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Abstract

To uncover the processes and mechanisms of cellular physiology, it first necessary to gain

an understanding of the underlying metabolic dynamics. Recent studies using a constraint-

based approach succeeded in predicting the steady states of cellular metabolic systems by

utilizing conserved quantities in the metabolic networks such as carriers such as ATP/ADP

as an energy carrier or NADH/NAD+ as a hydrogen carrier. Although such conservation

quantities restrict not only the steady state but also the dynamics themselves, the latter

aspect has not yet been completely understood. Here, to study the dynamics of metabolic

systems, we propose adopting a carrier cycling cascade (CCC), which includes the dynam-

ics of both substrates and carriers, a commonly observed motif in metabolic systems such

as the glycolytic and fermentation pathways. We demonstrate that the conservation laws

lead to the jamming of the flux and feedback. The CCC can show slow relaxation, with a lon-

ger timescale than that of elementary reactions, and is accompanied by both robustness

against small environmental fluctuations and responsiveness against large environmental

changes. Moreover, the CCC demonstrates robustness against internal fluctuations due to

the feedback based on the moiety conservation. We identified the key parameters underly-

ing the robustness of this model against external and internal fluctuations and estimated it in

several metabolic systems.

Author summary

Although a metabolic shift is essential for the adaptation of cells or organisms to environ-

mental changes, the transient behaviors of metabolic systems are poorly understood.

When describing the time development of metabolic systems, there are several conserved

quantities to consider due to balances of metabolic reactions, e.g., the cycling of coen-

zymes. Such conserved quantities limit the possible changes in the metabolic state and can

generate non-trivial dynamical behaviors. We here propose a minimal motif of metabolic

reactions that includes coenzyme recycling to investigate the effect of conserved quantities

on metabolic dynamics. We demonstrate that the dynamics with this motif intrinsically

show slow relaxation to the steady state after environmental changes. Moreover, this

motif can maintain robustness against external and internal fluctuations owing to the
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conservation of coenzymes. Overall, these results suggest that the complex metabolic

dynamics generated by coenzyme recycling are beneficial to organisms.

Introduction

In recent decades, mathematical modeling of metabolic systems has been intensively explored

in the field of systems biology [1–6]. Several studies have demonstrated that metabolic systems

can be quantitatively predicted using mathematical models [7–10]. A particularly important

feature for the mathematical modeling of a metabolic system is that some conserved quantities

characterize the system. The total number of atoms remains unchanged before and after the

reactions, allowing for mass conservation. Furthermore, several coenzymes act as the carriers

of molecules and energy through various reactions, e.g., ATP/ADP as an energy carrier and

NADH/NAD+ as a hydrogen carrier [11, 12]. The total concentrations of the carriers represent

the conserved quantities in the steady state, which is referred to as moiety conservation [11],

by which various coenzyme-related reactions have to be balanced. These constraints, i.e., the

law of mass conservation and moiety conservation, restrict the solution space and facilitate the

analysis of complicated metabolic networks. One of the most successful approaches used for

the modeling of metabolic systems to date is the constraint-based analysis of metabolic fluxes

based on the stoichiometry that describes conservation laws in metabolic fluxes [2, 5]. In this

approach, the metabolic fluxes are assumed to be in a steady state, meaning that, for any

metabolite pool, the fluxes governing its synthesis and degradation are balanced. Owing to its

predictive power and advantage of not requiring detailed information on the kinetic parame-

ters, a steady state-based metabolic modeling approach has been applied in various studies

analyzing the characteristics of metabolic systems.

However, in contrast to the steady-state solution, the characteristics of the dynamic behav-

ior of metabolic systems have not been elucidated. In a fluctuating environment, a metabolic

system is not in a steady state, and thus its dynamic behavior should be analyzed over time. In

a biological system, the producing and decomposition reactions of such carriers are also faster

than cellular growth. Since the conservation laws are considered to be maintained for a longer

time than several cell cycles, the law of mass conservation and moiety conservation restrict

both the steady state and the transient dynamics. Thus, the constraints of metabolic networks

should be taken into account when studying metabolic dynamics. In particular, the moiety

conserved coenzymes should have particularly strong effects on the various pathways in ana-

lyzed metabolic systems due to their recycling [11]. For example, in the glycolytic pathway,

ATP is transformed into ADP by phosphofructokinase, while ADP is recycled to ATP in

downstream reactions. During the anaerobic growth of microorganisms, NAD+ is transformed

into NADH by glyceraldehyde-3-phosphate dehydrogenase in upper glycolysis, while NADH

is recycled to NAD+ through the fermentation pathways [1]. These reactions involving carriers

must be balanced not only in the steady state but also in the dynamic states, and yet the effect

of such balance remains unknown.

Several previous studies have analyzed the characteristics of metabolic pathways with moi-

ety conservation. Reich and Sel’kov [11] derived simple dynamical system models of metabolic

system, and pointed out that recycling of the moiety conservations represents the skeleton of

energy metabolism. Such a moiety-conserved cycle was formulated using mass-action kinetics

and was analyzed with dynamical systems theory. They found that the cycle of moiety conser-

vation works as a positive feedback to produce the high-energy carrier autocatalytically if its

concentration is low, whereas a higher concentration of the high-energy carrier limits its own

Metabolic dynamics restricted by conserved carriers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005847 November 7, 2017 2 / 16

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005847


production. Following these pioneering works, the behavior of the moiety-conserved meta-

bolic cycle has been extensively studied [13, 14]. Although the majority of these studies focused

only on the analysis of steady states, some researchers addressed the dynamic behavior of the

moiety-conserved cycle after environmental changes [15, 16]. These studies demonstrated

transient switching behavior based on a simple model with mass-action kinetics without con-

sidering complex formation among enzymes, substrates, and cofactors.

