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Abstract

A large fraction of the proteins that are being identified as key tumor dependencies represent

poor pharmacological targets or lack clinically-relevant small-molecule inhibitors. Availability

of fully generalizable approaches for the systematic and efficient prioritization of tumor-con-

text specific protein activity inhibitors would thus have significant translational value. Unfortu-

nately, inhibitor effects on protein activity cannot be directly measured in systematic and

proteome-wide fashion by conventional biochemical assays. We introduce OncoLead, a

novel network based approach for the systematic prioritization of candidate inhibitors for

arbitrary targets of therapeutic interest. In vitro and in vivo validation confirmed that Onco-

Lead analysis can recapitulate known inhibitors as well as prioritize novel, context-specific

inhibitors of difficult targets, such as MYC and STAT3. We used OncoLead to generate the

first unbiased drug/regulator interaction map, representing compounds modulating the activ-

ity of cancer-relevant transcription factors, with potential in precision medicine.

Author summary

Most transcription factors are considered “undruggable” in conventional drug discovery.

However, a large number of them are discovered to be key tumor dependencies. Thus, tar-

geting these difficult targets has been a challenge for cancer drug discovery. Here, we

introduce a novel method, OncoLead, that applies biological networks to identify candi-

date inhibitors that either directly or in-directly block the activities of these targets. This

approach is confirmed by known target-inhibitor interactions in public databases. Fur-

thermore, we predicted new inhibitors for MYC and STAT3, which are validated by in
vitro assays.
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Introduction

While the number of high-value, candidate therapeutic target proteins has increased dramati-

cally over the past five years, most of them lack a corresponding FDA-approved or late-stage

investigational (i.e., clinically relevant) small-molecule inhibitor. Furthermore, a large number

of these are considered undruggable and may thus benefit from small molecules inducing

potent, albeit indirect inhibition, within a specific tumor context. For instance, ibrutinib, a

Bruton’s Tyrosine Kinase (BTK) inhibitor, can effectively abrogate aberrant NF-kB activity in

human B cells, with clinically relevant application to treatment of the ABC subtype of diffuse

large B cell lymphoma [1].

A key problem in addressing this challenge is the lack of generalizable methodologies for

the efficient and systematic prioritization of small molecule compounds as direct or indirect

inhibitors of an arbitrary protein of interest. Throughout this manuscript, we will use the word

‘compound’ for short to refer to small molecule compounds. Consistently, by compound tar-

gets and compound activity we refer to the proteins targeted by the small molecule compound

and its pharmacological activity, respectively. Indeed, high-throughput screens (HTS) mostly

rely on ad hoc, experimental gene reporter assays, whose design, testing, optimization, and

miniaturization is laborious and inefficient. In addition, most of these assays are limited to

reporting on the activity of a single target protein or of a specific protein class (e.g., protein

kinases [2]). Computational HTS approaches, such as quantitative structure activity relation

(QSAR) analysis [3] and virtual screening [4], rely on availability of structural models for both

the ligands and the target protein and thus on prior knowledge from related compound’s bind-

ing assays or from X-ray/NMR target structure elucidation [3]. For instance, the similarity

ensemble approach (SEA), which predicts new target-ligand relationships based on their simi-

larity to established target-ligand sets, is widely adopted [5]. However, results completely

depend on the availability of ligand analogs, whose structure has been previously elucidated.

Critically, these methods lack cell-context specificity and are limited to assessing only

direct, high-affinity binding compounds, thus missing small-molecule compounds that may

indirectly modulate the activity of a target protein, as is the case for ibrutinib. These com-

pounds cannot be assessed by QSAR, because they do not represent high-affinity ligands of the

target protein of interest but rather of one of its major context-specific up-stream regulators.

In addition, these methods are not effective for protein families that lack specific binding pock-

ets, such as transcription factors (TFs) [6], even though these comprise many of the best estab-

lished tumor dependencies. Indeed, TFs such as ESR1,NOTCH1,MYC, GATA3, and ERG,

among many others, are frequently aberrantly activated in cancer [7]. In addition, many TFs

have been recently elucidated as Master Regulators of tumor cell state, which are organized in

highly interconnected modules or tumor checkpoints [8], including key synthetic lethal com-

binations, such as STAT3, CEBPB, and CEBPD in mesenchymal glioblastoma [9] or CENPF
and FOXM1 in malignant prostate carcinoma [10].

Recently, several perturbational strategies have been proposed to measure differential gene

expression following systematic chemical perturbations of specific cell lines, such as the con-

nectivity map (CMAP) [11] and the Library of Integrated Network-based Cellular Signatures

(LINCS) [12]. However, since most small molecule compounds affect the activity rather than

the expression of target proteins, these data cannot elucidate targets but rather their ability to

modulate the entire gene expression signature of a cell. We recently introduced DeMAND, a

method for the interrogation of cell context specific networks, to infer drug mechanism of

action (MoA) [13]. While being very efficient to capture direct as well as indirect context-spe-

cific targets [13], DeMAND requires at least six gene expression profiles per compound. As a

result, while it is very effective for elucidating the MoA of individual compounds of interest, it
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is not optimally suited to the reverse problem, i.e., prioritizing candidate protein inhibitors

from large-scale perturbational profiles, especially when fewer than six perturbational profiles

per compound are available.

We thus developed OncoLead, a novel and highly generalizable methodology for the effi-

cient and systematic identification of small molecules that directly or indirectly inhibit a target

protein of interest. OncoLead leverages the Virtual Inference of Protein activity by Enriched

Regulon analysis (VIPER) algorithm [10, 14]—a network-based algorithm for the assessment

of protein activity from gene expression data—to assess the effect of a panel of drugs on pro-

tein activity from individual expression profiles. We limit our analysis to ~7,000 regulatory

proteins (RPs), including ~2,000 transcription factors (TFs) and ~5,000 signaling proteins

(SIGs), whose regulatory ‘activity’ may be modulated by a small-molecule compound. While

these represent only ~30% of the human genome, they capture an important component of rel-

evant tumor dependencies that may benefit from targeted inhibitor availability.

Briefly, given two cellular states (e.g., baseline and compound-perturbed), OncoLead uses

the differential expression of a protein’s transcriptional targets (i.e., its regulon) as an accurate

and highly reproducible multiplexed endogenous reporter assay for its activity [15, 16]. For a

given RP, the regulon comprises its context-specific direct or indirect transcriptional targets

[17]. This approach is especially well suited to the screening of large libraries of compounds

for two reasons: first, it can accurately infer compound-mediated protein activity modulation

from a single perturbational profile (e.g., RNASeq following perturbation); second, its perfor-

mance is essentially unaffected when RNASeq depth is reduced from 30M to 0.5M reads [18],

thus allowing highly-multiplexed characterization of the activity of compounds at low cost.

