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Abstract

The 3D structure of chromatin plays a key role in genome function, including gene expres-

sion, DNA replication, chromosome segregation, and DNA repair. Furthermore the location

of genomic loci within the nucleus, especially relative to each other and nuclear structures

such as the nuclear envelope and nuclear bodies strongly correlates with aspects of function

such as gene expression. Therefore, determining the 3D position of the 6 billion DNA base

pairs in each of the 23 chromosomes inside the nucleus of a human cell is a central chal-

lenge of biology. Recent advances of super-resolution microscopy in principle enable the

mapping of specific molecular features with nanometer precision inside cells. Combined

with highly specific, sensitive and multiplexed fluorescence labeling of DNA sequences this

opens up the possibility of mapping the 3D path of the genome sequence in situ. Here we

develop computational methodologies to reconstruct the sequence configuration of all

human chromosomes in the nucleus from a super-resolution image of a set of fluorescent in

situ probes hybridized to the genome in a cell. To test our approach, we develop a method

for the simulation of DNA in an idealized human nucleus. Our reconstruction method, Chro-

moTrace, uses suffix trees to assign a known linear ordering of in situ probes on the genome

to an unknown set of 3D in-situ probe positions in the nucleus from super-resolved images

using the known genomic probe spacing as a set of physical distance constraints between

probes. We find that ChromoTrace can assign the 3D positions of the majority of loci with

high accuracy and reasonable sensitivity to specific genome sequences. By simulating

appropriate spatial resolution, label multiplexing and noise scenarios we assess our algo-

rithms performance. Our study shows that it is feasible to achieve genome-wide reconstruc-

tion of the 3D DNA path based on super-resolution microscopy images.
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Author Summary

The 3D structure of DNA in the nucleus is known to be important for many aspects of

DNA function, such as how gene expression is regulated. However, current techniques to

localise or determine 3D DNA structure are often indirect. The advent of super-resolution

microscopy, at a resolution of 20 nm or better can directly visualize fluorescent probes

bound to specific DNA in the nucleus. However it is not trivial to associate how many spe-

cific stretches of DNA lie relative to each other, making reliable and precise 3D mapping

of large stretches of the genome difficult. Here, we propose a method that leverages the

fact that we know the sequence of the genome and the resolution of the super-resolution

microscope. Our method, ChromoTrace, uses a computer science data structure, suffix

trees, that allow one to simultaneous search the entire genome for specific sub-sequences.

To show that our method works, we build a simulation scheme for simulating DNA as

ensembles of polymer chains in a nucleus and explore the sensitivity of our method to dif-

ferent types of error. ChromoTrace can robustly and accurately reconstruct 3D paths in

our simulations.

Introduction

The primary nucleic acid sequence of the human genome is not sufficient to understand its

functions and their regulation. Fitting the 6 billion basepairs or approximately 2 m of double-

helical DNA into an approximately 10 μm radius nucleus requires tight packing of DNA into

chromatin, where about 150 bp of DNA are wrapped around cylindrical nucleosome core par-

ticles, which in turn can be tightly packed due to interspersed flexible linker DNA [1]. In addi-

tion, each chromosomal DNA molecule occupies a discrete 3D volume inside the nucleus and

the arrangement of these chromosome territories is non-random and changes with cell differ-

entiation [2, 3]. This remarkable spatial management of 23 large linear polymer molecules con-

trols crucial functions of the genome, such as gene expression, DNA replication, chromosome

segregation, and DNA repair.

Structural biology techniques, such as electron microscopy, crystallography, and NMR have

given atomic level insights into the physical structure of the DNA double helix and the nucleo-

some [4]. In vitro, also higher order structures such as nucleosomes stacked into 11 or 30 nm
chromatin fibres can be observed and studied at high resolution. However, the existence of

regular higher order nucleosome structures in vivo has not been demonstrated under physio-

logical conditions. To date, little direct information is available about the functionally crucial

3D folding and structure of chromatin between the scale of single nucleosomes (approximately

5 nm) and the diffraction limit of light (200 nm), which can only resolve entire chromosome

territories with a size of a few μm.

In situ, classically two general types of higher order chromatin organization have been dis-

tinguished at a coarser level, euchromatin which tends to be less compact and displays high

gene density and activity, and heterochromatin, with a higher degree of compaction and lower

gene density and activity [5]. Due to the arrangement of chromatin from individual chromo-

somes in territories, the majority of DNA-DNA interactions occur in cis, while trans interac-

tions are more rare and mostly observed on the surface of or on loops outside of territories

[6–8]. Within territories and across the whole nucleus euchromatin and heterochromatin are

generally spatially separated [9], leading to heterochromatin rich and gene expression poor

domains at the nuclear periphery and around nucleoli. Gene expression is intrinsically linked
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to the 3D structure of chromosomes, chromatin packing densities and the accessibility of

DNA by e.g. the transcriptional machinery.

