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Abstract

Left-censored missing values commonly exist in targeted metabolomics datasets and can

be considered as missing not at random (MNAR). Improper data processing procedures for

missing values will cause adverse impacts on subsequent statistical analyses. However,

few imputation methods have been developed and applied to the situation of MNAR in the

field of metabolomics. Thus, a practical left-censored missing value imputation method is

urgently needed. We developed an iterative Gibbs sampler based left-censored missing

value imputation approach (GSimp). We compared GSimp with other three imputation

methods on two real-world targeted metabolomics datasets and one simulation dataset

using our imputation evaluation pipeline. The results show that GSimp outperforms other

imputation methods in terms of imputation accuracy, observation distribution, univariate and

multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp

was developed for dealing with large scale metabolomics datasets. The R code for GSimp,

evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are

available at: https://github.com/WandeRum/GSimp.

Author summary

Missing values caused by the limit of detection/quantification (LOD/LOQ) were widely

observed in mass spectrometry (MS)-based targeted metabolomics studies and could be

recognized as missing not at random (MNAR). MNAR leads to biased parameter estima-

tions and jeopardizes following statistical analyses in different aspects, such as distorting

sample distribution, impairing statistical power, etc. Although a wide range of missing

value imputation methods was developed for–omics studies, a limited number of methods

was designed appropriately for the situation of MNAR currently. To alleviate problems

caused by MNAR and to facilitate targeted metabolomics studies, we developed a Gibbs

sampler based missing value imputation approach, called GSimp, which is public-
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accessible on GitHub. And we compared our method with existing approaches using an

imputation evaluation pipeline on both of the real-world and simulated metabolomics

datasets to demonstrate the superiority of our method from different perspectives.

Introduction

Missing values are commonly existed in mass spectrometry (MS) based metabolomics datasets.

Many statistical methods require a complete dataset, which makes missing data an inevitable

problem for subsequent data analysis. Generally speaking, missing at random (MAR), missing

completely at random (MCAR), and missing not at random (MNAR) are three commonly

accepted missing types [1,2]. When the probability of a missing value is depended on other

observed variables but not the value itself, it is regarded as MAR [1,2] (e.g., false peak match-

ing, deconvolution of co-eluting compounds). MCAR is from completely unexpected missing-

ness without any relationships with other variables (e.g., stochastic fluctuations, random errors

from incomplete derivatization or ionization). Targeted metabolomics studies have been

widely used for the accurate quantification of specific groups of metabolites. Due to the limit

of compound quantifications (LOQ), missing values are usually caused by signal intensities

lower than LOQ, also known as left-censored missing, which can be assigned to MNAR.

The processing of missing values has been developed and studied in MS data, which is an

indispensable step in the metabolomics data processing pipeline [3]. One simple solution is

the substitution of missing by determined values, such as zero, half of the minimum value

(HM) or LOQ/c where c denotes a positive integer. Determined value substitutions, although

commonly applied for dealing with missing values in metabolomics studies [4–6], can signifi-

cantly affect the subsequent statistical analyses in different ways (e.g., underestimate variances

of the variable, decrease statistical power, fabricate pseudo-clusters among observations, etc.)

[1]. Advanced statistical imputation methods have been developed for high-dimensional–

omics studies (e.g., k-nearest neighbors (kNN) [7], singular value decomposition (SVD) [8,9],

random forest (RF) [10]) that are available to users on several metabolomics data analysis soft-

ware [11–15]. MetaboAnalyst [15–17] is a popular metabolomics data processing web-tool

providing kNN, Probabilistic PCA (PPCA), Bayesian PCA (BPCA), SVD, or substitution by

determined values (HM, mean, median, minimum). However, most advanced statistical impu-

tation methods are mainly aiming at imputing MCAR/MAR and not suitable for the situation

of MNAR. So far, a limited number of approaches dealing with left-censored missing values

were applied by researchers [18,19]. Quantile regression approach for left-censored missing

(QRILC) imputes missing data using random draws from a truncated distribution with param-

eters estimated using quantile regression [18]. Although this imputation keeps the overall dis-

tribution of missing parts compared to determined value substitutions, it may produce

stochastic imputed values since no extra information is used for the prediction of missing

parts. Another imputation method recently developed for MNAR is k-nearest neighbor trun-

cation (kNN-TN) [19]. This approach applies Maximum Likelihood Estimators (MLE) for the

means and standard deviations of missing variables based on truncated normal distribution.