We first show that OncoLead can effectively assess differential activity for established tar-

gets of the compound, even when these are not differentially expressed following compound’s

perturbation. To accomplish this goal, we leveraged two public databases including the Con-

nectivity MAP (CMAP) [11] and the Library of Integrated Network-based Cellular Signatures

(LINCS) (http://lincs.hms.harvard.edu/), as well as one in vivo dataset, containing gene expres-

sion profiles (GEPs) obtained post-treatment from patients’ tumor tissue. For each cell line or

tissue represented in the datasets, the analysis was performed using networks representing the

transcriptional targets of the candidate compound-targeted proteins in tissue lineage-matched

contexts. We used the algorithm to assemble the first comprehensive, cell-context-specific

map of inhibitors targeting RPs. The associated resource, which includes a comprehensive

map of RP-compound’s interactions, is available as a supplementary file linked to this publica-

tion. We then show that the algorithm is effective in elucidating novel tumor-specific inhibi-

tors of undruggable targets. Specifically, OncoLead was highly effective in inferring novel

breast-cancer-specific inhibitors of MYC and STAT3, which were experimentally validated.

Results

Context-specific mechanism of action for small molecule compounds

can be described by network-based protein activity inferences

OncoLead assesses whether a compound is an effective inhibitor/activator of a given regulatory

protein, based on its effect on the transcriptional level of the protein’s regulon—i.e. its set of

direct and indirect transcriptional targets—to infer the regulatory protein’s differential activity;

see Methods and [18]. For simplicity, we call compound’s mode-of-action (CMoA) to the full

repertoire of proteins, whose activity is significantly affected following perturbation with the

compound. These include both direct targets as well as context-specific downstream effectors

of compound’s activity, and thus effectively representing the context-specific compound’s

MoA.

Systematic prioritization of inhibitors using networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005599 October 12, 2017 3 / 22

http://lincs.hms.harvard.edu/niepel-bmcbiol-2014/
https://doi.org/10.1371/journal.pcbi.1005599


Clearly, the accuracy of our inferences of protein activity depends on the quality of the pro-

tein regulons. Due to lineage specific chromatin remodeling and co-factor availability, protein

regulons are highly cell context specific [19, 20]. In this work, we used the ARACNE algorithm

[21] for context-specific inference of the regulatory network. We have previously shown that

regulons inferred by ARACNE are particularly suited for VIPER analysis [18]. As shown in

Table 1, ARACNE-based regulon inference was performed using tumor-context matched gene

expression profiles (GEP) from The Cancer Genome Atlas consortium (TCGA) [22], and rele-

vant tumor context matched GEO datasets [23], when available.

We further complemented the ARACNE networks by incorporating evidences from other

resources, including direct TF to target genes interaction evidences from chip-seq or chip-chip

data (ChEA database) [25], direct or indirect protein-protein interactions from the STRING

database [24], and indirect functional associations inferred upon RNAi-mediated gene silenc-

ing experiments collected from the GEO database [26] (see Methods). Integration of these dif-

ferent evidences was performed at the inferred protein activity level (see Methods and Fig 1A).

To quantitatively assess interactome quality, we computed the Interactome Reliability

Scores (IRS) as the area under the curve (AUC) representing the number of statistically signifi-

cant OncoLead-inferred CMoA proteins as a function of the p-value threshold (see Methods).

The rationale, as previously discussed [10], is that less accurate interactome models yield fewer

statistically significant proteins, and thus lower IRS than the more accurate ones. Indeed, IRS

scores decreased monotonically when protein interactions were increasingly randomized

(0%–100%) using a degree-preserving randomization algorithm [27] (Fig 1B). Furthermore,

confirming our hypothesis, tissue-matched interactomes systematically achieved the best IRS

performance against the corresponding cell line specific signatures (Fig 1C).

Gene expression signatures (GES) representing each cell line following compound’s pertur-

bations were then analyzed using OncoLead on multiple networks to generate integrated

results. This produced a sparse 3-dimensional matrix of protein activity signatures [ΔAP,L,C],

representing the relative differential activity (treatment with compound vs. DMSO control) of

each target protein, P, expressed as Normalized Enrichment Score (NES), in cell line L, with

compound C. This matrix thus provides a quantitative representation of the CMoA of all tested

compounds, across all profiled cell lines (S1 and S2 Tables).

Table 1. Context-specific interactomes and the datasets used to reverse engineer them.

Datasets Interactomes

Tissue type Samples Platform Ref Regulator Targets Interactions

Breast carcinoma (brca) 1,037 RNAseq TCGA 6054 19359 331919

B-cell (bcell) 201 HU133 Basso, K. et al. [23] 3537 13108 2005179

Colon adenocarcinoma (coad) 434 RNAseq TCGA 6056 19820 413789

Kidney renal clear cell carcinoma (kirc) 506 RNAseq TCGA 6054 19843 350478

Lung adenocarcinoma (luad) 488 RNAseq TCGA 6055 19742 399513

Prostate adenocarcinoma (prad) 297 RNAseq TCGA 6053 19820 33092

Liver hepatocellular carcinoma (lihc) 166 RNAseq TCGA 6056 19829 469922

Skin cutaneous melanoma (skcm) 82 RNAseq TCGA 5932 20531 877010

Acute myeloid leukemia (laml) 173 RNAseq TCGA 6007 19269 531535

String network NA NA Szklarczyk, D. et al. [24] 5662 12264 246596

CHEA network NA NA Lachmann, A. et al. [25] 105 33009 196484

Gene KD network NA NA Barrett, T. et al. [26] 650 23940 260000

https://doi.org/10.1371/journal.pcbi.1005599.t001
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Fig 1. OncoLead: Network-based protein activity inference. (A) Drug perturbation induced genome-wide transcriptional changes are interpreted,

based on multiple networks including ARACNE network, CHEA network, STRING network, and Gene knock-down (KD) network, with the VIPER

algorithm, to infer changes in the activities of the regulatory proteins. The resulting four different protein activity matrixes were integrated into a single

final protein activity matrix. In this way, VIPER analysis transforms drug-perturbation gene expression signatures into unbiased genome-wide regulator

protein activity representations of CMoA. The left part is a simple illustration of how VIPER algorithm works based on the ARACNE network. First,

ARACNE reverse engineers context-specific regulatory networks by leveraging a large collection of gene expression profiles (N > 100) from the same

cellular context. Then, regulator’s activity is inferred by computing the enrichment of the genes in its regulon (from ARACNE) in every drug treatment

signature sorted from the most over-expressed (colored in orange) to the most under-expressed (colored in green) genes. When there is positive or

negative enrichment, the regulator is up-regulated or down-regulated (colored in red/blue). Regulator’s activity is represented by the normalized

enrichment score. (B) IRS score decreases when progressively degrading the networks for MCF7 drug signatures. (C) Relative representation of how

accurate each interactome is as a model for the transcriptional regulation in each of the three cell lines MCF7, PC3, and HL60 in CMAP database.

Shown is the IRS in relative units for TRs inferred by OncoLead on each interactome (x-axis) / GES combination (see Methods for details). Percent IRS

scores were obtained by dividing each specific IRS score by the largest score obtained across the three interactomes used in the analysis. (D)

Distribution of the significant TRs inferred by OncoLead when adding increasing ratios of random noises to the Irinotecan signature in MCF7 cell line.

https://doi.org/10.1371/journal.pcbi.1005599.g001
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CMoA proteins include established compound’s targets

Analysis of CMAP database. We systematically evaluated all CMAP profiled compounds

that were reported in DrugBank [28] as specific agonists or antagonists (henceforth modula-
tors) of any protein whose differential activity could be assessed by OncoLead analysis

(Methods). Of 3,095 CMAP profiled samples in the MCF7 cell line, 198 had consistent gene

expression signatures among replicate samples and were reported in DrugBank [28] as specific

modulators of 75 distinct TFs or SIGs expressed in MCF7, such as ESR1, TOP2A,NFKB1, and

CDK2, among the ~7,000 regulatory proteins that could be analyzed by OncoLead.

