
RESEARCH ARTICLE

Altering neuronal excitability to preserve

network connectivity in a computational

model of Alzheimer’s disease

Willem de Haan1,2*, Elisabeth C. W. van Straaten1, Alida A. Gouw1,2, Cornelis J. Stam1

1 Department of Clinical Neurophysiology and MEG, VUmc, Amsterdam, The Netherlands, 2 Alzheimer

Center and Department of Neurology, VUmc, Neuroscience Campus Amsterdam, Amsterdam, The

Netherlands

* w.dehaan@vumc.nl

Abstract

Neuronal hyperactivity and hyperexcitability of the cerebral cortex and hippocampal region

is an increasingly observed phenomenon in preclinical Alzheimer’s disease (AD). In later

stages, oscillatory slowing and loss of functional connectivity are ubiquitous. Recent evi-

dence suggests that neuronal dynamics have a prominent role in AD pathophysiology, mak-

ing it a potentially interesting therapeutic target. However, although neuronal activity can be

manipulated by various (non-)pharmacological means, intervening in a highly integrated

system that depends on complex dynamics can produce counterintuitive and adverse

effects. Computational dynamic network modeling may serve as a virtual test ground for

developing effective interventions. To explore this approach, a previously introduced large-

scale neural mass network with human brain topology was used to simulate the temporal

evolution of AD-like, activity-dependent network degeneration. In addition, six defense strat-

egies that either enhanced or diminished neuronal excitability were tested against the

degeneration process, targeting excitatory and inhibitory neurons combined or separately.

Outcome measures described oscillatory, connectivity and topological features of the dam-

aged networks. Over time, the various interventions produced diverse large-scale network

effects. Contrary to our hypothesis, the most successful strategy was a selective stimulation

of all excitatory neurons in the network; it substantially prolonged the preservation of net-

work integrity. The results of this study imply that functional network damage due to patho-

logical neuronal activity can be opposed by targeted adjustment of neuronal excitability

levels. The present approach may help to explore therapeutic effects aimed at preserving or

restoring neuronal network integrity and contribute to better-informed intervention choices in

future clinical trials in AD.

Author summary

Alzheimer’s disease (AD) is a growing burden on society, without a cure in sight. Patho-

logical high neuronal activity and excitability is an increasingly observed phenomenon

in early stage AD. Its exact role in the disease process is unclear, but it may form an
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interesting therapeutic target. However, although brain dynamics can be influenced in

many ways, the highly complex nature of the brain makes it difficult to predict what

approach will be most effective. To test our hypothesis that neuronal hyperactivity can be

countered effectively by altering neuronal excitability levels, we examined various strate-

gies aimed at preserving brain network integrity in a computational AD model of the

human brain. Of these strategies, a scenario involving stimulation of excitatory neurons

extends the period with normal network function most successfully. The results of this

‘virtual trial’ suggest that network effects of pathological neuronal activity can be opposed

by selective altering of neuronal excitability levels. In general, this approach can explore

therapeutic effects aimed at preserving or restoring brain network integrity, and thereby

contribute to selecting promising interventions for future clinical trials in AD.

Introduction

Electrophysiologically, Alzheimer’s disease (AD) is commonly characterized by ‘negative’ find-

ings: a gradual, diffuse slowing of brain activity (notably the posterior dominant rhythm),

decreases in functional connectivity, and a loss of network structure and complexity [1–3]. In

recent years however, various studies have reported observations that challenge this notion: in

the preclinical AD, Mild Cognitive Impairment (MCI) and early AD stages, neuronal hyperac-

tivity and increased functional connectivity has been observed at various scales [4–11]. While

these increases were first interpreted as a compensation mechanism for synaptic dysfunction

in AD, the evidence now clearly points in a different direction; neuronal hyperactivity as a part

of the pathophysiological cascade in AD. For instance, it has been shown that damage induced

by the typical amyloid deposits in AD leads to neuronal hyperexcitability and disinhibition

[12,13]. In turn, neuronal hyperactivity itself has also been demonstrated to drive amyloid

deposition rates [14,15], a very intriguing finding that has led some to hypothesize that neuro-

nal dynamics may play a causal role in AD pathophysiology, possibly as part of a positive feed-

back loop involving the neurotoxic amyloid deposits [16–18]. Additional, indirect support for

this view is provided by the very early phase in which neuronal dynamics and connectivity are

disrupted in AD, the independent associations of AD risk factors (age and ApoE4 status) with

neuronal activity levels, and the increased incidence of epilepsy and epileptiform neuronal

activity in this population [6,9,19–27].

Regardless of the exact role of disrupted neuronal dynamics in the pathological cascade of

AD, the observations described above may have therapeutic relevance, since neuronal or syn-

aptic function can be targeted effectively by various (non-) pharmacological means. In fact, the

current medicinal (symptomatic) treatment for AD aims to improve neuronal communication

by enhancing cholinergic or glutamatergic neurotransmission [28–30]. Unfortunately, the

large majority of the current clinical trials are aimed at decreasing amyloid load, while investi-

gations on improving neuronal function are relatively limited. Nevertheless, a few recent stud-

ies have confirmed that targeting neuronal or synaptic behavior may be beneficial in AD. For

example, experimental studies in rats and in humans with mild cognitive impairment (MCI)

indicated that the anti-epileptic drug levetiracetam diminishes hippocampal hyperactivity

while improving cognitive performance [31]. Also, enhancement of synapse formation and

function by medical nutrition was reported to have a positive effect on memory function in

AD patients [32,33]. Non-pharmacological therapeutic studies with the specific aim to modify

neuronal activity (e.g. deep brain stimulation or transcranial magnetic stimulation) have not

yet produced significant clinical benefits in AD, but are under development [34–36].

