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Abstract

Energy metabolism is central to cellular biology. Thus, genome-scale models of heterotro-

phic unicellular species must account appropriately for the utilization of external nutrients to

synthesize energy metabolites such as ATP. However, metabolic models designed for flux-

balance analysis (FBA) may contain thermodynamically impossible energy-generating

cycles: without nutrient consumption, these models are still capable of charging energy

metabolites (such as ADP!ATP or NADP+!NADPH). Here, we show that energy-generat-

ing cycles occur in over 85% of metabolic models without extensive manual curation, such

as those contained in the ModelSEED and MetaNetX databases; in contrast, such cycles

are rare in the manually curated models of the BiGG database. Energy generating cycles

may represent model errors, e.g., erroneous assumptions on reaction reversibilities. Alter-

natively, part of the cycle may be thermodynamically feasible in one environment, while the

remainder is thermodynamically feasible in another environment; as standard FBA does not

account for thermodynamics, combining these into an FBA model allows erroneous energy

generation. The presence of energy-generating cycles typically inflates maximal biomass

production rates by 25%, and may lead to biases in evolutionary simulations. We present

efficient computational methods (i) to identify energy generating cycles, using FBA, and (ii)

to identify minimal sets of model changes that eliminate them, using a variant of the GLOBAL-

FIT algorithm.

Author summary

Genome-scale metabolic models are routinely used to simulate the growth of unicellular

organisms, and are likely to become an important tool in the medical sciences. The most

popular method employed for this task is flux balance analysis (FBA), a simplified mathe-

matical description able to describe the simultaneous activity of hundreds of biochemical

reactions. Cellular functions are often dependent on the availability of sufficient energy,

and thus a correct representation of energy metabolism appears crucial to metabolic
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modeling. However, we found that the majority of FBA models generated directly from

genome sequences, as well as a minority of carefully curated models, are capable of gener-

ating energy out of thin air. These models charge energy metabolites such as ATP without

any nutrient uptake. We named the corresponding sets of reactions “erroneous energy

generating cycles” (EGCs) and developed a high-throughput algorithm for their identifi-

cation. We found EGCs in 238 (68%) of 350 metabolic models from three different data-

bases. We developed a second, fully automated method for EGC removal. Simulations on

the corrected models typically showed growth rates that were 25% slower than in the orig-

inal models, demonstrating the importance of checking metabolic model reconstructions

for EGCs.

Introduction

Constraint-based analysis, in particular flux-balance analysis (FBA), is the current state of the

art in genome-scale metabolic modeling [1]. Constraint-based modeling assumes a steady

state (i.e., every internal metabolite that is produced must be consumed at the same rate) and

imposes lower and upper bounds on metabolic fluxes. However, constraint-based analyses typ-

ically do not explicitly consider thermodynamics. As a result, the mathematical solution of

constraint-based problems is often thermodynamically infeasible [2, 3]. Specifically, internal

cycles (sometimes called type-III pathways [4]), which consist only of internal reactions and

do not exchange metabolites with the environment, violate the second law of thermodynamics.

The thermodynamic driving forces around a biochemical reaction cycle must add up to zero;

hence, there cannot be a flux in a closed cycle [5–7].

These thermodynamically infeasible type-III pathways [4] have to be distinguished from

futile cycles (type-II pathways; Fig 1), which additionally consume cofactors to generate a driv-

ing force around the cycle [8, 9]. Futile cycles are not an artifact of metabolic modeling, but

have been experimentally observed [10]; e.g., some prokaryotes that live in very energy-rich

environments need to dissipate energy by converting ATP to ADP [11].

Fig 1. A futile cycle that consumes energy drawn from a cofactor pool (left) and an energy generating

cycle (EGC) (right), which is thermodynamically impossible but occurs in some metabolic network

models (figure extended from [12]). We can convert the type-II pathways to type-III pathways by closing the

cycles in the cofactor pools (dashed arrows).

https://doi.org/10.1371/journal.pcbi.1005494.g001
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A futile cycle running in reverse would charge energy metabolites such as ATP without an

external source of energy (Fig 1). Accordingly, we classify type-II pathways [12] into two sub-

groups by taking the directionality of cofactor utilization into account: (a) futile cycles, which

consume energy and are thus thermodynamically feasible, and (b) energy generating cycles

(EGC), which charge energy metabolites without a source of energy.