To evaluate the value of OncoLead analysis in assessing the activity of compounds on candi-

date target proteins we performed two analyses. First, we asked whether established pharmaco-

logical modulators of a given target protein induced significant differential target protein

activity (DTPA) (by OncoLead analysis) and differential target gene expression (DTGE) com-

pared to all other compounds, see Fig 2A, S1A and S1C Fig. As shown, samples representing

treatment with target-specific antagonists or agonists of 48 targets were significantly enriched

among those with the most significant DTPA, compared to 27 enriched targets by DTGE

(p< 0.05). Overall, DTPA outperformed DTGE in 41/75 targets (55%), including high thera-

peutic value proteins, such as ESR1,NF-κB,NR3C1, PGR,HDAC, TOP2, and MTOR, while

DTGE outperformed DTPA in only 13/75 (17%) targets. Then we asked the reverse question.

Specifically, whether established targets of a tested compound had statistically significant

DTPA or DTGE compared to all other proteins, including all ~7,000 TF and SIG proteins eval-

uated in the study. (Fig 2B, S1B and S1D Fig). Again, DTPA outperformed DTGE for 42/75

(56%) target proteins, and DTGE outperformed DTPA for 12/75 (16%) targets. More specifi-

cally, proteins with the most significant DTPA were significantly enriched in 48 established

compound’s targets (p< 0.05). While proteins with the most significant DTGE were enriched

in only 26 known compound’s targets (p< 0.05). We have to note however, that DTPA and

DTGE constitute an over-conservative test, since we cannot rule out potential effects of the

remaining compounds on the targeted protein of interest, or whether the tested compound

also affect some of the other evaluated proteins not established as a specific targets (we will

refer to these proteins-compounds as off-target effects). Overall, DTPA metric dramatically

outperformed DTGE, when evaluated across all relevant target proteins, both in terms of

assessing on-target activity of known pharmacological modulators as well as assessing modula-

tion of established pharmacological targets. Similar results were obtained from PC3 and HL60

perturbations; see Supplementary S1 Fig, suggesting effectiveness across multiple cellular

contexts.

In all metrics, ~35% of known compound-target relationships could not be effectively

assessed by OncoLead analysis. This can happen for several reasons. For instance, target pro-

teins may not be expressed or have relevant activity in the specific context in which the com-

pound was profiled. Alternatively, the protein regulon may be inaccurate, or the compound’s

polypharmacology may be significant resulting in a vast set of secondary effects involving

other proteins. Finally, the compound may have been profiled at a concentration that is not

relevant in terms of target inhibition. The latter is a key problem because CMAP compounds

were profiled at predetermined concentrations not directly related to their potency. For

instance, while methotrexate has an IC50 of 196 nM on MCF7 cells[29], it was tested at 8.8 uM

in CMAP.

Analysis of LINCS repositories

We then expanded this analysis by leveraging an extensive collection of gene expression pro-

files, representing treatment of multiple cell lines with various compounds and shRNAs

Systematic prioritization of inhibitors using networks
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Fig 2. CMAP and LINCS dataset analysis. (A—B) Analysis for drugs targeting 75 TRs using either DTPA or DTGE for CMAP MCF7 datasets. For

each TR with known inhibitors in the MCF7 dataset, we performed gene set enrichment analysis to test whether its DTPA or DTGE for its known

inhibitors are significantly more inactivated or repressed compared to all other compound’s profiles (A) or to all other proteins (B) and obtained p-values

from each test. Then we plotted the distributions of the–log10 p-values for DTPA (x-axis) versus DTGE (y-axis). Each triangle represents a TR. A

vertical and a horizontal line were drawn at p-value equals 0.05 for DTPA and DTGE, respectively, which divide the plot into four parts: green, blue, red,

and grey. (C) Enrichment analysis of the drug samples similar to TR silencing profiles on the vector of all drug samples in the same cell line sorted

based on their inferred TR activity from LINCS data set. Each bar represents a cell line. Green color shows the number of TRs with significant

enrichment (NES > 1.96; p < 0.05) which indicates the correlation between OncoLead CMoA inference and shRNA mediated TR silencing. Grey color

shows the number of TRs without significant enrichment (NES< 1.96; p > 0.05). (D) OncoLead-inferred ESR1 activity changes (blue) and the

differential ESR1 expression (red) upon letrozole treatment in vivo. Signatures are obtained by comparing different time points in responsive and non-

responsive patients. The values shown in the figures are Z-scores based on p-value. The black dotted line represents Z-score = 1.96 and p-

value = 0.05.

https://doi.org/10.1371/journal.pcbi.1005599.g002

Systematic prioritization of inhibitors using networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005599 October 12, 2017 7 / 22

https://doi.org/10.1371/journal.pcbi.1005599.g002
https://doi.org/10.1371/journal.pcbi.1005599


targeting different genes, available from the LINCS repository (http://lincs.hms.harvard.edu/).

These datasets provide a limited representation, restricted to only 978 reporter genes (L1000)

measured by a multiplexed Luminex assay. Within the constraints of such reduced representa-

tion, we used this dataset to build an experimental gold standard dataset (GSD) of compounds

affecting the activity of specific target genes, by matching the signature of compound’s pertur-

bations to those of shRNA mediated silencing. We limited our analysis to 1,365 compounds

yielding statistically reproducible transcriptional responses (see Methods), and 92 shRNA-

mediated silencing assays for which (a) target gene silencing could be confirmed by L1000

measurements at>3 standard deviations from the controls mean and (b) the gene was repre-

sented in the interactome as regulator (i.e. RP). This resulted in distinct gene silencing assays

for each cell line, from a minimum of 16 in VCAP prostate cancer cells to a maximum of 151

in A375 melanoma cells.

To assemble a suitable experimental GSD, compound’s perturbations were matched to

gene-silencing assays by Pearson correlation analysis of the corresponding, cell-matched

L1000 signatures. Thus, each of the 1,365 most reproducible compound’s perturbations were

associated to a list of shRNA-mediated gene silencing assays, ranked from the one with the

most correlated to the one with the most anti-correlated L1000 signature. The rationale is that

the gene-silencing assays with signatures most correlated to a compound’s perturbation signa-

ture represent proteins whose activity is inhibited by the compound.

We then computed the DTPA of each target protein for each of the perturbed cell lines,

using the full gene expression profile, from regression analysis of the L1000 signature, see

Methods. Thus, for each target protein, we rank-sorted all compounds by DTPA score, from

its strongest predicted candidate inhibitor (i.e., that with the largest negative DTPA) to its

strongest activator (i.e., that with the largest positive DTPA). Finally, we assessed these predic-

tions by reciprocal gene set enrichment analysis (GSEA)[30] of the OncoLead-predictions

against the experimentally-prioritized target modulators in the GSD. Specifically, for each tar-

get protein, we computed the NES representing enrichment of DTPA ranked inhibitors in sta-

tistically significant GSD inhibitors (p = 0.05).

