studies

are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub

(https://github.com/beirnaert/speaq).

This is a PLOS Computational Biology Software paper.
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Introduction

1D NMR spectroscopy has been a popular platform since the early days of metabolomics.

Although less sensitive than the complimentary and more common LC-MS technology,

NMR has its merits. For one, it is an unparalleled technique in determining the structure of

unknown metabolic compounds. Furthermore, because it is a non-destructive technique, sam-

ples can be reanalyzed later or can be used in a different spectroscopic analysis such as mass

spectrometry. Also, an NMR spectroscopy experiment requires little sample preparation com-

pared to LC-MS, thus limited unwanted extra variability is introduced. Finally, the results of

an NMR analysis are less dependent on the operator and instrument used. All these factors

make 1D NMR spectroscopy a technique with a relatively high reproducibility and rather

minimal researcher bias [1]. There are however also drawbacks associated with the technique.

First, the aforementioned low sensitivity is an important issue as the dynamic range in real bio-

logical samples surpasses the NMR detection range. This is particularly problematic when the

goal is to identify an unknown metabolite with a low concentration.

To get the best of both worlds, combining large scale LC-MS analysis with NMR spectros-

copy has been presented as an option to yield valuable novel insights in metabolic pathways

and biomarkers [2–4]. From a data processing perspective, this combination is not trivial.

The data analysis of NMR is not as automated as LC-MS data analysis, which can rely on

open-source solutions like XCMS [5]. Most NMR data analyses are still performed with com-

mercial software [6]. While the reproducibility of the NMR experimental techniques is high,

the data analysis still requires a substantial degree of user intervention. This results in the

possible introduction of bias and lower research reproducibility, meaning that the data anal-

ysis can not be easily replicated by others. The absence of standardized and automated NMR

metabolomics workflows is the main culprit despite recent progress. See Table 1 for an over-

view of freely available NMR software. Not all these NMR analysis tools are applicable to all

research setups. Some serve only specific purposes like BATMAN [7], for example, which is

aimed at obtaining concentration estimates for known metabolites from the raw spectra.

However, a lot of untargeted experiments are in search for not only known metabolites, but

also unknown ones. These experiments require tools that can process large amounts of data

in a scalable way.

A typical workflow for NMR spectral analysis consists of several pre-processing steps, such

as baseline correction, raw spectral alignment, spectra summarization and grouping. This is

then followed by statistical analysis. The spectra summarization step and the alignment/group-

ing step are the most time consuming. Spectra summarization is the transformation of all the

experimental measurement points into a small number of features, which are more suited for

automated analysis. Multiple spectra summarization techniques exist, each with their own

advantages and drawbacks [17]. The specific method that is chosen can result in user-intro-

duced bias and low reproducibility. This is the case for the most commonly used summariza-

tion approach: the so-called binning or bucketing method [18]. This method was introduced

to compensate for small spectral shifts between samples. It allows to vastly reduce the number

of measurements points to a limited number of variables (the bins) in one single, automated

step [19]. There are however major drawbacks to this method that have a profound influence

on the results [20]. In particular, it is not straightforward to define the boundaries of the bins

in crowded spectra. Automating this process may lead to splitting up small but relevant peaks.

Manually checking the bins on the other hand is extremely tedious and tweaking the bound-

aries can forfeit any attempt for reproducibility. Several methods have been proposed to tackle

the bin boundary issue [21–23], but this is not the only concern. Loss of information is intrin-

sically linked to the binning approach as entire bins are simply summed together.
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At the end of an analysis based on the binning approach, when several bins are found to be

interesting, it is still necessary to go back to the raw spectra to manually check the intervals.

This is necessary to find the ppm values of the actual peaks of interest that can then be used

to query a database, like HMDB [24]. This introduces yet another point where user interven-

tion is required, which slows down the whole process and hampers the use of an automated

workflow.

In this paper, we present the speaq 2.0 method. The underlying core paradigm is to effi-

ciently summarize spectra with little user interaction, high speed and most importantly little

loss of information whilst greatly reducing the dimensions of the data. The overall aim how-

ever, is not to construct yet another all-encompassing package for NMR analysis, but more

importantly, to construct a method that can complement established tools for NMR data

analysis like MetaboAnalyst [12], by improving performance, analysis quality and reproduc-

ibility. This is achieved by improving the quality of the peak lists which are the starting

points for MetaboAnalyst [12] or muma-R [13]. By automating the important peak picking

step in the NMR analysis workflow, less researcher bias is introduced hereby greatly improv-

ing reproducibility. The automation potential of the package makes it suitable for the fast

analysis of NMR spectra in a way that is very comparable to how LC-MS spectra are ana-

lyzed. In the future, this method could be effective for high-throughput analyses in which

LC-MS and NMR data are combined to achieve better results. Nonetheless, a complete

standalone analysis pipeline is presented with the focus on user-friendliness. This is to

Table 1. An overview of open source NMR data processing solutions.

Name Platform Aim

BATMAN [7] R Estimating relative metabolite concentrations from a list of target metabolites

and quantifying individual metabolites by modelling the resonances in the

NMR spectra. As it requires a target list of metabolites it is less suited for fully

untargeted approaches.

Bayesil [8] web Automatic quantification and identification of metabolites from a reference list.

This method starts from the raw NMR free-induction-decay signal and thus

does not require conversion to the NMR spectra, however only certain formats

are supported and the data have to be collected in a specific way.

ChemoSpec [9] R A general package for processing of spectroscopic signal (NMR, infrared or

Raman) aimed at metabolomics. Uses the binning approach for spectra

summarisation and small shift correction. Also incorporates the CluPA

algorithm for raw spectral alignment from speaq (v1.0—1.2.3)

MetaboAnalyst [10–

12]

web Arguably one of the most widely used platforms for metabolomics analysis. It

has specific modules for biomarker analysis, pathway analysis, statistics, etc. For

NMR data however it only accepts binned data or peak data which has been

grouped over the samples (so effectively a matrix with samples and features).