Recently, some theoretical studies demonstrated that complex formation in a chemical

reaction system can cause transient abnormal behavior, which could not be obtained using

simple mass-action kinetics [17]. This finding suggested that the complex dynamic behavior

of metabolic systems, especially those including moiety conservation, can also be captured

by considering complex formation. Following this idea, in the present study, we focused on

metabolic reaction pathways with carrier recycling (also known as a “turbo design” [18]). To

investigate the dynamic behavior of nonlinear metabolic systems with the law of mass con-

servation and moiety conservation, we here explore a simple motif designated as a carrier

cycling cascade (CCC), which simultaneously considers the dynamics of substrates and

coenzymes. We formulate the CCC with complex formation to analyze the dynamics of

both substrates and carriers simultaneously. The CCC shows slow relaxation into the steady

state against external perturbations around a critical point where the relaxation speed fol-

lows the power law. We analyze the origin of the slow relaxation using dynamical systems

theory. Additionally, the CCC maintains robustness of a metabolic state with intrinsic noise.

We demonstrate that the negative feedback through the conserved carrier provides such

robustness, i.e., the moiety-conserved cycle can reduce fluctuations in the concentrations of

metabolites. We further discuss the relationship between microscopic feedback and macro-

scopic dynamics, and estimate the effect of this feedback using experimentally determined

parameters.

Results

Modeling of the carrier cycling cascade

The steady-state characteristics in a moiety-conserved cycle were intensively studied by Reich

and Sel’kov [11]. However, most of these proposed models are too complicated to effectively

extract the essence of the dynamic features. The metabolite flow is usually branched, and the

same coenzyme can be utilized at multiple steps. Hence, to investigate the effects of a cycling

carrier on the dynamics of metabolic systems, we here focus on the simplest cascade, the CCC,

which models ATP-ADP cycling in the glycolysis pathway and NADH-NAD+ cycling in the

fermentation pathway (Fig 1). Here, we refer to the high-energy and low-energy carriers as the

active and inactive carriers, respectively. The CCC consists only of active carrier-consuming

and -producing steps.

Our model is similar to the simplest skeleton proposed by Reich and Sel’kov [11]. In con-

trast to the previous study, which considered the mass-action dynamics without complex

formation, we here include the complex-formation process. We assume that the enzyme, sub-

strate, and coenzyme form the complex, while the enzyme is saturated under the ordinal meta-

bolic condition [19, 20] and does not appear in the equation explicitly.

Original ordinary differential equations (ODEs) are given as seven mass-action kinetic

equations (see section 1 in S1 Text), which can be reduced to five ODEs by eliminating the

association and dissociation reactions between coenzymes and substrates adiabatically.

d½m0�

dt
¼ kin � kc

½m0�½c�
K0 þ ½c�

� kleak½m0�; ð1aÞ
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d½m1�

dt
¼ kc

½m0�½c�
K0 þ ½c�

� kp
½m1�½c��

K1 þ ½c��
; ð1bÞ

d½m2�

dt
¼ kp

½m1�½c��
K1 þ ½c��

� kout½m2�; ð1cÞ

d½c�t
dt

¼ � kc
½m0�½c�

K0 þ ½c�
þ kp

½m1�½c��
K1 þ ½c��

; ð1dÞ

d½c��t
dt

¼ kc
½m0�½c�

K0 þ ½c�
� kp

½m1�½c��
K1 þ ½c��

; ð1eÞ

½c�t ¼ ½c� þ
½m0�½c�

K0 þ ½c�
; ð1fÞ

½c��t ¼ ½c�� þ
½m1�½c��

K1 þ ½c��
; ð1gÞ

where mi is the i-th metabolite, c and c� are active and inactive carriers, respectively, and [x]

denotes the concentration of x. m0 is supplied and diluted with rates kin and kleak, respectively,

and m2 is diluted with rate kout. c and m0 make complex cm0, and c� and m1 make complex

c� m1. The active carrier is consumed with rate kc when m1 is transformed from m0, and is pro-

duced with rate kp when m2 is transformed from m1. [c]t and [c�]t represent the total concen-

tration of active and inactive carriers as [c]t = [c] + [cm0] and [c�]t = [c�] + [c�m1], respectively.

K0 and K1 represent the dissociation constants between c and m0 and between c� and m1,

respectively.

Here, we considered the condition in which the total concentrations of the carriers are con-

served. There are multiple reactions between the active carrier-producing and -consuming

reactions in the actual metabolic networks, while these reactions are reversible and not rate-

limiting under ordinal metabolic conditions [16, 18, 20]. Then, multi-step reactions can be

reduced to the present form.

The conserved quantities in the CCC model are as follows:

Fig 1. A simple model of the carrier cycling cascade (CCC). The model comprises the metabolites and

carriers. Although the total concentration of metabolites can change with time, that of the carriers remains

constant.

https://doi.org/10.1371/journal.pcbi.1005847.g001
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1. The total concentration of the carrier: cpool = [c]t + [c�]t.

2. The sum of the concentration of the active carrier and the secondary metabolite (csum =

[c]t + [m1]), because the production of one secondary metabolite should require the con-

sumption of exactly one inactive carrier.

3. The difference between the concentration of the inactive carrier and the secondary metabo-

lite: c�diff ¼ ½c��t � ½m1�, similar to csum.

Note that the number of independent conserved quantities is two because of

cpool ¼ csum þ c�diff .

Appearance of slow relaxation

In metabolic networks, some types of inputs will be in a CCC, e.g., changes in the influx and

efflux rates of the first metabolite, changes in the ratio between active and inactive carriers due

to the environmental changes, and the new synthesis and degradation of a carrier. Here, we

consider the condition in which the total carrier concentration is conserved so that the cpool

does not change. Therefore, we consider changes in kin and the ratio between active and inac-

tive carriers as inputs.