Network intervention modeling in AD
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With these possibilities in mind, a key question is how to predict and optimize the effect of

therapy in the complex, highly interconnected and highly dynamic human brain. While thera-

peutic strategies usually target specific brain areas or structures, it is naïve to expect that local

interference will not influence surrounding or connected parts of the brain. As our awareness of

the brain as a complex, distributed system is growing, we should appreciate the consequences:

even subtle changes can have wide-ranging and paradoxical effects [37,38]. Variations in effi-

cacy and unforeseen or adverse effects are frequently encountered in neurological therapy, and

perhaps could be partly explained by our lack of insight in this regard. How can we get a grip on

this complex behavior, in order to guide our hypotheses and experiments more reliably?

In recent years, studies of the complexity of the brain have entered a new era, due to rapid

advances in data acquisition technology and the powerful application of theoretical concepts

of complex network analysis [39,40]. In clinically oriented studies, this method has mainly

been employed to interpret patient data in order to gain a better understanding of disease

mechanisms or to find diagnostic and prognostic markers of disease [41,42]. However, top-

down patient-driven research is not its sole application: the combination of network analysis

and computational modeling can offer an interesting complementary bottom-up approach

[43–45]. For example, several studies have combined neural mass modeling with network

analysis to study the effect of lesions on the brain [38,46]. With regard to AD, a previous study

from our group indicated that neuronal hyperactivity may play a substantial role in the disease

mechanism by demonstrating that an activity-dependent degeneration regime yielded remark-

ably similar results to studies in AD and mild cognitive impairment (MCI) patients, including

selective hub vulnerability and initial neuronal hyperactivity followed by slowing, disconnec-

tion, and loss of network topology [18,47].

Despite the theoretical advances, complex network analysis of the brain has not yet led to

any improvement for AD patients. Although abstract by nature, in our opinion network

modeling might facilitate a transition towards clinical applications: in addition to simulating

degenerative or lesion effects, models may also be employed to explore therapeutic interven-

tion strategies, in order to make dynamic network changes more predictable and easier to

understand in terms of their underlying mechanisms. Therefore, we used our computational

AD degeneration model for the present study, but now with the addition of various ‘therapeu-

tic’ network interventions. In the model, neuronal excitability levels of both excitatory and

inhibitory neurons can be adjusted selectively (roughly simulating medication effects or non-

pharmacological stimulation/inhibition techniques). Since neuronal hyperactivity was the

main driver of network degeneration in this model, we hypothesized that the strategy employ-

ing global neuronal inhibition would be most effective in countering this process. Fig 1 pro-

vides an overview of the overall workflow.

Results

In each experiment, six intervention strategies were compared to the ‘no intervention’ (degen-

eration on, no intervention) and ‘control’ (no degeneration, no intervention) conditions:

global stimulation, global inhibition, selective stimulation or inhibition of all excitatory neu-

rons, and selective excitation or inhibition of all inhibitory neurons (see Fig 2). Different levels

of stimulation and inhibition were tested (see method section). Within the individual strate-

gies, adjusting the excitability levels produced fairly similar results (i.e. different threshold

potential (Vd, see method section and S2 Text) and for clarity purposes we chose a single rep-

resentative value for each strategy to be depicted in the figures below.

To assess functional network status during the degeneration period, several relevant quanti-

tative markers were employed, highlighting three main aspects of functional network quality:

Network intervention modeling in AD
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spectral power, functional connectivity and network topology (see Table 1). In addition, the

effect of degeneration on structural connectivity was compared between the most successful

strategy and the ‘no intervention’ mode, using the normalized node strength (see method sec-

tion). Using this strategy, the effect of intervention timing was also explored. Note that all

intervention strategies were commenced after ten degeneration cycles (T = 10), to simulate a

disease condition for which therapy was started with a delay (see also figure 6 of [18]), except

in the intervention timing tests (experiment 6). Graphs depict only the intervention period.