Enrichment was statistically significant for most proteins targeted by small molecule com-

pounds (NES > 1.96; p< 0.05, shown in green for RPs, Fig 2C and S2 Fig). This includes 112/

151 proteins in A375 cells (74%), 68/106 in A549 cells (64%), 33/45 (73%) in HA1E cells, 19/25

(72%) in HCC515 cells, 75/145 (52%) in HEPG2 cells, 105/137 (52%) in HT29 cells, 97/120

(81%) in MCF7 cells, 85/97 (88%) in PC3 cells, and 16/16 (100%) in VCAP cells. Overall 609/

842 testable proteins (72%) yielded OncoLead-inferred candidate inhibitors that were strongly

enriched in experimentally assessed ones, based on the GSD. This is especially remarkable con-

sidering that LINCS L1000 assays directly measure expression of only 978 genes. As a result,

on average, only 1/20th of regulon targets is directly measured by these assays while other tar-

gets are imputed. In addition, shRNA-mediated silencing may have significant off-target

effects. Taken together, these data suggest that the method represents an effective strategy to

prioritize candidate inhibitors for arbitrary proteins of interest.

Inferring compound’s MoA from patient-derived perturbations (in vivo)

To test whether OncoLead may be effective in elucidating the targets of specific compounds in
vivo, we used gene expression data obtained from patient-derived tumor biopsies before and

after therapeutic intervention. Specifically, we leveraged a dataset generated by Miller et.al

(GSE20181)[31], consisting of primary breast tumor samples profiled after Letrozole treat-

ment, including at 30-days (short term: ST) and 90-days (long-term LT), compared to pre-

treatment profiles (PT). Letrozole blocks estrogen synthesis in postmenopausal patients by
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inhibiting the aromatase enzyme. This abrogates estrogen receptor activation in breast cancer

cells. Individuals profiled in this dataset include 36 estrogen deprivation responsive and 14

non-responsive patients. Response was assessed based on whether significant tumor size

reduction was observed at 90-days post-treatment.

Four differential expression signatures were analyzed, including ST:PT (30-days VS. pre-

treatment) and LT:PT (90-days VS. pre-treatment), across both responsive and non-respon-

sive patients. DTPA vectors were obtained by OncoLead analysis of these signatures, using the

TCGA patient-derived Breast Carcinoma interactome (Table 1). As expected, ESR1 activity

was significantly reduced following Letrozole treatment in the responsive group (Fig 2D), with

longer treatment inducing stronger ESR1 activity reduction (pLT:PT = 0.01; pST:PT = 0.046).

Strikingly, however, OncoLead-inferred ESR1 activity was not significantly affected by Letro-

zole in non-responsive patients (pLT:PT = 0.51; pST:PT = 0.095). Furthermore, differential ESR1
expression was not statistically significant following Letrozole treatment (p-value> 0.05, by

Student’s t-test) at either time point and for either responsive or non-responsive patients, sug-

gesting that CMoA analysis correctly captured ESR1 inhibition even though its expression lev-

els were not affected (Fig 2D).

OncoLead-inferred CMoA provides a metric for context specific

compound’s bioactivity

Since the IRS of each perturbation summarizes the effect of such perturbation on the inferred

activity of regulatory proteins, we decided to use the IRS as a metric for the bioactivity of the

small molecule compound. Specifically, we evaluated the IRS score across all cell lines and

compound’s perturbations in the Connectivity Map (CMAP) dataset. As expected, progres-

sive degradation of the gene expression signatures, by randomly permuting increasingly

larger subsets of gene expression values, was associated with a proportional decrease in the

IRS (Fig 1D). We selected Irinotecan for this test because it showed one of the highest IRS

values in CMAP.

Among the 1,294 CMAP compounds, HDAC, topoisomerase, CDK, and estrogen receptor

antagonists presented the largest overall IRS in the MCF7 luminal breast cancer cell line.

These compounds represent well-known cancer drug classes, currently under investigation in

breast cancer clinical trials, and thus likely to be highly bioactive in these cells. The same analy-

sis performed on the other two CMAP cell lines (i.e., PC3 and HL60), consistently identified

HDAC, HSP90, NF-KB, topoisomerase, proteasome and protein synthesis inhibitors among

the compounds with highest IRS. Interestingly, we observed a low IRS for a large proportion

(~55%) of the compounds profiled in MCF7 cells in CMAP, suggesting poor bioactivity of

those compounds at the profiled concentrations.

The specific highest IRS in MCF7 (breast cancer, BRCA), HL60 (acute promyelocytic leuke-

mia, APL), and PC3 (prostate cancer, PRAD) cells was achieved by fulvestrant (ESR1 antago-

nist), tretinoin (all-trans retinoic acid), and pioglitazone, respectively. Estrogen antagonists

represent the standard of care in BRCA adjuvant therapy[32]. Indeed, based on NCI60 data

[33], fulvestrant achieves 50% growth inhibition (GI50) at a substantially lower concentration

in MCF7 compared to HL60 (-LogGI50 (M) = 8 vs. 5.2). Similarly, all-trans retinoic acid repre-

sents the standard of care in APL[34]. Indeed, based on drug sensitivity profile in COSMIC

data, HL60 cells were more sensitive to tretinoin than MCF7 and PC3 (LogIC50 (uM) = 0.83,

4.0 and 5.8 for HL60, MCF7, and PC3, respectively). Finally, pioglitazone, a PPAR-γ agonist

approved by the FDA as anti-diabetes drug, showed higher IRS in PC3 compared to the other

two cell lines. Interestingly, PPAR-γ agonists are currently in phase 2 clinical trials for AR-

independent prostate cancer[35].
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Validation of novel OncoLead-inferred transcriptional regulators (TRs)-inhibitors.

Due to their direct effect on the cell transcriptional response, TRs are at the center of the

machinery that integrates exogenous and endogenous signals to control physiologic and path-

ologic cell states. We have shown that master regulator (MR) TRs responsible for pathological

transitions, can be systematically elucidated by differential activity analysis but not by differen-

tial expression[10, 17]. These MR TRs constitute key non-oncogene tumor dependencies, elic-

iting either essentiality or synthetic lethality in vitro and in vivo[8, 10]. Unfortunately, TRs are

considered to be “undruggable” targets because the DNA-interacting surface is highly charged

resulting in unfavorable drug target properties[36].

We thus tested whether OncoLead may be used to reposition compounds profiled in

CMAP as context-specific TR inhibitors. We have generated a comprehensive map of pre-

dicted compound-TR interactions in the MCF7 breast carcinoma cell context (S1 and S2

Tables). We selected MYC and STAT3 oncogenes for further experimental validation, because

of their critical role in tumorigenesis[37, 38] and availability of suitable luciferase-based gene

reporter assays to assess their transcriptional activity (see Methods for details).