While such EGCs are thermodynamically impossible, they can—and, as we show below, do

—occur in constraint-based models. Futile cycles will rarely occur in FBA solutions, as they

dissipate energy and hence divert metabolic investment away from biomass production.

EGCs, in contrast, can have a substantial effect on the predictions of constraint-based analyses,

as they generate energy out of nothing that then supports in silico growth. A simple example

illustrating a (hypothetical) EGC is shown in Fig 2.

Eliminating EGCs is crucial for the correct modeling of energy metabolism, as has been rec-

ognized earlier (see, e.g., [13–15]). While thermodynamically infeasible type-III pathways

(internal cycles) can be easily removed through a simple post-processing step [5, 16], the same

strategy cannot be used to suppress EGCs. In principle, EGCs could be excluded from the solu-

tion space by systematically assigning sufficiently detailed thermodynamic constraints. Ther-

modynamics-Based Metabolic Flux Analysis (TMFA) [17], for example, searches for a set of

feasible metabolite concentrations such that all reactions proceed in the direction of negative

free energy change (ΔG<0) or, equivalently, a ratio of product to substrate concentrations

below the reaction’s equilibrium constant, Keq. However, it can be shown mathematically that

for any flux distribution without type-III pathways, there exists a distribution of metabolite

concentrations such that the flux distribution is thermodynamically feasible, i.e., all fluxes pro-

ceed in the direction of negative free energy change (see the theorem in [16]). This theoretical

result respects the fact that metabolite concentrations must have a single value for all reactions

they participate in; Supplementary S1 Text shows a small example network that illustrates the

inability of ll-COBRA and TMFA to reliably exclude EGCs.

The simplest EGC could be established through an ATP energy dissipation reaction (ATP +

H2O! ADP + Pi + H+) that is allowed to proceed in the backwards direction. An energy-gen-

erating backward flux can be achieved as long as the concentration ratio ([ATP][H2O]) /

([ADP][Pi][H+]) is smaller than the corresponding equilibrium constant Keq = 2×10-5M-1. If

we treat the concentration of H2O (55M) as constant, this cannot occur within the physiologi-

cal concentration bounds assumed by Henry et al. [17], 10-5M and 0.02M, showing that

TMFA’s metabolite concentration bounds avoid the utilization of at least some EGCs. Note,

however, that reactions central to an EGC may have equilibrium constants compatible with

Fig 2. A simple (hypothetical) example of an energy generating cycle (EGC). A symporter that exports a

metabolite and a proton acts together with a transporter that takes the same metabolite up without a proton. A

combination of both reactions builds up a proton gradient that can then be utilized to generate energy (e.g., via

an ATP synthase).

https://doi.org/10.1371/journal.pcbi.1005494.g002
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the concentration bounds, especially if the total free energy change is spread over several indi-

vidual reactions. Moreover, the TMFA strategy relies on the availability of equilibrium con-

stants for all reactions central to the EGC.

In contrast to TMFA, several alternative thermodynamically informed constraint-based

methods only consider chemical potentials, which do not incorporate information on reac-

tion specifics such as the equilibrium constant Keq [7, 12, 18, 19]. For every flux distribution

free of type-III pathways, it is possible to find a distribution of chemical potentials such that

all fluxes proceed in the direction of chemical potential reduction [16]. This means that

potentials capable of driving energy dissipation reactions towards the high-energy metabolite

can always be found. Thus, constrained-based methods designed to ensure thermodynamic

feasibility based on freely variable chemical potentials do not guarantee the elimination of

EGCs.