Experiment 1a: Spectral analysis–relative alpha power

Relative power in the lower alpha band (8–10 Hz) inevitably decreased during the degenera-

tion process, but the rate at which this happens differed substantially between the various strat-

egies (see Fig 3A). Without intervention (black line), lower alpha power breaks down around

Fig 1. Global overview of relevant modeling and analysis procedures. This study focuses on the parts indicated in red: the virtual trial. The general

workflow of our analysis can be described as follows: the dynamic network model is run with the degeneration algorithm and, simultaneously, one of the

interventions (or no intervention). Hence, the network is damaged over time according to local neuronal activity levels, but at the same time, by changing

neuronal excitability levels due to varied threshold potential (Vd) settings (see below for details), a counterstrategy is employed to diminish the effect of the

damage and maintain network topology close to the original state. The resulting oscillatory, connectivity and network topology changes are then described

using the selected measures (see below) to evaluate the effect of the different interventions over time, and finally these are compared statistically to obtain an

impression of the most successful strategy. For a more detailed stepwise description of the analysis, please refer to the Method section.

https://doi.org/10.1371/journal.pcbi.1005707.g001
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T = 20, decreasing to a level between 0.1 and 0.2. Global inhibition, inhibition of inhibitory

neurons, and especially stimulation of excitatory neurons was able to prolong a normal level of

relative power in the lower alpha band (around 0.8) and postpone the subsequent collapse.

Experiment 1b: Spectral analysis–peak frequency

The gradual decrease of the (posterior) alpha peak value is a robust finding in AD, and levels

lower than 8 Hz are generally regarded as pathologic [48]. Without intervention, the alpha

peak is stable for a short while, but starts to decrease steadily around T = 25. The same pattern

was observed during all intervention strategies, although the peak level stayed above 8 Hz for a

substantially longer period. This seems to be mainly due to a higher initial peak value (Fig 3B).

Experiment 2: Functional connectivity–Phase Lag Index (PLI)

Overall functional connectivity in the network showed a critical transition period around

T = 20 with a breakdown even more abrupt than in the lower alpha power results (see Fig 4).

Fig 2. Influence of intervention strategies on the neural mass model. All black lines are connections that are damaged by the ADD mechanism.

Note that due to the interplay between excitatory and inhibitory forces and the network topology, the effect of an intervention on a network level is not

easy to foresee. All strategies were continuous. Exc. = excitatory neurons, Inh. = inhibitory neurons.

https://doi.org/10.1371/journal.pcbi.1005707.g002
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In the ‘no intervention’ condition, PLI values were much higher than in the control network at

the start of therapy due to the ADD process, but it rapidly fell to low levels. The ‘stimulation of

excitatory neurons’ regime was able to maintain normal/high PLI values most successfully, but

suddenly dropped down to the same level as the other scenarios around T = 30.

Experiment 3a: Network topology–Local connectivity

AD network degradation as assessed by EEG/MEG has previously been characterized by a

decrease of the (normalized) clustering coefficient [49,50], contributing to the loss of presum-

ably efficient small-world network topology. Here, a pattern similar to the PLI results devel-

oped, and with the global inhibition, inhibition of inhibitory neurons and stimulation of

excitatory neurons as most beneficial regimes (Fig 5A).

Experiment 3b: Network topology–Modularity

Macroscopic brain connectivity networks have been shown to possess a (hierarchical) modular

structure, a feature that is presumed to promote network efficiency and robustness. In AD,

modularity gradually weakens [51]. ‘Stimulation of excitatory neurons’ seemed to retain nor-

mal modular structure relatively well (Fig 5B).

Experiment 3c: Network topology–Robustness

Algebraic Connectivity is a graph spectral measure of overall network robustness, higher val-

ues signifying a network that is harder to tear apart [52,53]. Strategies that were relatively suc-

cessful in upholding the robustness of the network were ‘global inhibition’, ‘inhibition of

inhibitory neurons’ and ‘stimulation of excitatory neurons’ (Fig 5C).

Experiment 3d: Network topology–Hub presence

It has been reported previously that network hub structure is lost in AD [54]. In this simula-

tion similar findings became apparent, with a later decrease of the MST Leaf number in the

Table 1. Overview of network analysis measures. Measure selection was based on the aim to describe the most robust and relevant functional network

changes in AD. For exact definitions please refer to the method section and Supporting Information S4.

Category Measure Interpretation

Oscillatory

behavior

Relative alpha power Average relative amount of spectral power in the lower alpha frequency band (8–10 Hz)

Peak frequency Dominant frequency in the power spectrum, averaged over all nodes in the network

Functional

connectivity

Phase Lag Index (PLI) Average functional connectivity strength of all individual nodes in the network.

Network topology Local connectivity: Clustering

coefficient

Average, normalized, weighted functional connectivity level between individual network nodes

and their environment (directly connected nodes); an indicator of local network connectivity

strength.

Community detection:

Modularity index

Indicator of community (module) presence in the network. A high value signifies a network

easily dividable in subnetworks.

Robustness:

Algebraic connectivity (Graph

spectral analysis)

Overall connectivity strength of the network, based on graph spectral analysis. Indicator of

network robustness and resilience against damage.

Hub presence:

Leaf number (Minimal spanning

tree analysis)

Measure of overall functional network structure, based on minimum spanning tree analysis. A

network with a higher leaf number has a more star-like architecture, with high degree hubs.

Structural

connectivity Normalized node strength

Level of structural connectivity (averaged over all edges) of individual nodes, divided by their

original level. Indicates the change in structural network connectivity over time.

https://doi.org/10.1371/journal.pcbi.1005707.t001
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Fig 3. Spectral analysis. A) Comparison of relative lower alpha (8–10 Hz) power values over time for the various

interventions. B) Comparison of peak frequency level over time for the various interventions. Error bars indicate the standard

deviation over the total number of runs of the various strategies.

https://doi.org/10.1371/journal.pcbi.1005707.g003
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most successful scenarios, ‘inhibition of excitatory neurons’, ‘global inhibition’ and ‘stimula-

tion of excitatory neurons’.

