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Abstract

Accurate and reliable predictions of infectious disease dynamics can be valuable to public

health organizations that plan interventions to decrease or prevent disease transmission. A

great variety of models have been developed for this task, using different model structures,

covariates, and targets for prediction. Experience has shown that the performance of these

models varies; some tend to do better or worse in different seasons or at different points

within a season. Ensemble methods combine multiple models to obtain a single prediction

that leverages the strengths of each model. We considered a range of ensemble methods

that each form a predictive density for a target of interest as a weighted sum of the predictive

densities from component models. In the simplest case, equal weight is assigned to each

component model; in the most complex case, the weights vary with the region, prediction

target, week of the season when the predictions are made, a measure of component model

uncertainty, and recent observations of disease incidence. We applied these methods to

predict measures of influenza season timing and severity in the United States, both at the

national and regional levels, using three component models. We trained the models on ret-

rospective predictions from 14 seasons (1997/1998–2010/2011) and evaluated each mod-

el’s prospective, out-of-sample performance in the five subsequent influenza seasons. In

this test phase, the ensemble methods showed average performance that was similar to the

best of the component models, but offered more consistent performance across seasons

than the component models. Ensemble methods offer the potential to deliver more reliable

predictions to public health decision makers.

Author summary

Public health agencies such as the US Centers for Disease Control and Prevention would

like to have as much information as possible when planning interventions intended to

reduce and prevent the spread of infectious disease. For instance, accurate and reliable

predictions of the timing and severity of the influenza season could help with planning

how many influenza vaccine doses to produce and by what date they will be needed.

Many different mathematical and statistical models have been proposed to model
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influenza and other infectious diseases, and these models have different strengths and

weaknesses. In particular, one or another of these model specifications is often better than

the others in different seasons, at different times within the season, and for different pre-

diction targets (such as different measures of the timing or severity of the influenza sea-

son). In this article, we explore ensemble methods that combine predictions from

multiple “component” models. We find that these ensemble methods do about as well as

the best of the component models in terms of aggregate performance across multiple sea-

sons, but that the ensemble methods have more consistent performance across different

seasons. This improved consistency is valuable for planners who need predictions that can

be trusted under all circumstances.

Introduction

The practice of combining predictions from different models has been used for decades by cli-

matologists and geophysical scientists. These methods have subsequently been adapted and

extended by statisticians and computer scientists in diverse areas of scientific inquiry. In recent

years, these “ensemble” forecasting approaches frequently have been among the top methods

used in prediction challenges across a wide range of applications.

Ensembles are a natural choice for noisy, complex, and interdependent systems that evolve

over time. In these settings, no one model is likely to be able to capture and predict the full set

of complex relationships that drive future observations from a particular system of interest.

Instead “specialist” or “component” models can be relied on to capture distinct features or sig-

nals from a system and, when combined, represent a nearly complete range of possible out-

comes. In this work, we develop and compare a collection of ensemble methods for combining

predictive densities. This enables us to quantify the improvement in predictions achieved by

using ensemble methods with varying levels of complexity.

To illustrate these ensemble methods, we present time-series forecasts for infectious disease,

specifically for influenza in the United States. The international significance of emerging epi-

demic threats in recent decades has highlighted the importance of understanding and being

able to predict infectious disease dynamics. With the revolution in science driven by the prom-

ise of “big” and real-time data, there is an increased focus on and hope for using statistics to

inform public health policy and decision-making in ways that could mitigate the impact of

future outbreaks. Some of the largest public health agencies in the world, including the US

Centers for Disease Control and Prevention (CDC) have openly endorsed using models to

inform decision making, saying “with models, decision-makers can look to the future with

confidence in their ability to respond to outbreaks and public health emergencies” [1].

There is a large literature on prediction methods for influenza. We will give a brief overview

of this literature here, and refer the reader to Chretien et al. [2] and Nsoesie et al. [3] for more

comprehensive reviews; additionally, [4] present the results of a recent influenza prediction

challenge run by the CDC where many of these models were employed. Infectious disease pre-

diction methods can be broadly grouped into three categories: agent-based models, compart-

mental models [5–10], and regression-based time series models that may include auto-

regressive and seasonal terms [11]. Additionally, these models may use a variety of different

data sources and covariates to inform their predictions, including historical values of the dis-

ease incidence time series [5–11]; data derived from internet sources such as web searches,

wikipedia page views, and twitter [5, 6, 8, 11–14]; and climatological variables [5, 6, 8, 10, 11],
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among others. These models may generate either point predictions, possibly along with associ-

ated predictive intervals, or full predictive distributions.

The ensemble methods that we explore in the present work are designed to combine predic-

tions from multiple models, which could use a variety of different model structures and covari-

ates to generate predictions. Development of the methods presented in this manuscript was

motivated by the observation that certain prediction models for infectious disease consistently

performed better than other models at certain times of year. We observed in previous research

that early in the influenza season, simple models of historical incidence often outperformed

more standard time-series prediction models such as a seasonal auto-regressive integrated

moving average (SARIMA) model [15]. However, in the middle of the season, the time-series

models showed improved accuracy. We set out to determine whether ensemble methods could

use this information about past model performance to improve predictions.

A large number of ensemble methods have been developed for a diverse array of tasks

including regression, classification, and density estimation. These methods are broadly

similar in that they combine results from multiple component models. However, details differ

between ensemble methods. We suggest Polikar [16] for a review of ensemble methods; many

of these are also discussed in detail in Hastie et al. [17].

While there are many different methods for combining models, all ensemble models dis-

cussed in this paper use an approach called stacking [18]. In this approach, each of the compo-

nent models is trained separately in a first stage, and cross-validated measures of performance

of those component models are obtained. Then, in a second stage, a stacking model is trained

using the cross-validated performance measures to learn how to optimally combine predictive

densities from the component models. The specific implementations of stacking that we use

obtain the final predictive density as a weighted sum of the component predictive densities,

where the weights may depend on covariates. We refer to this approach generally as a

“weighted density ensemble” approach to prediction. Several variations on this strategy have

been explored in the literature previously [19–21]. However, other ensemble methods for den-

sity estimation have also been developed. For example, Rosset and Segal [22] develop a boost-

ing method in which the component models are estimated sequentially, with results from

earlier models affecting estimation of later models.

In structured prediction settings such as time series forecasting, ensemble methods may

benefit from taking advantage of the data structure. For example, it may be the case that differ-

ent models offer a better representation of the data at different points in time. A common idea

in these settings is to use model weights that change over time. For instance, model weights

may vary as a function of how well each model did in recent predictions [23] or by using a

more formal graphical structure such as a hidden Markov model to track which component

model is most likely to have generated new observations as they arise over time [24, 25]. It is

also possible to combine the component models with weights that depend on observed covari-

ates or features [26]. For example, in an ensemble for a user recommendation system, Jahrer

et al. [27] allowed model weights to depend on a variety of features including the time that a

user submitted a rating.