Then a Pearson correlation based kNN imputation method was implemented on standardized

data. Although the author stated that kNN-TN could impute both MNAR and MAR, the

imputed values were entirely dependent on the nearest neighbors while no constraint was

placed upon the imputation. Thus, this approach might cause an overestimation of MNAR

missing values.

GSimp: A Gibbs sampler imputation approach
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To reduce adverse effects caused by missing values in following metabolomics data analy-

ses, we developed a left-censored missing value imputation framework, GSimp, where a pre-

diction model was embedded in an iterative Gibbs sampler. Next, we compared GSimp with

HM, QRILC, and kNN-TN on two real-world metabolomics datasets and one simulation data-

set to demonstrate the advantages of GSimp regarding imputation accuracy, observation dis-

tribution, univariate and multivariate analysis [20], and sensitivity. Our findings indicate that

GSimp is a robust method in handling left-censored missing values in targeted metabolomics

studies.

Results

Gibbs sampler in GSimp

A variable containing missing elements from free fatty acids (FFA) dataset was randomly

selected to track the sequence of corresponding parameters and estimates across the first 500

iterations out of a total of 2000 (100 × 20) iterations using GSimp. From Fig 1, we can observe

that both fitted value ŷ and sample value ỹ reach to the convergence after several iterations and

the standard deviation estimate σ drop to a steady state of small values. In addition, an upper

constraint for the distribution of ỹ indicated that it was drawn from a truncated normal

distribution.

Imputation comparisons

We evaluated four different MNAR imputation/substitution methods on FFA, bile acids (BA)

targeted metabolomics and simulation datasets. First, we measured the imputation perfor-

mances using label-free approaches. Sum of ranks (SOR) was used to measure the imputation

accuracy regarding the imputed values of each missing variable. From the upper panel of Fig 2,

we can observe that GSimp has the best performance with the lowest SOR across all varying

numbers of missing variables in both FFA and BA datasets. To measure the extent of imputa-

tion induced distortion on observation distributions, the PCA-Procrustes analysis was

Fig 1. Sequentially parameters updating in GSimp. The first 500 iterations out of a total of 2000 (100×20) iterations

using GSimp where ŷ, ỹ and σ represent fitted value, sample value and standard deviation correspondingly.

https://doi.org/10.1371/journal.pcbi.1005973.g001

GSimp: A Gibbs sampler imputation approach
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conducted between the original data and imputed data. The lower panel of Fig 2 shows that

GSimp has the lowest Procrustes sum of squared errors compared to other methods, which

means GSimp kept the overall observation distribution of original dataset with the least

distortions.

Then, we measured the imputation performances with clinical group information provided.

We compared the results of univariate and multivariate analyses for imputed and original

Fig 2. Evaluations of different imputation methods using unlabeled approaches. SOR on FFA dataset (upper left) and BA dataset (upper right) along

with different numbers of missing variables based on four imputation methods: HM (red circle), QRILC (green triangle), GSimp (blue square), and

kNN-TN (purple cross). PCA-Procrustes sum of squared errors on FFA dataset (lower left) and BA dataset (lower right) along with different numbers of

missing variables based on four imputation methods: HM (red circle), QRILC (green triangle), GSimp (blue square), and kNN-TN (purple cross).

https://doi.org/10.1371/journal.pcbi.1005973.g002

GSimp: A Gibbs sampler imputation approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005973 January 31, 2018 4 / 14

https://doi.org/10.1371/journal.pcbi.1005973.g002
https://doi.org/10.1371/journal.pcbi.1005973


datasets. Since this is a case-control study, student’s t-tests were applied for univariate analyses.

