
RESEARCH ARTICLE

Elucidation of molecular kinetic schemes from

macroscopic traces using system identification

Miguel Fribourg1*, Diomedes E. Logothetis2, Javier González-Maeso3, Stuart C. Sealfon1,
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Madrid, Spain, 5 Department of Electrical Engineering, Universidad de Oviedo, Gijón, Spain, 6 Department

of Neuroscience, Icahn School of Medicine, New York, New York, United States of America

* miguel.fribourg@mssm.edu

Abstract

Overall cellular responses to biologically-relevant stimuli are mediated by networks of sim-

pler lower-level processes. Although information about some of these processes can now

be obtained by visualizing and recording events at the molecular level, this is still possible

only in especially favorable cases. Therefore the development of methods to extract the

dynamics and relationships between the different lower-level (microscopic) processes from

the overall (macroscopic) response remains a crucial challenge in the understanding of

many aspects of physiology. Here we have devised a hybrid computational-analytical

method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor

(SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a

transfer function between the stimulus and the overall cellular response in the Laplace-

transformed domain. It then derives a Markov-chain state molecular kinetic scheme uni-

quely associated with the transfer function by means of a classification procedure and an

analytical step that imposes general biological constraints. We first tested SYSMOLE with

synthetic data and evaluated its performance in terms of its rate of convergence to the cor-

rect molecular kinetic scheme and its robustness to noise. We then examined its perfor-

mance on real experimental traces by analyzing macroscopic calcium-current traces elicited

by membrane depolarization. SYSMOLE derived the correct, previously known molecular

kinetic scheme describing the activation and inactivation of the underlying calcium channels

and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel

blocker clinically used in patients with cardiovascular disease. Finally, we applied SYS-

MOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their

crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our

results indicate that our methodology can be successfully applied to accurately derive

molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it

may be useful in the study of a wide variety of biological systems.
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Author summary

Unraveling the lower-level (microscopic) processes underlying the overall (macroscopic)

cell response to a given stimulus is a challenging problem in cell physiology. This has been

a classic problem in biophysics, where the ability to record the activity of single ion chan-

nels that generate a macroscopic ion current has allowed a measure of direct access to the

underlying microscopic processes. These classic studies have demonstrated that very dif-

ferent groupings of the microscopic processes can yield extremely similar macroscopic

responses. Biologists in fields other than biophysics are frequently confronted with the

same macroscopic-to-microscopic problem, usually, however, without any direct access

to the microscopic processes. Thus, the development of computational methods to deduce

from the available macroscopic measurements the nature of the underlying microscopic

processes can be expected to substantially advance the study of many areas of cell physiol-

ogy. Toward that aim, here we have derived and tested a hybrid computational-analytical

method to extract information about the microscopic processes that is hidden in macro-

scopic experimental traces. Our method is independent of the particular system under

study, and thus can be applied to new as well as previously-recorded macroscopic traces

obtained in a wide variety of biological systems.

Introduction

In order to ensure their survival and correct physiological function, cells must respond appro-

priately to many different kinds of stimuli, such as the presence of various neurotransmitters

or hormones in the extracellular fluid, the depolarization of the cell membrane, or stimuli such

as mechanical force or light [1]. The cell’s response to any particular stimulus engages vast

numbers of single molecules whose actions combine to perform various tasks within the cell.

To provide a framework for the study of such cellular responses to stimuli, biologists try

to understand the actions of the single molecules in terms of elementary (“microscopic”)

molecular processes, such as the opening or closing of ion channels in the membrane, the

phosphorylation or dephosphorylation of intracellular proteins, or the nuclear translocation of

transcription factors [2, 3]. Formally, the dynamics of these processes are typically described

by molecular kinetic schemes or, mathematically, Markov-chain state models. Each state in the

model represents, for example, a molecular conformation or ligand binding-site occupancy;

rate constants govern the transitions between the states (e.g., Fig 1). These types of schemes

have been successfully applied to describe many kinds of cellular systems, including the activ-

ity of ion channels [4, 5], pharmacology of receptors [6–8], and flux through metabolic path-

ways [2].

Clearly, it is desirable to study these microscopic processes directly. This has been possible,

to some extent, in a few areas, notably the biophysics of ion channels, an exceptionally favor-

able case where the exquisitely sensitive patch-clamp technique [9, 10] is able to record the

activity of single ion channels. As a result, this technique provides some measure of direct

information about microscopic processes such as the opening and closing of the channels and

allows the construction of molecular kinetic models of these processes [11, 12].

In most areas of cell biology, however, such direct access to the microscopic processes is not

yet possible. Although new single-molecule techniques provide ways of understanding the

properties of key biological molecules in isolation, monitoring the dynamics of single mole-

cules inside cells is technically complex and in many experimental systems not practical (see

[13, 14] for reviews).
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The information that is routinely available from cells exposed to stimuli is the overall

(“macroscopic”) cellular response (e.g., Fig 1A). This response combines the signal from a

large number of molecules and multiple microscopic processes [15, 16]. The macroscopic

response trace thus contains information about the microscopic processes, and, since it is

Fig 1. Problem description and modular implementation of SYSMOLE. (A) Example of classic voltage clamp experimental traces, which can be used

as an input (red) and output (black) trace pair for the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE) method. In voltage-clamp (VC)

experiments to study ion-channel currents, one would define an input-output system in which the scalar input signal u(t) is the depolarizing voltage step

(top), and the scalar output signal y(t) is the actual current trace elicited by the depolarization (bottom). (B) Example of two molecular kinetic schemes

describing ion channel dynamics in response to a voltage step that yield similar macroscopic traces. C indicates the closed-channel state, O the open-

channel state, I the inactivated-channel state, CI the closed-inactivated-channel state, and OI the open-inactivated-channel state. (C) Modular organization

of SYSMOLE and workflow of the method. Briefly, the Identifier Module uses the input u(t) and output y(t) traces to obtain the transfer function G(s), which

can be characterized by the time constants of its poles (τpoles) and zeros (τzeros), and a gain. The Classifier Module finds the configuration or block diagram

associated with the transfer function G(s). The Molecular Kinetic Converter Module uses the block diagram together with the transfer function G(s) to derive

the molecular kinetic scheme.

doi:10.1371/journal.pcbi.1005376.g001

Elucidation of molecular kinetic schemes using system identification
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relatively easy to record in most experimental systems, an attractive approach is to attempt to

extract information about the microscopic processes, and the way in which they are combined

in the molecular kinetic scheme, from the macroscopic trace.

This, however, is a challenging problem. Although, in theory, the information about all of

the relevant microscopic processes is present in the macroscopic trace, the trace combines the

information about the individual processes in a way that is often complicated and difficult to

interpret immediately in terms of the underlying molecular kinetic scheme [17]. For example,

the work with ion channels has demonstrated that very similar macroscopic responses can be

generated by quite different arrangements of the microscopic processes in the molecular

kinetic scheme [18] (as can be seen also in Fig 1B).

One way to simplify the problem is to assume a pre-existing molecular kinetic model of the

system, based on other kinds of experimental data or simply educated guesswork. Thus, in the

ion-channel field, elegant computational methods have been introduced to analyze macro-

scopic traces of ion currents [19, 20], but these methods rely strongly on specific biophysical

models of the ion channels and thus are not immediately generalizable to the study of other

biological systems.

In this study, we have developed a general method, the SYStems-based MOLecular kinetic

scheme Extractor (SYSMOLE), to obtain molecular kinetic schemes from macroscopic traces.

SYSMOLE is a hybrid computational-analytical method that, because it does not assume any

pre-existing model of the system, can be applied to experimental traces recorded, in principle,

in any biological system.

In practical terms, to successfully derive the molecular kinetic scheme underlying a macro-

scopic trace, a method must perform three distinct tasks: a) it must accurately model the

dynamics of the trace, b) it must ensure that this model is unique, and c) it must convert this

mathematical model into a biologically interpretable model. SYSMOLE includes a module to

tackle each of these tasks (Fig 1C). The Identifier Module accurately captures the dynamics of

the macroscopic trace and summarizes this information in the form of a transfer function. The

Classifier Module derives a block diagram, a description of how different processes are com-

bined, that is uniquely matched to the transfer function. Finally, the Molecular Kinetic Con-

verter (MKC) Module utilizes both the transfer function and the block diagram to derive a

molecular kinetic scheme that can be interpreted biologically in terms of conformational

changes of proteins or chemical reactions.

We first describe the implementation of each of the three modules that comprise SYSMOLE.