Using component models that generate predictive densities for outcomes of interest, we

have implemented a series of ensembles using different methods for choosing the weights for

each model. Specifically, we compare three different approaches. The first approach simply

takes an equally weighted average of all models. The second approach estimates constant but

not necessarily equal weights for each model. The third approach is a novel method for deter-

mining model weights based on features of the system at the time predictions are made. The

overarching goal of this study is to create a systematic comparison between ensemble methods

to study the benefits of increasing complexity in ensemble weighting schemes.

Prediction of infectious disease via weighted ensembles
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We are aware of two previous articles that developed ensemble methods for infectious dis-

ease prediction. Yamana et al. [28] and Chakraborty et al. [11] both developed model stacking

frameworks that are similar to the second approach outlined above using a constant weight for

each component model. The present article is differentiated from this previous work in that

we explore and compare a range of more flexible ensemble methods where the weights depend

on observed features.

This paper presents a novel ensemble method that determines optimal model combinations

based on (a) observed data at the time predictions are made and (b) aspects of the predictive

distributions obtained from the component models. We refer to models built using this

approach as “feature-weighted” ensembles. This approach fuses aspects of different ensemble

methods: it uses model stacking [18] and estimates model weights based on features of the sys-

tem [26] using gradient tree boosting [29].

Using seasonal influenza outbreaks in the US health regions as a case-study, we developed

and applied our ensemble models to predict several attributes of the influenza season at each

week during the season. By illustrating the utility of these approaches to ensemble forecasting

in a setting with complex population dynamics, this work highlights the importance of contin-

ued innovation in ensemble methodology.

Methods

This paper presents a comparison of methods for determining weights for weighted density

ensembles, applied to forecasting specific features of influenza seasons in the US. First, we

present a description of the influenza data we use in our application and the prediction targets.

Next, we discuss the three component models utilized by the ensemble framework. We then

turn to the ensemble framework itself, describing the different ensemble model specifications

used.

Data and prediction targets

We obtained publicly available data on seasonal influenza activity in the United States between

1997 and 2016 from the US Centers for Disease Control and Prevention (CDC) (Fig 1). For

each of the 10 Health and Human Services regions in the country in addition to the nation as a

whole, the CDC calculates and publishes each week a measure called the weighted influenza-

like illness (wILI) index. The wILI for a particular region is calculated as the average propor-

tion of doctor visits with influenza-like illness for each state in the region, weighted by state

population. During the CDC-defined influenza season (between Morbidity and Mortality

Weekly Report week 40 of one year and 20 of the next year), the CDC publishes updated influ-

enza data on a weekly basis. This includes “current” wILI data from two weeks prior to the

reporting date, as well as updates to previously reported numbers as new data becomes avail-

able. For this analysis, we use only the final reported wILI measures to train and predict from

our models. In the early seasons, data were not recorded during the off-season. Additionally,

there were 52 observations in which the reported wILI was zero; these generally occurred near

the off-season in early years, and occurred in weeks when only small numbers of health care

providers submitted reports to the CDC. We treated these reported zeros as missing data

throughout the analysis.

The CDC defines the influenza season onset as the first of three consecutive weeks of the

season for which wILI is greater than or equal to a threshold that is specific to the region and

season. This threshold is the mean percent of patient visits where the patient had ILI during

low incidence weeks for that region in the past three seasons, plus two standard deviations

[30]. The CDC provides historical threshold values for each region going back to the 2007/
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2008 season [31]. Additionally, we define two other metrics specific to a region-season. The

peak incidence is the maximum observed wILI measured in a season. The peak week is the

week at which the maximum wILI for the season is observed.

Each predictive distribution was represented by probabilities assigned to bins associated

with different possible outcomes. For onset week, the bins are represented by integer values

for each possible season week plus a bin for “no onset”. For peak week, the bins are represented

by integer values for each possible season week. For peak incidence, the bins capture incidence

rounded to a single decimal place, with a single bin to capture all incidence over 12.95. For-

mally, the incidence bins are as follows: [0, 0.05), [0.05, 0.15), . . ., [12.85, 12.95), [12.95, 100].

These bins were used in the 2016-2017 influenza prediction contest run by the CDC [32].

We measure the accuracy of predictive distributions using the log score. The log score is a

proper scoring rule [33], calculated in our setting as the natural log of the probability assigned

to the bin containing the true observation. Proper scoring rules are preferred for measuring

the quality of predictive distributions because the expected score is optimized by the true pro-

babilty distribution. We note that for peak week, in some region-seasons the same peak inci-

dence was achieved in multiple weeks (after rounding to one decimal place). In those cases, we

calculated the log score as the log of the sum of the probabilities assigned to those weeks; this is

consistent with scoring procedures used in the 2016-2017 flu prediction contest run by the

CDC [32]. However, the log score is not directly comparable with the score used by the CDC

in the prediction contest. The CDC calculates the score of a prediction as the log of the com-

bined probability assigned to several bins surrounding the realized outcome; this has some

Fig 1. Plot of influenza data. The full data include observations aggregated to the national level and for ten smaller regions. Here we plot only the data at the national

level and in two of the smaller regions; data for the other regions are qualitatively similar. Missing data are indicated with vertical blue bars. The vertical red dashed

lines indicate the cutoff time between the training and testing phases; five seasons of data were held out for testing.

https://doi.org/10.1371/journal.pcbi.1005910.g001

Prediction of infectious disease via weighted ensembles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005910 February 20, 2018 5 / 23

https://doi.org/10.1371/journal.pcbi.1005910.g001
https://doi.org/10.1371/journal.pcbi.1005910


benefits, but has the disadvantage that it is not a proper score. We have opted to use the log

score in this work because it is a proper score.

Component models

We used three component models to generate probabilistic predictions of the three prediction

targets. The first model was a seasonal average model that utilized kernel density estimation

(KDE) to estimate a predictive distribution for each target. The second model utilized kernel

conditional density estimation (KCDE) and copulas to create a joint predictive distribution for

incidence in all remaining weeks of the season, conditional on recent observations of incidence

[15]. By calculating appropriate integrals of this joint distribution, we constructed predictive

distributions for each of the seasonal targets. The third model used a standard seasonal auto-

regressive integrated moving average (SARIMA) implementation. All models were fit indepen-

dently on data within each region.

Kernel density estimation (KDE). The simplest of the component models uses kernel

density estimation [34] to estimate a distribution for each target based on observed values of

that target in previous seasons within the region of interest. We used Gaussian kernels and the

default settings from the density function in the stats package for R [35] to estimate the

bandwidth parameter. For the peak incidence target, we fit to log-transformed observations of

historical peak incidence. For the onset week prediction target, we estimated the probability of

no onset as the proportion of region-seasons in all regions in the training phase where no

week in the season met the criteria for being a season onset.