Therefore our method can be used to provide a starting point for an analysis

with MetaboAnalyst.

muma-R [13] R A package for data (pre-)processing and statistics aimed at MS and NMR

metabolomics data. As it requires binned NMR data or NMR peak data it can

also be used in combination with speaq 2.0 to provide a high quality peak list as

a starting point.

MVAPACK [14] GNU

Octave

A toolbox with a large number of capabilities for reproducible NMR data

analysis starting from the raw NMR Free-induction-decay signal. Also relies on

the binning method for spectra summarization.

speaq (v1.0—1.2.3)

[15]

R The CluPA algorithm for raw spectral alignment was the main object of speaq

v1.0—1.2.3. It can also be used to quantify spectral regions that differ between

case and control classes.

specmine [16] R A package for metabolomics data analysis. The available methods are a

collection from other well known metabolomics packages and some general

methods from multivariate statistics and machine learning.

https://doi.org/10.1371/journal.pcbi.1006018.t001
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allow also non-expert users to be able to work with open-source tools instead of the black-

box proprietary software.

The basic proposition of speaq 2.0 is to use wavelets to summarize the peaks within the

spectra. By working with the peak data instead of the raw spectra or binned spectra a great

reduction in data size can be achieved without a large loss of information. The Mexican hat

wavelet is used to mathematically represent the peaks with only a few values instead of the tens

or hundreds of raw data points describing the peak in the original spectrum. Besides the data

reduction, the additional advantage of using wavelets is that the need for baseline correction

and smoothing is eliminated with no loss of sensitivity or increase in false positives [25, 26].

Design and implementation

Workflow

The NMR data analysis workflow of speaq 2.0 is depicted in Fig 1. Spectra serve as input, then

peak picking with wavelets is applied to transform the spectra to peak data. These peaks are

then grouped into features with the grouping algorithm and peak filling is applied to fix miss-

ing values. The resulting matrix of features and samples is then used in statistical analysis. This

approach is intrinsically different from the one available in the original speaq (v1.0—1.2.3),

which was centered around the concept of aligning spectra with the CluPA algorithm. The

BW-quantitation function of speaq v1.0—1.2.3 allows users to find regions that are different

between two groups, such as case and control. However, speaq v1.0—1.2.3 does not support

the case of multiple groups or ratio variables. Also, it requires a binning step to obtain a feature

matrix to be used in pattern mining or statistical approaches such as PCA. The new speaq 2.0

methods allow multiple groups and circumvent the need for binning. Overall, speaq 2.0 offers

a novel way of processing NMR data, with the option to use the classic spectral alignment tech-

niques as an intermediary step. The entire package is designed to easily and quickly build a

reproducible workflow to obtain the peaks that are of interest to the experiment. Although the

approach is very different to the one available in speaq v1.0—1.2.3, the choice was made to

integrate the functionality of both speaq v1.0—1.2.3 and speaq 2.0 in one single package. The

main benefit is that the methods are fully compatible and it allows existing speaq users to easily

extend their workflows as needed. The individual steps of the speaq 2.0 approach are described

in more detail in the following section.

Pre-processing steps

The input to the workflow consists of spectra in the intensity (y-axis) vs ppm (x-axis) format.

This means that the free induction decay (FID) signal coming from the NMR spectrometer

has to be converted to spectra by using the Fourier transform. In addition, before peak picking,

the spectra can be aligned with the included CluPA algorithm [15] (the core of speaq v1.0—

1.2.3). Note that it is also possible to analyse spectra that have already been aligned with other

methods like icoshift [27]. However, depending on the algorithm used, aligning raw spectra

can result in the distortion of small peaks [28].

Peak detection: From spectra to features via wavelets. The Mexican hat wavelet is used

to perform the peak detection. It is a suitable wavelet because it resembles a peak by being

symmetrical and containing only 1 positive maximum [25]. This peak detection method was

inspired by the CluPA alignment algorithm [15] where wavelets are used to find landmark

peaks to aid in the alignment. The interaction with the wavelets relies on the MassSpecWavelet

R package which performs the actual peak detection as per the method outlined by Du et al

[25]. A spectral segment (an intensity vector) containing a peak is converted to wavelet space

by changing the scale and position of the mother wavelet and obtaining the wavelet coefficient

speaq 2.0: Workflow for 1D NMR spectra processing and quantification
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Fig 1. Possible workflows of speaq 2.0. The newly presented methods are standalone (full black arrows) or can be used together with the CluPA

alignment algorithm and BW quantification method that were made available in the first speaq implementation (v 1.0—1.2.3) [15] (dashed

arrows). It is still possible to perform an analysis based on raw spectra alone, as per the classic speaq (v 1.0—1.2.3) analysis. With the new methods,

raw data is converted to peaks, and every peak is summarized with ppm location and width, intensity and SNR. These peaks are subsequently

grouped and optionally peak filled (missed peaks in samples are specifically searched for). The resulting data is converted to a feature matrix that

contains intensities for each peak and sample combination. This matrix can then be used in statistical analysis with built-in or external methods.

https://doi.org/10.1371/journal.pcbi.1006018.g001
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for each combination of scale and position. The wavelet coefficient can be seen as a metric for

how well the wavelet matches the peak. The entire intensity vector is converted into a wavelet

coefficient matrix. This wavelet coefficient matrix is where the actual peak detection takes

place. A ridge (line of high values) will appear in the matrix where the position of the wavelet

matches the position of a peak in the spectrum. The height of the ridge is not constant as it

varies with the scale of the wavelet. At the point where the scale best matches the width of the

peak in the spectrum the ridge will feature a local maximum. The problem of peak finding is

thus shifted to finding ridges, and finding the maximum of each ridge. See Du et al. for more

details [25]. The result is a peak detection that is both sensitive to low and high intensity peaks

and insensitive to background noise (as noise will not produce a noticeable ridge).