The detection and removal of EGCs is currently not part of established metabolic network

reconstruction pipelines [2]. In particular, automatic reconstructions algorithms [20, 21] cur-

rently do not test for EGCs. Sometimes, EGCs are identified in the manual reconstruction

process, and parts of the cycles are constrained to zero flux as a makeshift correction [13].

Accordingly, as we demonstrate below, the problem of erroneous free energy generation

occurs in a majority of automated and a subset of manual network reconstructions.

Results and discussions

Erroneous energy-producing cycles occur in many published

reconstructions

EGCs can be identified through a variant of FBA [14]. To efficiently identify the existence of

diverse EGCs, we first add a dissipation reaction to the metabolic network for each metabolite

used to transmit cellular energy; e.g., for ATP, the irreversible reaction ATP + H2O! ADP +

P + H+ is added. These dissipation reactions close any existing energy-generating cycles,

thereby converting them to type-III pathways. Fluxes through any of the dissipation reactions

at steady state indicate the generation of energy through the metabolic network. Second, all

uptake reactions are constrained to zero. The sum of the fluxes through the energy dissipation

reactions is now maximized using FBA. For a model without EGCs, these reactions cannot

carry any flux without the uptake of nutrients.

We used this approach to identify the presence of EGCs for 14 different energy metabo-

lites (ATP, CTP, GTP, UTP, ITP, NADH, NADPH, Flavin adenine dinucleotide, Flavin

mononucleotide, Ubiquinol-8, Ubiquinol-8, 2-Demethylmenaquinol 8, Acetyl-CoA, L-Glu-

tamate) and for proton exchange between periplasm and cytosol (for simplicity counted as a

15th “energy metabolite” below); see Suppl. S1 Table for the corresponding dissipation reac-

tions. We did not require the energy dissipation reactions to be charge-balanced; e.g., in the

reaction NADH! NAD+ + H+, we omitted the molecule that acts as the acceptor of the two

electrons. Adding the electron acceptor to the dissipation reaction would not dissipate the

energy stored in NADH, as this energy could then potentially be re-used by internal cofactor

regeneration reactions; in this case, the dissipation reaction could be active even in the

absence of EGCs. FBA models do not keep track of metabolite charges, and thus the general

problem posed by charge unbalanced reactions is not that they affect constraint-based simu-

lations directly; instead, they are a sign of incorrect reaction stoichiometry, which is espe-

cially severe in the case of electron imbalances. It is important that models are mass and

electron balanced [2] before conducting the EGC analysis. While EGCs induced by mass or

electron unbalanced reactions may be detected by our method, they cannot be removed

properly without fixing the reaction stoichiometries.

Energy-generating cycles
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We analyzed all models in three large databases of constraint-based metabolic networks:

BiGG [22], ModelSeed [23], and MetanetX [24]. Overall, we found that over two thirds (68%)

of tested models supported a non-zero flux through at least one of the 15 energy dissipation

reactions, although this percentage differed drastically between databases (Fig 3).

The BiGG database contains high-quality manual [2] and, in the case of 54 E. coli strains,

semi-automated [25] genome scale metabolic reconstructions. We found EGCs in only 3 out

of the 79 BiGG models (3.8%; Suppl. S2 Table). The ModelSEED database is connected to a

service for high-throughput reconstruction and analysis of metabolic networks. A special fea-

ture is the fully automated reconstruction of genome-scale networks from genome sequences.

Due to the fully automated reconstruction, models created by this service should be considered

as draft models, and manual steps for model improvement are recommended [23]. Consistent

with this recommendation, we identified EGCs in 95% of ModelSEED models (185 out of 195;

Suppl. S2 Table). Finally, MetaNetX is a Meta-Database for metabolic network models, gather-

ing metabolic networks from different databases (including The ModelSEED and the BiGG

database) and mapping them to one common namespace. This allows easy meta-analysis,

manipulation, and comparison of those models [24]. Our FBA strategy found EGCs in 66% of

MetaNetX models (50 out of 76; Suppl. S2 Table).