We first selected ten compounds showing the highest OncoLead-inferred MYC inhibitor

activity (S3 Table). To minimize the impact of drug induced cell death on luciferase reporter

assays, we used sub-lethal concentrations for the compound, starting at the IC20 at 48h, as

assessed by ATP viability assays, and at three additional serial dilutions (S4 Table). Seven of

the ten predicted candidate MYC inhibitors showed a dose-dependent reduction in MYC
reporter signal (Fig 3A and S4 Table), including 17-AAG, allantoin, amoxapine, clemastine,

dilazep, fulvestrant and trifluridine. Interestingly, fulvestrant (500nM), an ESR1 antagonist,

was previously shown to decrease MYC protein levels in MCF7 cells[39], and thus represents a

positive control in our assay. In another study, 17-AAG (an HSP90 inhibitor) was reported as

an inhibitor of STK38 [40] and we have characterized STK38 as an extremely potent post-

translational modulator of MYC turnover[41], thus mechanistically supporting 17-AAG medi-

ated inhibition of MYC transcriptional activity in this study.

STAT3 has been reported as a proto-oncogene in several human cancers, suggesting signifi-

cant potential for targeted therapy[42]. We tested eight compounds, including six inferred as

the most significant STAT3 inhibitors by OncoLead analysis of CMap data (niclosamide, mon-

ensin, nefopam, nortriptyline, dobutamine and verapamil) (S3 Table), and two commercially

available STAT3 inhibitors as positive controls (Stattic and Galielolactone)[43, 44]; see Meth-

ods. Three of the six predicted compounds, including niclosamide, monensin, and nefopam,

significantly affected the STAT3 gene reporter assay signal in MCF7 cells, with effects compa-

rable to the positive controls (Fig 3B).

Finally, to assess whether OncoLead-inferred target inhibitors are conserved across differ-

ent cellular contexts, we tested the breast cancer specific prediction for STAT3 inhibitors in

human glioblastoma cells. Specifically, we first generated SNB19 human glioma cells stably

transduced with the STAT3 gene reporter assay originally developed for MCF7 cells (Fig 3B).

The effect on STAT3 activity was fully recapitulated in SNB19 cells, supporting our previous

observations that OncoLead inferred CMoA proteins are conserved across distinct cellular

contexts.

Among the three validated STAT3 inhibitors, niclosamide was previously reported as a

STAT3 inhibitor[45]. There also have been controversial studies regarding whether monensin

inhibits STAT3 activity[46–48]. We show that monensin is a strong STAT3 inhibitor both in

MCF7 and SNB19 cells, and report nefopam as a novel STAT3 inhibitor.

TR DTPA signature provides a compact representation of the cell state induced by the

compound. Given a sufficiently large number of distinct cell lines, CMoA similarity is effec-

tively captured by the similarity in their panel-specific sensitivity profile[49, 50]. We thus
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Fig 3. Validation of predicted novel modulators for MYC and STAT3. (A) Effect of computationally predicted drug

modulators on MYC activity in luciferase assay. The compounds were tested by MYC luciferase reporter assay in MCF7 cell

line. Concentrations for each compound are shown in S4 Table. The reporter activity for each compound was normalized to cell

titer and compared to DMSO control. We compared drug induced activity vs. DMSO control using t-test. (p< 0.01: ***; p < 0.05:

**; p<0.1: *) (B) STAT3 luciferase reporter assay results in MCF7 (blue) and SNB19 (red). The compounds were tested by

STAT3 luciferase reporter assay in MCF7 and SNB19 cell line. Each compound was tested at 10uM. The activity for each drug is
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leveraged the NCI60[33] dataset, which contains GI50 profiles for ~30,000 compounds across

60 cancer cell lines representing different tissue lineages, including 129 compounds profiled at

the gene expression level in the MCF7, PC3 and HL60 CMAP datasets. The Spearman correla-

tion of the GI50 values across all tested cell lines was used as an objective compound’s similarity

metric. Comparing the 2.5% most similar pairs selected either based on chemosensitivity,

CMoA, or GES based similarity produced remarkable overlap (p< 2.2e-16 or p = 10−14, by

Fisher’s Exact Test, FET; Fig 4A). These results were recapitulated by enrichment analysis of

the top 2.5% most similar pairs identified by each approach on the ranked lists by the other

approaches (Fig 4B). For this analysis, we averaged the GES and CMoA similarity scores across

the three cell lines profiled by CMAP.

These results show that despite a 20-fold more compact representation, CMoA signatures

are as reliable as GES signatures for assessing compound’s MoA similarity. In addition, our

data shows that CMoA is much more reproducible than GES, especially for single-sample anal-

ysis. Specifically, CMoA signatures representing replicated CMAP drug-perturbed samples

were significantly more correlated (by Spearman correlation) than GES signatures (S3 Fig).

The reason is two-fold: First, OncoLead infers differential activity of a protein by integrating

the differential gene expression of all of its regulon genes, instead of relying on a single mRNA

abundance measurement. Second, the regulatory model helps integrate the biological compo-

nent of the gene expression variance while effectively filtering technical noise contributions, as

they are not compatible with the model. Taken together, this makes CMoA highly resilient to

the noise typical of gene expression measurements[20]. Moreover, since the regulatory models

computed using the reporter activity normalized to cell titer and compared to DMSO control. We compared drug induced activity

vs. DMSO control using t-test. (p< 0.01: ***; p < 0.05: **; p<0.1: *).

https://doi.org/10.1371/journal.pcbi.1005599.g003

Fig 4. Comparison of CMoA, GES and GI50 profile similarities. (A) Venn diagram of the top 206 similar compound pairs (top

2.5%) using DTPA, DTGE and GI50 sensitivity profiles. (B) top: Enrichment of the top 206 pairs based on DTPA similarity in the vector

of 8256 (129*128/2) compound pairs ranked by DTGE similarity, and vice versa; middle: Enrichment of the top 206 pairs based on

DTPA similarity in the vector of 8256 (129*128/2) compound pairs ranked by GI50 correlation, and vice versa; bottom: Enrichment plot

of the top 206 pairs using DTGE similarity in the vector of 8256 (129*128/2) compound pairs ranked by GI50 correlation, and vice

versa.

https://doi.org/10.1371/journal.pcbi.1005599.g004

Systematic prioritization of inhibitors using networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005599 October 12, 2017 12 / 22

https://doi.org/10.1371/journal.pcbi.1005599.g003
https://doi.org/10.1371/journal.pcbi.1005599.g004
https://doi.org/10.1371/journal.pcbi.1005599


account for tissue specific regulation, CMoA profiles were significantly more correlated than

corresponding GES profiles across cell lines (S3 Fig). This helps integrate mechanism of action

evidence across distinct cellular contexts.

A systematic regulatory footprint of compound’s perturbations

Our analysis provides a comprehensive map of transcription regulator (TR), whose activity is

modulated by a large repertoire of compounds across the CMAP and LINCS perturbational

databases. This represents a large set of cellular contexts, including: MCF7 (breast), PC3 (pros-

tate), HL60 (leukemia) in CMAP, and A375 (skin), A549 (lung), HA1E (kidney), HCC515

(lung), HEPG2 (liver), HT29 (colon), MCF7 (breast), PC3 (prostate), and VCAP (prostate) in

LINCS (S1 and S2 Tables). Specifically, a compound-TR activity matrix was generated for each

cell line, with rows representing TR proteins and columns representing compound’s perturba-

tions. This matrix can be used to perform a variety of analyses, including identifying optimal

context-specific compounds to inhibit or activate an arbitrary TR protein, as well as to com-

pute the similarity between compounds.