Although the default parameters of the peak picking approach work for most NMR experi-

ments, different parameters for the peak picking can be set according to user preferences. For

example, the baseline intensity threshold (to focus on higher peaks only, default is 1000), the

signal-to-noise ratio threshold and the scales to be used for the wavelets. Note that the default

parameters are set up for untransformed spectra, when spectra are scaled to max intensity 100

or 1 different settings may be more appropriate. All data sets were analysed with the default

speaq 2.0 values.

After the peak detection, the spectra (intensity vs ppm data) are converted to a dataset with

peakIndex and peakValue values. Note that this peakValue vs peakIndex dataset has a substan-

tially lower dimension than the original data. The peakIndex is directly linked to the ppm

value. The peakValue is related to the wavelet coefficient that describes the peak. This wavelet

coefficient is an approximation for the area under the peak curve and this used throughout the

analysis. Since peak height is of interest for some NMR data analysis pipelines, the option to

work with peak heights has been made available in the peak picking function.

Peak grouping. The peaks resulting from the wavelet peak detection are not perfectly

aligned since no two peaks are exactly the same and different spectra can be shifted relative to

each other. These shifts can be caused by differences in sample environment (pH, solvent, etc.)

or differences in experimental conditions (temperature, magnetic field homogeneity). How-

ever, the aim is to go towards a feature dataset whereby a feature is defined as a group of peaks

with at most one peak per sample belonging to that feature. This means the peaks have to be

grouped with a single index value describing the group center. To group the NMR peaks we

can make optimal use of the results of the wavelet based peak detection step. Not only ppm

values but also signal-to-noise ratio and sample values can provide information to aid in the

grouping. The hierarchical clustering based algorithm developed for grouping does not require

a reference sample as it divides the samples in groups based on the Gower coefficient [29]. The

merit of the Gower distance is that variables of different units (here ppm and intensity) can be

safely used together. It is calculated by normalizing each variable to a value between 0 and 1.

The distance between two data points is then the sum of the distances for each variable. As

such the Gower distance can be seen as a Manhatten distance on normalized data. The group-

ing algorithm’s pseudocode is displayed in Fig 2. A more detailed description can be found in

S1 Appendix.

Note that this method is designed to process data that is sufficiently well aligned. If this is

not the case the method will most likely underperform because of the larger overlap between

peaks. Nonetheless the method even works on data with non-trivial shifts between samples as

is the case in the wine benchmark dataset [27]. Extremely shifted spectra can be aligned with

existing methods such as CluPA [15], prior to peak detection.

Peak filling. The purpose of peak filling is to detect peaks that may have been missed in

the first round of peak detection. To illustrate this problem, we can think of a scenario in

which, for example, the user sets a high intensity threshold for peak detection. The features
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006018 March 1, 2018 6 / 25

https://doi.org/10.1371/journal.pcbi.1006018


matrix will then be composed of features that correspond to locations with high peaks. If

certain samples have low peaks in this region the peak filling step can be used to find these

peaks, because peak filling works without an intensity threshold. This reduces the amount of

missing data in the feature matrix. In an other scenario, peaks can be deliberately deleted if

the grouping algorithm detects two peaks from the same sample in the same group. If this

peak actually belonged to a different group it can then be recovered with the peak filling step.

For each feature, the peak filling algorithm will specifically search the raw data for peaks of

missing samples. A small section of the missing sample spectra is used to perform the peak

detection. This small section is of length 512 measurement points (small) or 1024 (large), as

this greatly speeds up the computation of the Fourier Transform used by the MassSpecWave-

let package [25]. A more refined wavelet search is performed in this region starting from the

average group values for peak location and width. If a peak is found it has to be within a set

distance from the group. The default is 10 measurement points, which is approximately

between 0.001 ppm and 0.01 ppm, depending on the NMR instrument settings. This distance

is small as otherwise distant peaks could be assigned to the group. If no peak is found then it

is still regarded as a missing value and can be imputed later. The end result is more peaks,

which in turn results in a more robust statistical analysis afterwards as less missing values

have to be imputed.

Fig 2. Grouping algorithm pseudocode.

https://doi.org/10.1371/journal.pcbi.1006018.g002
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Statistical analysis

Following peak filling, the data can now be represented in the form of a matrix with samples

for rows, features (peak groups) for columns and peak values in each matrix cell. Each of these

peak values corresponds to the size of the original peaks as quantified by the wavelets. A huge

number of techniques for univariate and multivariate statistics (e.g. PCA, PLS-DA) and

machine learning (e.g. SVM, random forest) can be applied to this data matrix. Most of these

methods are made available through different R packages which can be found on CRAN, Bio-

conductor [30] or Github. The output provided by speaq is compatible with the majority of

these methods, as most of these allow to submit a data matrix and a response vector (class

labels) as input. A selection of methods useful for statistical analysis have been directly inte-

grated into the speaq 2.0 framework: a tool to perform scalings, transformations and imputa-

tions and a differential analysis method.

Scaling and imputation. Before statistical analysis methods like PCA can be used, the

missing values in the data have to be imputed. This step is often done in tandem with the

desired scaling method since otherwise data can artificially be created. For example, imputing

zeros followed by z-scaling is not the same as z-scaling followed by imputing zeros. The latter

actually corresponds with imputing mean values. For all benchmark datasets zeros (the

default) are used for imputing missing peak values in the data matrices as this indicates a non

present peak. Although other methods are available, for example kNN imputation [31] and

random forest based imputation [32].