Experiment 4: Structural network connectivity–Normalized Node

Strength

Structural connectivity decreases inevitably over time in the model, but this process can be

delayed by interventions. Fig 6 compares the ‘no intervention’ condition (blue lines) with the

relatively successful stimulation of excitatory neurons (red lines). For different time points

normalized node strength is plotted against original structural degree. This measure is the

ratio of present structural degree over its original degree, so a value smaller than 1 indicates a

loss of structural connectivity. The loss was not equal for all nodes; hubs tend to decrease

more, confirming the previously reported hub vulnerability (18,49,55). The result of the inter-

vention was that initially damage is counteracted better (see T = 20), but ultimately the net-

work apparently suffered more than in the control state (see T = 40). In the intervention

condition hub vulnerability is less pronounced; the slope of the lines is less steep. Remarkably,

at T = 30, overall structural connectivity was fairly equal between the conditions, while func-

tional measures differed considerably (see results above).

Fig 4. Functional connectivity analysis: comparison of Phase lag index (PLI) values over time for the different interventions. Error bars indicate the

standard deviation over the total number of runs of the various strategies.

https://doi.org/10.1371/journal.pcbi.1005707.g004
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Fig 5. Network topology. A) Network analysis: comparison of normalized clustering coefficient (gamma) values over time

for the different interventions, indicating local connectivity strength. B) Comparison of modularity (community presence)

over time for the different interventions. C) Comparison of algebraic connectivity values over time for the different

interventions, indicating network robustness. D) Comparison of MST leaf number values over time for the different

interventions, reflecting network hub presence. Error bars indicate the standard deviation over the total number of runs of

the various strategies.

https://doi.org/10.1371/journal.pcbi.1005707.g005
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Experiment 5: Intervention timing

To assess the effect of the specific delay with which the intervention is started, we compared func-

tional connectivity results (PLI) for three different intervention starting points (T = 0, T = 10 and

T = 20), using the relatively successful ‘stimulation of excitatory neurons’ strategy. As can be

judged from Fig 7, the response of the PLI to the differently timed interventions was similar, and

their ability to uphold PLI values near or above the control network levels seems mainly depen-

dent on the moment in the degeneration process at which the intervention was initiated.

Overall intervention performance

Overall performance of the four most successful strategies was assessed by combining results

into a total sum per category for the four most successful interventions (Fig 8, see caption or

method section for score definition). This enables a comparison at a glance between the vari-

ous strategies regarding different qualities, and show that all these strategies bring an overall

improvement compared to the ‘no intervention’ state, with individual differences. The most

successful strategy was the ‘stimulation of excitatory neurons’ intervention, but also inhibitory

strategies performed fairly well.

Discussion

In this study we used a simplified neurophysiological human brain network model to investi-

gate the effects of altering neuronal excitability during an activity-dependent degeneration

Fig 6. Effect of the ‘stimulation of excitatory neurons’ intervention on structural connectivity. At three different time points, structural

connectivity strength is compared with the ‘no intervention’ condition (blue lines). This is done in six different categories, based on structural

connectivity level (degree). Highly connected hubs fall in the sixth category, most right in the chart. Note: error bars indicate standard deviations based

on all node degrees per category. For a detailed list of region names and degree distributions see [18, Table 1].

https://doi.org/10.1371/journal.pcbi.1005707.g006
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scenario that produces AD-like functional network deterioration. We conclude that, in this

computational model, the most successful strategy to preserve network integrity is, contrary to

our hypothesis, a selective stimulation of excitatory neurons. A virtual network intervention

approach as described here may help to predict the impact of interventions on the human

brain.

Explaining the success of neuronal stimulation in a hyperactive network

The observation that the ‘stimulation of excitatory neurons’ strategy is most successful in retain-

ing network organization in a situation where neuronal activity leads to damage seems contra-

dictory at least, and is in stark contrast with our initial hypothesis. Intuitively, one would be

inclined to choose a strategy to slow down the degeneration process by either inhibiting excita-

tion or by stimulating inhibition, and, judging from our results, the inhibitory strategies per-

form quite well. Several pharmacological studies aimed at countering aberrant neuronal

hyperactivity provide circumstantial support for this view [31,55]. However, as can be judged

from the present experiments, the effects of the different types of stimulation and inhibition are

quite unpredictable: in this particular topology, the increased excitability in excitatory neurons

Fig 7. Intervention timing. Overall functional connectivity (Phase Lag Index, PLI) over time is compared between the ‘no intervention’ condition, a

healthy control network, and the most successful intervention, ‘stimulation of excitatory neurons’, started at three different points in time. Note that the

graph starts at T = 10; the ‘early’ intervention has been active ten cycles before this graph starts. Error bars indicate the standard deviation over the

total number of runs of the various strategies.