In the last 10 years, biochemical DNA crosslinking technologies based on chromo- some

conformation capture (3C), have been developed to address the issue of higher order chroma-

tin structure in an indirect manner [10]. These methods have been widely used to measure

the average linear proximity of genome sequences to each other in cell populations with good

throughput and at kb resolution. The resulting contact frequency maps analyzed with compu-

tational models have indirectly inferred principles of genome organization [11]. A major result

of these studies, is that chromosomes are organized into domains of 400-800 kb that are topo-

logically associated. These TADs are the smallest structuring units of chromatin above the 150

bp nucleosome level that can be reliably detected biochemically so far. Although good correla-

tions between contact frequency and regulatory elements has been shown for several genes

[12], such crosslinking technologies cannot determine the 3D position and physical distances

of genomic loci inside the nucleus directly.

Recent developments in light microscopy techniques, collectively called super-resolution

microscopy, can determine the position of single fluorescent molecules with a precision of a

few nanometers, much below the diffraction barrier. This allows the characterization of previ-

ously unobserved details of biological structures and processes [13–16]. First studies have

already explored the use of super-resolution microscopy to investigate chromatin structure

[17–19], such as the organization of distinct epigenetic states in Drosophila cells [20] that sug-

gested distinct folding mechanisms and packing densities that correlate with gene expression.

Dissection of nucleosome organization inside the nucleus in single cells using super-resolution

shows that higher nucleosome compaction corresponds to heterochromatin while lower com-

paction associates with active chromatin regions and RNA polymerase II, and that the spatial

distribution, size and compaction of nucleosome correlate to cell pluripotency [18]. While

these studies provide first new intriguing insights into chromatin organization they have so far

largely focused on single loci without a complete 3D reconstruction of a chromosome or the

genome.

However, the resolving power of super-resolution microscopy raises the tantalizing possi-

bility to directly reconstruct the 3D path of large parts of the chromosomal DNA molecule.

Super-resolution microscopy can resolve unprecedentedly small volume elements (approxi-

mately 20 x 20 x 20 nm [21]) inside the total nuclear volume (approximately 8 × 10−6 μm3),

which will on average contain only up to 2 kb or a few nucleosomes. This fundamental

increase in information of the relative positioning of defined loci in the genome can now be

leveraged computationally.

This increase in resolution, which enables to distinguish around 60 million volume ele-

ments inside a single nucleus, can be combined with any sensitive and site specific fluorescence

in situ hybridization (FISH) probe design that allows for spectral and/or temporal multiplex-

ing. Several methods that fulfill these criteria have recently been developed, and fall within two

general probe design categories; either a primary imager strand with fluorophore-containing

DNA is hybridized to the genome directly [22] or a primary genome-sequence specific DNA

probe that facilitates transient binding of the fluorophore-containing secondary imager strand

is used (DNA-PAINT) [23]. Our reconstruction algorithm should in principle allow the map-

ping of the genome sequence in 3D with a resolution of tens of nucleosomes, depending on

their local packing density.

Carrying out such large-scale genome mapping studies by systematic super-resolution

microscopy will critically depend upon choosing the best design of the necessary chromosome

or genome wide fluorescent probe libraries and use sufficient resolution in the employed 3D

super-resolution imaging technology. To prove that such studies are feasible and guide their
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probe design and microscope technology choices, we have developed an algorithm, called

ChromoTrace, that uses an efficient combinatorial search to test the theoretical possibility of

complete three-dimensional reconstruction of chromosomal scale regions of DNA inside

nuclei of single human cells (Fig 1). To thoroughly test our algorithm, we have developed a

simulation to model DNA within a geometry similar to that of the human nucleus. Our mod-

eled 3D architecture provides a challenging environment to test our approach, and our Chro-

moTrace reconstruction algorithm then maps the simulated 3D label positions back to the

reference genome. By simulating realistic resolution, label multiplexing and noise scenarios we

assessed the algorithm performance for different experimental scenarios. Our results show

that ChromoTrace can map the positions of the labeled probes back to the reference genome

with very high precision and recall. Importantly, our study shows for the first time that it is

feasible to achieve genome-wide reconstruction of the 3D DNA path based on current super-

resolution microscopy and DNA labeling technology and defines the required quality of exper-

imental data to achieve a certain bp resolution and reconstruction completeness. This will be

invaluable to guide experimental efforts to generate such data sets systematically.

Materials and methods

Simulation of DNA in the nucleus

In our simulations we consider each chromosome as a general polymer chain and the whole

genome as an ensemble of polymer chains. Each of the polymer chains is modelled as a self

avoiding walk (SAW) through a 3D lattice graph. A 3D lattice graph is a three dimensional

grid of equally spaced points (from here referred to as nodes), where only the nearest neigh-

bours are connected by an edge and a SAW is a path through a lattice which does not intersect

itself. We choose to use SAWs as they are commonly used to model chain-like structures

including solvents and polymers, such as DNA [24]. In the following text we use the term

color equally to either represent different fluorophores, ratiometric labeling with fluorophore

Fig 1. Representation of a chromosome labeling scheme. (A) Linear DNA displayed as a ribbon with six genome regions labelled in

three different colors. (B) 3D view of a reconstructed polymer chains. Each globe represents a nucleous and each colored strand within

them a polymer chain simulation of a chromosome. The left globe contains only a single chromosome.

https://doi.org/10.1371/journal.pcbi.1006002.g001
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mixtures or barcodes, or temporally separated localizations of one or several fluorophores. We

generate SAWs through a simple random process. To generate a SAW we pick a random start-

ing node in the lattice that satisfies three conditions.