After imputation, the optional normalization and scaling steps are executed. Several meth-

ods commonly used in metabolomics are available such as Probability Quotient Normalization

(PQN) and Pareto scaling [33]. Pareto scaling is most suited for metabolomics since it reduces

the effects large signals while keeping the data structure roughly intact. It is governed by

the formula in Eq (1) with yj the jth feature vector containing the peak values yi,j of all samples

1 . . . i . . . N and σj the standard deviation of yj.

~y j ¼
yj
ffiffiffiffi
sj
p ð1Þ

Differential analysis. A differential analysis method based on linear models is available

in speaq 2.0. This function provides a way of identifying significant features with (adjusted)

p-values. Specifically, for each feature 1, . . ., j, . . ., K consisting of peak values yi,j of samples

1 . . . i . . . N a linear model of the form

yj ¼ x bj þ ε ð2Þ

is constructed with x the response vector (N elements, for example class membership, a bioas-

say result, etc.), yj the jth feature vector and ε the vector of errors εi. Now for each βj we can

test whether there is a significant relationship between feature yj and x by testing the hypothe-

sis that βj = 0 (two-tailed t-test). The K p-values can be used to find peaks significantly associ-

ated with the response vector. Several multiple testing corrections are available within the

speaq 2.0 framework. While the default is Benjamini-Hochberg, for the purposes of this study,

the stringent Bonferroni correction was applied to all reported p-values. Note that in the case

of only two classes, this method is equivalent to the t-test.

Metabolite identification

After statistical analysis the relevant peaks can be matched with the molecules responsible for

these peaks. Several databases with NMR metabolomics data are available [17]. One of the
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more user friendly ones is the Human Metabolome Database (HMDB) [24], as it allows to

search for compounds by providing the ppm values of the peaks of interest. To obtain the

metabolites for the onion intake in mice data the latest version of HMDB (3.6 [34]) was used.

It is however not optimal to submit all significant peaks in a single query to this database. The

reason for this is that HMDB works by matching the queried peaks to the database and then

sorting the matched molecules according to their Jaccard index. For two sets the Jaccard index

is the number of common elements (the intersection), divided by all the elements (the union),

or in this specific case the number of matched peaks divided by all peaks in the query. Thus,

when submitting all peaks at once we risk not finding the correct metabolite as adding addi-

tional peaks from molecule B when trying to identify molecule A will dilute the results. To

reduce this effect a correlation analysis can be performed to indicate which peaks belong

together. The underlying assumption is that NMR spectra peaks originating from the same

molecule exhibit similar behavior over all samples. Therefore the peaks that correlate strongly

with each other are most likely to come from the same metabolite. The speaq 2.0 output format

is compatible with the R functionality for correlation analysis. The correlation matrix is visual-

ized with the corrplot R package [35] which clusters the peaks according to their correlation.

The number of clusters are chosen by the user between one and the total number of peaks. The

correlation within each cluster is affected by the chosen number of clusters. The user is respon-

sible for choosing this number of clusters and evaluating the corresponding performance.

After the correlation analysis step, the ppm values of peaks in a correlated cluster can be sub-

mitted directly to HMDB via a built in speaq 2.0 function (HMDBsearchR, note this will open

a webpage). This produces a list of metabolites ordered by Jaccard index. It is up to the user to

determine which Jaccard index is to be considered high enough.

Benchmark data

To validate the presented approach three datasets are analyzed: one simulated dataset for

which the ground truth is known and two publicly available datasets which have been analyzed

in published studies.

1. The wine dataset by Larsen et al. [36] consists of 1H NMR spectroscopy data of 40 table

wines (red, white & rosé). The focus of Larsen et al. was not to investigate differences

between wines of different colour and origin, but merely to evaluate how pre-processing

methods like alignment and interval selection can aid in chemometrics and quantitative

NMR analysis [36]. Wine is a good example for evaluating alignment algorithms because

of the often substantial differences in pH, which can cause large shifts in the NMR spectra.

Because of this property, the wine dataset has been used to evaluate the performance of sev-

eral alignment algorithms, like COW [36], icoshift [27] and CluPA [15].

2. The simulated dataset is constructed by combining the 1H NMR spectra of two metabolites,

namely 3-Hydroxyphenylacetic acid (HMDB0000440) and 3,4-Dihydroxybenzeneacetic

acid (HMDB0001336). The NMR spectra of both metabolites can be downloaded from the

Human Metabolome Database [34]. The dataset consists of 20 simulated spectra that are

combined in such a way as to include variation that is comparable to the most common

between-sample variation found in NMR spectra. Most notably, there is variation in peak

height, peak location, and peak composition. The variation in peak composition is caused

by both metabolites having peaks at almost identical locations. This results in two sources

of variation in peak location namely, the variation introduced by the random shift left or

right and by the mixing factor that describes the weight of each metabolite in each spec-

trum. See S2 Appendix for more details about how this dataset was generated.
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3. The onion intake in mice dataset originates from a nutri-metabolomics study by Winning

et al. [37]. The objective of the study was to search for onion intake biomarkers. The under-

lying idea was that if their workflow can identify biomarkers for onion intake, it could also

be used to locate biomarkers in other studies. 32 rats were divided into 4 categories each

receiving a specific onion diet: control (0% onion), 3% onion residue, 7% onion extract and

10% onion by-product. Urine samples were collected during 24 hours and analyzed with

proton NMR spectroscopy to characterize the metabolome of the different onion fed mice.

More details can be found in [37].

Both the wine and onion datasets were made available by the University of Copenhagen at

http://www.models.life.ku.dk/.

Results

Wine data

The first public validation dataset concerns the NMR spectra of table wines. This dataset has

been often used to evaluate algorithms to align raw spectra. The new speaq 2.0 workflow

which transforms spectra to peaks, which are then grouped together, can also be used to pro-

cess this dataset.