Discussion

Traditional drug discovery has been focused on one-drug / one-target strategy. More recently,

the approach has been expanded to poly-pharmacological effects of the drugs, meaning that

one drug can interact with multiple on-target and off-targets resulting in combination of

wanted and unwanted effects [51]. However, MoA discovery is still limited to compound’s

direct binders [4, 5]. In this work, we expand the concept of drug MoA by including direct and

indirect mediators of compound’s effect. We limit our approach however, to proteins having a

transcriptional regulatory role in the cell (TR). Given their central role as regulators of cell

state [10, 17], limiting CMoA definition to TRs dramatically reduce the dimensionality of the

problem with no reduction of sensitivity to detect compound’s biological activity. Due to sig-

naling and transcriptional network rewiring, inclusion of non-direct targets in CMoA makes

the approach exquisitely cell context specific.

While small molecule compounds affect mostly the activity of the directly or indirectly tar-

geted proteins, we currently have no methods in our biochemistry arsenal to directly measure

protein activity. While important advances in the field of proteomics have made possible the

quantification of proteins and protein isoforms in a close-to proteome-wide fashion, protein

activity is not solely determined by protein or protein isoform abundance, but also depends on

proper cellular localization and interaction with co-factors. Gene expression, on the other

hand, can be actually profiled with high accuracy and at relative low cost, making it one of the

phenotypic read-outs of choice for current drug-screen efforts. mRNA abundance however, is

not directly associated with coded protein activity, especially after compound-mediated short-

term perturbations, but can be interpreted, using context-specific models of transcriptional

regulation, to infer changes in the regulatory proteins activity [10].

At the core of our approach is the VIPER algorithm [10, 18], which makes possible several

fundamental characteristics: (1) the analysis can be performed at the single-sample level, allow-

ing its application to FDA-approved drug repositioning in cancer precision medicine proto-

cols (see below), (2) results are very robust to regulatory model accuracy and expression

profile quality, and (3) results are almost insensitive to partial transcriptome coverage, making

it particularly suited for the analysis of low-depth RNAseq expression profiles following drug

perturbation [18]. In fact, we have shown that VIPER-activity signatures obtained from 1 mil-

lion reads per sample are virtually identical to the ones obtained from 30 million reads, while

GES were dramatically different. This remarkable quality enables us to infer drug MoA from
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ultra-low cost high-multiplex expression profile analysis following drug perturbation. VIPER

can accurately identify regulators whose activity is modulated by the compound. However, in

~10% of the cases, it may switch the effect directionality (e.g., infer a protein as activated when

is in fact inhibited) [20]. This occurs because, at steady state, auto regulatory loops may exist

that induce inverse correlation between protein activity and mRNA expression. As a result,

targets may be correctly inferred but their relationship (activated vs. repressed targets) may be

inverted.

We recently introduced DeMAND, a method for the elucidation of compound MoAs,

based on compound’s perturbational gene expression profiles[13]. Although OncoLead and

DeMAND are both network-based, they are fundamentally different and complementary,

both in their formulation and, more importantly, in their practical applications. More specifi-

cally, while DeMAND focuses on compound-mediated dysregulation of protein interactions,

thus requiring at least six distinct perturbations for reliable predictions, OncoLead directly

infers changes in protein activity based on their regulon differential expression, thus requiring

a single sample. Using the same benchmarks that were used to evaluate performance of the

DeMAND algorithm, the perturbational profiles of fourteen compounds in LY3, we tested the

algorithm complementarity of the OncoLead and the DeMAND. OncoLead outperformed

DeMAND almost by the same margin by which DeMAND outperformed a naïve t-test analy-

sis, as reported in[13] (S4A Fig). When integrating the predictions from the two methods,

each protein was assigned the best of the OncoLead or DeMAND scores. The integrated results

outperformed both individual method predictions, confirming the significant complementar-

ity of these methods (S4A Fig). For example, while DeMAND missed the direct doxorubicin

target (TOP2A), this was effectively captured by OncoLead (ranked 25 out of 6,819 targets,

p = 4.7x10-22). Conversely, while OncoLead missed geldanamycin’s target HSP90AA1, it was

effectively discovered by DeMAND (ranked 6 out of 7499 targets, p = 1x10-25). In general,

OncoLead is better suited to analyzing proteins that have a direct regulatory role, while

DeMAND is more effective on proteins involved in non-regulatory interactions, such as those

involved in heat stress responses. As a result, the integration of both methods is optimally

suited for the elucidation of compound’s MoA.

A clear limitation of our approach however, is that the definition of drug MoA is limited to

the proteins represented as regulators in the network models. This leaves out non-protein

mediators of drug effect as well as proteins not considered as regulators (TRs in this manu-

script). However, because any drug-induced phenotypic change reflected in transcriptome

changes will be partially mediated by transcriptional regulators, genome-wide coverage of TRs

by the regulatory models should be enough to capture, at least partially, the MoA of any bioac-

tive compound.

This study presents a new framework for defining compound’s MoA. We have shown that

OncoLead-MoA captures the direct targets for known drugs while GES does not. Moreover,

by interpreting drug-induced GES with models of transcriptional regulation, OncoLead-MoA

is insensitive to signature noise while providing information about the bioactivity of the com-

pounds, even when no replicated profiles are available. This is because non-informative signa-

tures, generated from non-bioactive compounds exposure, will be poorly explained by the

regulatory models and hence, their IRS scores will tend to be small, compared to informative,

bioactive compound-derived expression signatures (S4B Fig).

We envision a strong impact of our approach for drug repositioning in precision medicine.

Specifically, our method can be applied to infer drugs targeting patient-specific and currently

‘undruggable’ targets. For instance, we have shown that tumor subtype-specific MRs constitute

tumor dependencies[8–10], which are usually non-tractable from the current repertoire of

FDA-approved drugs. However, inhibitors for such MRs can be inferred from gene expression
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data of appropriate models after drug perturbation, as we have shown here forMYC and

STAT3. We can envision a framework for cancer precision medicine in which we first infer the

MRs for a single-patient in an unbias genome-wide fashion. Then by matching the patient’s

MR profile with the full FDA-approved drug OncoLead-MoA, in the spirit of the Connectivity

Map [11], we select drugs or drugs combinations that not only target the top patient MR, but

that comprehensively target a significant proportion of them. The elevated noise in single-

tumor gene expression profiles makes this approach to be unfeasible if based only on gene

expression. Conversely, interpretation of the signatures based on regulatory models, which are

based on tenth to hundreds of genes per protein regulon, makes OncoLead results highly

reproducible [20], and the single-patient MR signatures, as well as the single-sample based

drug MoA obtained from drug-screen experiments, extremely robust (S4C Fig). If MRs are

enriched in tumor dependencies [9, 10], then this approach should prioritize drugs being spe-

cifically toxic for the patient’s tumor.