Then we compared the results by calculating Pearson’s correlation between log-transformed

p-values calculated from imputed and original data for missing variables. Again, GSimp per-

forms best with the highest correlations among four methods (upper panel of Fig 3) along with

different numbers of missing variables, and it implies GSimp keeps the most original biological

Fig 3. Evaluations of different imputation methods using labeled approaches. Pearson’s correlation between log-transformed p-values of student’s t-tests

on FFA dataset (upper left) and BA dataset (upper right) along with different numbers of missing variables based on four imputation methods: HM (red

circle), QRILC (green triangle), GSimp (blue square), and kNN-TN (purple cross). PLS-Procrustes sum of squared errors on FFA dataset (lower left) and

BA dataset (lower right) along with different numbers of missing variables based on four imputation methods: HM (red circle), QRILC (green triangle),

GSimp (blue square), and kNN-TN (purple cross).

https://doi.org/10.1371/journal.pcbi.1005973.g003
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variations regarding the univariate analyses results. For the multivariate analyses, we applied

PLS-DA to distinguish the group differences. Similarly, we conducted PLS-Procrustes analysis

while PLS was employed as a supervised dimension reduction technique. The lower panel of

Fig 3 demonstrates that GSimp preferably restores the original observation distribution with

the lowest Procrustes sum of squared errors among four imputation methods.

On the simulation dataset, we compared QRILC, kNN-TN, and GSimp using same

approaches. Consistent results were recognized (S1 Fig), and GSimp presents the best perfor-

mances on the simulation dataset with the lowest SOR and PCA/PLS-Procrustes sum of

squared errors and the highest correlation of univariate analysis results. Moreover, to examine

the influences of statistical power using different imputation methods, we calculated the true

positive rate (TPR) as the capacities to detect differential variables on different imputation

datasets. Again, with both p-cutoff of 0.05 and 0.01, GSimp shows the overall highest TPR over

different missing numbers (Fig 4). This implies that GSimp impairs the sensitivity to the least

extent among three methods, which is reasonable since GSimp also keeps the highest correla-

tion of p-values in previous comparisons.

Discussion

The purpose of this study is to develop a left-censored missing value imputation approach for

targeted metabolomics data analysis. We evaluated GSimp with other three imputation meth-

ods (kNN-TN, QRILC, and HM) and suggested that GSimp was superior to others using dif-

ferent evaluation methods. To illustrate the performance of GSimp, we randomly selected one

variable containing missing values from FFA dataset (Fig 5) to compare the imputed values

and original values. Although determined value substitution (e.g., HM) were widely used by

researchers in the field of metabolomics, our results indicated that HM could severely distort

the data distribution (upper left panel of Fig 5), thus impairing subsequent analyses. In

Fig 4. Evaluations of different imputation methods using TPR for various p-cutoffs on simulation dataset. TPR along with different numbers of

missing variables based on three imputation methods: QRILC (green triangle), GSimp (blue square), and kNN-TN (purple cross) among different p-

cutoff = 0.05 (left panel), and 0.01 (right panel).

https://doi.org/10.1371/journal.pcbi.1005973.g004

GSimp: A Gibbs sampler imputation approach
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comparison, QRILC kept the overall data distribution and variances (upper right panel of Fig

5). However, stochastic values would be generated by this approach since QRILC imputes each

Fig 5. Comparisons of imputed values and original values on one variable. Scatter plots of imputed values (X-axis) and original values (Y-axis) on one example missing

variable while non-missing elements represented as blue dots and missing elements as red dots based on four imputation methods: HM (upper left), QRILC (upper right),

kNN-TN (lower left), and GSimp (lower right). Rug plots show the distributions of imputed values and original values.