To create an empirical predictive distribution of size N from a KDE fit based on a data vec-

tor y1:K (for example, this might be the vector of peak week values from the K training seasons),

we first drew N samples with replacement from y1:K, yielding a new vector ~y1:N . We then drew

a single psuedo-random deviate from each of N truncated Gaussian distributions centered at

~y1:N with the bandwidth estimated by the KDE algorithm. The Gaussians we sampled from

were truncated at the lower and upper bounds of possible values for the given prediction tar-

get. Finally, we discretized the sampled values to the target-specific bins. These sampled points

then make up the empirical predictive distribution from a KDE model. We set the sample size

to N = 105. In theory, this model assigns non-zero probability to every possible outcome; how-

ever, in a few cases the empirical predictive distribution resulting from this Monte Carlo sam-

pling approach assigned probability zero to some of the bins.

It is important to note that the predictions from this model do not change as new data are

observed over the course of the season.

Kernel conditional density estimation (KCDE). We used kernel conditional density esti-

mation and copulas to estimate a joint predictive distribution for flu incidence in each future

week of the season, and then calculated predictive distributions for each target from that joint

distribution [15]. In our implementation, we first used KCDE to obtain separate predictive

densities for flu incidence in each future week of the season. Each of these predictive densities

gives a conditional distribution for incidence at one future time point given recent observa-

tions of incidence and the current week of the season. KCDE can be viewed as a distribution-

based analogue of nearest-neighbors regression. We then used a copula to model dependence

among those individual predicitive densities, thereby obtaining a joint predicitive density, or a

distribution of incidence trajectories in all future weeks.

To predict seasonal quantities (onset, peak timing, and peak incidence), we simulate

N = 105 trajectories of disease incidence from this joint predictive distribution. For each simu-

lated incidence trajectory, we compute the onset week, peak week, and peak incidence. We

then aggregate these values to create predictive distributions for each target. This procedure

Prediction of infectious disease via weighted ensembles
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for obtaining predictive distributions for the targets of interest can be formally justified as an

appropriate Monte Carlo integral of the joint predictive distribution for disease incidence in

future weeks (see [15] for details).

Seasonal auto-regressive integrated moving average (SARIMA). We fit seasonal

ARIMA models [36] to wILI observations transformed to be on the natural log scale. We man-

ually performed first-order seasonal differencing and used the stepwise procedure from the

auto.arima function in the forecast package [37] for R to select the specification of the

auto-regressive and moving average terms.

Similar to KCDE, forecasts were obtained by sampling N = 105 trajectories of wILI values

over the rest of the season (using the simulate.Arima function from the forecast pack-

age), and predictive distributions of the targets were computed from these sampled trajectories

as described above.

Component model training. We used data from 14 seasons (1997/1998 through 2010/

2011) to train the models. Data from five seasons (2011/2012 through 2015/2016) were held

out when fitting the models and used exclusively in the testing phase. To avoid overfitting our

models, we made predictions for the test phase only once [17].

Estimation of the ensemble models (discussed in the next subsection) requires cross-

validated measures of performance of each of the component models in order to accurately

gauge their relative performance. For each region, we estimated the parameters of each

component model 15 times: 14 fits were obtained excluding one training season at a time,

and another fit used all of the training data. For each fit obtained leaving one season out, we

generated a set of three predictive distributions (one for each of the prediction targets) at

each week in the held-out season. We were not able to generate predictions from the SAR-

IMA and KCDE models for some seasons in the training phase because those models used

lagged observations from previous seasons that were missing in our data set. The compo-

nent model fits based on all of the training data were used to generate predictions for the

test phase.

Ensemble models

All of the ensemble models we consider in this article work by averaging predictions from

the component models to obtain the ensemble prediction. Additionally, these methods are

stacked model ensembles because they use leave-one-season-out predictions from the inde-

pendently estimated component models as inputs to estimate the model weights [18]. We

begin our discussion of ensemble methods with a general overview, introducing a common

set of notation and giving a broad outline of the ensemble models we will use in this article.

We then describe our proposed weighted density ensemble model specifications in more

detail.

Overview of ensemble models. A single set of notation can be used to describe all of the

ensemble frameworks implemented here. Let fmðytjx
ðmÞ
t Þ denote the predictive density from

component model m for the value of the scalar random variable Yt conditional on observed

variables xðmÞt . Observations of disease incidence are reported weekly in our data set, so t
indexes the week of the season. The variable Yt could for example represent the peak incidence

for a given season and region; in our application to predicting seasonal quantities, the same

outcome yt will be realized for all weeks within a given season. In the context of time series

predictions, the covariate vector xðmÞt may include time-varying covariates such as the week at

which the prediction is made or lagged incidence. The superscript (m) reflects the fact that each

component model may use a different set of covariates.

Prediction of infectious disease via weighted ensembles
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The combined predictive density f(yt|xt) for a particular target can be written as

f ðytjxtÞ ¼
XM

m¼1

pmðxtÞ fmðytjx
ðmÞ
t Þ: ð1Þ

In Eq (1) the πm are the model weights, which are allowed to vary as a function of observed

features in xt. We define xt to be a vector of all observed quantities that are used by any of the

component models or in calculating the model weights. In order to guarantee that f(yt|xt) is a

probability distribution we require that
PM

m¼1
pmðxtÞ ¼ 1 for all xt. Fig 2 illustrates the concept

of stacking the predictive densities for each component model.

In the following subsection, we propose a framework for estimating feature-dependent
weights for a stacked ensemble model. By feature-dependent we mean that the weights

associated with different component models are driven by observed features or covariates.

Although we illustrate the method in the context of time-series predictions, the method

could be used in any setting where we wish to combine distribution estimates from multiple

models. Features could include observed data from the system being predicted (such as

recent wILI measurements or the time of year at which predictions are being made),

observed data from outside the system (for example, recent weather observations), or fea-

tures of the predictions themselves (e.g. summaries of the predictive distributions from the

component models, such as a measure of spread in the distribution, or the time until a pre-

dicted peak). Based on exploration of training phase data and a priori knowledge of the

disease system, we chose three features of the system to illustrate the proposed “feature-

weighting” methodology: week of season, component model uncertainty (defined as the

minimum number of predictive distribution bins required to cover 90% probability), and

wILI measurement at the time of prediction. These features were chosen prior to and not

changed after implementing test-phase predictions.

We used four distinct methodologies to define weights to use for the stacking models:

1. Equal Weights (EW): πm(xt) = 1/M. In this scenario, each model contributes the same

weight for each target and for all values of xt.

Fig 2. Conceptual diagram of how the stacking models operate on probabilistic predictive distributions. The distributions illustrated here have density bins of 1

wILI unit, which differs from those used in the manuscript for illustrative purposes only. Panel A shows the predictive distributions from three component models.