1. The point is not already part of a SAW.

2. The point is inside the nucleus.

3. The point is outside the nucleolus.

From here the SAW is extended by picking one of the adjacent nodes at random each with

equal probability. If the point satisfies the above three conditions then it is added to the SAW;

otherwise another adjacent node is picked at random and the conditions checked. This process

continues until the SAW reaches the desired length or the SAW becomes stuck and unable to

pick any adjacent node. Should the SAW become stuck, we restart this process from another

node on the current SAW. Assume the current SAW is of length i, we truncate the SAW to

length MAX(0, 0.8i) and begin the process again until the SAW reaches the desired length.

ChromoTrace algorithm

In this section we describe ChromoTrace, a new algorithm to identify the 3D structure of chro-

mosomes from a set of labeled points. We begin with an intuitive description of the algorithm

and then present the process more formally. The input given to the algorithm is a segmenta-

tion file, consisting of a list of (x, y, z) coordinates with associated colors and a labeling file,

consisting of a list of genomic locations with associated colors and a distance threshold. The

goal of the algorithm is to correctly map the (x, y, z) coordinates to their genomic locations. A

brief outline of the ChromoTrace algorithm is given below.

1. Build a suffix tree of the labeling data.

2. Build distance graph of the segmentation data.

a. Find all maximal trivial paths in the distance graph.

b. For each maximal trivial path.

i. Search the suffix tree and attempt to identify the genomic locations of trivial paths.

ii. Extend located paths one character at a time until the extension becomes ambiguous.

iii. Attempt to resolve ambiguous extensions.

iv. Repeat from Step 2)b)i) until no paths can be extended.

c. Remove located paths from suffix tree and distance graph.

d. Repeat this process from Step 2)a) until no new maximal trivial paths can be found

Data structures. Suffix trees. A suffix tree is a well understood indexing data structure [25,

26] that allows for very fast searching of a subsequence within a sequence. A suffix tree effi-

ciently stores every subsequence of the indexed sequence, for a sequence of length n it has

exactly n leaves and has total size proportional to n. The subsequence of the indexed sequence

are spelled out as paths from the root of the suffix tree (Fig 2).

Distance graph. Key to our algorithm is the construction of a graph from the (x, y, z) coordi-

nates in the segmentation file. Each (x, y, z) coordinate will be represented as a node in the

graph and two nodes are connected if and only if the Euclidean distance between them is less
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than a threshold T. T is a user defined value that should be modified depending on spacing

of the probe design and resolution of the image. A path in a graph is a sequence of edges,

e1, e2, . . ., em, connecting a sequence of nodes v1, v2, . . ., vm+1. We define a trivial path in the

distance graph as a path such that every node connected by the path except for v1 and vm+1 are

required to have exactly two adjacent nodes. A trivial path is maximal if it cannot be extended

at either end. More formally we define a trivial path as a path e1, e2, . . ., em such that it’s node

sequence v1, v2, . . ., vm+1 satisfies the following:

jvij ¼ 2 for 1 < i < mþ 1

where |vi| denotes the number of adjacent nodes of vi. A trivial path is therefore maximal if it is

also true that for i equal to 1 and m that |vi| 6¼ 2 or the path forms a cycle.

Algorithm. After building the suffix tree and processing the segmentation file to build the

distance graph we must search the graph to find all of the maximal trivial paths. The set of

maximal trivial paths can be found by first storing the number of neighbours each node has

and then processing this list. Given the set of maximal trivial paths it is simple to extract the

sequence of colors each trivial path represents and to search for this sequence in the suffix tree.

If the sequence occurs uniquely in the suffix tree we associate this path with the genomic loca-

tion found in the suffix tree. Once we have a set of paths mapped to a genomic location we

also know which color is expected at the next position in the path. Using this information we

explore the distance graph and extend the path with the expected color if there is only one

adjacent node with this color. Once we have extended in this way as much as possible there

may exist paths where the expected extension is ambiguous. More specifically we may have a

path where there are two or more adjacent nodes that are labelled with the expected color. In

this situation we find the next L expected colors and search the distance graph for this combi-

nation. if there exists an unambiguous extension we add this to the path, otherwise we stop.

L is a user defined input where larger values of L will make the algorithm slower but likely

increase recall. We repeat this extension process iteratively until no paths can be extended. All

of the mapped loci are then removed from the distance graph and suffix tree and the algorithm

started again. This entire process is repeated until no more paths can be extended and no more

trivial paths found.

Fig 2. Suffix tree of the sequence BGRY BGRY BGRY. Every subsequence of the sequence is spelled out on edges from the root, at the top of the tree, to a leaf node,

at the bottom of the tree.

https://doi.org/10.1371/journal.pcbi.1006002.g002
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Results

Simulations of DNA paths in the nucleus

To simulate the results of super-resolved detection of large-scale probe hybridizations, we

need to build a model of reasonable packing densities of DNA in the human nucleus. The pre-

cise local density of DNA in the human nucleus is surprisingly unclear due to the uncertainty

regarding the in vivo structure of chromatin. To tackle this problem with reasonable computa-

tional complexity at the scale relevant for super-resolution microscopy our simulation uses an

intermediate grained self-avoiding-walk (SAW) model for DNA on a grid of points. We use

the SAW model to represent DNA as it has been widely used in literature to simulate the struc-

ture of polymer chains [24]. The focus of the simulations is to create a challenging environ-

ment to test our algorithm and not on creating a realistic simulation of chromatin, although

we do use experimentally determined properties where possible.