https://doi.org/10.1371/journal.pcbi.1005973.g005
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missing variable independently without utilizing the predictive information from other vari-

ables. Statistical learning based method, kNN-TN, applied a correlation based kNN algorithm

with parameters of missing variables estimated with truncated normal distributions. This

method utilized the information of highly correlated variables of targeted missing variable,

thus kept a linear trend between original values and imputed values. However, since no con-

straint was applied for the imputation, a right shift of missing part occurs, causing imputed

values to exceed the truncation point (lower left panel of Fig 5). In contrast, GSimp utilized the

predictive information of other variables by employing a prediction model and held a trun-

cated normal distribution for each missing element simultaneously, which ensured a favorable

linear trend between imputed and original values as well as a reasonable bound for the

imputed values (lower right panel of Fig 5).

In this study, we comprehensively evaluated our algorithm on targeted metabolomics data-

sets for the MNAR situation. We additionally tested a non-targeted GC/MS profiling metabo-

lomics dataset and found that most of missing values are manually retrievable due to the miss-

identification of peaks. These retrievable missing elements were randomly distributed across

the dataset and irrelevant to their true abundances (S1 Appendix). Based on this, we assumed

the majority of missing values are MCAR/MAR situation for non-targeted GC/MS data before

manually missing retrieval. For the rest un-retrievable missing elements, we found much

lower signal to noise ratios which could be assigned to the situation of left-censored MNAR.

Thus, for non-targeted profiling datasets, missing retrieval from raw spectral data will be most

recommended. Since we applied the minimum observed value of missing variable as an infor-

mative upper truncation point and -1 as a non-informative lower truncation point for left-

censored missing, GSimp with this default settings might be applicable for the imputation of

post-missing retrieval non-targeted data.

GSimp is more than that, other truncation values could also be applied in real-world analy-

ses, such as known LOQ/LOD of metabolites or quantile of observed values (e.g., 10%) can be

set as upper truncation points for different conditions. Additionally, when signal intensity of

certain compound is larger than the upper limit of quantification range or saturation during

instrument analysis, an informative lower truncation point could be correspondingly applied

for the right-censored missing value. What’s more, when non-informative bounds for both

upper and lower limits (e.g., +1, -1) were applied, GSimp could be extended to the situation

of MCAR/MAR. With the flexible usage of upper and lower limits, our approach may provide

a versatile and powerful imputation technique for different missing types. For other–omics

datasets with missing values (especially MNAR) (e.g., single cell RNA-sequencing data), we

could also apply this method with few modifications of default settings. Thus, it is worthy to

evaluate our approach, GSimp, in other complex scenarios in the future.

Since GSimp employed an iterative Gibbs sampler method, a large number of iterations

(iters_all = 20, iters_each = 100) are preferable for the convergence of parameters in Markov

chain Monte Carlo (MCMC) method. However, as we tested on the simulation dataset with

different number of iterations, a smaller number of iterations (iters_all = 10, iters_each = 50)

won’t severely affect the imputation accuracy (S2 Fig). Among iterations for the whole data

matrix, we applied a sequential imputation procedure for missing variables from the least

number of missing values to the most. To improve the computational efficiency of GSimp on

large scale datasets, we additionally implemented a parallel version which can run Gibbs sam-

pler on multiple missing variables simultaneously, then update all imputed values of missing

elements. Increasing the number of cores will significantly decrease the running time of

GSimp as we tested on a random generated dataset (S1 Table).

In conclusion, we developed a new imputation approach GSimp that outperformed tradi-

tional determined value substitution method (HM) and other approaches (QRILC, and

GSimp: A Gibbs sampler imputation approach
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kNN-TN) for MNAR situations. GSimp utilized predictive information of variables and held a

truncated normal distribution for each missing element simultaneously via embedding a pre-

diction model into the Gibbs sampler framework. With proper modifications on the parameter

settings (e.g., truncation points, pre-processing, etc.) GSimp may be applicable to handle dif-

ferent types of missing values and in different -omics studies, thus deserved to be further

explored in the future.