Panel B shows scaled versions of the distributions from A, after being multiplied by model weights. In Panel C, the scaled distributions are literally stacked to create the

final ensemble predictive distribution.

https://doi.org/10.1371/journal.pcbi.1005910.g002
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2. Constant model weights via degenerate EM (CW): πm(xt) = cm, a constant where
PM

m¼1
cm ¼ 1 but the constants are not necessarily the same for each model. These weights

are estimated using the degenerate estimation-maximization algorithm [38]. A separate set

of weights is estimated for each region and prediction target.

3. Feature-weighted (FW-wu): πm(xt) depends on features including week of the season and

model uncertainty for the KCDE and SARIMA models. A separate set of weighting func-

tions is estimated for each region and prediction target.

4. Feature-weighted with regularization: πm(xt) depends on features, but with regularization

discouraging the weights from taking extreme values or from varying too quickly as a func-

tion of xt. A separate set of weighting functions is estimated for each region and prediction

target. We fit three variations on this ensemble model, using different sets of features:

a. (FW-reg-w) week of the season;

b. (FW-reg-wu) week of the season and model uncertainty for the KCDE and SARIMA

models;

c. (FW-reg-wui) week of the season, model uncertainty for the KCDE and SARIMA mod-

els, and incidence (wILI) in the most recent week.

All in all, this leads to 6 ensemble models, summarized in Table 1. The first three of these

models (EW, CW, and FW-wu) can be viewed as variations on FW-reg-wu if we vary the

amount and type of regularization imposed on the FW-reg-wu model. Thus, comparisons

among these four models will enable us to explore the benefits of allowing the model weights

to depend on covariates while imposing an appropriate amount of rigidity on the model

weight functions πm(xt). We will discuss the regularization strategies used in FW-reg-wu

further in the next subsection. Meanwhile, comparisons among the FW-reg-w, FW-reg-wu,

and FW-reg-wui models will allow us to explore the relative contributions to predictive

performance that can be achieved by allowing the model weights to depend on different

features.

As discussed above, leave-one-season-out prediction results from the three component

models are inputs to the ensemble estimation routines. During ensemble estimation, we

dropped any training set time points for which cross-validated predictions from all three com-

ponent models were not available. After the training phase, each of the six ensemble models,

along with the three component models, are used to generate predictions in every season-week

of each of the five testing seasons, assuming perfect reporting. These predictions are then used

to evaluate the prospective predictive performance of each of the ensemble methods. In total,

we evaluate 9 models in 11 regions over 5 years and 3 targets of interest.

Table 1. Summary of ensemble methods and what the model weights depend on.

Model Component Model Weights Vary with. . .

Region Prediction Target Week of Season SARIMA Uncertainty KCDE Uncertainty Current wILI

EW

CW X X

FW X X X X X

FW-reg-w X X X

FW-reg-wu X X X X X

FW-reg-wui X X X X X X

https://doi.org/10.1371/journal.pcbi.1005910.t001
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Feature-weighted stacking framework

In this section we introduce the particular specification of the parameter weight functions

πm(xt) that we use for the FW-wu, FW-reg-w, FW-reg-wu, and FW-reg-wui models and dis-

cuss estimation.

In order to ensure that the the πm are non-negative and sum to 1 for all values of xt, we

parameterize them in terms of the softmax transformation of real-valued latent functions ρm:

pmðxtÞ ¼
expfrmðxtÞg

PM
m0¼1

expfrm0 ðxtÞg
: ð2Þ

For a pair of models l, m 2 {1, . . ., M}, ρl(xt)> ρm(xt) indicates that model l has more weight

than model m for predictions at the given value of xt. The functions ρm(xt) could be parameter-

ized and estimated using many different techniques, such as a linear specification in the fea-

tures, splines, or so on. We chose to estimate the functions ρm(x) using gradient tree boosting.

Gradient tree boosting uses a forward stagewise additive modeling algorithm to iteratively

and incrementally construct a series of regression trees that, when added together, create a func-

tion designed to minimize a given loss function. In our application, the algorithm builds up the

ρm(xt) that minimize the negative log-score of the stacked predictions f(yt|xt) across all times t:

LfρðxtÞg ¼ �
X

t

logff ðytjxtÞg

¼ �
X

t

log
XM

m¼1

expfrmðxtÞg
PM

m0¼1
expfrm0 ðxtÞg

fmðytjx
ðmÞ
t Þ

" #

;

ð3Þ

where fmðytjx
ðmÞ
t Þ is the cross-validated predictive density from the mth model evaluated at the

realized outcome yt.

Specifically, we define a single tree as

Tðxt; θÞ ¼
XJ

j¼1

gjIRjðψÞ
ðxtÞ; ð4Þ

where the Rj(ψ) are a set of disjoint regions that comprise a partition of the space X of feature

values xt, and I is the indicator function taking the value 1 if xt 2 Rj(ψ) and 0 otherwise. The

parameters θ = (ψ, γ) for the tree are the split points ψ partitioning X into the regions Rj(ψ)

and the regression constants γ associated with each region. The function ρm(xt) is obtained as

the sum of B trees:

rmðxt; YmÞ ¼
XB

b¼1

Tðxt; θm;bÞ: ð5Þ

In each iteration b of the boosting process, we estimate M new regression trees, one for

each component model. These trees are estimated so as to minimize a local approximation to

the loss function around the weight functions that were obtained after the previous boosting

iteration. Our approach builds on the xgb.train function in the xgboost package for R to

perform this estimation [39]. The functionality in that package assumes that the loss function

is convex, and optimizes a quadratic approximation to the loss in each boosting iteration. The

loss function in Eq (3) is not guaranteed to be convex, so a direct application of this optimiza-

tion method fails in our setting. We have modified the implementation in the xgboost pack-

age to use a gradient descent step in cases where the loss is locally nonconvex (concave or

indeterminate).
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Gradient tree boosting is appealing as a method for estimating the functions ρm because it

offers a great deal of flexibility in how the weights can vary as a function of the features xt.

On the other hand, this flexibility can lead to overfitting the training data. In order to limit the

chances of overfitting, we have explored the use of three regularization parameters:

1. The number of boosting iterations B. As B increases, more extreme weights (close to 0 or 1)

and more rapid changes in the weights as x varies are possible.

2. An L1 penalty on the number of tree leaves, J. A large penalty encourages the regression

trees to have fewer leaves, so that there is less flexibility for the model weights to vary as a

function of xt.

3. An L1 penalty on the regression constants γj. A large penalty encourages these constants to

be small, so that the overall model weights change less in each boosting iteration.

We selected values for these regularization parameters using a grid search optimizing leave-

one-season-out cross-validated model performance.

Software and code

We used R version 3.2.2 (2015-08-14) for all analyses [35]. All data and code used for this

analysis is freely available in an R package online at https://github.com/reichlab/adaptively-

weighted-ensemble and may be installed in R directly. Predictions generated in real-time

with early development versions of this model during the 2016/2017 influenza season may be

viewed at https://reichlab.io/flusight/. To maximize reproducibility of our work, we have set

seeds prior to running code that relies on stochastic simulations using the rstream package

[40]. Additionally, the manuscript itself was dynamically generated using RMarkdown.