For didactic simplicity, we focus in our presentation on a second-order system, in which two

first-order processes are combined in different arrangements; however, our approach is scalable

to higher-order systems (S1 Text section 3). Next, we provide a rigorous evaluation of the per-

formance of SYSMOLE in the presence of noise using synthetic traces. We then report on the

performance of SYSMOLE on real experimental traces. We show that SYSMOLE was able to

derive the correct molecular kinetic scheme of the inactivation of L-type calcium channels as

well as the effects of the calcium-channel blocker nifedipine from macroscopic calcium-current

traces. Finally, we describe the use of SYSMOLE to decipher the crosstalk mechanism, through

the heteromeric receptor complex formed by the metabotropic glutamate receptor 2 (mGluR2)

and the serotonin receptor 2A (5-HT2AR), of a new class of glutamate antipsychotics.

Results

Identifier module

Description. SYSMOLE aims to understand the system’s response to stimuli by breaking

it down in terms of simple processes (i.e. activation, or inactivation). To that aim SYSMOLE

Elucidation of molecular kinetic schemes using system identification
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relies on System Theory, which has developed robust process-oriented approaches using trans-

formed domains, such as Fourier, Laplace or z, as an alternative functional description that

simplifies the process of analyzing the behavior of the system. Laplace transformation from the

time domain (t) to the frequency domain (s), for example, transforms differential equations

into algebraic equations and convolution into multiplication, which simplifies the analysis.

Furthermore, it allows for a description of the system’s response in the frequency domain as

the product Y(s) = G(s). U(s), where Y(s) and U(s) refer to the output and the input signals in

the frequency domain respectively, and G(s) to the transfer function that characterizes the sys-

tem. The transfer function provides in principle the output for any input within certain con-

straints (see below). Despite this input-output characterization not being suited for systems

with multiple alternative outputs to one input such as bistable systems, it provides an

extremely powerful characterization of the response to stimuli of a wide range of systems.

The Identifier Module embodies the system-identification component of our approach. It

uses the relationship between a given input trace u(t) and the resulting output trace y(t) to

characterize the dynamics of the system and to summarize them in the form of an overall

transfer function G(s).
Implementation. The Identifier Module considers systems to be causal, linear, and time-

invariant (LTI). Causality implies that the output at a certain time depends only on the input

up to that time. Linearity enforces the output response of the system to a linear combination of

inputs to be equal to the linear combination of the output responses to the individual inputs.

Time-invariance means that the output response to a given input does not depend on absolute

time. Experimentally, these assumptions can be met by applying some simple constraints. To

ensure linearity, one can expose the system to a range of inputs known not to saturate the sys-

tem. To ensure time-invariance, one can wait for the system to be at steady state before expos-

ing it to the input and measure its response only once if long-term desensitization or other

long-term memory processes are known to play a significant role in the system. Given this LTI

characterization, SYSMOLE is best adapted to study systems whose behavior can be described

or approximated by ordinary differential equations (ODEs).

How does SYSMOLE derive the transfer function in the frequency domain, G(s), from the

input u(t) and output y(t) traces in the time domain? It is well known (see [21] for a review)

that a LTI system can be described by its impulse response g(t) as follows:

yðtÞ ¼
Z 1

t¼0

gðtÞuðt � tÞdt ð1Þ

Thus, knowing g(t) from t = 0 to1, one can compute the output y(t) for any input u(t). The

impulse response g(t) thus provides a complete characterization of the system. The transfer

function G(s) is the representation of g(t) in the Laplace-transformed domain. Both time t and

the transformed variable s are continuous; in real experiments, however, both u(t) and y(t) are

sampled discretely in time. The Identifier Module assumes that u(t) and y(t) are observed at

the sampling instants tk = kTs with k = 1,2,. . ., where Ts is the sampling interval. In those terms

one can rewrite Eq (1) as

yðtÞ ¼
Z 1

t¼0

gðtÞuðtk � tÞdt ð2Þ

Assuming that u(t) does not change much during a sample interval one can express y(t) as

yðtÞ ¼
X1

k¼1

gðkÞuðt � kÞ ð3Þ

Elucidation of molecular kinetic schemes using system identification
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where we ease the notation and assume that Ts is one time unit and use t to enumerate the

sampling intervals.

According to relationship (3) the output can be exactly calculated once the input is known.

In most cases this is unrealistic, since there are always signals beyond our control that also

affect the system. In the linear framework used by the Identifier Module those effects are

lumped into an additive term at the output v(t) called disturbance.

yðtÞ ¼
X1

k¼1

gðkÞuðt � kÞ þ vðtÞ ð4Þ

Inputs could also be corrupted but their effects are included on the output in v(t) without loss

of generality. Disturbances can come from measurement noise, and other uncontrollable

inputs [22]. The most characteristic feature of the disturbance is that its value is not known

beforehand, and therefore one requires a probabilistic framework to characterize it. The Iden-

tifier Module mathematically expresses v(t) as the output of a system characterized by the dis-

crete-time impulse response h(k)

vðtÞ ¼
X1

k¼0

hðkÞeðt � kÞ ð5Þ

where the input e(t) is white gaussian noise with zero mean and variance λ. Although e(t)
being Gaussian is a somewhat restraining assumption, it still allows us to characterize a wide

range of disturbances v(t) by using different h(k) sequences. This model of disturbance is

extremely versatile and should be appropriate to characterize the noise present in a wide range

of experimental traces [23]. We have successfully applied it to traces with added Gaussian

noise (see next sections), and Brownian noise (S1 Text section 4.1)

In summary, as part of the identification process, the Identifier Module will find the dis-

crete-time response g(k) and the discrete-time transfer function G(z) that relates the discrete

input and the discrete output. The continuous version of the transfer function G(s) is obtained

by converting G(z) to the continuous domain G(s). Furthermore, as part of the identification

process the Identifier Module will obtain H(s), the Laplace Transform of h(k), which generates

the disturbance by filtering white Gaussian noise.

The dynamics of a system can be expressed in many different ways. Probably the simplest

input-output relationship between two discrete-time signals is obtained by describing it as a

linear difference equation. The Identifier Module describes this relationship as an ARX model

(6), a family of difference equations characterized by a set of parameters y ¼ ½a1; a2; . . . ; ana
;

b1; b2; . . . ; bnb
�.

yðtÞ þ a1yðt � 1Þ þ � � � þ ana
yðt � naÞ ¼ b1uðt � 1Þ þ � � � þ bnb

uðt � nbÞ þ eðtÞ ð6Þ

Here AR refers to the autoregressive part of y(t) and X to the contribution of the input u(t)
at earlier times, also called the exogenous variable. We chose the ARX models for the imple-

mentation of the identifier for two main reasons: (a) the best parameter estimation given

the disturbance can be easily obtained computationally [24], and (b) the parameters of the

model can be easily converted to the poles and zeros of the transfer function G(s). The Identi-

fier Module determines optimal values of nα, nβ as well as the coefficients a1; . . . ; ana
and

b1; . . . ; bnb
that minimize the prediction error in the model by minimizing a function denoted

loss function (see prediction-error identification methods in [25]). Our identifications pro-

vided loss functions of the order 10−7 or lower indicating that ARX models and Eq (6) provide

good fits to the synthetic and experimental traces we studied.

Elucidation of molecular kinetic schemes using system identification
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It can be also demonstrated that nα − 1 represents the number of poles, and nβ the number

of zeros of the discrete transfer function G(z). Furthermore, by adequately sampling the traces,

we can convert the transfer function obtained in the discrete frequency domain, G(z), to its

equivalent transfer function in the continuous frequency domain, G(s) [26]. Each transfer

function G(s) is characterized by the roots of the denominator (poles), the roots of the numera-

tor (zeros), and the gain. The minimum sampling frequency is given by the Nyquist-Shannon

sampling theorem applied to the power density spectrum of the signal y(t), and empirically

estimated in a conservative fashion by choosing a sampling period Ts one or two orders of

magnitude below the smaller time constant.

Classifier module

Description. In the Laplace frequency domain used by SYSMOLE, each process i is

described by a first-order system (associated with a first-order ODE), with a transfer function

Gi(s) characterized by a gain parameter ki and a time constant τi as follows:

Gi sð Þ ¼
bi

sþ oi
ð7Þ

where oi ¼
1

ti
and bi ¼

ki
ti
. Given two processes a and b described by first-order systems, and

thus by first-order transfer functions Ga(s) and Gb(s) (e.g., those in Fig 2A) one can find only

three truly different ways to combine them: cascade, feedback, and parallel (Fig 2B). We will

refer to these configurations as canonical, since any combination of two first-order processes

can be converted to one of these three configurations with a simple change in parameters [27,

28]. Each canonical configuration has a corresponding block diagram as defined in Systems

Theory [23] (Fig 2B, left) and yields a response with different dynamics (Fig 2B, right). Combin-

ing two first-order processes will result in a second-order transfer function characterized by two

poles and one or no zeros. The dependence of the poles, zeros, and gain of G(s) on the parame-

ters τa, τb, ka, and kb of the two first-order processes differs greatly between the three canonical

configurations and provides each configuration with a characteristic signature (S1 Fig).