The nucleus is delimited by the nuclear envelope and contains the nucleolus and DNA. To

approximate the structure of the nucleus we used a 3D sphere of 500 μm3 volume, with an

internal sphere of 50 μm3 volume devoid of polymer chains that represents the nucleolus. In

this space we generated 46 polymer chains (two copies for the 22 autosomes and the two sex

chromosomes X and Y). Each polymer chain was generated with a length proportional to the

chromosome size and the polymer chains were forced to remain inside the simulated nucleus

but not allowed to enter the simulated nucleolus. We assume random packing of polymer

chains and an average density corresponding to the highest values estimated in human cells, to

estimate the sequence reconstruction challenge at a single cell level. Fig 3 shows the packing

density and folding characteristics for the ensemble of polymer chains generated by SAWs.

Fig 3. 3D view of the simulated genome. (A) An ensemble of polymer chains, each chain, representing two copies for the 22 autosomes and

the two sex chromosomes X and Y, is drawn with a different color. Individual polymer chains show a random configuration with a high

degree of compactness inside the nucleus. (B) One polymer chain is highlighted showing a variety of polymer conformations with some

similarities to, open, fractal and compact chromatin conformations. Each polymer chain is proportional to the size of a chromosome and is

labelled as such.

https://doi.org/10.1371/journal.pcbi.1006002.g003
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Interestingly, although we assumed random packing and no biologically driven heterogeneity

in density, the simulation results in a variety of SAW conformations showing broad similari-

ties to known chromatin conformations (i.e., open, fractal and compact). For the remaining

text we refer to polymer chains as DNA, refer to each chain by the chromosome it represents

in our model and the entire ensemble as a genome.

Testing the mapping of chromosomal DNA sequence to 3D positions of

labeled loci

With our ability to simulate DNA in a nucleus, as general polymer chains, we then explored

under which experimental conditions, and with what computational methods, the 3D posi-

tions of fluorescently labeled genomic loci could be mapped back to the linear chromosomal

DNA sequences. Computationally the inputs to the method is a description of the linear label-

ing of the genome with different colors and the results of the super-resolution image determi-

nation, providing a set of the 3D coordinates (x, y, z) and color classification but without the

indication of the locus (Fig 4A). The colors where assigned to loci at random, each color hav-

ing equal probability. The goal of the reconstruction algorithm is to assign each of the in situ

loci with a specific (x, y, z) position.

If we had the same number of colors as loci this task would be trivial, however, the experi-

mental constraints mean that we will have vastly more loci than different colors. Further chal-

lenges will occur due to errors in the labeling and imaging experiment. We proposed to solve

this problem using the fact that the linear sequence of the probe design dramatically constrains

the search space for solutions. Furthermore we can use efficient string based data structures,

such as a suffix tree, to efficiently explore compatible places of the design space relative to the

3D space. We named this combined combinatorial exploration followed by expansion the

ChromoTrace method (Methods).

Our simulations puts us in a position to explore these experimental and technical con-

straints in a controlled manner, since we can vary the probe design both in terms of number of

colors and spacing along the linear genome sequence. Since we know the underlying ground

truth of sequence identity and probe color, we can test the hypothesis that the high resolution

of 3D position determination and high reliability of color classification provided by super-res-

olution microscopy should provide enough information to find unique solutions for mapping

back probe positions to the linear DNA sequence.

We created probe designs using a regular fixed spacing between probes (in our simulations

we use 10.8 kb spacing), resulting in an effective spatial imaging resolution of 4.3 x10−5 μm3

volume which is well within the limits of super-resolution. We then convert the 3D positions

of the simulated imaging data to a graph of potential adjacencies, using a threshold distance of

T which relates to the maximum distance between two sequential probe positions in space

(10.8 kb) assuming an average compaction of DNA. The resulting distance graph should in

theory contain most of the true paths of the probes along the genome plus spurious links of

physically close but non-adjacent probes. We then created a suffix tree containing the expected

probe colors along the genome, capturing the two possible directions of reading the labels

(p to q and q to p direction) resulting in a reversible suffix tree with path information for both

forward and reverse genome directions. The algorithm then iteratively explores the distance

graph to find regions with a unique solution of matching potentially physically adjacent color

combinations with the genome sequence (Fig 4A). Once such anchor regions are found, the

algorithm has a vastly reduced search space and extends them into the distance graph until it

hits regions with high combinatorial complexity (Fig 4B), such as highly compact regions.