Initially, we changed the influx rate. We allowed the system to approach a steady state,

and then changed kin at time = 0 (Fig 2A). When kin is altered, the concentrations of all mole-

cules do not change in the timescales of the active carrier consuming and producing reac-

tions (kc and kp are set as 1.0). Accordingly, the changing of [m0] is slower than the timescale

of kc and kp, while the concentrations of other components do not change as in the quasi-

steady state. When [m0] decreases to become sufficiently small, the concentrations of the oth-

ers drastically change with a fast timescale, i.e., the timescale of relaxation in [m0] is approxi-

mately one thousand times that of kc and kp. Consequently, the system reaches the true

steady state, i.e., the other components relax into the steady-state values in the timescale of kc

and kp.

When we change the ratio between [c] and [c�], which is considered the change in csum, a

similar type of behavior is observed (S1 Fig). Although the concentrations of molecules with-

out m0 change when the ratio changes, the system can reach the quasi-steady state quickly.

Then, [m0] changes slowly and the other components subsequently change rapidly.

The timescale of the relaxation depends on the input strength. We defined the relaxation

time τ as the time when the sum of differences of the concentrations of all molecules from the

previous time point falls below the threshold (10−7). When we change kin, τ diverges at the

point where kin ¼ kth
in (Fig 2B, inset). The relaxation time is proportional to the inverse of the

difference between kin and kth
in (Fig 2B) so that the relaxation time critically slows down around

the critical point. Note that although the relaxation time is also critically prolonged in the

vicinity of saddle-node bifurcation, the exponent is 1/2 [21] and differs from the obtained

result.

When the relaxation time slows down, the relaxation manner of [m0] becomes linear with

time rather than exponential (S2 Fig). This can be observed in both cases where kin and csum

change in the system (Fig 2A and S1 Fig). If both the active carrier-producing and -consuming

reactions are reversible, similar slow dynamics appears, while the switch from the quasi-steady

state to the true steady state is smooth for small kout values (see S3 Fig and section 2 in S1

Text). This may be due to inhibition of the active carrier-producing reaction by binding of m2

to c�. Therefore, the slow relaxation is considered to be a general behavior of the CCC in

response to different environmental changes.
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Origin of the slow relaxation

To elucidate the process of the slow relaxation, we reduced the number of arguments in our

model by using conserved quantities. Although our model had five ODEs even when the asso-

ciation and dissociation reactions are eliminated adiabatically, [m2] is involved only in the

equation for [m2] and not in other equations. Moreover, two equations can be eliminated

because of two independent conserved quantities. Hence, the model can be reduced to the fol-

lowing two ODEs:

d½m0�

dt
¼ kin � kc

½m0�½c�
K0 þ ½c�

� kleak½m0�; ð2aÞ

d½m1�

dt
¼ kc

½m0�½c�
K0 þ ½c�

� kp
½m1�½c��

K1 þ ½c��
; ð2bÞ

½c� ¼
� bþ fb

2
þ 4K0ðcsum � ½m1�Þg

1=2

2
; ð2cÞ

Fig 2. Relaxation of the CCC model after changes in kin. (A) Time evolution of carriers and the metabolite

following the change in kin. Initially, kin was set to 1.1, and the system reached the steady state. Subsequently,

kin was changed from 1.1 to 0.9 at time = 0.0. (B) Changes in the relaxation time with kin. The initial conditions

were set as [m0] = 100.0, [m1] = [m2] = 0.0, [c] = cpool, and [c*] = 0. kleak was set to 0. The green dashed line

represents ðkth
in � kinÞ

� 1
, where kth

in is 0.984313. Inset: Semi-log plot of τ vs. kin.

https://doi.org/10.1371/journal.pcbi.1005847.g002
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½c�� ¼
� gþ fg2 þ 4K1ðcpool � csum þ ½m1�Þg

1=2

2
; ð2dÞ

where β = [m0] + K0 − csum + [m1] and γ = K1 + csum − cpool.

The nullclines for [m0] and [m1] are presented in Fig 3, in the case of kleak = 0. By altering

kin, the vertical position of the nullcline for [m0] is changed as well. The CCC behavior changes

drastically in the vicinity of the critical point. When kin is smaller than kth
in, a stable fixed point

appears (Fig 3A), and when kin is close to kth
in, relaxation to the fixed point is critically slowed

down due to the approach of two nullclines. In this case, a slow manifold is located on the null-

cline for [m1], which is nearly parallel to the nullcline for [m0]. In the region where two null-

clines are parallel, the relaxation speed across the slow manifold is proportional to the distance

from the nullcline for [m0]; i.e., the speed of change in [m0] is given as a constant that is pro-

portional to kth
in � kin. Hence, the degradation of m0 is the rate-limiting process when the dis-

tance between the nullclines is sufficiently small, and the relaxation time is proportional to the

inverse of kth
in � kin (Fig 2B), while the relaxation manner of m0 depends linearly on time (S2

Fig). However, when kin is larger than kth
in, nullclines do not cross anywhere and [m0] diverges

(Fig 3C).

In particular, if kin is equal to kth
in, the points on the overlapped nullclines become neutrally

stable fixed points (Fig 3B). When kin is fixed and csum is changed, both of the nullclines move.

Moreover, in this case, the nullclines approach each other for the critical csum value (see S4

Fig), and the slow relaxation occurs.