https://doi.org/10.1371/journal.pcbi.1005707.g007
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apparently leads to a condition where desirable network topology is retained longer. Although

this result begs for an mechanistic explanation, this was not the primary goal of our current

experiment. However, we did perform further analyses to better understand the outcome (see

also S3 Text): we hypothesized that one reason for a beneficial effect might be that the net effect

of stimulation of excitatory neurons on the entire neural mass is inhibitory, due to the interplay

with the relatively influential inhibitory neuron groups. However, analysis showed that this is

not the case. Since all neural masses are equal except for their connectivity pattern, the explana-

tion may lie in the network topology itself. For example, the successful scenarios seem to sup-

press functional hub strength of the network (see Fig 5D), and while hubs may generally

improve network efficiency, they can also facilitate the spread of pathology[56]. Different topol-

ogies should be tested with the same degeneration algorithm in future experiments to explore

this idea. An alternative explanation, is that the philosophy behind a strategy should perhaps

not be based on trying to oppose the degeneration mechanism, but on keeping the network

‘alive’ for as long as possible in general by stimulating the remaining neurons in a decaying net-

work; compensatory activation. However, inhibitory strategies performed quite well in our

experiments, and current literature clearly points to the pathological aspect of the hyperactivity

in AD [57–59].

Fig 8. Overall intervention performance. Performance score of the 4 most successful strategies compared to the ‘no intervention’ condition.

Bar height is based on a total score per category, derived by summing the amount of time that measures within that category stay near a normal

level, which is then divided by the ‘no intervention’ score of that category to derive a performance ratio.

https://doi.org/10.1371/journal.pcbi.1005707.g008
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Strategy selection and timing

With the present degeneration algorithm, intervention success is relative, since regardless of

the chosen strategy, network breakdown was inevitable. This may be explained by specific fea-

tures of the algorithm, as described in the study limitations paragraph. Another issue is our

selection of strategies. As a first exploration we opted for global, continuous interventions, but

many more scenarios are possible, and might lead to different outcomes: selective stimulation

or inhibition of specific regions (for example hub regions), different delay or timing of inter-

ventions, interventions based on individual connectivity patterns, adaptive interventions,

structural interventions, and so on. A present-day major objective in the field of neurodegen-

erative disease research is the aim for early intervention: there is a growing consensus that, to

be successful, therapy should be commenced before structural pathology is widespread [60].

We examined the influence of three different intervention starting points (see Fig 7) on func-

tional connectivity (PLI), an outcome measure that is the basis of all graph theoretical analysis,

and a measure that produced clear differences among the various strategies. Here however,

no clear benefit of early intervention initiation is found; in fact, the response of the network to

the ‘stimulation of excitatory neurons’ intervention seems independent of the moment in de

degeneration process. This is surprising, since underlying structural connectivity and topology

is inevitably weaker at later time points, raising the question whether some kind of adaptive

therapy could be effective, i.e. starting stimulation at low PLI levels, and stopping at high

levels.

Another intriguing finding was the sharp peak in activity and connectivity just prior to

sudden decrease in value in several of the scenarios, including the most successful ones, remi-

niscent of a non-linear system near a critical transition (close to breakdown in this case).

Although we did not elaborate on this, this finding may also point to the potential merit of an

adaptive strategy that can avoid the increases and thereby prevent network collapse.

The definition of a successful strategy

Also, the success of a therapy depends on how ‘success’ is defined. In this exploratory study,

we adhered to the general idea of keeping a system in or close to its original functional state

over time, which seems straightforward and in line with goals in medical practice in general.

Of course, in our model, the virtual time base does not permit statements about actual time-

lines or tempo of deterioration, but when a strategy is able to uphold certain desired character-

istics approximately twice as long (see for example Fig 4) as in the ‘no-intervention’ state, this

can reasonably be thought of as successful; real-life therapy that delays degenerative damage

effects in AD this long would be considered a spectacular improvement. Although a translation

of our present findings to clinical experiments and pharmacological recommendations is too

ambitious at this point, an appealing thought is that the current medication for AD leads to

stimulation of excitatory neurons, the most successful strategy in our experiments as well. Ulti-

mately, intervention modeling studies will require validation through real interventions target-

ing brain activity, to evaluate their true value.

Study limitations

Various arbitrary choices that were made in this exploratory study may have had an influence

on its outcome. For example, one might wonder whether the model is sufficiently detailed to

realistically simulate cerebral dynamics. Neural masses were identical (except for their connec-

tivity characteristics), while there are distinct regional differences in the brain. Also, the num-

ber of masses (n = 78) could be augmented based on more recent and detailed structural

connectome datasets. Our present DTI-based structural connectivity data in the model is

Network intervention modeling in AD
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based on deterministic tractography, which has been demonstrated to be inadequate for

detecting crossing white matter fibers, and newer, more powerful methods are available

[61,62]. Repeating the current approach using alternative connectome data is an important

way to validate model findings, and should be performed in future studies. Another interesting

recent approach is to replace the structural network by one that is based on a generative model

itself [63–65]. Also, one could argue that connectome data taken from an older control group

would have led to different, more representative results. Furthermore, the neural masses them-

selves model a neuronal region macroscopically, but not on a microscopic level, while detailed

neurophysiological models at (sub)cellular level are certainly available. Could more detail have

led to a different outcome? While that certainly is possible, we have several motives for our

current approach. First, the global macroscopic level of analysis is of particular interest, since

clinical measurements (e.g. EEG, (f)MRI) are at this level; detailed in vivo measurements on a

microscopical level in memory clinic patients are not (yet) feasible. Second, the observation

that, even in this relatively basic model of human connectivity, the outcomes of fairly straight-

forward interventions defy an easy mechanistic explanation underscore the complexity of net-

work effects, and the need for modeling. Third, data analysis time and computing power are

finite, and added detail can increase demands placed on these aspects exponentially.