ChromoTrace
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To test the performance of ChromoTrace for determining the DNA path through the

nucleus we first loaded the labeling file into the reversible suffix tree and jointly searched the

suffix tree and distance graph (x, y, z) to find unique sequences of colors found in both. We

chose a value for the distance threshold as the value which maximises the number of trivial

paths that we find. We performed this analysis for all 100 synthetic nuclear sets, for all 22

probe designs, for all chromosomes separately as well as for the whole genome. Each design is

created using a different number of colors ranging from 3 to 24. We choose to use precision

(specificity) and recall (or sensitivity) to assess algorithm performance. Recall is the ratio of the

number of correctly mapped probes to the total number of probes and precision is the ratio of

Fig 4. Illustration of the ChromoTrace algorithm. (A) The 3D coordinates that would be obtained from super-

resolution microscope imaging are converted into an distance graph. Given the pre-specified linear labeling sequence

of green-red-blue-blue-green a trivial path is detected. Note that in the microscopy image the connection between

points is unknown and only the colors remain. (B) Diagram of the extension algorithm exploring the ambiguous

extension phase.

https://doi.org/10.1371/journal.pcbi.1006002.g004
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the number of correctly mapped probes to the total number of mapped probes. Since the

ground truth is known a priori in our simulation there is no ambiguity in how to measure

performance.

Analyzing these 55,000 reconstruction attempts shows that the algorithm is highly precise

(mean of 0.99 across all simulations), however the recall rate is much more variable (Fig 5A).

This variability can largely be explained by two factors i) the number of colors available in the

probe design ii) the density of probe positions in 3D space. For individual chromosomes the

mean recall rate is approximately 0.99 when using a 10 color probe design, however for the

same probe design genome wide the mean recall rate drops to 0.64 (Fig 5A). This reflects the

increased number of ambiguous sequence paths available when the spatial search space is

more densely packed, due to labeled sequences from physically close chromosomes.

To assess the reconstruction performance in dependence of the spatial probe position den-

sity (i.e. DNA compaction) we show the area under the precision-recall curve values (PR

AUC) against the total number of intra-chromosomal contacts in 100 kb windows across all

autosomes and for all probe designs (Fig 5B). The contacts are defined as the total number of

occupied spaces around each labeled probe, taking into account the grid of points directly sur-

rounding each probe. There is a clear trend for increased PR AUC values for probe designs

with a greater number of colors irrespective of DNA density. Across all probe designs there is

a marked drop in performance as the DNA density increases, and this drop is much sharper

for probe designs with fewer colors (Fig 5B).

For optimum reconstruction it is important to address performance in terms of the com-

pleteness of the reconstructed paths. We assessed the length of reconstructed paths in the

context of the number of colors available for the labeling design (Fig 6). As expected we see a

clear trend towards increased mean and variance of path lengths as the number of colors is

increased. Furthermore, the minimum path length across all simulations for each labeling

Fig 5. Reconstruction performance for the main simulations. The reconstruction algorithms performance is shown in terms of the relationship between precision and

recall given the number of colors in the probe design. (A) Recall against precision genome wide (triangles) and for chromosome 20 (circles). Precision is good for both

genome and chromosome scale regions for all the different probe designs whereas recall is much more dependent on the number of available colors and improves as the

number of colors is increased. (B) Total number of contacts in 100 kb windows against the area under the precision-recall curve given the number of colors in the probe

design.

https://doi.org/10.1371/journal.pcbi.1006002.g005

ChromoTrace

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006002 March 9, 2018 10 / 20

https://doi.org/10.1371/journal.pcbi.1006002.g005
https://doi.org/10.1371/journal.pcbi.1006002


design was 6. The necessity of ChromoTrace to find unique anchors points (trivial paths)

before extending further out into the distance graph results in paths never being smaller than 6

points long which is an expected observation when considering the random placement of col-

ors across the simulation space and the global compaction of the chromosomes.

Robustness and error tolerance

Real experimental super-resolution data will contain noise, likely from two major sources,

firstly missing probes due to hybridization failure and secondly mislabeled probes, either due

to chemical mislabeling or crosstalk between different dyes in the super-resolution micro-

scope. To assess the performance of the reconstruction algorithm in the presence of errors we

simulated 99 datasets for each error mode, containing error rates ranging from 1% to 99%,

across all 22 probe designs for the 100 simulated nuclear sets, for all chromosomes separately

as well as for the whole genome (a total of over 5.4 Million simulations). The errors were

added to our simulations at random with the appropriate error rate.

For all probe designs the proportion of mislabeled probes has a dramatic effect on the

reconstruction precision and we observe a clear decrease in precision as the proportion of

probes with the wrong color is increased (Fig 7A). At 10% mislabeled probes for the 24 color

probe designs the mean precision is 0.94 (SD = 0.003), dropping to 0.92 (SD = 0.006) for 11

colors and to 0.7 (SD = 0.003) for 3 colors. Recall rates are even more strongly effected by the

proportion of mislabeled probes, starting from a maximum recall rate of approximately 0.99

for the 24 color probe designs with no mislabeled probes, recall rates drop sharply for all

probe designs as the proportion of mislabeled probes increases (Fig 7B). At 10% mislabeled

probes for the 24-color probe designs the mean recall is 0.85 (SD = 0.012), dropping to 0.59

(SD = 0.002) for 11 colors and to 0.1 (SD = 0.01) for 3 colors. At above 60% of mislabeled

probes both precision and recall is too low to be useful. The rapid drop in performance for

recall compared to precision is not unexpected considering that ChromoTrace uses exact

matching.