Here, kth
in can be obtained analytically for kleak = 0 (see section 3 in S1 Text).

kth
in ¼

kckp

2ðkc þ kpÞ
fcpool þ csum þ a

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcpool � csum þ aÞ
2
þ 4csuma

q

g:

ð3Þ

where α = kc K1/(kc + kp). For the limit of K1! 0, i.e., m1 can perfectly bind to c� and never

Fig 3. Nullclines of the CCC model. Red and green lines represent the nullclines for [m0] and [m1],

respectively. Gray arrows are vector fields. kin is (A) 0.8, (B) kth
in ¼ 0:984313, and (C) 1.2. When kin is smaller

than kth
in , a stable fixed point exists, whereas there is no stable fixed point and [m0] will diverge when kin is

larger than kth
in .

https://doi.org/10.1371/journal.pcbi.1005847.g003
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dissociate, Eq (3) becomes:

kth
in ¼

kckpcsum

ðkc þ kpÞ
ðcpool > csumÞ;

kckpcpool

ðkc þ kpÞ
ðcpool < csumÞ:

8
>>>><

>>>>:

ð4Þ

Eq (4) represents the maximal capacity of the flux of CCC. Therefore, when the influx exceeds

the capacity, the CCC can become jammed, which leads to the appearance of slow dynamics.

If kleak is not zero, the nullcline for [m0] is tilted, and a fixed point is obtained for large

kin (S5 Fig). For a system with a finite kleak value, kth
in cannot be defined. However, in the

parameter range where kin is close to the kth
in for the system with no kleak, the fixed point

value changes drastically and slow relaxation appears, which cannot be represented by

bifurcation.

Robustness and responsiveness to environmental changes

For organisms, robustness against small fluctuations in nutrient uptake is important for main-

tenance of the intracellular environment. However, in the case of a sudden decrease in the

concentration of nutrients, which may lead to starvation, stress-resistant systems should be

activated [22, 23]. Here, we analyzed the frequency responses of the CCC using a cyclic nutri-

ent uptake rate kin(t) with different amplitudes (Fig 4). The CCC demonstrates the low-pass fil-

ter characteristics with a sharp cut-off frequency for both weak and strong inputs (Fig 4A). For

the case when kin(t) is higher than kth
in, m0 accumulates and the concentrations of the others

does not change over time. For the case when kin(t) is lower than kth
in, m0 decreases slowly,

while the concentrations of the other components remains the same. Here, m0 concentration

represents a buffer, and the sharp cut-off frequency can be achieved. The timescale of the

decrease depends on the distance between kin and kth
in, and thus the filter characteristics depend

on the amplitude of inputs (Fig 4B). For inputs with a smaller amplitude, the cut-off frequency

becomes lower, but when a larger amplitude of inputs is used, the CCC demonstrates the

response against the higher frequency of inputs.

For larger concentrations of m0, the rates of enzymatic reactions, i.e., the active coenzyme-

consuming and -producing reactions, are considered to be constant due to saturation. There-

fore, the nullcline for [m1] can be considered to be nearly constant, while that for [m0] can

be regarded as a linear equation of [m0] due to a leak term (S5 Fig). When two nullclines are

close, the flow rate along the nullclines can be approximated as the distance between the two

nullclines, which is slower than the flow rate approaching the nullclines. Accordingly, the two-

dimensional dynamics can be reduced into one-dimensional dynamics along the nullcline for

[m1]. We analytically obtained the frequency response of the dynamics. When kleak is not as

large, the two-dimensional dynamics (Eqs (2a) and (2b)) can be reduced into one-dimensional

dynamics of [m0] (see section 4 in S1 Text).

d½m0�

dt
¼ �

kleak

kc
½m0� �

kccsum � kinðtÞ
kc

þ
kccsum

ðkc þ kpÞ
: ð5Þ

For kin(t) as a sinusoidal kinðtÞ ¼ Ain cos ð2pftÞ þ k0
in, when [m0] is saturated, the cut-off fre-

quency is given as:

2pf ¼
kleakkcAin

kck0
in � ðkc þ kleakÞkth

in

�
kleak

kc
: ð6Þ
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The estimated cut-off frequency fits well with the simulation result (red dashed line in Fig 4B),

suggesting that the complex dynamics can be reduced to one-dimensional dynamics due to

the conserved quantities, and that the necessity for robustness against external fluctuation is

determined by the conditions underlying this saturation.

Note that Eq (5) is independent of a form of function of the influx rate. Hence, if the influx

rate is regulated by downstream products, the dynamics of the CCC are reduced into one-

dimensional dynamics. Although the filter characteristics (Eq (6)) depend on the regulation,

robustness by the slow dynamics will always be achieved.

Robustness against intrinsic noise

To investigate the robustness of the CCC against the intrinsic noise caused by the stochasticity

of biochemical reactions, we calculated the stochastic dynamics of the original full model with

Fig 4. Frequency responses of the CCC model. (A) Changes in the concentration of the active carrier vs.

cyclic changes in kin(t). kin(t) is given as kinðtÞ ¼ Ain cosð2pftÞ þ k0
in, where Ain and f represent the amplitude

and the frequency of kin(t), respectively. Here, k0
in equals 1, which is higher than kth

in , and can be calculated in

the case of kleak = 0, while we set kleak = 0.001. We calculated the difference between the maximum and

minimum values of [c] following the cyclic changes of kin(t). We observed a similar response for [c*], m1, and

m2. Different colors indicate the responses obtained for different input amplitudes. Magenta, Ain = 0.1; orange,

Ain = 0.4; green, Ain = 0.7; blue, Ain = 1.0. (B) Changes in the concentration of the active carrier with various

Ain and f plotted as a color map. The red dotted line indicates the estimated cut-off frequency calculated from

Eq (6).

https://doi.org/10.1371/journal.pcbi.1005847.g004
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consideration of complex formation using the Gillespie algorithm [24], which can generate

a statistically possible trajectory of the solution of stochastic equations and is often used for

modeling biochemical reactions. We calculated the long trajectories of the solution and several

statistics from the given trajectories. When the cpool is larger than the critical value, the average

number of m1 is almost constant for different cpool values. In this condition, the Fano factor,

which is the ratio of the variance to the average, is approximately 1, as in similar non-catalytic

reactions. However, below the critical point where the flux is limited by the concentration of

the carrier, i.e., the first metabolite is saturated, the Fano factor of the number of m1 decreases

below 1 (Fig 5A). This suggests that the carrier cycling can reduce the variance of the concen-

tration of intermediate metabolites.