GLOBALFIT can eliminate >90% of EGCs by removing reactions

For each network with EGCs, we then used a slightly modified version of GLOBALFIT [26] to

suggest a minimal number of reaction removals that eliminate all EGCs, allowing independent

removals of forward and backward directions for reversible reactions. GLOBALFIT was originally

designed to reconcile inconsistencies between FBA model predictions and measured growth/

non-growth data, e.g., from gene knockouts. GLOBALFIT uses a bi-level optimization method to

identify the minimal set of network changes needed to correctly predict all experimentally

observed growth and non-growth cases (or a subset thereof) simultaneously. We slightly

altered the original algorithm, now simultaneously contrasting one growth case (the network

with the biomass reaction as the objective function, ensuring that the suggested modifications

Fig 3. The majority of metabolic network reconstructions in two of the examined databases

(ModelSEED and MetaNetX) contain erroneous internal EGCs that generate energy. In contrast, most

models in BiGG do not contain EGCs. Total bar size reflects the number of models contained in each

database. Green: models without EGCs; purple: models with EGCs that could be corrected through

GLOBALFIT; orange: models with EGCs that cannot be corrected through reaction removals.

https://doi.org/10.1371/journal.pcbi.1005494.g003
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do not interfere with biomass production), and one non-growth case (the network with the

sum of energy dissipation reactions as the objective function, ensuring that the modified net-

work contains no EGCs; for details see Materials and methods). It can be argued that some

types of reactions should be preferentially removed; e.g., reactions only weakly supported by

genomic evidence may be removed first, and it may be more likely that one direction of a reac-

tion labeled as reversible represents a network error than that an irreversible reaction is erro-

neous. While the modified GLOBALFIT algorithm allows such differential weighing of different

reaction types, we considered all reaction removals as equally likely in the application detailed

below. Moreover, reactions could be preferentially removed depending on the estimated equi-

librium constant (or standard Gibb’s free energy change ΔG0).

For 94% of metabolic models with EGCs (223 out of 238), GLOBALFIT found a set of reaction

removals that eliminated all EGCs while maintaining the ability to produce biomass. In many

cases, GLOBALFIT suggested the removal of the ATP synthase reaction. While this will indeed

remove most ATP-producing cycles, it will also abolish the model’s natural ability to produce

ATP through respiration. To avoid this undesired side effect, we performed a second search

for reaction removals that eliminated all EGCs, this time forcing the algorithm to retain the

ATP synthase reaction. This step could be adapted to the physiology of the studied organism

by selecting a different reaction set to be retained. In each case, we could identify an alternative

set of reaction removals; below, we only consider these alternative sets of suggested network

changes. Note that GLOBALFIT does not actually remove the offending reactions, but constrains

their fluxes to zero. This allows their reactivation in conditions where they are deemed

thermodynamically feasible, although alternative measures must then be taken to avoid EGCs.

Most erroneous models can be corrected by making up to five originally reversible reactions

irreversible (Fig 4). The removal of irreversible reactions was only rarely suggested by the algo-

rithm (Fig 4), while the complete removal of reversible reactions was never observed. In the

remaining unsolved models, EGCs could in principle be eliminated by adding reactions to the

metabolic networks. The addition of reactions not directly connected to an EGC may be

needed to restore biomass production in case no solution exists that preserves viability after

EGC removal. While the modified version of GLOBALFIT is capable of suggesting such

Fig 4. Most erroneous models can be corrected by making up to 5 originally reversible reactions

irreversible. Purple: histogram of the number of irreversible reactions removed in each model to eliminate

EGCs. Orange: histogram of the number of reversible reactions made irreversible to eliminate EGCs.

https://doi.org/10.1371/journal.pcbi.1005494.g004

Energy-generating cycles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005494 April 18, 2017 6 / 14

https://doi.org/10.1371/journal.pcbi.1005494.g004
https://doi.org/10.1371/journal.pcbi.1005494


additions, the application of this strategy would require manual revision, as it might incor-

rectly add new metabolic capabilities.