For missing probes the relationship between recall and percentage of errors is very similar

(Fig 7B and 7D). This is not surprising since either removing or replacing probes with a wrong

Fig 6. Distribution of path lengths. The relationship between the number of colors and the length of the paths found by ChromoTrace is shown in this plot. A

violin plot is shown for each number of colors and the relation to the logarithm (log base 10) of the path length. More colors lead to longer paths and after 10 colors

the path length does not increase as recall becomes greater than 0.99. Within the violin plot the first and third quartiles are shown.

https://doi.org/10.1371/journal.pcbi.1006002.g006
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color in a sequence of colors is likely to stop the extension of correct paths at a similar rate.

Precision however, only starts to drop at a much higher percentage of missing, compared to

mislabeled probes (Fig 7A and 7C). This suggests that the chance of creating an error in path

extension when removing probes is lower than if mislabeled probes are present. If DNA paths

were linear in 3D space this would be entirely expected as the distance threshold between

sequential probes would ensure that most paths are not incorrectly extended across missing

probe locations, while mislabeled probes will not only terminate extension but also cause

mismatches to the genome sequence. These results suggest that removing relatively large

Fig 7. Robustness to missing and mislabeled probes. Relationship between amount of error for two different modes (missing and mislabeled probes) and the

overall reconstruction performance given the number of colors in the probe design is displayed in panels A through D. The number of colors in the probe design is

indicated using different shades of black-blue. Panels A and C show the proportion of error against precision for mislabeled and missing probe errors respectively

and panels B and D show the proportion of error against recall.

https://doi.org/10.1371/journal.pcbi.1006002.g007
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numbers of probes is unlikely to cause incorrect path extensions across a majority of the simu-

lated DNA space.

Encouragingly even for the probe designs with the lowest numbers of colors (3) precision

remains at approximately 0.8 with a missing probe rate of 25%. Furthermore, precision is also

relatively robust to mislabeled probe errors, remaining above 0.75 with more than 15% of mis-

labeled probes for probe designs with greater than 7 colors. As expected recall is far more sen-

sitive to error and there is only a marginal difference observed between the two error modes.

Differences in DNA packing density

It is unclear how much of the available volume chromatin occupies locally within the nucleus

under physiological conditions, but the literature suggests nucleosome concentrations of 140

±28 μM with nucleosomes every 185 bp in HeLa cells leading to a packing density of 10%

when assuming a nucleosome volume of 1296 nm3 [27]. To be conservative, our simulation

used a higher than average density of DNA, with 34% of the available local volume occupied

by DNA (545 thousand points per genome from a 1.59 million point grid). An increased den-

sity of the SAWs will result in a harder reconstruction problem, because a higher number of

occupied adjacent spaces within the simulation leads to an increase in the number of ambigu-

ous choices for path extension.

To assess the effect of lowering the DNA density we performed additional simulations by

omitting the nucleolus and doubling the radius of the nucleus resulting in filling approxi-

mately 6.9% of the nuclear volume with DNA (982 thousand points per genome from a 14.1

million point grid). Unsurprisingly these SAWs are less densely packed, an effect that can

be visualized by looking at the proportion of adjacent spaces that are occupied, given the dis-

tance threshold T, for all labeled genomic locations in the simulations (Fig 8). While in our

original simulations the median proportion of occupied spaces around each probe position

from the labeling design is 0.52 (Fig 8B), in the lower density simulations this is decreased to

0.37 (Fig 8A).

To test how this effects the reconstruction performance, we generated 100 synthetic

nuclear sets using the approach described above and produced 22 different probe designs

containing 3 to 24 colors for the lower density simulations. We then reconstructed using the

ChromoTrace algorithm for all synthetic data sets for each chromosome separately and for

the whole genome. As expected performance, in terms of both precision and recall, is signifi-

cantly improved for the less densely packed simulations (Fig 8C). The genome wide mean

precision remains high (greater than 0.99) for all probe designs. The difference in recall is

much more pronounced with mean recall rates of 0.99, 0.92 and 0.12, compared to 0.97, 0.48

and 0.08, for probe designs with 24, 11 and 3 colors for the lower density compared to the

higher density simulations respectively. Importantly when comparing the lower to the higher

density simulations the recall rate is improved by a mean factor of 3 across all different color

probe designs (Fig 8C). This marked improvement in sensitivity reflects the decreased num-

ber of occupied adjacent 3D spaces around each individual probe position and consequently

a reduced number of ambiguous sequence path extension choices when lowering the density

of the simulated DNA paths (Fig 8A and 8B). Overall across all probes designs the lower den-

sity simulations have a genome wide mean recall rate of 0.84 compared to 0.58 for the higher

density simulations.

Simulating localization event profiles

Until this point we have been using simulations containing uniform spacing between adja-

cently labeled positions (loci), however the distance between adjacent labels in real super
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resolution experiments will be variable. The main factors effecting this variability are likely to

be the lack of absolute uniformity of sequence specific probe spacing along the genome, the

super-resolution image localization precision and the probability of effective probe hybridiza-

tion. To create a more accurate simulation of real experimental data we developed a full simu-

lation of a super resolution experiment. Starting from probe level localization we simulated

the results of image acquisition, followed by event clustering leading to observed 3D positions.

Importantly this leads to a more varied set of distances between observed loci positions (S1

Text).