Materials and methods

Diabetes datasets

We employed datasets from a study of comparing serum metabolites between obese subjects

with diabetes mellitus (N = 70) and healthy controls (N = 130) where N represents the number

of observations. Dataset 1: a total of 42 free fatty acids (FFAs) were identified and quantified in

those participants in order to evaluate their FFA profiles [21]. Dataset 2: a total of 34 bile acids

(BAs) were identified and quantified in a similar way using different analytical protocol [22].

Simulation dataset

For the simulation dataset, we first calculated the covariance matrix Cov based on the whole

diabetes dataset (P = 76) where P represents the number of variables. Then we generated two

separated data matrices with the same number of 80 observations from multivariate normal

distributions, representing two different biological groups. For each data matrix, the sample

mean of each variable was drawn from a normal distribution N(0, 0.52) and Cov was kept

using SVD. Then, two data matrices were horizontally (column-wise) stacked together as a

complete data matrix (N×P = 160×76) so that group differences were simulated and covariance

was kept.

MNAR generation

For two real-world targeted metabolomics datasets, we generated a series of MNAR datasets

by using the missing proportion (number of missing variables/number of total variables) from

0.1 to 0.6 in a step of 0.05 with quantile cut-off for each missing variable drawn from a uniform

distribution U(0.1, 0.5). The elements lower than the corresponding cut-off were removed and

replaced with NA. For the simulation dataset, we generated a series of MNAR datasets by

using the missing proportion from 0.1 to 0.8 step by 0.1 with MNAR cut-off drawn from U
(0.3, 0.6) for a more rigorous testing.

Prediction model

A prediction model was employed for the prediction of missing values by setting a targeted

missing variable as outcome and other variables as predictors. Different prediction models

(e.g., linear regression, elastic net [23], regression trees [24] and random forest [25], etc.) could

be embedded in our imputation framework. Elastic net was applied in our approach as an

ideal prediction model considering its stability, accuracy, and efficiency. This model is a regu-

larized regression with the combination of L1 and L2 penalties of the LASSO [26] and ridge

[27] methods. The estimates of regression coefficients in elastic net are defined as

b̂ ¼ argmin
b
ðky � Xbk

2
þ l½ð1 � aÞ=2kbk

2

2
þ akbk1�Þ ð1Þ

The L2 penalty ð1 � aÞ=2kbk
2

2
improves the model’s robustness by controlling the multicol-

linearities among variables which are widely existed in high-dimensional–omics data. And the

GSimp: A Gibbs sampler imputation approach
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L1 penalty αkβk1 controls the number of predictors by assigning zero coefficients to the

"unnecessary" predictors. From a Bayesian point of view, the regularization is a mixture of

Gaussian and Laplacian prior distributions of coefficients which can pull the full model of

maximum likelihood estimates argmin
b
ky � Xbk

2
towards the null model of prior coefficients

distribution, thus controls the risk of overfitting and increase the model robustness. R package

glmnet was used for the elastic net. We set hyperparameters λ as 0.01 (default setting for high-

dimensional data) and α as 0.5 (an equally mixture of LASSO and ridge penalties) [28].

Gibbs sampler

Gibbs sampler is a MCMC technique that sequentially updates parameters while others are

fixed. It can be used to generate posterior samples. For each missing variable in the dataset, we

applied a Gibbs sampler to impute the missing values by sampling from a truncated normal

distribution with prediction model fitted value as mean and root mean square deviation