While bi-level mixed integer optimization algorithms such as the one used by GLOBALFIT

typically require long computation times, GLOBALFIT resolved most solvable EGCs in under

10s, and all but one EGC within one minute (Supplementary S1 Fig). The only calculation that

required over one minute was for the yeastnet 7.6 model [27], for which the CPLEX solver

did not find an optimal solution within the set limit of 60 hours on 16 CPUs. The best set of

changes found for this yeast model eliminated all EGCs by removing 76 reactions (or reaction

directions). According to CPLEX, there is no alternative elimination of EGCs with fewer than

33 reactions; thus, this model contains at least 33 EGCs. As many EGCs include transport reac-

tions across cellular membranes, the large number of EGCs found in this eukaryotic model

(and the resulting increased computation time) may be caused by the existence of several intra-

cellular compartments and the associated transport processes.

Freely available energy may boost biomass production. Accordingly, the elimination of

EGCs through the reaction removals suggested by GLOBALFIT resulted in biomass reductions in

92% of cases (206 out of 223), typically by more than 25% (Fig 5). This indicates that the in-sil-
ico biomass yield may be unrealistically high in a majority of automatically generated models.

Examples for network corrections suggested by GLOBALFIT

One of the simplest EGCs we identified is displayed in Fig 6(A). This cycle is contained in only

two metabolic models from The ModelSEED database, Klebsiella pneumoniae MGH 78578

(Seed272620.3) and Flavobacterium johnsonia johnsoniae UW101 (Seed376686.6). In this

EGC, a malate symporter (rxn10153) transports malate together with two protons out of the

cell. The exported malate molecule is then re-imported together with a sodium ion via the

malate/Na+ symporter (rxn05207). The sodium is in turn exported by a Na+/Proton antipor-

ter (rxn05209) in exchange for the import of only one of the protons of the first reaction. Thus,

the second exported proton from the first reaction is free to drive an ATP-synthase reaction,

generating ATP from ADP without access to an external energy source. To eliminate this

EGC, the cost of either malate or sodium transport in terms of translocated protons must be

corrected. This option was not given to GLOBALFIT, which instead suggests to remove the

export direction of the malate symporter (rxn10153).

Fig 5. Removal of EGCs led to substantially reduced maximal biomass yield in most models.

Histogram of the ratio between maximal biomass production rate before and after EGC removal.

https://doi.org/10.1371/journal.pcbi.1005494.g005
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In the manually curated model iJO1366, six reactions (SPODM, SPODMpp, SUCASPtpp,

SUCFUMtpp, SUCMALtpp, and SUCTARTtpp) were inactivated in the published model to

avoid unrealistic energy generating loops by constraining their flux to zero [13]. We could

identify two distinct EGCs (Fig 6B and 6C) by reactivating these reactions in the iJO1366

model and in the 54 other E. coli models derived from this reconstruction [25]. One of these

EGCs is the rather simple cycle (Fig 6B) based on tartrate facilitated transport (TARTRtpp),

found in 45 of the 55 E. coli strain reconstructions in Ref. [25]. This reaction spontaneously

imports tartrate from the periplasm into the cell, while the tartrate/succinate antiporter

(TARTRt7pp) exports tartrate, but simultaneously imports succinate. The cycle continues with

the succinate/aspartate antiporter and then the aspartate/proton symporter, so that eventually

a proton gradient between periplasm and cytosol is established. GLOBALFIT suggests to remove

the utilized direction of the tartrate/succinate antiporter.

The other EGC found in the unconstrained E. coli models is a more complicated cycle (Fig

6C) that occurs in 46 of the 55 E. coli reconstructions [25], including the manually curated

iJO1366 model [13]. A proton gradient across the periplasmic membrane is established by a

NADH:menaquinone oxidoreductase (NADH17pp), which translocates protons in the process

of transferring electrons from NADH to Menaquinone 8, driven by a chain of four enzymes,

including superoxide dismutase (SPODM). In order to deactivate the cycle, GLOBALFIT

removes the backward direction of the Malate oxidase (MOX) or the forward reaction of the

Superoxide dismutase (SPODM). In this case, removal of the Malate oxidase would also be

suggested by an analysis of standard free energy changes, at it is highly energetically

unfavourable.