Briefly, starting with the 100 SAWs and the 10 color probe designs, we used each 3D coordi-

nate as the starting point in 3D space and placed 10 probes equally spaced along a single direc-

tion (x, y, or z) based on the direction of travel along the walk. The midpoint of each group of

probes is the original starting position and each probe was given a 0.3 probability of being

missing. Next, for each probe, we simulated a number of localization events (LE’s) drawn from

a poisson distribution with a mean of 5 and added error in all directions independently, draw-

ing from normal distributions with standard deviations of 5 nm, 5 nm, and 15 nm for x, y and

z, respectively. For clustering these LE profiles we used the DBSCAN (Density-based spatial

clustering of application with noise) algorithm [28]. To define the final 3D coordinates for

each locus we took the mean coordinate from each direction separately across all LE’s for each

cluster that was defined by DBSCAN. These along with their relevant 10 color labeling designs

were used as the input to ChromoTrace.

We investigated the result of applying this process to the starting simulations in terms of

three different types of error. Firstly, the overall percent of missing loci is approximately 6%

for both genomes and chromosomes (Fig 9B), as seen previously the number of missing loci

has an extremely adverse effect on the reconstruction performance particularly in terms of

Fig 8. Differences in simulation packing densities. Reconstruction performance when decreasing the packing density of the simulations. (A-B) For all positions

across the simulations, the proportion of directly adjacent spaces that are occupied for the new (blue) and original (red) simulations respectively. The distribution is

left shifted for the new simulations compared to the original and the median number of occupied spaces is reduced reflecting a decrease in density. (C) Genome wide

performance of the reconstruction algorithm for the new (triangles) and original (circles) simulations in terms of precision and recall given the number of colors in

the probe design.

https://doi.org/10.1371/journal.pcbi.1006002.g008
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recall (see Robustness and error tolerance). Next we looked at the percentage of LE’s that

were clustered into the wrong locus by DBSCAN, we see that the mean percentage of loci con-

taining erroneous LE’s is approximately 5.8% for both genomes and chromosomes (Fig 9C).

The observed position of loci in 3D space whose clusters contain erroneous LE’s are likely to

be far less accurate than those whose LE’s are consistent. Moving individual loci around in

Fig 9. Segmented simulated LE profiles. (A) The reconstruction performance, recall versus precision when running ChromoTrace for whole genome and

individual chromosomes. (B) The percent of missing probes across all 100 simulations for all of the polymer chains and a single chain. (C) The percent of LE’s that

were clustered into the wrong locus for the whole genome and chromosome 20. (D) the percent of clusters that contained LE’s from multiple starting loci.

https://doi.org/10.1371/journal.pcbi.1006002.g009
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space is likely to adversely effect the performance of ChromoTrace due to points falling outside

of the chosen distance threshold T used in the distance graph. Finally we looked at the percent-

age of DBSCAN defined clusters that contained LE’s from multiple loci and observe a mean

percentage of approximately 1.9% for genomes and chromosomes (Fig 9D). It is reasonable to

assume that as the number of unique loci contributing LE’s to a defined DBSCAN cluster

increases so the accuracy of the final observed loci coordinates is likely to decrease.

We ran ChromoTrace across all 100 simulated super resolution experiments for whole

genome reconstruction and for individual chromosomes. Overall the performance in terms

of recall was significantly lower than for the original simulations however precision

remained high (Fig 9A). The mean precision for both genomes and chromosomes is higher

than 0.95 and the mean recall is 0.14 and 0.40 genome wide and for chromosome 20 respec-

tively. The improved recall rates for reconstructing individual chromosomes reflects both

the decreased complexity of the distance graph space and importantly a decrease in the

number of potential LE’s from different loci that could be incorrectly clustered together by

DBSCAN. Here we have chosen challenging parameters for the problem of LE profile loci

labeling, profile segmentation and observe a significant decrease in the reconstruction per-

formance achieved by ChromoTrace. However, for chromosome scale genomic regions we

are still able to reconstruct approximately 40% of the 3D structure and make very few mis-

takes with precision remaining above 0.95. The parameters used for simulating these LE

profiles are by no means optimal and could certainly be improved when designing real

experiments, for example, the number of different color labels could be increased and the

rate of missingness improved by using highly specific and locally multiplexed probes. Fur-

thermore the use of DBSCAN in our hands was ‘out of the box’ and we did not attempt to

optimise the clustering of individual LE’s from different loci. Improving the clustering of

LE’s using DBSCAN or more sophisticated custom algorithms would certainly improve the

accuracy of estimated loci coordinates.

Discussion

We have simulated chromosomal DNA molecules and used a challenging density in the simu-

lated nucleus, however, our simulation is coarse grained and does not at this time take into

account a number of known properties of chromatin. One important feature not considered is

the known structural heterogeneity of chromatin packing of different genomic sequences, for

example eu- and heterochromatic domains or TADs. It is therefore necessary to consider how

such structural heterogeneity would affect the reconstruction problem. For a given packing

density, such structures should lead to one of two outcomes, firstly that the entire chromosome

(or probed region of interest) is overall more compact than simulated, leading to a significantly

smaller volume of the chromosome territory. This would effectively reduce the amount of

resolvable spatial information present for the reconstruction. Such a result would be disap-

pointing in terms of the reconstruction algorithm, but fascinating in terms of how such chro-

mosomal domains are created and maintained. However, the extended conformation of many

chromosomes seen previously [29], along with the distribution of their contacts to the nuclear

lamina [28], suggest that overall compaction is an unlikely configuration, except for specific

cases such as mitotic chromosomes or the inactive X chromosome. The second outcome

is that the more highly packed regions are interspersed with more extended regions. The

extended regions would be easier to reconstruct, as the better resolved 3D information will be

more accurately able to place these regions to a unique position on the genome. At the extreme

of this model one would have a series of resolvable linkers with interspersed globules of packed

chromatin that would not be resolvable. In such a scenario integration with the HiC data or
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other contact maps, whose resolution is good in these more dense regions [30] would be very

interesting.