Materials and methods

OncoLead

Constructing context-specific regulatory network using ARACNE. We applied the

ARACNE algorithm to reverse engineer the regulatory networks from different datasets. The

tissue networks were reverse engineered from the RNASEQ samples in TCGA databases for

different lineages including breast (brca), prostate (prad), leukemia (laml), colon (coad), kid-

ney (kirc), lung (luad), liver (lihc) and skin (skcm). We downloaded the level 3 RNASEQ data

from TCGA. The raw counts were normalized and the variance was stabilized with the DESeq

R package [52]. The B-cell tissue interactome were built from HG-U133plus2 affymetrix

microarray samples. The Affymetrix platform data sets were normalized using MAS5 algo-

rithm. 1877 genes annotated as transcription factors and 3555 genes annotated as signal trans-

duction in Gene Ontology Database were included in the ARACNE run. ARACNe was run

with 100 bootstrap steps using DPI (data processing inequality) tolerance threshold set to 0

and MI (mutual information) p-value cutoff set to 10E-7. Regulatory networks used in this

study are deposited in figshare and could be downloaded from https://figshare.com/articles/

Regulatory_networks_reverse_engineered_from_gene_expression_profiles_of_cancer_

tissues/4742209. ARACNE software is available from the authors’ website (http://califano.

c2b2.columbia.edu/aracne).

Constructing protein-protein interaction network from the STRING database [24].

The protein-protein interactions were downloaded from the STRING database, where the

interactions with confidence score larger than 0.7 were kept. For each protein, all its interact-

ing proteins were considered as its “regulon” for the subsequent OncoLead analysis.

Constructing the TF regulatory network from the CHEA database[25]. The TF-target

genes were obtained from the CHEA database based on the Chip-chip or chip-seq data from

the ENCODE project. We downloaded data where the experiments were performed in human

cells. For multiple experiments involving the same TF genes, we used all the identified target

genes from multiple experiments as the “regulon” for the particular TF.

Constructing signaling network based on gene knock-down experiments. The gene

knock-down expression profiles were obtained from the GEO database. We downloaded all

GEO files where their “summary” or “title” or “overall_design” sections contain patterns like

“knockdown”, “knock-down”, “knock down”, “shRNA”, “siRNA”, “RNAi”, “hairpin”,

“silence”, or “silencing”. Then, for each file, the knock-down signatures were generated using

t-test in Limma package by comparing the knock-down versus the control samples. For each

experiment, we first checked the knock-down efficiency and kept only signatures where the
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genes that were silenced had p-value less than 0.1 based on the t-test. For multiple signatures

targeting the same gene, we first convert the p-values to z-scores for each gene, and then used

Stouffer’s method to generate the integrated signature.

Generating gene expression signatures after compound’s treatment. We downloaded

the data matrix from the CMAP built 2. We map the probes to the same gene and keep only

one probe for each gene with the maximum median deviation (MAD) score across all samples.

The drug signature is obtained by scale each gene across all the samples for each cell line. We

obtain a random signature for the CMAP-MCF7 data set by running t-test comparing the

gene expression profiles of 100 randomly selected MCF7 samples with another 100 randomly

selected MCF7 samples and computed the -log (p-value,10) for each gene. We run this for

1000 times to obtain the null model for MCF7 drug signatures. Similar process was performed

in PC3 and HL60 in CMAP database. For OncoLead analysis, we kept only the drugs that have

similar replicate samples for each cell line.

The library of integrated network-based cellular signatures (LINCS) is a dataset of gene

expression signatures derived from a variety of cell lines. Cells are treated with chemical com-

pounds or are subject to gene knockdown and overexpression. It is the largest Gene Expression

High Throughput Screening (GE-HTS) to date and is an extension of the Connectivity Map

(CMAP) experiment. In contrast to most GE-HTS datasets for the LINCS project a Luminex

bead assay was used to measure the expression of about 1000 landmark genes (L1000). The

gene expression of the remaining 22000 genes was estimated using a full liner model that was

derived from 100000 gene expression profiles from the Gene Expression Omnibus (GEO). The

L1000 genes are chosen to maintain most of the original information and fulfill the require-

ments of being minimally redundant, expressed widely through different cellular contexts and

allow the inference of other genes outside the L1000 set. The L1000 data is first normalized by

invariant set scaling of 80 invariant genes and then quantile normalized. The experiments are

performed on 384 well plates. To compute signatures, we apply a z-score transform over the

samples for each individual plate. The LINCS data is organized in batches of replicate plates.

We calculate the reproducibility score for each sample in a batch by the average correlation to

the replicate samples on the other plates. Only 72714 samples have highly significant reproduc-

ibility with z-score bigger than 5, from where 1,365 compound’s treatment signatures and 92

shRNA mediated silencing signatures were selected for further analysis.

For the letrozole treatment primary breast tumor data set, we downloaded the GSE20181

[31] from GEO dataset and normalized this data set using RMA. To obtain the drug signatures,

we ran t-test comparing gene expression profiles from different groups of samples. The null

model was generated by randomly shuffling the labels of two groups of samples for 1000 times

and ran t-test comparing the two groups to obtain the 1000 random signatures.

OncoLead analysis on different drug treatment signatures. OncoLead leverages the

VIPER algorithm, which integrates the Mode of Regulation information, regulator-target

interaction confidence and pleiotropy index for each regulon engineered from ARACNE algo-

rithm[10]. Then 3-tail weighted rank based enrichment analysis is applied to each sample. The

protein activity level changes for each sample are inferred and represented as p-value or NES

(normalized enrichment score) which are computed using the null model generated for each

data set. VIPER R-package is available from Bioconductor (https://www.bioconductor.org/

packages/release/bioc/html/viper.html).

Based on each of the four networks (i.e., ARACNE, CHEA, STRING, and Gene KD), we

thus transformed the gene expression�drug sample matrix to the TR-activity (NES)�drug sam-

ple matrix by running VIPER using each network. To integrate the four protein activity

matrixes, for each protein activity induced by every compound’s treatment, we computed the
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weighted average of the activity scores generated using different networks weighted by the

absolute value of the scores.

Then we computed for each protein activity�sample matrix, the distribution of the–log

(p-value) of all TRs with FDR-corrected p-value < 0.05 and computed an area under the curve

score (IRS score) for this distribution. This IRS score represents the overall significant TR

activity changes for a drug signature dataset discovered by OncoLead.

Gene set enrichment analysis (GSEA)

GSEA uses the Kolmogorov-Smirnov statistic and tests the enrichment of a gene set on a gene

signature generated by t-test, fold-change or other methods[30, 53].

Drug-drug distance

The distance between drugs based on gene expression or CMoA profiles was computed using

signature distance algorithm. It takes the 5% most up-regulated and down-regulated genes

(gene expression value or OncoLead activities) of one sample 1 (2) and computes its enrich-

ment on the other sample 2 (1) to get value DIS1-2 (DIS2-1). Then take the average of DIS1-2

and DIS2-1 to get the distance between sample 1 and 2.

The distance between drugs based on GI50 sensitivity profiles from NCI60 was computed

using spearman correlation of the sensitivity scores across different cell lines.