The peak based approach for data reduction. By using the speaq 2.0 peak picking

method, followed by grouping and peak filling, the size of the data is greatly reduced. This is

done in multiple steps. First, peak detection is applied to the raw spectra to convert the large

raw measurement data matrix of 40 samples by 8712 measurements to a smaller matrix of

6768 peaks by 6 columns consisting of values describing the peaks. The data reduction after

this step does not seem overwhelmingly large. However, it is important to realize that this is

only a reduction in redundant information which is accompanied with little loss of informa-

tion thanks to the wavelets. Furthermore, most of the correlation between consecutive mea-

surement points in the spectral data is removed. Next, the peaks are grouped, resulting in the

same dataset as the peak data, but now each peak has been assigned to a group. Such a group

consists of a collection of peaks with at most one peak per sample. This grouped peak data can

now be represented as a matrix, with groups as columns, samples as rows, and peak intensities

as the matrix elements. The true data reduction becomes apparent now as there are only 207

peak groups, which correspond to the features used in further analysis. The original matrix of

40 by 8712 is thus converted to a matrix of 40 by 207.

From feature matrix to locating differences between spectra. We can locate those

features that are associated with wine type. Before any analysis the data matrix is Pareto

scaled and centered. The first step in a multivariate analysis is often principal component

analysis (PCA). The results show that there is a clear difference between on one side red and

on the other white and rosé wines (S1 Fig). However, a differential analysis method incorpo-

rated into speaq 2.0 can be sued to investigate the specific features that are different between

the red and white wine classes. The results of the differential analysis is a series of p-values,

one for every feature, which indicate how useful each feature is in building a linear model

that can discriminate between the two wine classes. The p-values are displayed in Fig 3

along with the raw spectra and grouped peak data for one of 33 significant features. When

looking at the spectra that correspond to these features, the difference between red and

white wines is obvious. However, manually searching the original spectra for these differ-

ence regions would be extremely tedious and time consuming. With speaq 2.0, this entire

process takes about 3 minutes with 1 CPU and a mere 50 seconds with 4 CPUs (2.5 GHz

machine).
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Comparing peak grouping to raw spectral alignment. The new speaq 2.0 approach dif-

fers from spectral alignment algorithms, such as CluPA and icoshift [15, 27], but the final

results should correspond to each other: grouped peaks should correspond to aligned peaks

in the spectrum. By comparing the results from each, we can study the cases where the peak

based method performs better, equal or worse compared to the raw spectra based methods.

The performance of both types of spectra processing methods (peaks vs raw spectra) is depen-

dent on the content and specifics of the spectra. Most notably the number of peaks and the

shifts between sample spectra (caused by pH differences etc.) largely dictate how well these

methods will perform. Generally, if the peak shifts between samples are less than the distance

between consecutive peak groups, all methods perform as expected. An example of this can be

Fig 3. Visualization of Bonferroni corrected p-values. Numerous features have a corrected p-value below the significance threshold of 0.05 indicating that there is

a significant difference between red and white wine. An example of a significant feature (indicated with the red diamond) is represented on the right with its raw

spectra (top), the data after peak detection (middle) and the data after grouping (bottom).

https://doi.org/10.1371/journal.pcbi.1006018.g003
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found in Fig 4. Beyond these ideal cases, several alignment or grouping mistakes can occur.

The following illustrates a small portion of issues that can arise when processing 1D NMR

spectra.

1. Many peaks are in a small region causing overlap and there is no clear indication as to

which peaks correspond to each other. A clear example of this situation is depicted in S2

Fig. The speaq 2.0 grouping method based on peaks performs similarly to the other meth-

ods and in some cases even provides superior grouping solutions (although there is no real

way to say which of the smaller peaks belong together). The reason is that it sees all peaks

and tries to group them locally. This is in contrast to the CluPA algorithm from the original

speaq which only regards the landmark peaks and aligns the highest ones in this crowded

region, but the spectra are clearly overshifted. The icoshift algorithm provides a better solu-

tion than CluPA in this case but the results remain suboptimal.

2. A single sample shows unique behavior compared to all other samples. An example of such

a situation is depicted in S3 Fig. In this case no method performs as it should and every

method introduces errors or artifacts. It is however important to note that such unique

cases will usually not show up in the final statistical analysis since these analyses often focus

on general group differences and are robust against outlier samples.

3. The shift between samples is larger than the difference between two adjacent peaks in a

non crowded peak region. An example is shown in S4 Fig. Both the raw spectra approaches

(CluPA and icoshift) align the spectra as expected. The speaq based approach initially groups

peaks wrongly. However, this wrong alignment can be detected by using a built in function

of the speaq package which calculates the silhouette values for each group (see S3 Appendix

for definition and implementation). Groups that are flagged as having bad silhouette values

are regrouped. After this step the results correspond to those of the correctly aligned spectra.

Simulated dataset

To actually quantify the performance of the new speaq 2.0 approach, we require a dataset for

which the ground truth is known. For this purpose a simulated dataset was constructed (see S2

Appendix for details) from the 1H NMR spectra of two different metabolites, with a mixing

factor mi chosen from a bimodal distribution to simulate two different groups. This effectively

corresponds to a case vs control study. This simulated dataset is also processed with 2 common

NMR spectral alignment methods, namely CluPA [15] and icoshift [27]. It is not straightfor-

ward to quantify the performance of speaq vs the alignment algorithms on the same level since

the alignment algorithms do not result in a feature matrix. However, we can compare the new

speaq 2.0 workflow to the default workflow of alignment followed by binning. The setup is dis-

played in Fig 5. By binning the aligned spectra we obtain a feature matrix. The spectra are

binned by using the functionality in the ChemoSpec R-package [9]. The bin.ratio parameter is

set to 200, which equates to binning with a binwidth of 0.018 ppm. The resulting feature matrix

is then processed with the differential analysis functionality of speaq to identify the relevant

variables that are significantly different between case and control. This results in a p-value for

each bin and this output can be compared directly with the output of the peak based approach

of speaq via ROC and Precision-Recall curves, see Fig 6. Several observations can be made

from these results:

1. The lowest performance is obtained when simply binning the raw shifted spectra. This is to

be expected as it is more likely that peaks will be split over multiple bins because of the large

shifts.
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Fig 4. Raw spectral alignment methods and peak based grouping methods perform equally. When the peak shifts

between samples (caused by pH differences etc.) are less than the distance between adjacent peaks, all methods

perform as expected. The raw spectra based methods (CluPA from the speaq v1.0—1.2.3 and icoshift) mitigate the

differences in peak shifts and the peak based method groups the peaks accordingly.

https://doi.org/10.1371/journal.pcbi.1006018.g004
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Fig 5. Performance comparison workflow. The default way of processing 1D NMR spectra is illustrated on the left. The case vs.

control spectra are aligned and are then binned to produce features which can be used in statistical analysis. Note that the spectral

alignment step can be skipped as the binning approach can correct for small shifts. This default processing approach is compared to

our method shown on the right. The aim of both methods is to point the user to the peaks/intervals that discriminate between the

two groups.

https://doi.org/10.1371/journal.pcbi.1006018.g005
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2. By aligning the spectra before the binning step the performance increases. Although the

spectral alignment methods have occasional artifacts, many peaks in the spectra are in fact

aligned correctly, thereby aiding in reducing the splitting of peaks over multiple bins. None-

theless, this approach is still hampered by the binning step.

3. The peak based method of speaq 2.0 performs best on the simulated case vs control dataset.

This is predominantly caused by the different way of obtaining features. With the binning

approach, features consist not only of the peak signal but also of the adjacent signals, which

are often background. This background effectively reduces the difference between two

samples, as the background signal is often similar in scale. With the peak picking approach

of speaq 2.0, only the peak is used to describe a feature. This results in greater differences

between samples and this in turn makes it easier for the statistical approaches to spot the

relevant differences.

Onion intake in mice data

With this validation dataset, we will compare the results of the new speaq 2.0 workflow with

those obtained by Winning et al. [37]. This dataset contains onion 4 groups of mice with

increasing percentages of onion in their diet (0, 3, 7 and 10%).

Towards a small and usable data matrix. The original analysis by Winning et al. [37]

used binning to process the spectra. Here we use the new speaq 2.0 workflow to convert the

raw NMR spectra (S5 Fig) to peaks (S6 Fig). Next the peaks are grouped, peak filled and con-

verted to a feature matrix. The dimensions of this feature matrix are 31 samples by 677 fea-

tures. This is a substantial reduction from the original spectra matrix (31 samples by 29001

measurement points). This feature matrix is the input for the following statistical analysis.

No group trend is found by PCA. Corresponding with the original analysis by Winning

et al. a principal component analysis (PCA) is performed. The feature data matrix is Pareto

scaled and centered. The results of the PCA analysis, as presented as a score plot in Fig 7,

Fig 6. Performance comparison with ROC and P-R curves on a simulated dataset. Binning raw unaligned spectra results in the worst performance. The

two alignment tools (CluPA and icoshift) show an increase in performance compared to no alignment but are still hampered by the binning step. The new

speaq 2.0 workflow has the highest performance on the ROC and P-R curve.

https://doi.org/10.1371/journal.pcbi.1006018.g006
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are analogous to those of [37]: there are no obvious and consistent group trends that follow

increases in onion intake.

Locating possible biomarkers with ease. From this point onwards the merit of the wave-

let based analysis becomes more obvious. Winning et al. resort to interval partial least squares

(iPLS) and interval extended canonical variate analysis (iECVA). After careful cross validation,

these methods lead to intervals that have to be checked manually for interesting peaks. The

new speaq 2.0 workflow allows a quicker and more straightforward analysis. The constructed

feature matrix is processed with the differential analysis method. In this case there exists a

numerical relationship between all the groups (i.e. the percentage of onion in the diet), which

is directly supported by the new speaq 2.0 differential analysis based on linear models. Each

feature receives a Bonferroni corrected p-value assigned indicating how well the feature corre-

sponds to the increasing onion concentration. The distribution of uncorrected p-values is

depicted in S7 Fig. The corrected p-values are shown in Fig 8 along with an excerpt of one of

the significant peaks. In total, 9 peaks were found to be significant. The 9 significant peaks can

be used to search HMDB to find the possible biomarkers related to onion intake.

Identifying the biomarkers. Merely submitting all peak ppm values to HMDB will not

produce the correct outcome, as HMDB expects all peaks to correspond to a single metabolite.

To avoid submitting peaks from multiple metabolites to an HMDB search, a correlation-based

clustering step is performed on the highly significant peaks. The result from this clustering,

based on peak intensity correlations, is displayed in Fig 9. The significant peaks are grouped

into 5 clusters, where the minimal Pearson correlation between any two peaks in the same

cluster is higher than 0.75. These peak clusters are used to search HMDB (tolerance ± 0.02), by

submitting the ppm values of the peak groups within a cluster. When submitting the cluster of

4 peaks, the top hit is 3-hydroxyphenylacetic acid (HMDB00440) with a Jaccard index of 4/9.

This molecule is also identified in the original paper as a biomarker for onion intake. However,

in the original paper this is done only by looking at a small region around 6.8 ppm, as com-

pared to the speaq 2.0 analysis which yields peaks in multiple ppm regions that can be used for

Fig 7. PCA analysis of onion mice data. The onion mice data matrix is Pareto scaled and centered. There are no clear

trends that follow the onion intake percentage present in the PCA results, this matches the results of Winning et al.