Given two first-order systems Ga(s) and Gb(s) described by first-order transfer functions

Ga sð Þ ¼ ba
sþoa

and Gb sð Þ ¼ bb
sþob

, one can analytically derive the transfer functions resulting from

combining these two processes following each canonical configuration and obtain:

GðsÞcascade ¼
babb

ðsþ oaÞðsþ obÞ
ð8Þ

GðsÞfeedback ¼
baðsþ obÞ

ðsþ oaÞðsþ ob þ bbÞ
ð9Þ

GðsÞparallel ¼
ðba þ bbÞsþ baob þ bboa

ðsþ oaÞðsþ obÞ
ð10Þ

As discussed above, each of these transfer functions has distinct features in terms of poles,

zeros, and gain (τpole1, τpole2, τzero, and Gain). The Classifier Module capitalizes on these differ-

ences and determines which canonical configuration corresponds to the transfer function

obtained by the Identifier Module, G(s), by comparing the transfer function features of G(s) to

those of the canonical G(s)cascade, G(s)feedback, and G(s)parallel.
Implementation. The Classifier Module is implemented as a series of comparisons

between G(s) and the canonical transfer functions (8), (9) and (10) (Fig 3). It tests sequentially

Elucidation of molecular kinetic schemes using system identification
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whether the transfer function features for a particular configuration are found in G(s). Transfer

functions arising from systems with more than two processes are characterized by more than

two poles. Similarly, first-order transfer functions are characterized by having only one pole

and no zeros and can be easily distinguished. From the second-order transfer functions, char-

acterized by two poles, those arising from a cascade configuration have no zeros and are easily

Fig 2. Second-order canonical configurations. (A) Example of two first-order processes, a and b,

described by first-order transfer functions Ga(s) and Gb(s) with parameters τa = 5 ms and ka = -1, and τb = 100

ms and kb = 1, and their responses in time (outputs ya(t) and yb(t)) to an ideal step input at t = 30 ms (u(t)). (B)

Block diagram (left) and corresponding output y(t) (right) in response to a step input u(t) of the first-order

processes Ga(s) and Gb(s) combined following the three canonical configurations: cascade, feedback and

parallel.

doi:10.1371/journal.pcbi.1005376.g002

Elucidation of molecular kinetic schemes using system identification
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classified as well. However, discerning between parallel and feedback configurations consti-

tutes a more challenging task.

It can be mathematically demonstrated that for every transfer function G(s) with two poles

and one zero arising from two fist-order processes, one can find a set of first-order systems

Gaf(s) and Gbf(s) which, when combined in feedback, will result in G(s). It can also be demon-

strated that one can find an analogous set of first-order systems Gap(s) and Gbp(s) which, when

combined in parallel, will result G(s) (S1 Text). To distinguish between the two configurations

one needs to constrain the problem by imposing additional conditions on the possible values

of τa, τb, ka, and kb. Typically, we are able to provide a range for the speed and strength of each

process under study and therefore adding this type of constraint does not constitute a complex

Fig 3. Classifier Module implementation. Classifier Module flow chart implementation of the comparison between G(s), the transfer function obtained by

the Identifier Module, and the transfer functions associated with the canonical configurations. This module tests sequentially whether G(s) incorporates the

features of a transfer function describing a higher-order system, a first-order system, or a second-order system in each of the canonical configurations:

cascade, feedback or parallel. The cost function values for the parallel and feedback optimization problems, fvalp and fvalf respectively, are used to discern

between these two canonical configurations as explained in the Results section.

doi:10.1371/journal.pcbi.1005376.g003

Elucidation of molecular kinetic schemes using system identification
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task. As an example, from the trace depicted on the introductory figure (Fig 1A, bottom), one

can easily constrain the activation process (fast downward inflection) to have a time constant

ranging from 1 to 50 ms, and the inactivation process (slow upward inflection) to have a time

constant greater than 50 ms. Similarly, one can restrict the exploration of the parameter space

to activation and inactivation gains between -0.2 to 0.2 nA/mV.

The Classifier Module then decides between the feedback and parallel configurations by

solving two constrained optimization problems (Fig 3). These two problems are defined by

comparing the second-order transfer function G(s) characterized by a 4-parameter set, either

(τpole1, τpole2, τzero, and Gain) or (B0, B1, A1, and A0),

G sð Þ ¼
B1sþ B0

s2 þ A1sþ A0

ð11Þ

to G(s)feedback and G(s)parallel. We define the feedback optimization problem by comparing (11)

to (9). Solving the problem thus amounts to determining whether there is a solution for the fol-

lowing system of equations within the range of values allowed for the parameters ωa, ωb, ba,
and bb

B1 ¼ ba

B0 ¼ baob

A1 ¼ oa þ ob þ bb

A0 ¼ oaðobþbbÞ

ð12Þ

8
>>>>><

>>>>>:

Computationally we solve this problem as an optimization problem in which we minimize the

quadratic cost function derived from the system of equations in (12)

fvalf ðba; bb;oa:obÞ

¼ a1jB1 � baj
2
þ a2jB0 � baobj

2
þ � � � � � � þ a3jA1 � ðoa þ ob þ bbÞj

2
þ a4jA0 � oaðob þ bbÞj

2
ð13Þ

subjected to the constraints, ωamin � ωa� ωamax, ωbmin � ωb� ωbmax, bamin � ba� bamax, and

bbmin � bb� bbmax.

We define analogously the parallel optimization problem. Given the transfer function for

the parallel system

G sð Þ ¼
ðba þ bbÞsþ baob þ bboa

ðsþ oaÞðsþ obÞ
ð14Þ

and the equivalent system of equations

B1 ¼ ba þ bb

B0 ¼ baob þ bboa

A1 ¼ oa þ ob

A0 ¼ oaob

ð15Þ

8
>>>>><

>>>>>:

we can computationally find the solution as an optimization problem in which we minimize

the quadratic cost function

fvalpðba; bb;oa:obÞ

¼ a1jB1 � ðba þ bbÞj
2
þ a2jB0 � ðbaob þ bboaÞj

2
þ � � � � � � þ a3jA1 � ðoa þ obÞj

2
þ a4jA0 � oaobj

2
ð16Þ
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subjected to the constraints, ωamin � ωa� ωamax, ωbmin � ωb� ωbmax, bamin � ba� bamax, and

bbmin � bb� bbmax.

The cost function values fvalf and fvalp provide a quantitative measure of the match between

G(s) and G(s)feedback, and G(s)parallel respectively, provided that the constraints are sufficient

to distinguish both processes (S1 Text). A value of fvalf greater than fvalp indicates that G(s)
arose from two processes combined in parallel. Conversely, a value of fvalp greater than fvalf
indicates a transfer function G(s) associated with two processes combined following the feed-

back configuration (Fig 3). We studied the convergence properties of these two optimization

problems for a large number of combinations and a wide value range for parameters τa, τb,
ka, and kb. Our results confirmed the robustness of this implementation to discern between

parallel and feedback configurations (S2 Fig). Similar principles can be applied to third-order

systems by including more optimization problems in the implementation (see S1 Text section

3 for a description of a Classifier Module for transfer functions with three poles and two

zeros).

Molecular kinetic converter

Description. In general, obtaining a molecular kinetic scheme associated with a given

transfer function G(s) represents an underdetermined problem with multiple possible solu-

tions [18]. Here we show we can use biological principles and our prior information about the

biological system under study to constrain the problem and obtain a unique solution. This

task, which is analytical as opposed to computational, is implemented by the Molecular Kinetic

Converter Module (MKC). Implementing the biological constraints in mathematical/analyti-

cal terms is not straightforward. The MKC is implemented as a set of rules or steps that impose

different biological/physical principles on the transfer function G(s) obtained by the Identifier

Module, and are based on the block diagram (configuration) derived by the Classifier Module

for that particular transfer function. It should be emphasized that the MKC strictly derives a

Markov-chain state model and that the interpretation of what each state represents in molecu-

lar terms will depend on the experimental conditions in which traces are obtained.

Implementation. Our methodology converts the G(s) and block diagram (configuration)

into a Markov-chain molecular kinetic scheme by implementing the following four principles:

1. Number of states and possible transitions. The number of processes that can be extracted

from the input and output traces is established by the order n of the transfer function G(s).
The relationship between these processes in the biological system, which is determined by

the configuration, defines the possible transitions in the system.

2. Mass conservation. Mass should be conserved and thus the total amount of molecules,

which is the sum of the occupancies of all the states in the system, has to remain constant.

Importantly, although ideally all possible states should be described, additional biologically

possible states not detected by our experimental assay might be lumped into one state. Fur-

thermore, if one of the processes is removing a given species from the system, through deg-

radation for example, a ‘degraded’ state will need to be included to satisfy this condition.