To investigate the mechanisms underlying the decrease in the intrinsic noise, we analyzed

the probabilistic dynamics of the number of m1 molecules, n (see section 5 in S1 Text). Under

the not-saturated condition, i.e., when the m0 concentration is lower than the maximal coen-

zyme concentration cmax, which is the same as csum when csum < cpool, only the consumption

rate of m0 is proportional to n but the production rate is not. Therefore, the steady-state distri-

bution of the number of m1 is given as a Poisson distribution [25] in the limit of K0! 0 and

K1! 0; i.e., the metabolites can bind to coenzymes perfectly. Thus, the Fano factor becomes 1,

which is similar to the previously reported condition [26].

In the saturated condition, i.e., the m0 concentration is higher than cmax, the production

rate becomes kc(cmax − n) due to conservation of the coenzyme, while the consumption rate

remains the same as above. Here, both the production and consumption rates are proportional

to n, which is considered the feedback-regulated production through the conserved quantity.

The steady-state distribution represents the binomial distribution [25] and the Fano factor is

given as:

s2

< n >
¼ 1 �

kc

kc þ kp
: ð7Þ

Therefore, the fluctuation is reduced depending on the kc and kp values (Fig 5B), and the recy-

cling of carriers improves the signal-to-noise ratio by feedback regulation via the moiety con-

servation. This effect does not depend on the concentration of the coenzyme as long as the

Fig 5. Reduced intrinsic noise in the CCC model. (A) Average and variance per average (Fano factor) of

the number of m1 for different carrier concentrations. The cyan line and triangles represent the average

number, and the red line and circles represent the Fano factor. The dashed orange line indicates 1 and the

green dotted line indicates 0.5. kin is set to 100.0 and csum is the same as cpool. For sufficiently small values of

cpool, the average number of m1 decreases linearly and the Fano factor approaches 0.5, while for the large

cpool the Fano factor is approximately 1. (B) Fano factor of the number of m1 in various kc / (kc + kp). The red

circles represent simulation data, and the green dotted line represents an analytical solution. kp was fixed to 1,

while kc was altered to change kc / (kc + kp).

https://doi.org/10.1371/journal.pcbi.1005847.g005
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metabolite is saturated before the coenzyme consumption step. The feedback can also reduce

the fluctuation in the active and inactive carrier concentrations.

Note that when both the production and consumption rates of m1 obey the Michaelis-Men-

ten reaction with different coenzymes, the number of m0 shows a random walk in the range of

0 to1, or becomes zero, or diverges, depending on the parameter settings. In any case, the

Fano factor never falls below 1 (see section 5 in S1 Text).

Discussion

Here, we proposed a minimal model of metabolic systems that includes recycling of the moi-

ety-conserved carriers with complex formation between carriers and other metabolites. In

transient dynamics, the conserved quantities constrain a dimension of orbits moving on to the

steady state, similar to the steady-state solution space, and dynamics in the restricted dimen-

sion demonstrate various phenomena. These effects can be summarized by two properties: 1)

jamming and 2) feedback, which are followed by the slow relaxation and robustness against

internal and external fluctuations.

We demonstrated that the relaxation dynamics in the CCC are decelerated by the jamming

when the nutrient uptake rate is close to the capacity of the cascade. Such slow relaxation to

the steady state has also been discussed in other enzymatic networks [17]. From the viewpoint

of dynamical systems theory, this jamming is due to a restriction of the phase space and the

closure of nullclines by the conservation of carrier concentration. In this situation, the concen-

trations of internal metabolites, the final product, and active and inactive carriers are almost

constant and can be drastically different from the concentrations in the steady state. Hence, if

a metabolic system seems to be in a steady state on a short timescale after an environmental

change, this system will not always be in the true steady state but rather in a quasi-stable state.

Consequently, the previous theoretical studies considering steady metabolic states were not

able to analyze the cellular metabolism in these quasi-stable states.

Such jamming in the metabolic flow is likely to be observed in several metabolic systems,

including the glycolytic cascades. In fact, some mutants of the budding yeast exhibit growth

defects, which were explained due to the abnormal accumulation of intermediate metabolites

based on computer simulations [18]. Such time evolution is consistent with our results caused

by the jamming, while we further uncovered the origin of this phenomenon using dynamical

systems theory. This study suggests the possibility that the native metabolic cascade resides in

the vicinity of the critical point and can be easily jammed by genetic perturbations, which will

be validated in future studies.

Furthermore, we suggest that the jamming mechanism may represent the mediator

between molecular- and organism-level timescales [27]; i.e., the jamming slows down the fast

enzymatic turnover and may determine the timescale of physiological behaviors. The slow

relaxation can help organisms maintain their cellular condition against changes in the nutrient

condition and will work as a memory of past environmental change. For example, the slow

timescale might be related to a slow response of the relaxed strain against carbon and amino

acid starvation [22, 23].