[37].

https://doi.org/10.1371/journal.pcbi.1006018.g007
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identification. The peak with index 18662 can actually also be assigned to 3-hydroxyphenylace-

tic acid (raising the Jaccard index to 5/9 upon also submitting this peak to HMDB). When the

cluster that only contains peak 19723, with corresponding ppm value of 3.1558, is submitted to

HMDB the top hits are dimethyl sulfone and 9-methyluric acid, both with a Jaccard index of

1/1. These results match those from the original paper where dimethyl sulfone (HMDB04983)

is identified as a biomarker for onion intake. Raw spectra of the main peaks for both biomark-

ers are shown in S8 Fig.

The other peaks explained. The other peaks found cannot be identified querying HMDB.

The peak with index 19510 is somewhat absorbed in the background. The peak with index

23648 ends up in a cluster with non-significant peaks that are assigned to ethanol within

Fig 8. Differential analysis results of onion intake in mice data. (Left) the Bonferroni corrected p-values for the features resulting from the differential analysis

and (right) one of the features with a significant p-value (indicated with the blue diamond on the left image): (top) raw spectra, (middle) data after peak detection

and (bottom) data after grouping.

https://doi.org/10.1371/journal.pcbi.1006018.g008

speaq 2.0: Workflow for 1D NMR spectra processing and quantification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006018 March 1, 2018 17 / 25

https://doi.org/10.1371/journal.pcbi.1006018.g008
https://doi.org/10.1371/journal.pcbi.1006018


HMDB, when the correlation procedure is run on the entire dataset. As HMDB does not

assign the 23648 peak to ethanol, this may indicate that this is a derivative or a byproduct

of ethanol. The peak with index 19752 is actually a peak in the tail of the large peak of one of

the identified biomarkers, namely dimethyl sulfone. The fact that this peak is significant is

caused by an artifact of the wavelet based peak detection since it considers the tail of the large

dimethyl sulfone peak as the baseline for the small peak. So when the dimethyl sulfone peak is

larger, the baseline for the small peak is also larger and therefore the peak diminishes. This is

also the reason why this peak is anti-correlated with the dimethyl sulfone peak.

Comparison with MetaboAnalyst. The MetaboAnalyst [12] platform is widely used for

the analysis of metabolomics data. The processing of NMR data is also possible, provided the

NMR data are supplied as a peak list or as binned data. Since Winning already used the bin-

ning approach, we will compare the results of MetaboAnalyst when peak data is supplied. This

means the grouping step is performed in MetaboAnalyst thereby allowing the comparison to

the speaq 2.0 grouping method. See Fig 10 for a visual representation of which steps of the

workflow are different. The grouping method performed in MetaboAnalyst uses a moving

Fig 9. Correlation analysis of significant peaks. The significant peaks, which are indicated by their peakIndex value, are

clustered based on their Pearson correlation. The group of four peaks correspond to the 3-hydroxyphenylacetic acid

biomarker, peak nr. 19723 corresponds to the dimethyl sulfone biomarker. Both biomarkers are also identified in the original

analysis paper [37], but with only one peak for the first biomarker.

https://doi.org/10.1371/journal.pcbi.1006018.g009
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Fig 10. Workflow for comparing the results of MetaboAnalyst with speaq 2.0.

https://doi.org/10.1371/journal.pcbi.1006018.g010
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window to group peaks together. The window is 0.03 ppm wide and moves with steps of

0.015 ppm according to the documentation. If more than one peak per sample is detected in a

single group the intensities of these peaks are summed together. After pre-processing with

MetaboAnalyst the data matrix (245 features) is extracted and processed with the differential

analysis function. So again each column in the MetaboAnalyst matrix gets a (Benjamini-Hoch-

berg corrected) p-value assigned to indicate how well this feature corresponds to the increasing

onion diet. The results are presented in Table 2. For every highly significant feature in the

MetaboAnalyst data, there is at least one highly significant feature from the speaq 2.0 analysis.

The difference between both methods is the lower resolution of MetaboAnalyst, as it sums

close peaks together. This approach effectively removes a source of information contained in

the data as multiplets can aid in the identification of compounds.

Concluding remarks

We present an easy way of converting 1D NMR spectra (or other 1D spectra) to peak data by

using wavelets for peak detection. This wavelet based method performs better than binning or

other spectra summarizing methods as the dimension of the dataset is greatly reduced with lit-

tle to no loss of information, while requiring no user intervention. After the wavelet based step

the peaks are grouped via a hierarchical clustering method. These groups of peaks are called

features. The features can easily be analyzed with a myriad of statistical techniques or data

mining approaches. Our method has been implemented in an entirely new version of the exist-

ing speaq R package which offered the CluPA algorithm for aligning spectra. This package

now provides an entire solution for easy 1D NMR data analysis without the need for binning.

Table 2. Comparison between MetaboAnalyst and speaq 2.0 for the onion intake in mice dataset.

MetaboAnalyst speaq 2.0

group ppm p-value group ppm p-value

3.479 3.48 E-07 �� 3.480 2.44 E-04 ��

6.806 6.78 E-07 �� 6.805 7.01 E-07 ��

6.821 3.02 E-01

6.782 2.32 E-05 �� 6.789 8.42 E-04 ��

6.781 6.45 E-02

6.769 7.47 E-01

6.763 8.59 E-01

3.156 2.39 E-05 �� 3.156 2.78 E-06 ��

3.147 8.42 E-04 ��

3.163 9.15 E-01

6.855 1.42 E-04 �� 6.856 8.13 E-04 ��

6.832 6.38 E-01

6.841 9.54 E-01

2.774 6.40 E-03 �� 2.781 5.67 E-03 ��

2.773 5.08 E-01

1.324 1.07 E-02 � 1.325 9.04 E-03 ��

1.341 1.75 E-02 �

This table shows the significant groups of MetaboAnalyst and the corresponding peaks found by speaq 2.0 within the same bins. For every highly significant feature in

the MetaboAnalyst dataset there is at least one highly significant feature in the speaq 2.0 results. The difference is however quite clear. Whereas MetaboAnalyst

constructs a feature by summing intensities of peaks within small intervals, the speaq 2.0 method uses all peaks. Note that the p-values in this table are Benjamini-

Hochberg corrected (the default in speaq 2.0). [��p < 0.01; � p < 0.05].

https://doi.org/10.1371/journal.pcbi.1006018.t002

speaq 2.0: Workflow for 1D NMR spectra processing and quantification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006018 March 1, 2018 20 / 25

https://doi.org/10.1371/journal.pcbi.1006018.t002
https://doi.org/10.1371/journal.pcbi.1006018


Each step in the workflow is available as a single function. Thus, analysis pipelines can be con-

structed easily and with little additional user interaction, fostering improved research repro-

ducibility and shareability.