Other limitations stem from specific choices that are made in the activity-dependent degen-

eration (ADD) algorithm that was used in this study. The algorithm was chosen because it is

based on the singular assumption that neuronal hyperactivity leads to dysfunction and dam-

age, and because of its strong resemblance with Alzheimer-related network degeneration,

including features like early-stage disinhibition and hub vulnerability [18]. However, in the

ADD algorithm the network is damaged regardless of the absolute level of activity; even

regions with a normal level of activity will be damaged, although exponentially less (see ‘loss

function’ in S1 Text). A degeneration regime that spares regions that exhibit a normal range of

neuronal activity might be more plausible (metabolically), and could result in strategies that

will be able to maintain network integrity for a longer, perhaps even indefinite, period of time.

Also, neuronal plasticity as a defense mechanism to degeneration was not incorporated in

this model, but may yield more realistic results and enhance network survival. For example,

mechanisms such as synchronization-dependent or growth-dependent plasticity could be

implemented in de model [66]. Our rather ‘unforgiving’ degeneration mechanism may have

underestimated the impact of the various therapies, and alternative algorithm choices may

lead to different intervention outcomes. However, adding more assumptions (and complexity)

to the model or its degeneration algorithm will probably enlarge the unpredictability of the

interventions. Finally, the chosen Vd stepsize of 0.5 in our analysis was a pragmatic choice,

and although our Vd analysis in the Supporting Information (S2 Text) suggests that Vd values

in between would not produce very different results, a smaller stepsize may have been more

insightful.

Clinical relevance and future directions

With the growing interest in the human connectome in general, and more specifically in con-

nectivity as a biomarker of neurodegenerative disease [67,68], intervention modeling is a logi-

cal step forward. Computer simulations serving as a virtual test ground for intervening in

complex systems is common practice in related fields, such as economy, meteorology or sys-

tems biology. With the advent of enhanced acquisition techniques such as DTI and MEG,

enabling increasingly accurate human connectivity datasets, and of increasing computational

power, analysis will become more elaborate, faster and hopefully more user-friendly and avail-

able to clinical researchers. Two long-term aims seem meaningful to pursue: the further
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development of dynamic connectome (“dynome”) intervention models, and the validation of

these models with clinical experiments, perhaps involving individual structural connectome

data to achieve personalized results. This way, the modeling approach may become a viable

intermediate step in the bidirectional interpretation of both etiological hypotheses and clinical

experiments in connectivity-related research in general [56].

Conclusion

The observations in this computational modeling study surprisingly suggest that AD-like net-

work degeneration due to neuronal hyperactivity can be countered most effectively by global

stimulation of excitatory neurons. The wide-ranging and unpredictable impact of intervention

strategies in this straightforward dynamic human connectome model, with a limited number

of identical neural masses and macro scale cerebral topology, illustrates the fact that interven-

tions in complex systems can lead to counterintuitive results. In general, network intervention

analysis may help to explore and explain therapeutic effects aimed at preserving network integ-

rity, and thereby potentially guide the design and hypothesis selection of clinical intervention

trials.

Methods

Study design

For this study we simulated neurophysiologic activity of cortical regions embedded in a realis-

tic structural network topology to evaluate hypotheses about the relation between neuronal

activity and (structural and functional) connectivity. The output of this model provides infor-

mation about neuronal activity in the form of average voltage and spike density per region,

and generates EEG-like data that can be subjected to further analysis. Furthermore, hypotheses

about brain pathophysiology can be tested by artificially changing structural or dynamical

properties of the model. The general workflow of our analysis can be described as follows (see

also Fig 1 for a graphical overview): the dynamic network model is run with the degeneration

algorithm and, simultaneously, one of the interventions (or no intervention). This means that

the network is damaged according to local neuronal activity levels, but at the same time, by

changing neuronal excitability levels due to varied threshold potential (Vd) settings (see below

for details), a counterstrategy is employed to diminish the effect of the damage and maintain

network topology close to the original state. The resulting oscillatory, connectivity and net-

work topology changes are then described using the selected quantitative outcome measures

(see below) to evaluate the effect of the different interventions over time, and in the final step

these are compared statistically to obtain an impression of the most successful strategy.