The EGC shown in Fig 6D was found in 99 out of 195 metabolic models from the Model-

SEED database [20]. rxn00379 creates Adenosine 5’-phosphosulfate from ATP and sulfate.

The sulfate adenyltransferase rxn09240 catalyses the backward reaction (and has the same

Fig 6. Examples of EGCs found in published genome-scale models. Green/red: metabolites; blue:

reactions, linking substrates and products; orange: direction of the energy gradient utilized by the energy

dissipation reaction. (A) The simplest identified cycle, which links a Na+/proton antiporter (exporting Na+ in

exchange for a single proton) and a Malate/proton symporter (importing Malate together with two protons) via

a Malate/Na+ symporter. (B) A cycle involving two antiporters and one symporter, driven by a transporter that

translocates tartrate from the periplasm to the cytosol. (C) A NADH:menaquinone oxidoreductase, which

translocates protons in the process of transferring electrons from NADH to Menaquinone 8, driven by a chain

of four enzymes. (D) rxn00379 creates Adenosine 5’-phosphosulfate from ATP and sulfate. The equivalent

sulfate adenyltransferase rxn09240 catalyzes the backward reaction, but charges a GTP in addition to the

ATP.

https://doi.org/10.1371/journal.pcbi.1005494.g006
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EC-number assigned), but charges not only an ATP, but additionally a GTP in the process. To

eliminate this EGC, GLOBALFIT suggests removing either one of the participating reactions.

Conclusions

EGCs are a major issue in FBA modeling—they are able to produce energy out of thin air,

thereby severely affecting the appropriate representation of energy metabolism and of biomass

yield. EGCs not only affect the accurate representation of existing metabolic systems. They will

be particularly problematic in evolutionary simulations that involve the incorporation of for-

eign metabolic reactions from other species [28–30]. Such mixing of reactions from disparate

model reconstructions may easily introduce EGCs, and may thus lead to erroneous phenotype

predictions. We have recently suggested a protocol for evolutionary simulations that avoids

this problem [31]. Here, we present an improved computational method for the high-through-

put identification of EGCs.

EGC identification is currently not a recognized step in model reconstruction, although

some authors have eliminated EGCs from their manually curated models before publication.

While constraint-based methods may avoid the utilization of EGCs based on thermodynamic

considerations [17], such methods are computationally expensive and require careful analysis

of the EGCs and the bounds on metabolite concentrations to guarantee the absence of EGCs

from the resulting flux distributions. Instead, we propose to correct the metabolic model itself,

and present a modified version of the previously published GLOBALFIT algorithm to eliminate

EGCs through the removal of minimal reaction sets. The resulting model can then be used

with the full suite of standard constraint- based methods.

We found EGCs in the majority of automatically generated models and in a small subset of

manually curated networks. Many of the identified EGCs—in particular those that occurred

most frequently—involved the erroneous maintenance of proton gradients across cellular

membranes. The simplest EGCs would consist of two reversible reactions that catalyze the

same biochemical conversion using different amounts of energy metabolites (Figs 2 and 6D).

Such trivial EGCs are easily recognizable and are consequently rarely included in published

metabolic networks; most EGCs in published models are more complex, and not easily identi-

fied by eye. We note that automatically reconstructed models often contain other types of

errors as well [2]. For example, charge and mass imbalanced reactions appear to be common

in automatic reconstructions and can lead to erroneous FBA predictions. Such reactions can

potentially introduce EGCs, and we thus suggest to correct them as a preprocessing step.

The inclusion of reaction sets that are capable of forming an EGC into a metabolic network

reconstruction is not necessarily erroneous. It is conceivable that one part of the cycle is

thermodynamically feasible in one condition, whereas the other part is thermodynamically

feasible in another condition, while both are not thermodynamically feasible simultaneously.