3. Microscopic reversibility. Corresponding to every individual set of transitions that takes a

molecule through several states back to its original state (forward drive), there is a reverse set

of transitions (reverse drive) such that in a state of equilibrium the average rate of the forward

drive is equal to the average rate of its reverse drive. In other words, although the macro-

scopic law of mass action reactions can be used to describe processes that perpetually circle

through states, at the molecular level the microscopic reversibility principle states that mole-

cules do not possess infinite energy to remain in constant motion. In our case, a constant
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circular flow of transitions involving three or more states would contradict this principle and

thus would result in a molecular kinetic scheme not biologically possible [6, 29, 30].

4. Observable state. Our experimental assay will typically only allow us to measure one of the

states of the biological system, such as the open state of a channel or the activated form of a

protein. This observable state should be identified since its occupancy as a function of time

is related directly to the measured value of the output signal y(t).

The molecular kinetic scheme associated with the transfer function G(s) which satisfies the

previous four principles can be derived as follows:

1. Identify the nodes in the block diagram. The number of states (Ns) is equal to the number

of nodes and equal to n + 1. In the context of this analytical tool, nodes are the points in the

block diagram located at the entrance and at the exit of each block (operation blocks like

addition and subtraction only add one node). It should be noted that these rules provide

the molecular kinetic scheme with the smallest number of states to represent the number of

detected first-order processes n. More states might exist at the microscopic level that would

be collapsed into one of the states. The fractional occupancy in each state i is described by a

time-dependent state variable zi(t) where i = 1 . . . n + 1.

2. Include r transitions between nodes for each connection described in the block diagram

with rates σk with k = 1 . . . r. The value of the signal at a node in a block diagram can be neg-

ative, however negative fractional occupancies of a state are not interpretable. In order to

implement negative values and subtractions in the molecular kinetic scheme, invert the

flow of the signal and the transition (Fig 4).

3. Check whether the principle of microscopic reversibility is satisfied by the molecular kinetic

scheme. If any perpetual circular flows involving three or more states are present, offset it

by adding an equivalent flow in the opposite direction using only the kinetic parameters of

the system σk, to avoid increasing the number of degrees of freedom r.

4. Generate the following system of equations in the time domain

a. Ns − 1 Ordinary Differential Equations (ODEs) describing the transitions between the

states of the form

dziðtÞ
dt
¼
Xl

x¼1

sxzxðtÞ �
Xm

y¼1

syzyðtÞ i ¼ 1 . . . Ns � 1 ð17Þ

where l is the number of transitions coming into the state i, and m is the number of tran-

sitions leaving the state i. These equations follow the hypothesis of a Markov chain (i.e.

the rates σ are independent of time and the state variables zi(t)) and can be assimilated to

Kirchhoff’s First Law for circuit analysis.

b. 1 equation relating the observable state variable zobs(t) to the output y(t) through a pro-

portionality constant γ (Observable Equation).

yðtÞ ¼ gzobsðtÞ ð18Þ

Although for the experimental traces analyzed in the present work a simple proportion-

ality constant provided was a sufficient model, it is not necessary for the output to strictly

be proportional to the observation. If the relationship between the observed state and the
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measurement is known and can be characterized by another transfer function in the fre-

quency domain γ(s) this can be included in the relationship (18).

c. 1 equation that establishes mass conservation. It is hard to implement the input signal in

Markov chain models. Through the mass-conservation equation we can include the input

u(t) as the unique force driving the change in number of molecules in each state as a func-

tion of time zi(t) of the system that we assume to be initially at steady state. By enforcing

uðtÞ ¼
Xnþ1

i¼1

ziðtÞ ð19Þ

we guarantee that the total number of molecules in the system is equal to the total amount

of molecules before the input, together with the molecules provided by the input. This

also ensures that molecules are neither created nor destroyed. For an input step, as the

ones u(t) is a constant that we can normalize to 1, and zi(t) can be interpreted as fractional

occupancies in the classic ion channel sense. For simplicity, and given that this study

focuses on experimental systems in which the input is a step, we will refer to zi(t) as frac-

tional occupancies hereinafter. This can however be extended to inputs with any type of

dynamics, which is one of the strengths of the method. It should be emphasized that the

principles of mass conservation and microscopy reversibility are only imposed on the

state fractional occupancies and transition rates which are affected by the particular stim-

ulus or input under study. Other states whose fractional occupancies remain constant or

at steady-state could exist, but will not be included in the description.

5. Laplace transform the system of equations

sZiðsÞ � zið0Þ ¼
Xl

x¼1

sxZxðsÞ �
Xm

y¼1

syZyðsÞ i ¼ 1 . . . n

YðsÞ ¼ gZobsðsÞ

UðsÞ ¼
Xnþ1

i¼1

ZiðsÞ

ð20Þ

8
>>>>>>><

>>>>>>>:

where zi(0) is the value of the state variable at the initial time. Typically, one can choose the

states where zi(0) = 0 to be in the differential equations to simplify the resolution of the sys-

tem. The “input” state, in which the system has initially a fractional occupancy of 1, is then

included in the mass conservation equation. It should be noted however that the approach

can be applied for any initial distribution of fractional occupancies amongst states.

6. To obtain the transfer function of the kinetic model G(s)kin we isolate

YðsÞ
UðsÞ

¼ GðsÞkin ¼
C
Qn� 1

j¼1
ðsþ DjÞ

Qn
j¼1
ðsþ AjÞ

ð21Þ

where C, Dj and Aj are constants.

Fig 4. Molecular Kinetic Converter Module implementation. Molecular kinetic schemes derived from block diagrams for first-

order systems (A), second-order systems in cascade (B), second-order systems in feedback (C), second-order in parallel addition

(D), and second-order systems in parallel subtraction (E) configurations. Red circles indicate the observable state for each

configuration. Black and blue circles depict non-observable states. The supporting material (S1 Text) provides, based on the steps

described in the main text, a complete derivation of the molecular kinetic scheme corresponding to each configuration. It also

includes, for each configuration, the equations that describe the transition rates between states (σk) and the observable

proportionality constant (γ) as a function of the pole and zero time constants (τpole1, τpole2, and τzero), and the gain of the system.

doi:10.1371/journal.pcbi.1005376.g004
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7. Using block algebra we obtain the transfer function in terms of the first-order systems

G sð Þ ¼
c
Qn� 1

j¼1
ðsþ djÞ

Qn
j¼1
ðsþ ajÞ

ð22Þ

where c, dj and aj are constants (see Eqs 8, 9 and 10 for examples).

8. Solve the following system of equations

Dj ¼ dj j ¼ 1 . . . n � 1

Aj ¼ aj j ¼ 1 . . . n

GðsÞkincs!0 ¼ GðsÞcs!0

ð23Þ

8
><

>:

where the third equation in the system equals the steady state gain of G(s) and G(s)kin, for

the parameters of the molecular kinetic scheme

sk ¼ f ðki;oiÞ ð24Þ

g ¼ f ðki;oiÞ ð25Þ

It is straightforward to test that these rules yield the correct molecular kinetic scheme as

any mistake in the steps will result in a system of equations without solutions at step 8 when

comparing the coefficients on G(s)kin and the G(s) derived from the block algebra (S1 Text sec-

tion 2.5). As an illustration of the application of these steps, we present below the derivation

the molecular kinetic scheme associated with a first-order system (Fig 4A):

1. Number of states = n + 1 = 2

2. We identify the nodes and include the transitions in the diagram.

3. We check that the principle of microscopic reversibility is satisfied.

4. We build the system of equations

dz2ðtÞ
dt
¼ s1z1 tð Þ ODE Transition 1

yðtÞ ¼ gz2ðtÞ Observable Equation

uðtÞ ¼ z1ðtÞ þ z2ðtÞ Mass Equation

ð26Þ

8
>>><

>>>:

5. We Laplace transform the system

sZ2ðsÞ ¼ s1Z1ðsÞ T1

YðsÞ ¼ gZ2ðsÞ O

UðsÞ ¼ Z1ðsÞ þ Z2ðsÞ M

ð27Þ

8
><

>:
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6. We obtain G(s)kin by isolating
Y ðsÞ
UðsÞ from equations T1, O and M.

GðsÞkin ¼
YðsÞ
UðsÞ

¼
s1g

sþ s1

ð28Þ

7. From the block diagram we obtain G(s)

G sð Þ ¼
ba

sþ oa
ð29Þ

8. Through comparison of the terms in G(s)kin and G(s) we obtain the parameters of the

molecular kinetic scheme

s1 ¼ oa ð30Þ

GðsÞkincs!0
¼ g ¼ GðsÞcs!0

¼
ba

oa
) g ¼

ba

oa
ð31Þ

A complete description of the application of these steps to derive the molecular kinetic

schemes corresponding to the three possible canonical configurations for second-order sys-

tems (Fig 4B, 4C, 4D and 4E) is provided in the supporting material (S1 Text). Indications on

how these steps could be easily scaled to higher-order systems by taking a module-based

approach are also provided. The values of the kinetic parameters σi and γ of the four possible

second-order molecular kinetic schemes are detailed below. It is important to note that, based

on step 2, the parallel configuration will yield two different molecular kinetic schemes depend-

ing on whether the first-order systems Ga and Gb are added or subtracted.