Besides the possibility to perform a complete standalone analysis, our method can also be

used in tandem with other commonly used tools that rely on summarized spectra. Specifically,

it can be used to quickly and efficiently produce a high quality peak list. Such a peak list is the

starting point of an analysis with for example the often used MetaboAnalyst [12].

The data processed in this article came in a matrix format with ppm values and intensities.

Other proprietary software or open-source frameworks are thus needed if only the raw NMR

Free Induction Decay signal (FID) is available and conversion to the frequency space is

needed. Optional pre-processing steps on the raw FID signal like zero-filling, apodization, and

phase-shifting have to be performed prior to employing speaq 2.0, if they are desired. These

pre-processing steps are on the road-map for future developments.

We expect the introduced method to be especially useful for processing NMR spectra from

large cross-platform experiments that combine NMR and LC-MS. Often software packages

like XCMS [5] are used to process LC-MS data. These open source packages also employ the

standard paradigm of peak-picking, grouping, etc. so the integration of data or results should

be facilitated with this framework. The method in itself also has merit as is clearly demon-

strated in the case of the onion intake in mice data. The analysis is fast, sensitive to both small

and large peaks and user-independent. Also, when comparing the results we obtained to the

work presented by Winning et al. [37], our analysis required less user interaction and yields

more peaks in the end that can be used to identify the possible biomarkers, resulting in an

improved confidence in the results.

The user-friendliness of speaq 2.0 should also allow people with little experience in R to use

the package. Also, it can serve as an attractive option for researchers interested in switching

from closed, proprietary software to open-source, especially if the goal is to speed up analysis,

improve reproducibility and increase control over workflows and algorithms.

Availability and future directions

speaq 2.0 is distributed through the existing speaq R package to provide a complete solution

for NMR data processing. The package and the code for the presented case studies are freely

available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.

com/beirnaert/speaq). Future directions will aim to provide compatibility with the open

source nmrML (http://www.nmrml.org) format and to improve on the identification part by

combining our approach with Statistical Total Correlation Spectroscopy (STOCSY) [38].

Supporting information

S1 Appendix. Grouping algorithm details.

(PDF)
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S1 Fig. Wine data PCA plot. The PCA score plot shows that Principal Component 2 clearly

indicates a difference between red, white and rosé wines.
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S2 Fig. Difficulties arise in crowded spectra. When many peaks are present in a small region,

it is not clear which peaks correspond to each other. The speaq 2.0 method, based on finding

peaks and subsequently grouping, performs similar or better compared to the other methods

as it sees all peaks and tries to group closer ones together. The CluPA algorithm uses landmark

peaks and therefore simply tries to align the largest ones together, which is not correct in this

case. Lastly, the icoshift algorithm tries to align the spectra based on correlations but the result

in this crowded region is also not satisfactory.

(PNG)

S3 Fig. A sample with unique behavior causes issues. In the region around 5.43 ppm there

appear to be two small peaks in all samples. A single sample of red wine has two additional

large peaks around the 5.40 ppm region. Every method performs poor in this case: both ico-

shift and CluPA (speaq v1—v1.2.3) align the two large peaks with the group of small peaks.

The CluPA algorithm does this by shifting the entire region to the right, this results in the

two small peaks of these spectra to be shifted to the right of the small peaks group around

5.43 ppm. The icoshift algorithm on the other hand introduces some strange artifacts and the

two small peaks are gone all together. The speaq 2.0 algorithm deletes one of the large peaks in

the grouping step, which it often does if multiple peaks from the same sample are present in

one group. This problem is usually mitigated by the peak filling step but in this case it is not.

(PNG)

S4 Fig. Between-sample shifts that are larger than between-adjacent-peaks shifts can cause

problems. In this case both raw spectra methods perform as expected whereas the speaq 2.0

method does not. Initially peaks are wrongly grouped together. This problem is however

detected by the optional SilhouetR function in speaq 2.0 which calculates the silhouette values

for each group. After the appropriate correction the results are as expected.

(PNG)

S5 Fig. Raw spectra of the onion intake in mice data.

(PNG)

S6 Fig. speaq 2.0 workflow applied to the onion intake in mice data [37]. (A) Onion intake

in mice peak data after grouping and filling. The gap in the raw data is clearly visible: this data

was removed by the study authors because of insufficient water suppression. (B) Excerpt of

peak data pre-grouping. (C) Excerpt of peak grouped data.

(PNG)

S7 Fig. Distribution of uncorrected p-values. The possible biomarker signals are clearly pres-

ent on the left as an increase in frequency over the otherwise uniform distribution.

(PNG)

S8 Fig. NMR spectra of biomarkers identified by speaq 2.0. Main peaks of both biomarkers

from the onion intake in mice data [37]. (Top) dimethyl sulfone and (bottom) 3-hydroxyphe-

nylacetic acid.

(PNG)

S9 Fig. Spectral alignment algorithms can introduce artifacts. The results of spectral align-

ment algorithms is not always optimal when dealing with severely shifted spectra. This is

illustrated here for the simulated case vs control data (mi is bimodal). The algorithms can

introduce artifacts, i.e. misalign or overcorrected spectra, which affect the following processing

steps (e.g. binning).

(PNG)
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