Accordingly, modeling algorithms that respect thermodynamic constraints do not utilize

potential EGCs [3, 6, 7, 17, 32–34]. FBA, however, does not consider thermodynamics; instead,

optimization of its objective function (e.g., biomass production rate) will usually lead to the

exploitation of EGCs. One possible solution would be to constrain the fluxes through thermo-

dynamically impossible sections of EGCs to zero in each simulated environment; this, how-

ever, would require a detailed understanding of environment-specific thermodynamics (or,

alternatively, environment-specific gene regulation).

Our algorithms are suitable to guide a manual curation of draft networks, and should be

included in the standard toolbox used for metabolic network reconstruction. GLOBALFIT can

enumerate alternative solutions to eliminate EGCs, which can then be used as a basis for expert

curation. In the context of automated network reconstruction pipelines such as ModelSEED

Energy-generating cycles
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or kBase, our methods could be applied without human interaction, albeit at the risk of remov-

ing reactions that might be thermodynamically feasible in particular environments.

Materials and methods

Dataset and EGC detection

We started from 350 genome-scale metabolic networks (GSMs) that were downloaded from

three databases: BiGG [22]–mostly manually created GSMs (accessed July 2015); ModelSeed

[23]–GSMs created automatically from genome sequences (accessed July 2015); and MetaNetX

[24]–a meta-database containing metabolic models from various sources (accessed January

2016). We removed networks that were unable to produce biomass in a maximally rich envi-

ronment. We checked the correct direction of exchange reactions, and set the lower bound of

the ATP maintenance reaction (ATPM) to zero, i.e., we did not require a non-growth-related

production of ATP.

To each GSM, we added 15 energy dissipation reactions (Supplementary S1 Table), where

the namespace for metabolite names had to match the source of the network, i.e., BiGG, Mod-

elSEED, or MetaNetX. Because not every metabolic network covers the full range of metabo-

lites used in the energy dissipation reactions (EDR), we checked the integration of the

reactions in the network, defined as the fraction of the reaction’s metabolites also present in

the remainder of the model (i.e., a reaction with an integration of 1 is completely integrated,

whereas reactions with an integration < 1 cannot carry any flux). Because EGCs tend to run

with maximal fluxes, all network reactions except the newly added ones (those in energy dissi-

pation reactions) are restricted to fluxes in the range [–1, 1] for reversible and [0, 1] for irre-

versible reactions.

To establish the presence of EGCs for different energy metabolites, we maximized one

energy dissipation reaction flux vd at a time while prohibiting all influx into the model:

max ðvdÞ

subject to:

Sv ¼ 0

8i =2 E : vmini � vi � vmaxi

8i 2 E : vi ¼ 0

Here, S is the stoichiometric matrix, v the vector of fluxes, d the index of one of the energy

dissipation reactions, vmin and vmax the vector of lower and upper reaction bounds, respec-

tively, and E is the set of indices of all exchange reactions.

An optimal value v�d for this optimization with v�d > 0 indicates the presence of at least one

cycle that is able to generate a specific type of energy metabolite (corresponding to the index d)

in the network. Because 0� jvij � 1 for all reactions other than dissipation reactions, the value

of v�d is a lower bound for the number of non-overlapping EGCs for the tested energy metabo-

lite in the network.

The modified GLOBALFIT algorithm

Once a GSM was identified to contain at least one EGC, GLOBALFIT was used to eliminate all

EGCs from the network. GLOBALFIT was developed to find globally minimal sets of model

changes that simultaneously reconcile sets of experimental growth and non-growth observa-

tions with model predictions; a detailed description of the original GLOBALFIT algorithm can be

found in [26]. We modified GLOBALFIT for the efficient removal of EGCs as outlined below.
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In this modified version, the only allowed type of model change is the removal of unidirec-

tional reactions, where reversible reactions are treated as two independent unidirectional reac-

tions. We contrast a single growth with a single non-growth case. The non-growth case reflects

the removal of all EGCs: with no nutrient uptake allowed, the maximal sum of fluxes through

the energy dissipation reactions must be zero, max(∑djvdj) = 0. To ensure that reaction remov-

als do not abolish biomass production by eliminating EGCs, we set up a growth case with a

minimal biomass production rate in a rich medium that allows uptake of all nutrients.