Results

To evaluate overall model performance, we computed log scores for all predictions made by

each model across all regions and test phase seasons. Predictions made before the season peak

(for predictions of peak incidence or peak timing) or before the season onset (for predictions

of season onset timing) are the most relevant to decision makers using the predictions as

inputs to set public policy. We therefore focus our comparison of model performance on

results for predictions made before the target event occurred within each of the test phase sea-

sons. Plots of the full predictive distributions at the national level from the FW-reg-w ensem-

ble are presented in S1, S2 and S3 Figs.

As discussed in the methods section, our test set contained predictions from each model for

3 targets over 5 seasons in 11 spatial units. To ensure that seasons with later onsets or later

peaks would not count more heavily than seasons with earlier onsets and peaks, and to simplify

the analysis in the presence of serial autocorrelation in model performance over consecutive

weeks, we summarized model performance within each season by the mean log score for all

predictions made before the peak or onset week (as appropriate for the prediction target). This

led to 165 observations of model performance for each model, corresponding to the unique

combinations of prediction target, season, and spatial unit.

Feature-weighted ensemble model weights reflect trends in component

model log scores

Fig 3 displays variation in leave-one-season-out log scores from the three component models

over the course of the training phase seasons, along with the corresponding model weight esti-

mates from the CW and FW-reg-w models. Performance of the SARIMA and KCDE models
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Fig 3. Example of component model weights from the CW and FW-reg-w models. Model weights are shown for predictions of onset timing (panel A),

peak timing (panel B), and peak incidence (panel C) at the national level. The upper plot within each panel shows mean, minimum, and maximum log

scores achieved by each component model for predictions of the given prediction target at the national level in each week of the season, summarizing

across all seasons in the training phase when all three component models produced predictions. The lower plot within each panel shows model weights

from the textbfCW and textbfFW-reg-w ensemble methods at each week in the season.

https://doi.org/10.1371/journal.pcbi.1005910.g003
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is similar, with mean log scores from those models starting out near or slightly below the mean

performance of KDE, but with performance improving as more data become available. Near

the beginning of some seasons, predictions from the SARIMA model are quite a bit worse

than predictions from the other two component models. S4 Fig illustrates that these patterns

are consistent across the other regions. S5 Fig shows that performance of the component mod-

els also varies with the model’s uncertainty as measured by the number of bins required to

cover 90% in the predictive distribution, and S6 Fig shows that performance varies with the

observed wILI in the week when predictions are made.

The model weights assigned by the feature weighted ensemble models generally track

these trends in relative model performance (Fig 3, S7 Fig). For all three targets, at the national

level the weight assigned to the SARIMA model increases and the weight assigned to KDE

decreases as the season progresses. However, the magnitude of shifts in model weights as the

weighting features vary is different for the three prediction targets.

Best models have similar aggregate performance

Aggregating across all combinations of prediction target, region, and season in the test phase,

the best component models and the best ensemble models had similar performance (Fig 4).

The CW ensemble had the highest average log scores across all three prediction targets, but a

permutation test (described in S1 Text) was unable to distinguish its performance from the

KCDE, SARIMA, or FW-reg-w models. However, these four methods all outperformed the

KDE model in terms of mean log scores by a wide margin, as well as the EW and FW-wu,

FW-reg-wu, and FW-reg-wui ensembles by narrower margins. These general trends in model

performance were similar for each of the three prediction targets individually; for example, S8

Fig demonstrates that average performance of the FW-reg-w and SARIMA models is similar

for all three prediction targets.

As noted above, our test set included only 5 seasons, and the effective sample size for model

comparison is smaller than the 165 combinations of prediction target, region, and test phase

season due to correlations in predictive performance across regions and seasons. This may

have contributed to our inability to detect statistically significant differences between the best

models, and may limit the generalizability of these results; we will return to this point in the

discussion.

Ensembles show stable performance for early-season predictions

Although the aggregate performance of these models is quite similar, some differences between

the methods begin to emerge when we examine performance in more detail. Predictions that

are used in setting public policy must be of consistent quality across all regions and seasons.

We observed that the component models showed more variability and lower worst-case per-

formance than the ensemble methods. The discussion in this subsection presents results of an

exploratory analysis of the results, and all p-values are from post-hoc hypothesis tests.

To examine consistency of predictive performance, for each combination of prediction tar-

get, region, and test phase season we calculated the difference in mean log scores between each

method and the method with median performance for that target, region, and season. This

measure of model performance relative to the median can be compared across prediction tar-

gets, regions, and seasons that may be predicted with varying levels of difficulty. Fig 5 displays

these differences in performance relative to the median for just the KCDE, SARIMA, CW,

and FW-reg-w methods. This comparison demonstrates that while these methods all had

similar average performance, the CW and FW-reg-w ensemble methods had more consistent
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Fig 4. Permutation test results for pairwise comparisons of the mean log scores for each method. For each combination of 3 prediction targets, 11

regions, and 5 test phase seasons, we calculated the mean log score for all predictions made by each method in weeks before the event being predicted

occurred. Panel A presents the overall mean of these values for each method; higher mean log scores indicate better performance. Panel B displays the

difference in mean log scores for each pair of models. Positive values indicate that the model on the vertical axis outperformed the model on the

horizontal axis on average. A permutation test was used to obtain approximate p-values for these differences (see S1 Text for details). For reference, a

Bonferroni correction at a familywise significance level of 0.05 for all pairwise comparisons leads to a significance cutoff of approximately 0.0014.

https://doi.org/10.1371/journal.pcbi.1005910.g004
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Fig 5. Density plots summarizing differences in mean log scores for each method relative to the median model. We calculate the difference in log

scores for a given method and the method with median performance for each combination of prediction target, region, and test phase season; each density

curve summarizes results across all 165 combinations of 3 prediction targets, 11 regions, and 5 test phase seasons. Positive values indicate better

performance than the median model. For legibility, we only show results for the two component models with best mean performance (KCDE and

SARIMA) and for the two ensemble models with best mean performance (CW and FW-reg-w).

https://doi.org/10.1371/journal.pcbi.1005910.g005
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performance than the component models did, as is observed by the heavier distributional tails

below zero on the horizontal axis.

We can quantify this observation by comparing the minimum performance relative to the

median across all prediction targets, regions, and seasons for each method (Fig 6). This compar-

ison reveals that the FW-reg-w ensemble had better worst-case performance than all of the

component models, and the CW ensemble had better worst-case performance than the KDE

and KCDE component models. These differences were both statistically and practically signifi-

cant. The differences between the ensemble and component models become more marked if we

use the 10th percentile of performance differences relative to the median as a more stable mea-

sure of the lower tail of this distribution than the minimum (S9 Fig). Additionally, the FW-reg-

w model had a higher 10th percentile difference in performance from the median model than

all other methods. Across all three prediction targets and all test phase seasons, the FW-reg-w

ensemble had the most consistent performance of all methods we considered (S10 Fig).