We have demonstrated the robustness of metabolic systems against external fluctuation,

which opens the door for further theoretical studies of the quasi-steady state of metabolic

dynamics. The concentrations of some metabolites and carriers are maintained throughout

small fluctuations in the influx rates. At the same time, the CCC is responsible for the large

alterations in the influx rate. Therefore, the CCC shows both robustness against small fluctua-

tions and responsiveness to large fluctuations; i.e., the CCC does not respond to small and

short-term changes in the nutrient uptake rate, but it can rapidly respond to larger alterations
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in nutrient uptake rates. This robustness and responsiveness are most likely due to the wide

range of the quasi-steady states in the phase space and the input-dependent timescales of

relaxation. These two properties depend on the non-linear dynamics owing to the complex

formation that is not in the vicinity of a fixed point, which has not been investigated using a

constraint-based approach or with steady-state analysis of the previous model. A relationship

between robustness and responsiveness has also been studied in other systems [28] and will be

further investigated in various biological systems.

To measure quasi-steady state characteristics, the dynamics of metabolites should be mea-

sured non-invasively for a long time; however, the real-time measurement techniques of

metabolites are insufficient at present. Thus, we expect that the continuous development of

new measurement techniques will help to validate our predictions experimentally.

We demonstrated that an internal metabolite regulates its production via feedback mech-

anisms by the moiety conservation. The noise in the concentrations of metabolites and car-

rier can be reduced drastically. This feedback mechanism is important for stabilization of

the metabolite and carrier concentrations at the finite constant values during the slow relax-

ation. When this feedback is missing, this noise cannot be reduced microscopically. There-

fore, the concentration of the internal molecule should decrease to zero or diverge in the

saturated condition (S6 Fig and section 5 in S1 Text). This suggests that the feedback mecha-

nism involving the carrier cycling may be responsible for the existence of the quasi-steady

states.

There are several important parameters contributing to the robustness against both external

and internal fluctuations. In particular, kc, the turnover rate of an enzyme in the active carrier-

consuming reaction, and kp, that in the active carrier-producing reaction, are important. We

estimated these turnover rates using data from previously published studies: the glycolytic

pathway of Escherichia coli during continuous aerobic cultivation [3, 29] and the lactic acid fer-

mentation pathway of Lactococcus lactis during anaerobic cultivation with an 80% lactic acid

yield [30–32]. In both pathways, the enzyme levels necessary for each reaction are considered

to be sufficient and not a rate-limiting factor, which we assumed in our model, and allowed us

to consider the kinetics of substrate and carrier alterations subsequently. Based on our estima-

tion, kc and kp in the glycolytic pathway are given as 50 s−1 and 12 s−1, respectively, while the

Fano factor of the internal metabolite is estimated at nearly 0.2. For the lactic acid fermenta-

tion pathway, kc and kp are given as 1.2 s−1 and 4.9 s−1, respectively, and the Fano factor is esti-

mated at 0.85 (see Table 1).

Our estimations are too simplified to allow for a quantitative discussion about the cellular

metabolic process, because actual metabolic processes are more complicated than represented

by our model. However, the properties observed with our model are preserved even if the

details of the model change. Indeed, if two CCCs are coupled through a common carrier pool,

the slow relaxation to the steady state is observed (see S7 and S8 Figs, and section 6 in S1 Text).

This suggests that the moiety conservation pool can underlie the jamming and the feedback

processes that determine the dynamics of more complicated metabolic networks than the

CCC. If there are some branches in the CCC, our results would still be qualitatively repro-

duced, although some quantities would no longer be conserved but rather given as quasi-

steady-state values. It has been reported that such branches will change the steady-state

characteristics [11], e.g., the bistability and hysteresis, and the slow dynamics might appear in

transient dynamics approaching each stable fixed point. We expect that further non-trivial

dynamic phenomena will be observed in more complicated metabolic networks with moiety

conservation via the jamming and feedback. To investigate the effects of conserved carriers in

more complicated metabolic networks quantitatively, both theoretical and experimental inves-

tigations are required in the future.
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Models and methods

Parameter estimation in actual metabolic systems

Our analyses suggest that enzyme turnover rates in metabolic pathways are the essential con-

tributors to the robustness of metabolic dynamics. We estimated the parameters described in

actual metabolic pathways, i.e., the glycolytic pathway of Escherichia coli during continuous

aerobic cultivation [29] and the lactic acid fermentation pathway of Lactococcus lactis during

anaerobic cultivation with an 80% lactic acid yield [30], and calculated the effects of carrier

cycling. We approximated the kinetics of each reaction using the Michaelis-Menten equation.

Hence, the concentrations of a substrate and carrier, the dissociation constant, and the speed

of flux are necessary for the estimation of kc and kp.

For kc of phosphofructokinase (PKF) in the glycolytic pathway, the concentrations of fruc-

tose 6-phosphate (F6P) as a substrate and ATP as a carrier used are 3.21 × 10−2 mM and

8.28 × 10−1 mM, respectively [29]. The dissociation constant is given as 0.16 mM [3]. The flux

was estimated from the glucose uptake rate, which is 1.8 mM s−1 under the same conditions

described previously [29]. However, the entire amount of glucose is not catalyzed by PKF, and

20–40% of glucose is considered to be involved in the pentose phosphorylation pathway [29].

Here, we considered this leak to be 20%, and the flux is estimated as 1.8 × 0.8 = 1.44 mM s−1.

Subsequently, kc is estimated to be approximately 50 s−1, using the Michaelis-Menten form.

For kp of pyruvate kinase (PK), the concentrations of phosphoenolpylvate (PEP) and ADP are

1.49 × 10−1 mM and 9.65 × 10−1 mM, respectively [29]. The dissociation constant is 0.26 mM

[3]. We assumed that the flux of PK is similar to that of PKF, and kp is estimated to be approxi-

mately 12 s−1. From the estimated kc and kp, σ2/<n> of the internal metabolite is determined

to be 0.2.