Network dynamics: Description of the Neural Mass Model

We used a model of interconnected neural masses, where each neural mass represents a large

population of excitatory and inhibitory neurons generating an EEG (or MEG) like signal. The

model was recently employed in two other graph theoretical studies [18,69]. The basic unit of

the model is a neural mass (NM) of the alpha rhythm [70–72]. This model considers the aver-

age activity in relatively large groups of interacting excitatory and inhibitory neurons. Spatial

effects (i.e. distance) are ignored in this model; brain topology is introduced by coupling multi-

ple NMs together. The average membrane potential and spike density of the excitatory neu-

rons of each of the NMs separately were the multichannel output that was subject to further

analysis.
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Network structure: Human network topology

A diffusion tensor imaging (DTI) based study by Gong et al. published in 2009 that focused on

large-scale structural connectivity of the human cortex resulted in a connectivity matrix of 78

cortical regions [73,74]. The connectivity matrix was implemented in our model software, and

used as topological framework for the 78 coupled NMs. Coupling between two NMs, if pres-

ent, was always reciprocal, and excitatory. Note that at the start of the simulation, the coupling

strength between all NM pairs was identical, and the only difference between the cortical

regions (or NMs) was their degree of connectivity to other NMs (cortical regions). Please refer

to the supporting information for full details.

Network degeneration: Activity-dependent degeneration (ADD)

The neural mass model described above was extended to be able to deal with activity depen-

dent evolution of connection strength between multiple coupled NMs. Activity dependent

degeneration (ADD) was realized by lowering the ‘synaptic’ coupling strength as a function of

the spike density of the main excitatory neurons (all neural mass model parameters and func-

tions are summarized and explained in S1 Text), in a similar way as previously described (18).

The effects of ADD were measured by changes in ‘total power’ (local average membrane

potential) and spike density, and these two measures were used as representations of neuronal

activity in further analyses. The computational model is incorporated in our custom developed

analysis software (‘BrainWave’, v0.9.151.5), written by C.J. Stam (available for download at

http://home.kpn.nl/stam7883/brainwave.html).

Network defense: Adjustment of neuronal excitability thresholds

For the present study, we introduced counterstrategies against ADD that involve altering the

neuronal excitability, either at a global level or of excitatory or inhibitory neural masses selec-

tively. In the neural mass model, a transfer function determines the translation of membrane

potential to spike density and vice versa (see S1 Text). Vm is the average membrane potential,

and Vd is the threshold potential (Vd1 for excitatory, Vd2 for inhibitory neurons). Altering

the level of Vd results in a sigmoid function describing the resulting spike density (see S1C

Fig); a lower threshold leads to a higher spike density and vice versa. This way, the excitability

of a neural mass can be changed either for excitatory or inhibitory groups selectively, or for

both simultaneously.

In this model, extremely low or high neuronal excitability levels (Vd1 or Vd2 lower than 4

or higher than 10,) cause the system to quickly reach non-functional states, either shutting

down functional connectivity or generating cascades of uncontrolled activity, respectively

(reminiscent of epileptic seizure activity). Therefore, these were excluded from further analy-

sis. Within the biologically plausible range, we tested various excitability levels and their effect

on network dynamics (see also Fig 2). For clarity purposes, we limited the number of strategies

to six distinct types: global (both excitatory and inhibitory) stimulation (Vd1 = 6, Vd2 = 6),

global inhibition (Vd1 = 8, Vd2 = 8), selective stimulation of excitatory neurons (Vd1 = 5,

Vd2 = 7), selective stimulation of inhibitory neurons (Vd1 = 7, Vd2 = 5), selective inhibition of

excitatory neurons (Vd1 = 8, Vd2 = 7), and selective inhibition of inhibitory neurons (Vd1 =

7, Vd2 = 6.5). The strategies consisted of maintaining constant neuronal excitability levels; the

initial settings of a strategy did not change over time during the degeneration period. Since for

each of these interventions the threshold potential adjustment is arbitrary, we conducted simu-

lations with six different values within each category (for example, for global stimulation six

Vd1 settings between 4 and 6.5 were used, with a 0.5 increment), and compared the findings

to pick a representative value. See S2 Text for an illustration of this analysis. All intervention
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strategies were initiated after ten degeneration cycles without any therapy, at T = 11, to simu-

late the manifestation of disease and subsequent therapy initiation with some delay. Model

output is generated for>50 cycles of the degeneration algorithm, to simulate a progressive

neurodegenerative process over time. Therefore, the X-axis variable has been defined as ‘vir-

tual time’. Note that there is no defined relation to real time; this parameter should not be

interpreted as hours, days or otherwise. In this study, we compared relative differences within

the model.

Outcome measures

Spectral analysis. As spectral analysis is a common quantitative neurophysiological pro-

cedure that provides clinically relevant information in neurodegenerative dementia, we

included this in our experiments. Fast Fourier transformation of the EEG-like oscillatory out-

put signal was used to calculate relative power. Since this neural mass model mainly generates

oscillatory activity in the alpha range, the relative power analysis results should not be directly

compared to patient data, but mainly serve to illustrate the changes over time in the model.

Relative lower alpha power and peak frequency were included because of the well-known grad-

ual decreases observed in AD patients[1].

Functional connectivity analysis. The Phase Lag Index (PLI) is a measure of the asymme-

try of the distribution of phase differences between two signals. It reflects the consistency with

which one signal is phase leading or lagging with respect to another signal [41]. The PLI per-

forms at least as well as the synchronization likelihood (SL) in detecting true changes in syn-

chronization but it is much less affected by the influence of common sources [75].