Regularization improves feature-weighted ensemble models

The regularization of feature-weighted ensembles improved early-season prediction accuracy.

A comparison of the FW-wu and FW-reg-wu models shows improvements in both mean per-

formance and worst-case performance when regularization was used to create smoother func-

tions of model weights as a function of season week and model uncertainty (Figs 4 and 6).

Discussion

In this work we have examined the potential for ensemble methods to improve infectious dis-

ease predictions. We explored a nested series of ensemble methods, focusing on methods that

computed weighted averages of predictive distributions for seasonal targets of public health

interest, such as the peak intensity of the outbreak and the timing of both season onset and

peak. The methods we examined ranged from using equal model weights to more complex

schemes with weights that varied as functions of multiple covariates. The best of these ensem-

ble methods achieved overall performance that was about as good as the best of the individual

component models, with increased stability in model performance across different regions

and seasons.

Increased stability in predictive accuracy can provide decision makers with more confi-

dence when using predictions as inputs to set policy. For example, if a single model does well

in most seasons but occasionally fails badly, planning decisions may be negatively impacted in

those failing years. This may be particularly important in a public health setting where the

events that are most important to get right are those relatively rare cases when incidence is

much larger than usual or the season timing is earlier or later than usual. This reduction in var-

iability of model performance achieved by ensemble methods is therefore important for ensur-

ing that our predictions are reliable under a variety of conditions.

Among the different ensemble specifications we considered, the CW and FW-reg-w models

had slightly better average performance during the test phase than the three other ensemble

methods that included some form of regularization on the model weighting functions, and

much better performance than an ensemble with unregularized weighting function. The FW-

reg-wui and FW-reg-wu ensembles did not outperform the simpler FW-reg-w ensemble, indi-

cating that including model uncertainty and recent observations of disease incidence did not

add much more information about relative model performance than was available from the

week of the season in which predictions were generated. Analysis of worst-case performance

suggests that the FW-reg-w ensemble had more stable performance across different regions

and seasons than the other ensemble specifications. However, whether or not this difference
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Fig 6. Permutation test results for comparisons of the minimum difference in mean log scores relative to the median for each pair of methods. For

each combination of 3 prediction targets, 11 regions, and 5 test phase seasons, we calculated the difference in mean log scores between each method and

the method with median performance for that target, region, and season. Panel A presents the minimum difference from the median model for each

method across all combinations of target, region, and season. Larger values of this quantity indicate that the given model has better worst-case

performance. Panel B displays the difference in this measure of worst-case performance for each pair of models. Positive values indicate that the model on
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was statistically significant depended on the measure of worst-case performance used. Overall,

the FW-reg-w method had good average and worst-case performance across all test phase sea-

sons and prediction targets; the CW ensemble had similar average performance, but its worst-

case performance was not as good as that of the FW-reg-w method.

All hypothesis tests we conducted related to worst-case performance were post-hoc tests

conducted after an exploratory analysis of relative model performance, and these results

should be confirmed in future studies. Additionally, the permutation test we used accounts for

serial autocorrelation in model performance within a region-season, but does not account for

correlation across region or seasons; thus the p-values discussed throughout this work should

be regarded as only approximate indicators of statistical significance.

The feature-weighted ensemble models presented in this article use a novel scheme to esti-

mate feature-dependent model weights that sum to 1 and are therefore suitable for use in com-

bining predictive distributions. This general method could be applied to combine distribution

estimates in any context, and is not limited to time-series or infectious disease applications.

Furthermore, comparing an implementation of the feature-weighting that smoothed the

model weights to one that did not showed consistent improvements in model performance.

This result suggests that future work on feature-weighted ensemble implementations should

consider regularized estimation.

Infectious disease predictions are only useful to public health officials if they are communi-

cated effectively in real time. Predictions from an early version of the FW-reg-w model were

updated weekly during the 2016/2017 influenza season and disseminated through an interac-

tive website at https://reichlab.io/flusight/. While we have successfully deployed the methods

discussed here in a real-time setting, in this article we have ignored the important issue of

reporting delays that occur with real-time data. All models were trained using the finalized

value of the incidence measure, and these finalized values were used to make the cross-vali-

dated predictions that were inputs to the ensemble estimation as well as the predictions for the

test set evaluation. Some component models may be more or less sensitive to reporting delays

than other models, and this could lead to inappropriate estimates for the ensemble weighting

functions if finalized data were used for the cross-validated predictions but the methods were

then used in real time. Ideally, the cross-validated model log scores used to estimate the ensem-

ble weighting functions should be obtained using the same sort of “non-finalized” data that the

models will encounter when making real-time predictions.

A central challenge of working with infectious disease data sets is the limited number of

years of data available for model estimation and evaluation. We have used approximately one

fourth of our data set for model evaluation, which left us with only 14 seasons of training data

and 5 seasons of testing data. Additionally, we had fewer than 14 seasons of leave-one-season-

out predictions to use in estimating the model weighting functions for the FW-wu ensemble

methods because the SARIMA model required unobserved seasonally lagged incidence to

make predictions for the first few seasons in the training phase. This small sample size may

have negatively impacted our ability to estimate the weighting functions. Altogether the test

phase included 55 combinations of region and season, with a total of 2469 predictions from

each method made across all three prediction targets before the test phase season onset or peak

occurred. Nevertheless, because of the high degree of correlation in model log scores for the

same prediction target in different weeks and regions within the same season we have a smaller

the vertical axis had better worst-case performance than the model on the horizontal axis. A permutation test was used to obtain approximate p-values for

these differences (see S1 Text for details). For reference, a Bonferroni correction at a familywise significance level of 0.05 for all pairwise comparisons leads

to a significance cutoff of approximately 0.0014.

https://doi.org/10.1371/journal.pcbi.1005910.g006
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effective sample size for detecting differences in average model performance in the test phase.

The findings in this work should be confirmed with additional data sets. Another possible ave-

nue would be to obtain pseudo out-of-sample results by performing cross validation within

the training phase.

Another limitation of this work is the small selection of component models used. Theoreti-

cal results and applications have demonstrated that ensemble methods are most effective when

using a diverse set of component models [16]. In our study, the KCDE and SARIMA compo-

nent models are similar in that they both use seasonal terms and observations of recent inci-

dence to inform their predictions (though we note that these two models tended to perform

well in different seasons, as illustrated in S10 Fig). Increased component model diversity

could yield improved ensemble performance; this could be achieved either through inclusion

of different model structures (for example, agent-based or mechanistic models such as those

explored in [5–10]) or different covariates (such as information about the circulating strains of

a disease, spatial effects, weather, or social media data, as used by [5, 6, 8, 10–14]). Thus, the

current work should not be viewed as a competitor to the models developed in previous work,

but rather as a method for integrating and unifying the diverse array of methods that have

been developed in the literature. The methods presented here are suitable for combining pre-

dictions from any collection of component models that each output a full predictive distribu-

tion, regardless of model structure.