In the same manner, kc and kp in the lactic acid fermentation pathway can be estimated.

For kc of glyceraldehyde phosphate dehydrogenase (GAPDH), the concentrations of glyceral-

dehyde 3-phosphate (GAP) and NAD+ are 6.0 mM and 8.4 mM, respectively [30]. The dissoci-

ation constant is 0.2 mM [31] and the flux is 5 mM s−1 [30]. Therefore, kc is estimated to be

0.85 s−1. For kp of lactate dehydrogenase (LDH), the concentration of pyruvate and NADH are

estimated as 1 mM and 0.7 mM, respectively [30]. The dissociation constant is 0.08 mM [32],

while the flux is given as 4.4 mM s−1 [30]. Therefore, kp is estimated to be 4.9 s−1, and the σ2/

<n> of the internal metabolite is determined to be 0.85.

Table 1. Parameters estimated in metabolic networks.

Glycolysis of E. coli Fermentation of L. lactis

Active carrier production

Conc. of enzyme 3.21 × 10−2 mM [29] 6.0 mM [30]

Conc. of carrier 8.28 × 10−1 mM [29] 8.4 mM [30]

Dissociation constant 0.16 mM [3] 0.2 mM [31]

Uptake rate 1.8 mM s−1 [29]

Flux 1.44 mM s−1 5.0 mM s−1 [30]

kc 50 s−1 0.85 s−1

Active carrier consumption

Conc. of enzyme 1.49 × 10−1 mM [29] 1.0 mM [30]

Conc. of carrier 9.65 × 10−1 [29] 0.7 mM [30]

Dissociation constant 0.26 mM [3] 0.08 mM [32]

Flux 1.44 mM s−1 4.4 mM s−1 [30]

kp 12 s−1 4.9 s−1

https://doi.org/10.1371/journal.pcbi.1005847.t001
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Supporting information

S1 Text. Models, parameters, and analytical calculations.

(PDF)

S1 Fig. Relaxation of the CCC model following the changes in csum. Initially, kin was set to

0.6, and both [c] and [c�] were set to 0.5cpool. Afterward, we let the system achieve the steady

state, and [c] and [c�] changed to 0.99cpool and 0.01cpool at time = 0, respectively.

(EPS)

S2 Fig. Time evolution of [m0]. kin was set to 0.97. The cyan dashed line is linear with time

and the magenta dotted line is exponential with time. The time evolution of [m0] can be fitted

well by a linear line. Inset: Semi-log plot of the time evolution of [m0].

(EPS)

S3 Fig. Relaxation of the reversible model after the changes in kin. Time evolution of carriers

and the metabolite following the change in kin. Initially, kin was set to 1.1, and the system

reached a steady state. Afterward, kin was changed from 1.1 to 0.9 at time = 0.0. kout values

were set differently in each case: (A) 1.0, (B) 10.0, and (C) 100.0.

(EPS)

S4 Fig. Nullclines of the CCC model with different csum values. Red and green lines repre-

sent the nullclines for [m0] and [m1], respectively. Gray arrows are vector fields. csum is (A) 2.5,

(B) 1.8045, and (C) 1.5.

(EPS)

S5 Fig. Nullclines of the CCC model with a leak of m0. Red and green lines represent the

nullclines for [m0] and [m1], respectively. Gray arrows are vector fields. kin is (A) 0.8, (B)

kth
in ¼ 0:984313, and (C) 1.2. kleak is set to 0.05.

(EPS)

S6 Fig. Random walk in the double Michaelis-Menten model. Different colored lines indi-

cate different samples with the same parameter set. Both kc and kp were set to 1, and both c1

and c2 were set to 100.

(EPS)

S7 Fig. A scheme of the CCCC for N = 2. The model consists of two metabolite and carrier

cascades.

(EPS)

S8 Fig. Relaxation of the CCCC for N = 2 following the changes in k1in. (A) Time evolution

of the carriers and metabolite following a change in k1
in of the model with a large influx rate

for cascade 2 (k2
in ¼ 1) and a large dissociation constant between c and m2

0 (K2
0 ¼ 102). Initially,

k1
in was set to 1.1, and we let the system reach the steady state. Following this, we changed kin

from 1.1 to 0.9 at time = 0.0. (B) Time evolution of the carriers and metabolite following the

change in k1
in of the model with a small influx rate and a large leak rate for cascade 2 (k2

in ¼ 0:1,

k2
leak ¼ 1:0) and a small dissociation constant between c and m2

0 (K2
0 ¼ K1

0 ¼ 10� 3). The graph

was obtained following the same procedure as applied in S5A Fig.

(EPS)

S1 Code. The complete source code of the program, which can be compiled by a standard

C compiler without any special libraries.

(C)

Metabolic dynamics restricted by conserved carriers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005847 November 7, 2017 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005847.s010
https://doi.org/10.1371/journal.pcbi.1005847


Acknowledgments

We thank K. Kaneko for discussions, and A. Germond and K. Wilkins for critical reading of

the manuscript.

Author Contributions

Conceptualization: Tetsuhiro S. Hatakeyama, Chikara Furusawa.

Data curation: Chikara Furusawa.

Formal analysis: Tetsuhiro S. Hatakeyama.

Funding acquisition: Tetsuhiro S. Hatakeyama, Chikara Furusawa.

Investigation: Tetsuhiro S. Hatakeyama.

Methodology: Tetsuhiro S. Hatakeyama.

Project administration: Tetsuhiro S. Hatakeyama.

Validation: Tetsuhiro S. Hatakeyama, Chikara Furusawa.

Visualization: Tetsuhiro S. Hatakeyama.

Writing – original draft: Tetsuhiro S. Hatakeyama, Chikara Furusawa.