1. Second-order system in cascade configuration (Fig 4B)

s1 ¼ oa ð32Þ

s2 ¼ ob ð33Þ

g ¼ kakb ð34Þ

2. Second-order system in feedback configuration (Fig 4C)

s1 ¼ oa ð35Þ

s2 ¼ bb ð36Þ

s3 ¼ ob ð37Þ

g ¼ ka ð38Þ

Elucidation of molecular kinetic schemes using system identification

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005376 February 13, 2017 16 / 34



3. Second-order system in parallel addition configuration (Fig 4D)

s1 ¼
ba þ bb

ka þ kb
ð39Þ

s2 ¼ ob � s1 ð40Þ

s3 ¼ oa ð41Þ

g ¼ ka þ kb ð42Þ

4. Second-order system in parallel subtraction configuration (Fig 4E)

s1 ¼ oa ð43Þ

s2 ¼ ob � s3 ð44Þ

s3 ¼
baob þ bboa

ba þ bb
ð45Þ

g ¼
ðka þ kbÞoaob

s3

ð46Þ

SYSMOLE distinguishes different molecular kinetic schemes from

similar macroscopic traces

We decided to test first the ability of SYSMOLE to tackle a general class of problems in biology:

distinguishing whether two similar macroscopic traces arise from different molecular kinetic

schemes. Elucidating the molecular mechanisms of ion-channel inactivation from macroscopic

current traces constitutes a classic biophysics problem in this class (see [4, 18, 31] for a review on

the topic). Many of these molecular mechanisms were identified in the eighties and the nineties

for different types of ion channels through single-channel electrophysiology recordings, fluctua-

tion analysis, and analysis of gating currents [6, 10–12, 32]. However, analogous problems emerge

in a great number of biological systems for which it is hard to design experiments to tease molecu-

lar schemes apart, or single-molecule experimental techniques are simply not yet available.

First we programmed an additional external module, the Synthetic Trace Simulator. This

module generates a trace simulating each of the five molecular kinetic schemes associated with

each configuration (Fig 4): first-order, second-order cascade, second-order feedback, second-

order parallel addition, and second-order parallel subtraction. For practical purposes, in our

implementation each molecular kinetic scheme is characterized by the parameters of two first-

order processes a and b (ka, kb, τa and τb) and the kinetic parameters σk and γ derived from

the equations detailed in the previous section. As a proof of concept, we used the Synthetic

Trace Simulator to simulate voltage-clamp experiments and generate, in response to a step in

voltage, the macroscopic current trace for molecular kinetic schemes that include first-order

processes describing the activation and inactivation of ion channels (Fig 5). Emulating the clas-

sic biophysics problem, we compared two extremely similar macroscopic traces arising from

different molecular kinetic schemes (compare left panels on Fig 5A and 5B). The first
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simulated current trace (Fig 5A) emerged from a molecular scheme in which inactivation

affected both the closed and the open states of the channel (Fig 4D, black: closed state, blue:

inactivated states, red: open state). The trace was generated with activation (a) and inactivation

(b) processes defined by parameters ka = -5, kb = 2, τa = 5 ms, and τb = 200 ms. The second

simulated current trace was generated with a molecular kinetic scheme where inactivation

only acted on the open state (Fig 4C, black: closed state, red: open state, blue: inactivated

state). This trace was obtained with a molecular kinetic scheme associated with first-order acti-

vation (a) and inactivation (b) processes with parameters ka = -5, kb = 3, τa = 5 ms, and τb =

100 ms. We then analyzed both traces with SYSMOLE: first we identified the dynamics of the

macroscopic trace elicited by the voltage step and summarized them in a transfer function

G(s), then we classified G(s) to obtain the underlying configuration, and finally we obtained

the corresponding molecular kinetic scheme using the MKC Module (Fig 5).

Fig 5. Similar traces from different molecular kinetic schemes. Application of SYSMOLE to two similar synthetic traces in response to an ideal step at

t = 30 ms. The top trace (A) was generated with the Synthetic Trace Simulator (see Results section) by combining in parallel two processes with parameters

ka = - 5, kb = 3, τa = 5, ms and τb = 100 ms. The correct molecular kinetic scheme was derived by SYSMOLE and the kinetic parameters obtained. The bottom

trace (B) was also generated with the Synthetic Trace Simulator by combining in feedback two processes with parameters ka = - 5, kb = 2, τa = 5 ms and τb =

200 ms. The correct molecular kinetic scheme was derived by SYSMOLE and the kinetic parameters obtained. Boundary conditions used in the Classifier

Module are τa 2 [1, 9] ms, τb 2 [50, 250] ms ka 2 [−20, 20], and kb 2 [−20, 20] for the parallel problem, and kb 2 [0, 20] for the feedback problem since

combinations in feedback with kb < 0 are unstable.

doi:10.1371/journal.pcbi.1005376.g005
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Our results indicate that our methodology can accurately retrieve the molecular kinetic

scheme of these two similar traces. Analogous tests with less similar traces were also performed

with successful results. In order to control for a possible bias associated with using the same

environments for simulation and analysis, two different implementations of the Synthetic

Trace Simulator were tested with practically identical results (see Materials and Methods).

SYSMOLE is robust to noise in the macroscopic trace

Our previous results had concluded that the system-identification approach presented in the

first part of the Results section (SYSMOLE) could be successfully applied to accurately eluci-

date the molecular kinetic scheme underlying a given macroscopic trace. However, these stud-

ies had been performed in the absence of noise, an unrealistic situation in any biological

experimental setting. We decided to test the effects of noise on the performance of SYSMOLE.

The robustness to noise of SYSMOLE will strongly depend on the features of the signals of

interest and the type of noise existing on the trace. A useful approach to establish the reliability

of SYSMOLE in the presence of noise is to simulate the types of experimental traces we are

studying and test SYSMOLE when different levels of noise are added. We studied the effects of

noise on the kinetic parameter values of the molecular kinetic scheme and the probability of

error in classification of traces in which we observe a fast-activating process followed by a

slower inactivation at the macroscopic level (Fig 5). These traces are representative of the types

of traces obtained in voltage-clamp experiments with L-type calcium channels, and in the

GPCR-heteromer signaling measurements presented in subsequent sections. By inspection of

the traces (Figs 5 and 6A) one can easily conclude that the two processes are not combined in

cascade, since this would be incompatible with a signal that reverses direction in the y axis (see

Fig 2). Therefore, we focused our analysis on how noise affects the distinction between the

feedback and parallel configurations, which based on our preliminary tests, is more prone to

error due to the presence of noise in the trace. Noise tests were performed for all configura-

tions and a wide range of combinations of first order parameters for the activation and inacti-

vation processes with similar results.

Specifically, with the aid of the Synthetic Trace Simulator we generated synthetic traces

involving two first-order processes characterized by parameters τa = 5 ms, τb = 100 ms, ka =

−5, and kb = 3, using the molecular kinetic scheme associated with either the parallel subtrac-

tion (Fig 4E) or the feedback (Fig 4C) configurations. We generated multiple traces for each

molecular kinetic scheme, to which we added increasing levels of white Gaussian noise (N =

100 simulations per level of noise). We analyzed each trace with SYSMOLE and measured (i)

the relative error of the transition rate parameter values from the molecular kinetic schemes

σ1, σ2 and σ3 (Fig 4D and 4E), and (ii) the probability of error in classification (Pe) defined as

the ratio between the number of correct classifications and the total number of simulations

at a given level of noise (Fig 6B). It should be noted that the scaling factor γ is an adjustable

parameter that shapes the amplitude of the signal and its sensitivity to noise has less relevance

than the transition rates or the configuration.

In our analysis, traces arising from molecular kinetic schemes associated with the parallel

and feedback configurations had similar robustness to noise (Fig 6B). The relative errors in the

transition rate kinetic parameters began to degrade at a signal-to-noise ratio (SNR) of 47 dB,

but stayed within a relative error of 0.5 at an SNR = 30 dB and above (see Materials and Meth-
ods section for a description of how the SNR was calculated). The probability of error in classi-

fication increased rapidly for traces with a SNR lower than 25 dB for the parallel configuration

and 22 dB for the feedback configuration, reaching a Pe = 1 at 18 dB for both configurations.

It is worth noting that the Pe represents not only the instances in which a trace in feedback
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configuration is mistakenly classified as a parallel configuration or vice versa, but also errors in

which the trace is classified as arising from a higher-order (�2) or first-order system. These

two types of errors quickly dominate the probability of error in detection at high levels of noise

as the SNR degrades.