Our exploration of feature-weighted ensembles is also limited by the relatively restricted

feature sets we used for the weighting functions. We selected a few features based on explor-

atory analysis of the training phase results, and set all ensemble model formulations before

obtaining any predictions for the test phase. It is possible that other weighting features not

considered in this work may be more informative than those we have used. Some ideas for

weighting covariates to use in future work include the largest incidence so far this season; the

onset threshold; alternative summaries of the predictive distributions from the component

models such as the probability at the mode or the modal value; the predominant flu strain; or

the distribution of incidence in age groups.

The performance of the ensemble methods might be improved by subsetting the training

data for the ensembles to the most important observations. The discrepancy in this work

between the times used to train the ensembles (all leave-one-season-out predictions) and the

times used for model comparison (only predictions made before the season onset or peak)

may have led to an artificial decline in performance for the ensembles; this may be especially

so for the relatively inflexible CW method.

This work provides a rigorous and comprehensive evaluation of ensemble methods for

averaging probabilistic predictions for features of infectious disease outbreaks. A range of

models, both single component models and ensemble models that combined component

model predictions, demonstrated the ability to make more accurate predictions than a seasonal

average baseline model. Additionally, systematic comparisons of simple and complex predic-

tion models highlight a crucial added value of ensemble modeling, namely increased stability

and consistency of model performance relative to the component models. Continued investi-

gation, application, and innovation is necessary to strengthen our understanding of how to

best leverage combinations of models to assist decision makers in fields, such as public health

and infectious disease surveillance, that require data-driven rapid response.
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S1 Text. Permutation test procedure.
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S1 Fig. Predictive distributions for onset timing. Predictions are shown for just the FW-reg-

w method at the national level, facetted by test phase season.

(PDF)

S2 Fig. Predictive distributions for peak timing. Predictions are shown for just the FW-reg-

w method at the national level, facetted by test phase season.

(PDF)

S3 Fig. Predictive distributions for peak incidence. Predictions are shown for just the FW-

reg-w method at the national level, facetted by test phase season.

(PDF)

S4 Fig. Log scores achieved by each component model in each week of the season. For each

week of the season, log scores are summarized across all seasons in the training phase when all

three component models produced predictions. The thick line is a smoothed estimate of mean

log score at each week in the season; the shaded region indicates the convex hull of log scores

achieved by each model; and the actual log scores achieved in each week are indicated with

points.

(PDF)

S5 Fig. Log scores achieved by each component model vs. model uncertainty. Model uncer-

tainty is measured by the number of bins required to cover 90% of the predictive distribution.

The plot summarizes results across all seasons in the training phase when all three component

models produced predictions. The thick line is a smoothed estimate of mean log score at each

value of model uncertainty; the shaded region indicates the convex hull of log scores achieved

by each model; and the actual log scores achieved in each week are indicated with points. The

KCDE and SARIMA models condition on all previously observed data within the current sea-

son, and generally have high certainly when the target event (season onset or season peak) has

almost occurred or has already occurred.

(PDF)

S6 Fig. Log scores achieved by each component model vs. wILI in the week of the season

when predictions were made. The plot summarizes results across all seasons in the training

phase when all three component models produced predictions. The thick line is a smoothed

estimate of mean log score at each week in the season; the shaded region indicates the convex

hull of log scores achieved by each model; and the actual log scores achieved in each week are

indicated with points.

(PDF)

S7 Fig. Weights assigned to each component model by the FW-reg-wu ensemble model.

Weights are shown for the prediction of season peak incidence at the national level. There are

three weighting functions (one for each component model) represented in each row of the fig-

ure. The value of the weight is depicted by the color. Each function depends on three features:

the week of the season at the time when the predictions are made, KCDE model uncertainty,

and SARIMA model uncertainty. Model uncertainty represents the minimum number of pre-

dictive distribution bins required to cover 90% probability of the predictive distribution, so the

higher this number is the more uncertain the model is.

(PDF)

S8 Fig. Density plots representing the distribution of log score differences from predic-

tions made by the FW-reg-w and SARIMA models. Predictions are aggregated across all

regions and test phase seasons. The horizontal axis represents the difference in log scores
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achieved by the FW-reg-w and SARIMA models for predictions made in a particular week;

positive values indicate that FW-reg-w outperformed SARIMA for that prediction. The verti-

cal line indicates the mean log score difference for all predictions made before the onset or sea-

son peak occurred.

(PDF)

S9 Fig. Permutation test results for pairwise comparisons of the 10th percentile of log

score differences for each method relative to the median model. For each combination of 3

prediction targets, 11 regions, and 5 test phase seasons, we calculated the difference in mean

log scores between each method and the method with median performance for that target,

region, and season. Panel A presents the 10th percentile of these differences from the median

model for each method across all combinations of target, region, and season. Larger values of

this quantity indicate that the given model has better worst-case performance. Panel B displays

the difference in this measure of worst-case performance for each pair of models. Positive val-

ues indicate that the model on the vertical axis had better worst-case performance than the

model on the horizontal axis. A permutation test was used to obtain approximate p-values for

these differences (see S1 Text for details). For reference, a Bonferroni correction at a family-

wise significance level of 0.05 for all pairwise comparisons leads to a significance cutoff of

approximately 0.0014.

(PDF)

S10 Fig. Model performance ranked by mean log score within each of the five test seasons.

Only predictions made before the target (season onset or peak) occurred are included. Aver-

ages are taken across all regions.

(PDF)

Author Contributions

Conceptualization: Evan L. Ray, Nicholas G. Reich.

Data curation: Evan L. Ray, Nicholas G. Reich.

Formal analysis: Evan L. Ray, Nicholas G. Reich.

Funding acquisition: Nicholas G. Reich.

Investigation: Evan L. Ray, Nicholas G. Reich.

Methodology: Evan L. Ray, Nicholas G. Reich.

Software: Evan L. Ray, Nicholas G. Reich.

Visualization: Evan L. Ray, Nicholas G. Reich.

Writing – original draft: Evan L. Ray, Nicholas G. Reich.

Writing – review & editing: Evan L. Ray, Nicholas G. Reich.

References
1. Centers for Disease Control and Prevention. Staying Ahead of the Curve: Modeling and Public Health

Decision-Making; 2016. Available from: http://www.cdc.gov/cdcgrandrounds/archives/2016/

january2016.htm.

2. Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human popula-

tions: a scoping review. PloS one. 2014; 9(4):e94130. https://doi.org/10.1371/journal.pone.0094130

PMID: 24714027

Prediction of infectious disease via weighted ensembles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005910 February 20, 2018 21 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005910.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005910.s011
http://www.cdc.gov/cdcgrandrounds/archives/2016/january2016.htm
http://www.cdc.gov/cdcgrandrounds/archives/2016/january2016.htm
https://doi.org/10.1371/journal.pone.0094130
http://www.ncbi.nlm.nih.gov/pubmed/24714027
https://doi.org/10.1371/journal.pcbi.1005910


3. Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV. A systematic review of studies on forecast-

ing the dynamics of influenza outbreaks. Influenza and other respiratory viruses. 2014; 8(3):309–316.

https://doi.org/10.1111/irv.12226 PMID: 24373466

4. Biggerstaff M, Alper D, Dredze M, Fox S, Fung ICH, Hickmann KS, et al. Results from the centers for

disease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infectious

Diseases. 2016; 16(1):357. https://doi.org/10.1186/s12879-016-1669-x PMID: 27449080

5. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proceedings of the National

Academy of Sciences of the United States of America. 2012; 109(50):20425–20430. https://doi.org/10.

1073/pnas.1208772109 PMID: 23184969

6. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the

2012–2013 season. Nature communications. 2013; 4:2837. https://doi.org/10.1038/ncomms3837

PMID: 24302074

7. Shaman J, Kandula S. Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Pre-

dictions. PLoS currents. 2015; 7. https://doi.org/10.1371/currents.outbreaks.

8a6a3df285af7ca973fab4b22e10911e PMID: 26512336

8. Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective

forecasting of influenza epidemics. PLoS computational biology. 2014; 10(4):e1003583. https://doi.org/

10.1371/journal.pcbi.1003583 PMID: 24762780

9. Yang W, Cowling BJ, Lau EH, Shaman J. Forecasting influenza epidemics in Hong Kong. PLoS compu-

tational biology. 2015; 11(7):e1004383. https://doi.org/10.1371/journal.pcbi.1004383 PMID: 26226185

10. Yang W, Olson DR, Shaman J. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of

New York City. PLoS computational biology. 2016; 12(11):e1005201. https://doi.org/10.1371/journal.

pcbi.1005201 PMID: 27855155

11. Chakraborty P, Khadivi P, Lewis B, Mahendiran A, Chen J, Butler P, et al. Forecasting a moving target:

Ensemble models for ILI case count predictions. In: Proceedings of the 2014 SIAM international confer-

ence on data mining. SIAM; 2014. p. 262–270.

12. Hickmann KS, Fairchild G, Priedhorsky R, Generous N, Hyman JM, Deshpande A, et al. Forecasting

the 2013–2014 influenza season using Wikipedia. PLoS Comput Biol. 2015; 11(5):e1004239. https://

doi.org/10.1371/journal.pcbi.1004239 PMID: 25974758

13. Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. PLOS Currents Outbreaks.

2014;. https://doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117

14. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social

media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol. 2015; 11(10):

e1004513. https://doi.org/10.1371/journal.pcbi.1004513 PMID: 26513245

15. Ray EL, Sakrejda K, Lauer SA, Johansson MA, Reich NG. Infectious disease prediction with kernel con-

ditional density estimation. Statistics in Medicine. 2017; 36(30):4908–4929. https://doi.org/10.1002/sim.

7488 PMID: 28905403

16. Polikar R. Ensemble based systems in decision making. IEEE Circuits and systems magazine. 2006; 6

(3):21–45. https://doi.org/10.1109/MCAS.2006.1688199

17. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. 2nd ed. Springer; 2011.

18. Wolpert DH. Stacked generalization. Neural Networks. 1992; 5(2):241–259. https://doi.org/10.1016/

S0893-6080(05)80023-1

19. Smyth P, Wolpert D. Linearly combining density estimators via stacking. Machine Learning. 1999; 36(1-

2):59–83. https://doi.org/10.1023/A:1007511322260

20. Rigollet P, Tsybakov AB. Linear and convex aggregation of density estimators. Mathematical Methods

of Statistics. 2007; 16(3):260–280. https://doi.org/10.3103/S1066530707030052

21. Ganti R, Gray A. Cake: Convex adaptive kernel density estimation. In: International Conference on Arti-

ficial Intelligence and Statistics; 2011. p. 498–506.

22. Rosset S, Segal E. Boosting density estimation. In: NIPS; 2002. p. 641–648.

23. Herbster M, Warmuth MK. Tracking the best expert. Machine Learning. 1998; 32(2):151–178. https://

doi.org/10.1023/A:1007424614876

24. Yamanishi K, Maruyama Y. Dynamic model selection with its applications to novelty detection. IEEE

Transactions on Information Theory. 2007; 53(6):2180–2189. https://doi.org/10.1109/TIT.2007.896890

25. Cortes C, Kuznetsov V, Mohri M. Ensemble Methods for Structured Prediction. In: Proceedings of The

31st International Conference on Machine Learning; 2014. p. 1134–1142.

26. Sill J, Takacs G, Mackey L, Lin D. Feature-Weighted Linear Stacking. arXiv. 2009;.

Prediction of infectious disease via weighted ensembles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005910 February 20, 2018 22 / 23

https://doi.org/10.1111/irv.12226
http://www.ncbi.nlm.nih.gov/pubmed/24373466
https://doi.org/10.1186/s12879-016-1669-x
http://www.ncbi.nlm.nih.gov/pubmed/27449080
https://doi.org/10.1073/pnas.1208772109
https://doi.org/10.1073/pnas.1208772109
http://www.ncbi.nlm.nih.gov/pubmed/23184969
https://doi.org/10.1038/ncomms3837
http://www.ncbi.nlm.nih.gov/pubmed/24302074
https://doi.org/10.1371/currents.outbreaks.8a6a3df285af7ca973fab4b22e10911e
https://doi.org/10.1371/currents.outbreaks.8a6a3df285af7ca973fab4b22e10911e
http://www.ncbi.nlm.nih.gov/pubmed/26512336
https://doi.org/10.1371/journal.pcbi.1003583
https://doi.org/10.1371/journal.pcbi.1003583
http://www.ncbi.nlm.nih.gov/pubmed/24762780
https://doi.org/10.1371/journal.pcbi.1004383
http://www.ncbi.nlm.nih.gov/pubmed/26226185
https://doi.org/10.1371/journal.pcbi.1005201
https://doi.org/10.1371/journal.pcbi.1005201
http://www.ncbi.nlm.nih.gov/pubmed/27855155
https://doi.org/10.1371/journal.pcbi.1004239
https://doi.org/10.1371/journal.pcbi.1004239
http://www.ncbi.nlm.nih.gov/pubmed/25974758
https://doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
https://doi.org/10.1371/journal.pcbi.1004513
http://www.ncbi.nlm.nih.gov/pubmed/26513245
https://doi.org/10.1002/sim.7488
https://doi.org/10.1002/sim.7488
http://www.ncbi.nlm.nih.gov/pubmed/28905403
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1023/A:1007511322260
https://doi.org/10.3103/S1066530707030052
https://doi.org/10.1023/A:1007424614876
https://doi.org/10.1023/A:1007424614876
https://doi.org/10.1109/TIT.2007.896890
https://doi.org/10.1371/journal.pcbi.1005910
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