The PLI is defined as index of the asymmetry of the phase difference distribution by means

of

PLI ¼ jhsign½sinD�ðtÞ�ij

in which t refers to time. If the phase difference Δϕ between two signals is in the interval 0<

Δϕ< π, the sinus function will produce a positive, non-zero value. The PLI is bounded 0�

PLI� 1 and a PLI of zero indicates either no coupling or coupling with a phase difference cen-

tred around 0 mod π, which may be caused by volume conduction. On the other hand, the

stronger the non-zero phase locking is, the larger the PLI will be; a PLI of 1 indicates perfect

phase locking, i.e. functional connectivity. For this study, PLI is calculated for all pairwise

nodes and then averaged, resulting in one global value per analysis.

Graph theoretical analysis. Network topology measures were included in our analysis

based on previous graph theoretical literature in AD, and on previous experience. Although

measure definition and network comparison is a methodological challenge, our choice of mea-

sures aims to give an overall impression of changing network topology. To characterize relevant

changes in functional network organization we examined four aspects: the connectivity strength

between neighboring nodes (normalized weighted clustering coefficient or ‘gamma’ [49]), the

existence of subnetworks (modularity [66,76], the robustness against damage (algebraic connec-

tivity [52,53]), and the existence of hub structure in the network (minimum spanning tree leaf

number analysis [77]). To investigate the effect on structural network topology, we looked at

the decrease in structural connectivity in nodes compared to their original connectivity strength

(normalized node strength [18]). All used measures are summarized in Table 1.

Statistical analysis. The various intervention strategies were compared with a ‘no inter-

vention’ condition, in which the ADD algorithm was used without countering intervention,

and with a ‘control’ condition, in which the simulation was run without ADD algorithm or

intervention. In all conditions the structural and dynamic network at baseline was completely
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identical, and the only changes made were the inclusion of the ADD degeneration algorithm

and the adjustment of the membrane threshold potential (Vd) value corresponding to the spe-

cific strategy.

To enable statistical comparison between the various intervention strategies with the

‘healthy control’ situation and with the ADD simulation without intervention, all different

conditions were simulated ten times. These results were averaged to obtain a single representa-

tive value for each measure (for each time point). For the measures that produce results per

node, the overall mean value of the whole network was used for further analysis. Standard

two-tailed t-tests were used to obtain significant differences between strategies and the control

conditions. A measure was considered within a ‘normal’ range when it was not significantly

lower than the control condition at a certain point in time.

For evaluation and comparison of the strategies at a glance, we have summarized their

results per category (neuronal activity, functional connectivity, network topology) in a global

‘performance score’ (see Fig 7). This score is derived by summing the amount of virtual time

that markers within that category stay above or near a normal level (i.e. are not significantly

lower than the ‘control’ condition), which is then divided by the ‘no intervention’ score of that

category to derive a performance ratio.

Supporting information

S1 Fig. (A) Schematic presentation of single neural mass model. The upper rectangle repre-

sents a mass of excitatory neurons, the lower rectangle a mass of inhibitory neurons. The state

of each mass is modeled by an average membrane potential [Ve(t) and Vi(t)] and a pulse den-

sity [E(t) and I(t)]. Membrane potentials are converted to pulse densities by sigmoid functions

S1[x] and S2[x]. Pulse densities are converted to membrane potentials by impulse responses

he(t) and hi(t). C1 and C2 are coupling strengths between the two populations. P(t) and Ej(t)
are pulse densities coming from thalamic sources or other cortical areas respectively. (B) Cou-

pling of two neural masses. Two masses are coupled via excitatory connections. These are

characterized by a fixed delay T and a strength g. (C) Essential functions of the model. The

upper left panel shows the excitatory [he(t)] and inhibitory [hi(t)] impulse responses of Eq. 1.

The upper right shows the sigmoid function relating average membrane potential to spike den-

sity (Eq. 2). (D) Overview of neural mass model parameters.

(DOC)

S2 Fig. (A) The effect of Vd level on lower alpha relative power during the ‘stimulation of

excitatory neurons’ scenario. (B) The effect of Vd level on peak frequency during the Stimula-

tion of excitatory neurons scenario. (C) The effect of varying Vd levels on PLI during the

’Stimulation of excitatory neurons’ strategy. A lower Vd1 seems related to a longer lasting nor-

mal PLI level. (D) The effect of Vd level on the normalized clustering coefficient (gamma, a

measure of local connectivity) during the ’Stimulation of exctiatory neurons’ scenario. (E) The

effect of Vd level on algebraic connectivity (robustness) during the ’Stimulation of excitatory

neurons’ scenario. (F) The effect of Vd level on modularity (subnetwork presence) during the

’Stimulation of excitatory neurons’ scenario. (G) The effect of Vd level on MST Leaf Number

(network hub presence) during the ’Stimulation of excitatory neurons’ scenario.
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S3 Fig. Comparison of total power values (as a measure of neuronal activity) over time

during the "Stimulation of excitatory neurons’ scenario (blue) and the ’No intervention’

state (red).

(TIF)
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