Together, our results indicate that for the traces of interest one can perform a noise analysis

with similar synthetic traces and establish for a given SNR the expected probability of error

in classification and relative error in the transition-rate parameters of the molecular kinetic

scheme. For traces of the types obtained in our experimental systems (L-type calcium channels

and GPCR Gi and Gq), our results indicated that a SNR of 25 dB or better should provide the

right identification of the molecular kinetic scheme and a low relative error in the kinetic

parameters. Analogous studies revealed that a similar robustness to noise of SYSMOLE can be

Fig 6. Effect of noise on kinetic parameters and probability of error in classification. (A) Representative traces of output signal y(t) used to test the

effects of noise. Traces were generated with the Synthetic Trace Module (see Results section) combining two first-order processes with parameters ka =

- 5, kb = 3, τa = 5 ms and τb = 100 ms in parallel with different levels of white Gaussian noise added. (B) Relative error in transition-rate kinetic parameters

(σ1, σ2, and σ3) and probability of error in detection for parallel and feedback configurations. Each point in the graph depicts the mean and standard

deviation of 100 simulations. Boundary conditions used in the Classifier Module are τa 2 [1, 9] ms, τb 2 [50, 250] ms, ka 2 [−20, 20], and kb 2 [−20, 20] for

the parallel problem, and kb 2 [0, 20] for the feedback problem since combinations in feedback with kb < 0 are unstable.

doi:10.1371/journal.pcbi.1005376.g006
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achieved in the presence of Brownian noise, and that the effect of noise on Pe can be improved

through pre-processing by filtering the signal prior to application of SYSMOLE (S1 Text sec-

tions 4.1 and 4.2). We also established the potential applicability of SYSMOLE to recognizing

gene-regulatory mechanisms associated with a feedback or parallel configurations in the pres-

ence of cell-to-cell variability in gene induction noise (S1 Text section 4.3).

Analysis with SYSMOLE of L-type calcium channel experimental traces

retrieves the mechanism of action of nifedipine

We decided to apply SYSMOLE to study the molecular mechanism of voltage-dependent inac-

tivation of L-type calcium channels and the mechanism of action of nifedipine, a calcium

channel blocker widely used clinically as an antianginal and antihypertensive drug [33, 34].

The inactivation mechanism of L-type channels has been extensively studied, and two major

inactivation molecular mechanisms have been identified and characterized: a fast calcium-

dependent inactivation mediated by the calcium ions entering inside the cells upon opening of

the channel, and a voltage-dependent inactivation mediated by the voltage sensor located in

the principal subunit and its movement upon depolarization to block the channel (see [35] for

a review). Nifedipine, as part of the dihydropyridine class of channel blockers, binds to specific

regions of the principal subunit to block the channel. The affinities of nifedipine for these

binding regions differ depending on the state of the channel: nifedipine has a high affinity site

for the inactivated state, a low affinity site accessible in the open state, and virtually no affinity

sites for the closed state of the channel [36–39]. We tested whether we could derive molecular

kinetic schemes consistent with the known molecular mechanism of voltage-dependent inacti-

vation and nifedipine blockade of the L-type channels from experimental macroscopic current

traces with the help of SYSMOLE.

We used macroscopic current traces from voltage clamp (VC) experiments performed in

the accessory radula closer muscle of Aplysia californica previously obtained by our group [40].

Currents through these channels were isolated from potassium currents by adding selective

blockers (see Materials and Methods) and obtained in response to a depolarization step from

- 90 mV to 0 mV. Calcium ions were replaced by barium in the solutions to remove the contri-

bution of calcium-dependent inactivation and isolate the voltage-dependent inactivation of

the channels. The currents were measured in the absence or presence of nifedipine (100 nM

and 1 μM) (see Fig 7A for representative current traces). Following the noise analysis described

in the previous section, the SNR of all traces (> 38 dB for all cases) predicted a low probability

of error in the identification by SYSMOLE of the correct molecular kinetic scheme as well as a

low relative error for the transition rate parameters σk (Fig 6 and Table 1). In VC experiments

the voltage is held constant while the current flowing through the ion channels in the cell

membrane is measured based on the amount of current that an amplifier needs to supply to

maintain the set voltage. We used the voltage as a function of time V(t) (a step from - 90 to 0

mV) as the input trace, and the recorded current i(t) as the output trace for SYSMOLE.

In biological terms, we can explain the current trace i(t) elicited by a step in voltage in a VC

experiment using a molecular kinetic scheme as follows. Initially, the system is at steady-state

and the fractional occupancies (i.e. the fraction of channels in any particular state) for each of

the states are constant and the population of channels in dynamic equilibrium. At this point in

time, the current readout is also constant (basal current) and proportional to the fractional

occupancy in the open state. When the input steps to a higher voltage, the rate constants which

govern the transitions between states change and the population of channels redistributes

accordingly among the states. This redistribution is accompanied by a transient in the frac-

tional occupancies, and thus in the current recorded. At the end of this transient a new steady-
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state level of current is reached. The value of the rate constants characterizing the transitions

before the step in voltage are unknown, and therefore, the σk strictly represent the change in

rate associated with the input, in this case a step in voltage.

The results of applying SYSMOLE to derive molecular kinetic schemes from macroscopic

traces of L-type calcium channel currents obtained in the voltage-clamp (VC) experiments

described, consistently yielded the molecular kinetic scheme associated with a feedback config-

uration (Fig 7B and Table 1). In the absence of nifedipine, inactivation of the channel is due to

the voltage-dependent inactivation, which is engaged when the channel opens due to the depo-

larization of the membrane. As such, a molecular kinetic scheme in which the channels need

to open to inactivate is consistent with this molecular mechanism (Fig 7B) [41]. Based on the

known mechanism of action of nifedipine, and due to the high affinity binding of nifedipine to

the inactivated state, we expected the presence of this drug to reduce the transition rate from

the inactivated state to the open state (I!O). Similarly, due to the existence of a binding site

for nifedipine in the open state of the channel, we also expected an increase in the transition

rate between the open state and the inactivated state (O!I), which now includes two different

states the one reached through voltage-dependent inactivation, and the inactivation due to the

presence of nifedipine. Finally, we expected nifedipine not to affect the transition between the

closed and the open state (C!O) since it does not bind to the channel in the resting closed

state. All these effects were extracted by SYSMOLE as detailed in Table 1, and illustrated by the

temporal evolution of the fractional occupancies in the obtained molecular kinetic scheme

(Fig 7C).

Together, our results showed that SYSMOLE performed strongly with experimental traces

and allowed us to derive the correct molecular kinetic scheme of the voltage-dependent inacti-

vation of the L-type calcium channels and to predict the molecular mechanism of action of

nifedipine.

SYSMOLE can be applied to differentiate between cis- and trans-

activation in heteromeric G protein-coupled receptor complexes

G protein-coupled receptors (GPCRs) are membrane-bound receptors that transduce extracel-

lular binding of molecules into intracellular signals by activating a class of heterotrimeric pro-

teins called G proteins [42, 43]. Each subclass of G protein is associated with a signaling

pathway with specific actions inside the cell in response to stimuli [44]. Classically, the signal-

ing paradigm was considered to follow the rule that one ligand binds to one receptor which

Fig 7. Molecular kinetic scheme and effects of nifedipine on L-type calcium channel traces. (A) Representative L-type calcium ion-

channel current (output) elicited by voltage steps from -90 to 0 mV (input), first in the absence of nifedipine, and after addition of nifedipine at 100

nM and 1 μM concentrations. (B) Molecular kinetic scheme obtained by applying SYSMOLE to the traces and expected effects of nifedipine on

transition rates. (C) Fractional occupancies as a function of time of the closed-channel (black), open-channel (red), and inactivated-channel

(blue) states resulting from simulating the molecular kinetic scheme. Simulations were generated with the mean value of the kinetic parameters

(N = 3–6 traces per treatment). Kinetic parameter values can be found on Table 1.

doi:10.1371/journal.pcbi.1005376.g007

Table 1. Kinetic Parameters Ion-channel Traces.

[Nifedipine] SNR(dB) Config. σ1 σ2 σ3 γ
0 nM 47.30 ± 5.92 f (100%) 0.48 ± 0.01 3x10-3± 7.95x10-4 1.18x10-3± 2.94x10-4 -2.41 ± 0.14

100 nM 51.98 ± 0.89 f (100%) 0.45 ± 0.03 4.40x10-3± 2.73x10-4 9.32x10-4± 2.35x10-4 -2.14 ± 0.05

1 μM 42.82 ± 3.57 f (100%) 0.39 ± 0.07 2.35x10-2± 2.5x10-2 6.76x10-4± 8.73x10-4 -2.56 ± 1.18

N = 3–8 traces per group. f (100%) indicates feedback configuration was obtained for 100% of the traces.

doi:10.1371/journal.pcbi.1005376.t001
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activates only one pathway. However, extensive biochemical and biophysical evidence has

revealed the existence of GPCR homo- and hetero-dimers/oligomers that differentially alter G

protein signaling. Furthermore, the regulation of these complexes is found to play a critical

role in normal physiology and disease (see [45] for a review). Despite their importance, the

molecular signaling mechanisms of GPCR heteromeric and homomeric complexes remain

largely unknown.