Cell lines and Reagents

MCF7 and SNB19 cells were cultured in RPMI (Invitrogen) and supplemented with 10% FBS

(Invitrogen) and 1% penicillin-streptomycin (Cellgro). Cell viability was measured using Cell-

Titer-Fluor Cell Viability Assay (Promega, G6080). Cignal STAT3 reporter (luc) kit was pur-

chased from Quiagen (CCS-9028L). MYC reporter was bought from Qiagen/SABiosciences

(CCS-012L). Reporter activity was determined by Dual-Glo Luciferase Assay System (Pro-

mega, E2920). Compounds were purchased from Sigma, Prestwick and Spectrum.

MYC luciferase assay

MCF7 cells in RPMI 10% FBS with antibiotics were plated at the density of 2x104 cell/well

onto 96-well flat-bottom plate one day before transfection. Cells were transfected with MYC
reporter using the jetPrime (Polyplus) delivery system. Reporter mixture contains an inducible

MYC responsive firefly luciferase construct and constitutively express Renilla construct (ratio

40:1). A mixture of non-inducible firefly luciferase reporter constitutively expressing Renilla

construct was used (ratio 40:1) as a negative control. Constructs constitutively expressing GFP,

firefly luciferase and Renilla luciferase constructs (40:1:1) were used as positive control.

24 hours after cell seeding, culture medium was replaced with fresh medium (100 ul) and

drugs were added to the cells in duplicates. 24 hours after drug treatment, cell viability and

MYC reporter activity was measured. Serial dilutions of drugs were prepared in DMSO to keep

the same final concentration of DMSO at 0.8% (S4 Table). DMSO only was used as a negative

control for drugs. Gene reporter activity following drug treatment was normalized to cell via-

bility (Firefly/CellTiter-Fluor) and compared to the negative controls (DMSO).

STAT3 luciferase assay

MCF7 cells were first transfected with STAT3 and stimulated using 40ng/ml IL6. 24 hrs later

cells were treated with drugs at 10uM. For the control, corresponding amount of DMSO was

added to the cells. 24hrs after the drug treatment, cell viability was determined and reporter
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activity was measured. Each experiment was performed in triplicate. The experimental proce-

dure for SNB19 was the same for MCF7 except stimulation using IL6. Galliela Lactone and

Static were included in the experiment as positive controls and DMSO was used as negative

control.

Supporting information

S1 Table. OncoLead inferred CMAP—MCF7, PC3, and HL60 drug perturbational tran-

scription regulator activity. Available from: https://figshare.com/s/635c0ee06b8b3448d12d

(PDF)

S2 Table. OncoLead inferred LINCS—A375, A549, HA1E, HCC515, HEPG2, HT29,

MCF7, PC3, and VCAP drug perturbational transcription regulator activity. Available

from: https://figshare.com/s/09aaf3b437f47dff1eac

(PDF)

S3 Table. Inferred MYC and STAT3 activities as well as differential gene expression values

for the experimentally tested compounds.

(XLSX)

S4 Table. Selected concentrations for each compound around IC20 at 48h that are used in

MYC reporter assay and summarized results of MYC single compound reporter assay.

(XLSX)

S1 Fig. (A-D) Analysis for drugs targeting 75TRs in PC3 (A-B) or 19 TRs in HL60 (C-D)

using either DTPA or DTGE for CMAP datasets. (A, C) For each TR with known inhibitors in

the PC3 or HL60 datasets, we performed gene set enrichment analysis to test whether its

DTPA or DTGE for its known inhibitors are significantly more inactivated or repressed com-

pared to all other compound’s profiles and obtained p-values from each test. Then we plotted

the distributions of the–log10 p-values for DTPA (x-axis) versus DTGE (y-axis). Each triangle

represents a TR. A vertical and a horizontal line were drawn at p-value equals 0.05 for DTPA

and DTGE, respectively, which divide the plot into four parts: green, blue, red, and grey. (B,

D) For each TR with known inhibitors in the PC3 or HL60 datasets, we performed gene set

enrichment analysis to test whether its DTPA or DTGE for its known inhibitors are signifi-

cantly more inactivated or repressed compared to all other proteins and obtained p-values

from each test. Then we plotted the distributions of the–log10 p-values for DTPA (x-axis) ver-

sus DTGE (y-axis).

(TIF)

S2 Fig. Enrichment analysis of the drug samples similar to TR silencing profiles on the vec-

tor of all drug samples in the same cell line sorted based on their inferred TR activity.

Results are shown cell line by cell line. Each bar is the analysis for one TR. A dotted line is

drawn at NES = 1.96 (p = 0.05). TRs with significant enrichment (NES > 1.96; p< 0.05) are

colored in green indicating the correlation between OncoLead CMoA inference and shRNA

mediated TR silencing. Grey color indicates no significant enrichment.

(TIF)

S3 Fig. Boxplot of pearson correlation between the drug DTPA (blue) or DTGE (salmon)

for the same drug replicates with the largest number of replicate samples, in the same cell

lines (top panel) or across cell lines from different tissues from CMAP data set (bottom

panel).

(TIF)
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S4 Fig. (A) Boxplot of the AUC score (area under the ROC curves as a function of the top pre-

dictions for identifying the known targets in the Dream dataset) using either OncoLead (red),

DEMAND (blue), T-TEST (green) or integrating OncoLead and DEMAND result (yellow).

(B) Boxplot of IRS scores for drugs whose replicates are significantly similar to each other

(N = 76) and drugs whose replicates are dissimilar to each other (N = 94). (C) Box plot of the

ranking positions of the top 10 drugs selected from CMAP-MCF7 data based on DTPA (blue)

or DTGE (salmon) distances to a luminal breast cancer sample signature when adding Gauss-

ian noise to the signature. For this analysis, we randomly select one luminal breast cancer gene

expression profile from TCGA data set and add different levels of Gaussian noise to this pro-

file. The Gaussian noise is a normal distribution centered in zero with the same length as the

length of the gene expression profile. We generated 20 different levels of Gaussian noise, each

has a different standard deviation (SD) ranging from 10% to 200% of the SD of the original

gene expression profile. Then, for each different SD, we produce 1000 random gaussian noises

and add each of them to the original gene expression profile and get 1000 gene expression pro-

files. Then for these 1000 modified gene expression profiles as well as the original profile, we

did z-score transformation by minus the mean and divided by standard deviation of the

TCGA basal breast cancer samples for each gene and obtained 1001 DTPA signatures. After

that, we run OncoLead on each signature using breast cancer interactome to get DTPA

for each signature. To find drugs that best reversing these signatures, we compute pearson

correlation between CMAP-MCF7 drug induced DTPA and the 1001 DTPA and between

CMAP-MCF7 drug induced DTGE and the 1001 DTGE. Ten drugs are selected which have

the largest negative correlation to the original patient DTPA or DTGE signature. Finally, we

plot the ranking position distribution for each of these ten drugs based on the correlations

using DTPA or DTGE signatures from the 1000 permutations. As we see, the ranking posi-

tions of the originally selected 10 drugs are much more preserved based on DTPA correlation

even when there are large noises in the signatures, while they are much more sensitive based

on DTGE correlation when there are increasing level of noises.

(TIF)
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