Formally, we solve the following bi-level optimization problem, which is a variation of the

original GLOBALFIT problem [26] (Variable definitions are listed in Table 1):

minδ
X

y2M
d
RF
y þ d

RB
y

� �� �
ð1Þ

subject to:

Sg � vg ¼ 0 ð2Þ

8y2M v
min
y � ð1 � d

RB
y Þ � vgy � vmaxy � ð1 � d

RF
y Þ ð3Þ

vgBio � Tg ð4Þ

Sng � vng ¼ 0 ð5Þ

8y2M v
min
y � ð1 � d

RB
y Þ � vngy � vmaxy � ð1 � d

RF
y Þ ð6Þ

min
vng
ðct � vngÞ ¼ 0 ð7Þ

d
RB
y and d

RF
y are binary variables. Setting one of these variables to 1 will constrain the corre-

sponding flux of the growth—Eq (3)—and non-growth case—Eq (6)–to zero. The total num-

ber of reaction removals is minimized, where the removal of forward and backward reaction is

treated separately in Eq (1)–i.e., dRBy and d
RF
y are independent. Both the growth and the non-

growth case must be in steady state, Eqs (2) and (5). The biomass production of the growth

case has to be greater than a predefined threshold Tg, Eq (4). All entries in ct are 0, except for

the positions of the energy dissipation reactions, which are 1. The maximal summed flux

Table 1. Definitions of the variables used in the system of equations that describes the modified GLO-

BALFIT algorithm.

M The set of reactions included in the original (input) network reconstruction

S Stoichiometric matrix of the original (input) network reconstruction

v Flux vector

g Growth case

ng Non-growth case

vminy Lower bound of reaction y

vmaxy Upper bound of reaction y

vgBio Biomass reaction of the growth case

Tg Growth threshold of the growth case

ct Vector containing ones and zeros. All entries are zero, except for the positions of the energy

dissipation reactions

https://doi.org/10.1371/journal.pcbi.1005494.t001
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through all energy dissipation reactions must be zero, Eq (7). We convert this bi-level optimi-

zation problem into a single level optimization problem as described in [26].

All calculations were run in GNU R with the SYBIL library [35] and a modified GLOBALFIT

library [26] under linux. We used IBM ILOG CPLEX as the solver for the mixed integer linear

optimizations. Each calculation was run on 8 CPU cores and 50GB main memory.

Supporting information

S1 Fig. Computation time. Distribution of computation (wall-clock) times for the application

of GLOBALFIT to the metabolic models containing EGCs. While almost all computations fin-

ished in under a minute on a PC (8 CPUs, 50Gb RAM), the search for model corrections

requires considerably more time for the yeast 7 metabolic network (data points off scale; the

“simple” calculations were stopped after 61.27 hours and the “synthase” run needed 25.03

minutes). The red line (“simple”) is for runs allowing all reaction removals; the blue line

(“synthase”) is for runs not allowing removal of the ATP synthase reaction.

(TIFF)

S1 Table. Energy dissipation reactions. Energy dissipation reactions (EDRs) for each of the

15 different types of energy metabolites in the cell.

(XLSX)

S2 Table. EGC occurrences in models. For each model, this table shows whether biomass pro-

duction was possible at all (hasGrowth), whether energy generating cycles are present

(hasEGCs), the identified types of EGCs (e.g., generates.ATP), and the reactions (or reaction

directions) removed by GLOBALFIT for the “simple” run (all removals allowed) and with

removal of the ATP synthase forbidden (“synthase”).

(XLSX)

S1 Text. Toy model. A small example network that illustrates the inability of ll-COBRA and

TMFA to reliably exclude EGCs.

(PDF)
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