The dysregulation of the heteromeric complex formed by the Gi-coupled metabotropic

glutamate receptor 2 (mGluR2) and the Gq-coupled serotonin 2A receptor (5-HT2AR) has

been linked to schizophrenia [46]. Preclinical and clinical studies suggest that activation of

mGluR2 in the complex by allosteric and orthosteric agonists could represent a new therapeu-

tic approach to treat schizophrenia and other disorders [47–49]. Our group has published

work showing that psychedelic drugs upset the Gi/Gq signaling balance associated with the

mGluR2/5-HT2AR complex by reducing Gi and increasing Gq signaling, while antipsychotic

drugs restore the natural Gi/Gq balance. This is achieved through a crosstalk mechanism in

which a ligand acting on one of the receptors, either 5-HT2AR or mGluR2, can change the sig-

naling on their counterpart receptor [50]. However, the mechanism by which this crosstalk is

achieved molecularly through the mGluR2/5-HT2AR complex remains to be elucidated.

Two possible molecular mechanisms occurring through cross-conformational changes

have been postulated to explain the crosstalk observed between mGluR2 and 5-HT2AR

through the mGluR2/5-HT2AR complex. One referred to as cis-activation, in which the

ligand-free receptor is not able to activate G proteins unless the first one signals and is bound

to G proteins. The second one referred to as trans-activation, in which the signal from the

ligand-bound receptor is transmitted to the neighboring receptor which then signals by acti-

vating G proteins.

The cis-activation and trans-activation crosstalk theories could be distinguished in terms of

molecular kinetic schemes (Fig 8A). We decided to apply SYSMOLE to derive the molecular

kinetic scheme from macroscopic traces obtained from mGluR2/5-HT2AR in response to

LY379268, a ligand belonging to the promising new class of glutamate antipsychotics [51],

which has been shown to elicit a strong crosstalk between the mGluR2 and the 5-HT2AR [46,

50]. While glutamate and serotonin, the two endogenous neurotransmitters, activate Gi and

Gq pathways respectively through the mGluR2/5-HT2AR complex, LY379268 can activate

both Gi and Gq despite only binding mGluR2 (Fig 8A).

Ion channels have been extensively used to measure GPCR signaling activity. For our study,

we expressed the mGluR2 and 5-HT2AR receptors together with a G protein sensitive potas-

sium ion channel (GIRK4�) in Xenopus oocytes and measured using two-electrode voltage

clamp the current flowing through the channel as a function of time (see Materials and Meth-
ods). The input signal for SYSMOLE was a step in concentration of LY379268, and the output

signal the macroscopic current through the GIRK4� channel. Since Gi signaling increases

current through the channel (downward direction) and Gq signaling decreases the current

through the channel (upward direction) [52] the traces obtained (Fig 8B) were perfectly suited

to apply SYSMOLE to understand the relationship between Gi and Gq signaling and derive a

molecular kinetic scheme. It should also be noted that the noise level in these traces results in a

SNR clearly below the cut-off for error-free detection (Fig 6). Should the traces be noisier or

have a type of noise added other than Gaussian, prior to analyzing the experimental traces

SYSMOLE should be tested with synthetic traces and its robustness to noise for that type of

trace determined (see S1 Text sections 4.1 and 4.2 for a description of the robustness of SYS-

MOLE to Brownian noise, and pre-processing strategies to increase the SNR in the trace).

Given that both the opening and closing of the reporter channel are faster processes (milli-

seconds) compared to Gi and Gq activation (seconds) the trace does not capture them, and the
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resulting molecular kinetic scheme allows us to distinguish states resulting from combinations

in which the Gi is OFF (no change in current) or ON (current through the channel is increas-

ing), Gq is OFF (no change in current) or ON (current through the channel is decreasing) or

combinations.

Application of SYSMOLE to different macroscopic traces obtained in response to LY379268

(Table 2) yielded the molecular kinetic scheme associated with the parallel subtraction (Fig 8B

right) with four states, which can be related to different signaling states depending on whether

the Gi or Gq signaling is ON or OFF in the complex. Additional controls were performed with

Fig 8. Molecular kinetic scheme of crosstalk signaling in the mGluR2/5-HT2AR heteromeric complex in response to glutamate antipsychotics. (A)

(Top) Scheme of crosstalk signaling through the mGluR2/5-HT2AR complex. In response to the endogenous ligands glutamate and serotonin, the mGluR2/

5-HT2AR complex signals through Gi and Gq signaling pathways respectively. Certain ligands such as LY379268, a dominant mGluR2 agonist with

antipsychotic properties, are able to crosstalk through the complex and activate both Gi and Gq. (Bottom) Molecular kinetic schemes associated with the cis-

activation and the trans-activation theories of crosstalk. (B) (Left) Representative G-protein sensitive ion-channel (GIRK4*) current trace (output) elicited by a

step in LY379268 concentration from 0 to 1 μM (input). (Right) Molecular kinetic scheme obtained by applying SYSMOLE to the traces. (C) Fractional

occupancies as a function of time of the four states in the molecular kinetic scheme: Gi OFF / Gq OFF, Gi ON / Gq OFF, Gi ON / Gq ON, and Gi OFF / Gq ON.

The molecular kinetic scheme postulates a new state Gi OFF / Gq ON and supports the trans-activation theory for crosstalk through the complex (see Results

section). Simulations were generated with the mean value of the kinetic parameters (N = 5 traces). Kinetic parameter values can be found on Table 2.

doi:10.1371/journal.pcbi.1005376.g008
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injection of only one receptor (mGluR2 or 5-HT2AR) and endogenous ligands to ensure that

the traces captured the crosstalk effects through mGluR2/5-HT2AR. From the molecular kinetic

scheme, it can be inferred that Gi and Gq signaling are processes that occur in parallel upon

LY379268 binding to mGluR2, and that activation of Gq does not require Gi activation. A close

look at the fractional occupancy in each state as a function of time reveals that due to the strong

Gi signal activation of mGluR2 by LY379268 (dominant agonist [50]), most of the complex mol-

ecules move from the Gi OFF/ Gq OFF state to Gi ON/ Gq OFF state and then transition directly

to the Gi ON/ Gq ON state. Interestingly, there is also a fraction of the molecules that transition

from the original Gi OFF / Gq OFF state directly to Gi OFF/ Gq ON state, a molecular state that

had not been postulated before. This fraction, albeit small, amounts to approximately one third

of the total fractional occupancy in the Gi ON/Gq ON state when the system reaches steady state

Our results support the hypothesis of a trans-activation as the mechanism of crosstalk of the

mGluR2/5-HT2AR heteromeric complex. It should be noted that the assignment of these ON

and OFF states does not come directly from SYSMOLE, which is agnostic to the biological

interpretation and is here used to generate hypotheses. The molecular existence of these states

would need to be explicitly tested in further experiments (see Discussion).

Together, these results exemplify the usefulness of the SYSMOLE system-identification ana-

lytical tool in studying heteromeric signaling.

Discussion

A correct characterization of the dynamics of different molecular processes in the cell is funda-

mental for understanding normal physiological and pathophysiological responses. In most

biological systems the direct study of these microscopic molecular processes is not yet possible

due to experimental limitations, and only overall macroscopic cell responses to stimuli (mac-

roscopic traces) can be obtained. Here we introduced a method that combines computational

and analytical approaches to extract information from the macroscopic trace regarding the

molecular microscopic processes and the way in which they are combined. This method,

SYSMOLE, conveniently describes the dynamics of these microscopic processes in the form of

a molecular kinetic scheme analogous to those used in biophysics and pharmacology.

SYSMOLE is implemented in modular fashion. We first detailed the mathematical under-

pinnings of each of the three modules that are included in SYSMOLE: the Identifier Module, the

Classifier Module, and the Molecular Kinetic Converter Module. Through rigorous and system-

atic evaluations, we explored SYSMOLE’s limitations and robustness to noise (see also S1 Text

section 4). We validated the performance of SYSMOLE on experimental traces by correctly iden-

tifying the molecular kinetic scheme describing the activation and inactivation of L-type calcium

channels, as well as the mechanism of action of nifedipine, a calcium channel blocker clinically

used in patients with cardiovascular disease. Furthermore, we applied SYSMOLE to study the

signaling crosstalk mechanism observed in the heteromeric complex formed by mGluR2 and

5-HT2AR in response to LY379268, a compound that belongs to the new class of glutamate anti-

psychotics [53]. A Matlab toolbox with all the functions that we have developed is available in

Matlab Central (https://www.mathworks.com/matlabcentral/fileexchange/61465-sysmole). The

SYSMOLE toolbox contains an implementation of the modules for second-order systems and

Table 2. Kinetic Parameters mGluR2/5-HT2AR Complex Traces.