(RMSD) of missing part as standard deviation while truncated by specified cut-points. Assum-

ing we have a n × p data matrix X = (X1, X2, X3, . . ., Xp) with only one variable Xj containing

left-censored missing values. We denote Xj as y and the missing part as ym with length m and

non-missing part as yf with length f, and the rest of matrix X-j as X’. We can then set the lower

truncation point lo as -1 (centralized data) or 0 (original data) and upper hi as the minimum/

quantile value of yf or a given LOQ. The truncation bounds ensure imputation results are con-

strained within [lo, hi]. Then, the Gibbs sampler approach can be described as following steps:

Step-1 (initialization): we initialize missing values (QRILC in our case), and get y’;

Step-2 (prediction): we then build a prediction model (elastic net in our case): y’ ~ X’;

Step-3 (estimation): based on the prediction model, we get the predicted value ŷ and the root

mean square deviation (RMSD) of missing part s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
ðŷmi � y

0
mi
Þ2

m

r

where y0mi
and ŷmi

are

ith initialized/imputed value and fitted value respectively;

Step-4 (sampling): we draw sample ~ymi
from a truncated normal distribution Nðŷmi

; s2j½lo; hi�Þ
for ith missing element and update y’.

We iteratively repeat step-2 to step-4 and update Xj.

GSimp framework

A whole data matrix X = (X1, X2, X3, . . ., Xp) contains a number of k (k� p) left-censored miss-

ing variables. We present our imputation framework as following algorithm.

Algorithm: Gibbs sampler based left-censored missing value imputation approach

Require: X an n × p data matrix, iters_all the number of iterations for imputing the whole

matrix X, iters_each the number of iterations for imputing each missing variable, a vector of

upper limits U (+1 for non-missing variables) with length p and a vector of lower limits L
(-1 for non-missing variables) with length p.

1. Ximp  initialize the missing values for X;
2. K  vector of indices of missing variables in X with increasing

amount of missing values;
3. for 1:iters_all do
4. for j in K do
5. y0  Ximp

j , y0 can be divided into two parts: y0m is a vector
of the imputed part (original missing part) with length m and y0f is a
vector of the non-missing part with length f while n = m + f;

GSimp: A Gibbs sampler imputation approach
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6. X0  Ximp
� j , represents the matrix X with jth column removed;

7. lo  Lj and hi Uj;
8. for 1:iters_each do
9. Gibbs sampler step 2 to 4;
10. end for
11. Update Ximp

j ;
12. end for
13. end for
14.return Ximp

Other imputation approaches

Other three left-censored missing imputation/substitution methods were conducted in our

study for performance comparison:

• kNN-TN (Truncation k-nearest neighbors imputation) [19]: this method applied a Newton-

Raphson (NR) optimization to estimate the truncated mean and standard deviation. Then,

Pearson correlation was calculated based on standardized data followed by correlation-based

kNN imputation.

• QRILC (Quantile Regression Imputation of Left-Censored data) [18,29]: this method

imputes missing elements randomly drawing from a truncated distribution estimated by a

quantile regression. R package imputeLCMD was applied for this imputation approach.

• HM (Half of the Minimum): This method replaces missing elements with half of the mini-

mum of non-missing elements in the corresponding variable.

Assessments of performance

Normalized Root Mean Squared Error (NRMSE) [30] has been commonly used to evaluated

the differences between true values and imputed values. Considering the skewed distribution

of missing values in MNAR, NRMSE based sum of ranks (SOR) was derived, a robust non-

parametric measurement, to compare different imputation methods. The formula is as follows

[31]:

SOR ¼
Pk

i¼1
RankiðNRMSEÞ ð2Þ

where Ranki(NRMSE) represent the NRMSE ranks of different imputation methods in ith miss-

ing variable.

Procrustes analysis, a statistical shape analysis, could be used to evaluate the similarity of

two ordinations by calculating the sum of squared errors [32]. We applied principal compo-

nent analysis (PCA) as the unsupervised (un-labeled) ordination measurement and Procrustes

analysis to measure the alteration of the original sample distribution and the imputed sample

distribution in the space of top PCs. R package vegan was applied for Procrustes analysis [33].