Writing – review & editing: Tetsuhiro S. Hatakeyama, Chikara Furusawa.

References

1. Stephanopoulos G, Aristidou AA, Nielsen J. Metabolic engineering: principles and methodologies.

Cambridge: Academic Press; 1998.

2. Palsson BØ. Systems biology: Properties of reconstructed networks. Cambridge: Cambridge Univer-

sity Press; 2006.

3. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central

carbon metabolism of Escherichia coli. Biotechnol Bioeng. 2002; 79: 53–73. https://doi.org/10.1002/bit.

10288 PMID: 17590932

4. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on

metabolism. Cell Metab. 2008; 7: 410–420. https://doi.org/10.1016/j.cmet.2008.04.004 PMID:

18460332

5. Bordbar A, Monk JM, King ZA, Palsson BØ. Constraint-based models predict metabolic and associated

cellular functions. Nat Rev Genet. 2014; 15: 107–120. https://doi.org/10.1038/nrg3643 PMID:

24430943

6. Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, Noor E,

Sauer U. Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from

steady-state data. Cell Syst. 2015; 1: 270–282. https://doi.org/10.1016/j.cels.2015.09.008 PMID:

27136056

7. Edwards JS, Ibarra RU, Palsson BØ. In silico predictions of Escherichia coli metabolic capabilities are

consistent with experimental data. Nat Biotechnol. 2001; 19: 125–130. https://doi.org/10.1038/84379

PMID: 11175725

8. SegrèD, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks.

Proc Natl Acad Sci USA. 2002; 99: 15112–15117. https://doi.org/10.1073/pnas.232349399 PMID:

12415116

9. Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H. Development and experimen-

tal verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact.

2009; 8: 43. https://doi.org/10.1186/1475-2859-8-43 PMID: 19646286

10. Park JM, Kim TY, Lee SY. Prediction of metabolic fluxes by incorporating genomic context and flux-con-

verging pattern analyses. Proc Natl Acad Sci USA. 2010; 107: 14931–14936. https://doi.org/10.1073/

pnas.1003740107 PMID: 20679215

11. Reich JG, Sel’kov EE. Energy metabolism of the cell: A theoretical treatise. London: Academic Press;

1981.

Metabolic dynamics restricted by conserved carriers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005847 November 7, 2017 15 / 16

https://doi.org/10.1002/bit.10288
https://doi.org/10.1002/bit.10288
http://www.ncbi.nlm.nih.gov/pubmed/17590932
https://doi.org/10.1016/j.cmet.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18460332
https://doi.org/10.1038/nrg3643
http://www.ncbi.nlm.nih.gov/pubmed/24430943
https://doi.org/10.1016/j.cels.2015.09.008
http://www.ncbi.nlm.nih.gov/pubmed/27136056
https://doi.org/10.1038/84379
http://www.ncbi.nlm.nih.gov/pubmed/11175725
https://doi.org/10.1073/pnas.232349399
http://www.ncbi.nlm.nih.gov/pubmed/12415116
https://doi.org/10.1186/1475-2859-8-43
http://www.ncbi.nlm.nih.gov/pubmed/19646286
https://doi.org/10.1073/pnas.1003740107
https://doi.org/10.1073/pnas.1003740107
http://www.ncbi.nlm.nih.gov/pubmed/20679215
https://doi.org/10.1371/journal.pcbi.1005847


12. Gottschalk G. Bacterial metabolism. Berlin: Springer; 2012.

13. Hofmeyr JS, Kacser H, van der Merwe KJ. Metabolic control analysis of moiety-conserved cycles. Eur J

Biochem. 1986; 155: 631–640. https://doi.org/10.1111/j.1432-1033.1986.tb09534.x PMID: 3956502

14. Pillay CS, Hofmeyr JS, Olivier BG, Snoep JL, Rohwer JM. Enzymes or redox couples? The kinetics of

thioredoxin and glutaredoxin reactions in a systems biology context. Biochem J. 2009; 417: 269–277.

https://doi.org/10.1042/BJ20080690 PMID: 18694397

15. Okamoto M, Katsurayama A, Tsukiji M, Aso Y, Hayashi K. Dynamic behavior of enzymatic system real-

izing 2-factor model. J Theor Biol. 1980; 83: 1–16. https://doi.org/10.1016/0022-5193(80)90369-0

PMID: 6768933

16. Okamoto M, Hayashi K. Dynamic behavior of cyclic enzyme systems. J Theor Biol. 1983; 104: 591–8.

https://doi.org/10.1016/0022-5193(83)90247-3 PMID: 6645563

17. Hatakeyama TS, Kaneko K. Kinetic memory based on the enzyme-limited competition. PLoS Comput

Biol. 2014; 10: e1003784. https://doi.org/10.1371/journal.pcbi.1003784 PMID: 25121967

18. Teusink B, Walsh MC, van Dam K, Westerhoff HV. The danger of metabolic pathways with turbo

design. Trends Biochem Sci. 1998; 23: 162–169. https://doi.org/10.1016/S0968-0004(98)01205-5

PMID: 9612078

19. Schaaff I, Heinisch J, Zimmerman F. Overexpression of glycolytic enzymes in yeast. Yeast 1989; 5:

285–290.

20. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. The glycolytic flux in Escherichia coli

is controlled by the demand for ATP. J Bacteriol. 2002; 184: 3909–3916. https://doi.org/10.1128/JB.

184.14.3909-3916.2002 PMID: 12081962

21. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engi-

neering. Boulder: Westview Press; 2014.

22. Lazzarini RA, Cashel M, Gallant J. On the regulation of guanosine tetraphosphate levels in stringent

and relaxed strains of Escherichia coli. J Biol Chem. 1971; 246: 4381–4385. PMID: 4937124
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