On the other hand, when the density of simulated DNA in the nucleus is lower, the recon-

struction improves dramatically in terms of recall. In experimental HiC data if unusual num-

bers of contacts are observed relative to chromosome size it may be indicative of biological

processes effecting chromatin condensation [31]. It is feasible to resolve a large fraction of

chromosomal scale regions with a resolution of 10.8 kb and reconstruction at this level would

provide very high-resolution chromosomal scale chromatin maps (including the internal

structure of TADs, TAD boundaries and inter-TAD regions). Even if the very fine details of

high density chromatin structures remain challenging with the currently available imaging

technology, the spatial information provided by even partial reconstruction of the chromatin

path is certain to increase our understanding of how chromosome folding and partitioning is

related to active processes such as gene expression [32, 33].

The other important consideration is the number of distinct fluorescence colors that the

reconstruction requires. The number of flourophores compatible with 3D super-resolution

microscopy and in-situ hybridization conditions is currently limited to about three dyes that

can be reliably spectrally separated if imaged at the same time. Since DNA in situ probes can

be coupled to more than one flurophore, combinatorial labeling can create different color

ratios. In our simulations, up to 10 colors for simultaneous detection could easily be generated

in this manner, however this will also introduce noise due to chemical labeling errors (the

chance by which a probe will be labeled with a different color ratio than intended) which

would lead to wrong probe assignments. However, since any given color will have only a finite

set of possible neighboring mistakes with associated error rates, a substitution matrix of possi-

ble errors can be integrated into both the extension phase and exploration phase of the suffix

tree [26], changing the formulation of the problem into a likelihood model of seeing the 3D

position of probes given a certain path labeling. In addition, recent advances in labeling tech-

niques such as the ‘Exchange-PAINT’ method now allow sequential hybridization and image

capture, allowing to separate 10 pseudocolors or more based on a single dye in time [21]. This

labeling technology requires long super-resolution image acquisition times, but could mas-

sively increase the number of probes available for the reconstruction algorithm. For example, a

binary code with 2 colors and 10 labeling rounds could distinguish in the region of 210 labels,

which would make reconstruction almost trivial. It is therefore very likely that a well-designed

combination of spectral and temporal multiplexing of fluorescent dyes, will make it possible to

generate image data with sufficiently large numbers of differently ‘colored’ probes. Therefore

it should be possible to optimise data acquisition times with different numbers of colors to

allow high resolution reconstruction of the chromatin paths for individual chromosomes

within the nucleus. Our comprehensive simulation framework will be valuable in guiding the

optimal design of such probes, since it allows to simulate the effect of different designs on the

reconstruction performance rapidly in silico.

Conclusion

In this paper we proposed a novel algorithm, ChromoTrace, to, in theory, leverage super-resolu-

tion microscopy of thousands to millions of in situ genome sequence probes to provide accurate

physical reconstructions of 3D chromatin structure at the chromosomal scale in single human

cells. To test this algorithm we have made simulations of DNA paths in realistic nuclear geome-

tries, and explored different labeling strategies of in situ probes. Our study shows that near

complete resolution of a chromosome with 10 kb resolution can be achieved with realistic micro-

scope resolution and fluorescent probe multiplexing parameters. Extensions to this method such
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as leveraging between nucleus consistency effects and using a likelihood-based scheme will allow

even more sophisticated modeling of experimental error sources in the future [34].

There is currently no suitable experimental data to substantiate this work; this is firmly a

theoretical exploration of the possibility to achieve this and the constraints any experimental

method would need to satisfy for a successful reconstruction. For example, it is clear that mini-

mizing mislabeling is more important than minimizing missing probes. Our simulations are

based on known and realistic experimental parameters, where available. We have tested our

method under challenging DNA density levels and aggressive error models of missing, misre-

ported data and LE precision. Our algorithm and assumptions are compatible with leading

super-resolution techniques; in particular our method assumes isotropic resolution of the

probes, which has been shown using methods such as direct stochastical optical reconstruction

microscopy combined with interference [21, 35]. Nevertheless real experimental data will

likely have properties that we have not anticipated. Some of these properties, such as system-

atic error behavior, or changes in resolution across the nucleus might hinder our reconstruc-

tion. On the other hand, properties such as structured heterogeneity in packing density and

cell-to-cell structure conservation are likely to improve our ability to reconstruct. Our recon-

structions based on single cell image data are initially most likely to work in a patchwork man-

ner across a chromosome, and will be very complementary to the contact based maps based on

HiC or promoter-capture HiC [36]. Combining super resolution imaging and contact map-

ping should provide fundamentally new insights into chromatin organization and function

within the nucleus.
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