Labeled measurements include correlation analysis for log-transformed p-values between

true data and imputed data from Student’s t-test, partial least square (PLS)- Procrustes analysis

that measures the differences between original and imputed sample distributions on top PCs

using supervised PLS for the dimensional reduction. R package ropls was applied for PLS anal-

ysis [34]. These measurements were done using our imputation evaluation pipeline from our

previous study [31], which is also accessible through: https://github.com/WandeRum/MVI-

evaluation.

Furthermore, we evaluated the impacts of different imputation methods on the statistical

sensitivity of detecting biological variances. On the simulation dataset, we calculated p-values
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from student’s t-tests between two groups from original and imputed datasets. We marked a

set S as real differential variables at a significant level of p-cutoff (e.g., 0.05) from original simu-

lation data, and a set S’ as detected differential variables at the same significant level from

imputed simulation data. Then we calculated the true positive rate TPR ¼ #of ðS\S0Þ
#of S to evaluate

the effects of different imputation methods in terms of detecting differential variables.

Supporting information

S1 Appendix. A step by step tutorial of GSimp.

(PDF)

S1 Fig. Evaluations of different imputation methods on simulation dataset. SOR (upper

left), PCA-Procrustes sum of squared errors (upper right), Pearson’s correlation between log-

transformed p-values of student’s t-tests (lower left), and PLS-Procrustes sum of squared errors

(lower right) on simulation dataset along with different numbers of missing variables based on

three imputation methods: QRILC (green triangle), GSimp (blue square), and kNN-TN (pur-

ple cross).

(TIF)

S2 Fig. Evaluations of different numbers of iterations using GSimp on simulation dataset.

SOR on simulation dataset along with different numbers of missing variables based on four

different numbers of iterations: iters_each = 50 and iters_all = 20 (red circle), iters_each = 100

and iters_all = 20 (green triangle), iters_each = 50 and iters_all = 10 (blue square), iters_each =

100 and iters_all = 10 (purple cross).

(TIF)

S1 Table. Table of computational efficiency of GSimp on a 200×200 random generated

large dataset. # missing variables: number of missing variables; iters_each: number of itera-

tions for imputing each missing variable; iters_all: number of iterations for imputing the

whole matrix; n_cores: number of cores.

(XLSX)
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34. Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the Human Adult Urinary Metabolome Varia-

tions with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univari-

ate and OPLS Statistical Analyses. J Proteome Res. 2015; 14: 3322–3335. https://doi.org/10.1021/acs.

jproteome.5b00354 PMID: 26088811

GSimp: A Gibbs sampler imputation approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005973 January 31, 2018 14 / 14

https://doi.org/10.1186/s12859-017-1547-6
http://www.ncbi.nlm.nih.gov/pubmed/28219348
https://doi.org/10.2174/2213235X11301020005
https://doi.org/10.1016/j.ebiom.2015.09.004
https://doi.org/10.1016/j.ebiom.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26629547
https://doi.org/10.1096/fj.201700055R
https://doi.org/10.1096/fj.201700055R
http://www.ncbi.nlm.nih.gov/pubmed/28490483
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1371/journal.pone.0015807
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/2346178
https://doi.org/10.1080/00401706.1970.10488634
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1093/bioinformatics/btg287
https://doi.org/10.1093/bioinformatics/btg287
http://www.ncbi.nlm.nih.gov/pubmed/14594714
https://doi.org/10.1038/s41598-017-19120-0
https://doi.org/10.1038/s41598-017-19120-0
http://www.ncbi.nlm.nih.gov/pubmed/29330539
https://doi.org/10.1006/jhev.1999.0391
https://doi.org/10.1006/jhev.1999.0391
https://doi.org/10.1021/acs.jproteome.5b00354
https://doi.org/10.1021/acs.jproteome.5b00354
http://www.ncbi.nlm.nih.gov/pubmed/26088811
https://doi.org/10.1371/journal.pcbi.1005973