SNR(dB) Config. σ1 σ2 σ3 γ
50.4 ± 3.81 p (100%) 0.30 ± 0.04 1.73x10-3± 4.96x10-4 2.73x10-3± 1.21x10-3 -2.29 ± 0.73

N = 5 traces. p (100%) indicates parallel configuration was obtained for 100% of the traces.

doi:10.1371/journal.pcbi.1005376.t002
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third-order systems with three poles and two zeros. It contains the experimental data used in the

manuscript, and also provides the user with templates to simulate and test noise models and

apply SYSMOLE to traces from their biological system of interest.

In the broader context of systems biology, other powerful methods exist to extract network

models from biological data in different domains (see reviews [54] and [55] for examples in

allosteric networks and functional genomics, respectively). As one could expect, each method

and approach has its strengths and is most adapted to deal with specific aspects or features of

the data and the biological system. A large group of methods obtain possible networks from

scarce and unhomogeneously-sampled measurements or traces [54–60]. SYSMOLE tackles a

different set of questions and is best adapted to capture subtle features in adequately-sampled

macroscopic traces that underlie essential differences in the biological system. As such, SYS-

MOLE is a complementary approach to other methods, and as the experimental techniques

evolve to enable sampling more often and acquiring more data per unit time, tools like SYS-

MOLE will become particularly useful to have in the computational biologist toolbox.

Compared to other methods that deal with adequately-sampled data, SYSMOLE is a flexible

method that can be generalized to the study of multiple biological systems and applied to dif-

ferent types of biological traces. Various methods have been developed to derive molecular

kinetic schemes from macroscopic current traces in the ion channel biophysics field. The best

results have been obtained utilizing maximum likelihood methods [19, 20] and covariance

methods [61]. These methods strongly rely on underlying models to characterize ion channel

current flow which, following decades of biophysics research, are usually available [4]. Unfor-

tunately, these methods cannot be easily generalized to most biological systems, for which

reliable models of the molecular microscopic processes are typically unavailable and large

numbers of measurements are impractical. Furthermore, many of the available methods are

not able to tackle stimuli (inputs) with different dynamics, a key feature of many biological sys-

tems and physiological responses. SYSMOLE overcomes these limitations. It does not rely on

underlying models, it extracts information per input-output trace pair, and it incorporates

information about the dynamics of the stimulus. Utilizing a system identification step based

on a transfer function allows SYSMOLE to capture the dynamics without relying on a physical

model. By extending the concept of a Markov chain and linking one of the states to the input,

SYSMOLE can extract the molecular kinetic scheme from macroscopic traces elicited by

inputs with various dynamics. Finally, the flexible properties of SYSMOLE have the added

benefit to retrospectively allow leveraging of important biological information from the vast

repository of macroscopic traces collected through the years by different labs.

The overall performance of SYSMOLE is determined by the module with the lowest perfor-

mance, which in turn depends on the characteristics of each particular macroscopic trace and

physiological process under study. The performance of the ARX (autoregressive) method used

in the Identifier Module will degrade as the noise increases, or as the sampling frequency

decreases and the input and output traces become insufficiently sampled in time. Based on our

experience these limitations can be overcome through the application of classical preprocess-

ing and filtering techniques to the traces [22] (see S1 Text section 4.1) together with an acquisi-

tion sampling frequency of 1

2T, with T being the time constant of the fastest process that we

wish to capture. The Classifier Module will not perform properly if information regarding the

differences in time constants of the processes under study is unavailable. Lacking this informa-

tion will result in an improperly bound optimization problem which will not exclude the

parameter region where the feedback and parallel solutions coincide (S1 Text section 1). This

might hinder the applicability of the method to processes characterized by extremely similar

time constants. Finally, the Molecular Kinetic Converter is an analytical conversion, and thus
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in principle will always perform correctly. To confirm the validity of the conversion for every

case, internal checks are included along the mathematical derivation to ensure the rules pre-

sented are sound (S1 Text section 2).

For didactic simplicity, we focused in our presentation on a second-order system, in which

two first-order processes are combined in different arrangements. However, each module in

SYSMOLE can be scaled to multiple processes. The ARX implementation of the Identifier mod-

ule can easily extract up to 6 to 10 processes and does not represent a bottleneck for scalability

[24, 25]. The series of comparisons implemented in the Classifier Module can be updated to

incorporate additional combinations of numbers of poles and zeros. The optimization problems

needed to differentiate these additional combinations are also easily scalable to higher-order

systems, and thus to multiple processes. Finally, the Molecular Kinetic Scheme can be scaled

using a modular approach in which each combination of two processes is considered as a mod-

ule, and the connection of that module to another module or process also occurs through three

possible canonical configurations (see the Scalibility section in S1 Text for a description of the

application of SYSMOLE to third-order systems with three poles and two zeros).

Application of SYSMOLE to the study of crosstalk through the mGluR2/5-HT2AR het-

eromeric receptor complex in Xenopus oocytes illustrates its strength in generating new

hypotheses regarding molecular mechanisms. Our results indicate that LY379268, a glutamate

antipsychotic that binds to mGluR2, can signal through Gq in the absence of any ligand bound

to 5-HT2AR, which suggests trans-activation as the molecular mechanism of crosstalk. This

analysis postulated the existence of a signaling state in which the receptor signals through Gq

without signaling through Gi. This new state might have important implications in understand-

ing the pharmacology of new glutamate antipsychotic compounds [53, 62, 63]. Since SYSMOLE

strictly obtains a Markov-chain state model, the assignment of each of the states to a particular

signaling conformation (Gi ON or OFF, Gq ON or OFF) is also postulated. Confirmation of the

existence of these states will require further experiments in which it is possible to assume that

the occupancies of the states of one or more states is constant or altered. One could for example

perform similar crosstalk experiments (Fig 8) with complexes in which either of the receptors

that form the heteromer are mutated such that it cannot bind Gi or Gq. Furthermore, relevance

of this new postulated signaling state in neurons should also be assessed.

In conclusion, despite the extensive efforts devoted to the development single-molecule

experimental techniques, alternatives are needed for the analysis of macroscopic traces. SYS-

MOLE, a hybrid computational and analytical tool designed to analyze macroscopic traces and

derive molecular kinetic schemes, enables the user to extract information regarding the micro-

scopic processes involved in the response to a given stimulus from the available macroscopic

traces. SYSMOLE has also the added benefit to be able to leverage important biological infor-

mation from the vast repository of macroscopic traces to generate new hypotheses.

Materials and methods

Identifier module

The Identifier Module was implemented in Matlab (www.mathworks.com) using the System

Identification Toolbox ARX functions. Details on loss-function minimization strategies in pre-

diction-error-identifications can be found in [25].

Classifier module

The parallel and feedback optimization problems described in the main text were solved using

a trust-region-reflective algorithm [64] included in the Optimization Toolbox of Matlab

(www.mathworks.com).
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Molecular kinetic converter

Details on the derivation of the molecular kinetic schemes for each canonical configuration

can be found in the supporting materials (S1 Text).

Synthetic trace simulator

Two implementations were used: one in Matlab, the environment in which SYSMOLE is

implemented, and one using COPASI [65], a software application for simulation and analysis

of biochemical networks and their dynamics.

Signal-to-noise ratio calculation

In order to obtain the signal-to-noise ratio (SNR) one needs to calculate the average power of

the signal y(t) PY, as well as the noise power. The signal’s average power can be directly calcu-

lated in the time domain as:

PY ¼
1

N

X1

n¼0

y½n�2 ð47Þ

where y[n] is the sequence resulting from discretizing y(t) with sample period Ts and sample

number n = 1 . . . N.

The noise power depends on the noise characteristics and the bandwidth of y(t), which

varies depending on the parameters of the first order processes that give rise to the signal (ka,
kb, τa, and τb). All the necessary information needed to calculate this value is provided by the

Identifier Module. On the one hand, in the Identifier Module we had included disturbances in

the form of white Gaussian noise with variance λ filtered and added to the output (see Identi-

fier). On the other hand, this module yields the transfer function G(s) that will allow us to cal-

culate the bandwidth of the signal BW. In order to test whether a noise characterization as

WGN is adequate for the type of experimental traces we analyzed, we confirmed that the λ
value estimated by the Identifier Module matched the value of the variance of y(t) before stim-

ulation both for the simulated synthetic traces as for the experimental traces. Once λ and BW
are obtained, the noise power PN filtered to the signal’s bandwidth can be calculated as

PN ¼

Z1

� 1

jGðf Þj2Snðf Þdf ¼
Z1

� 1

jGðf Þj2l df ð48Þ

where G(f) is the frequency response of the transfer function G(s), and Sn(f) is the power spec-

tral density of the noise. Assuming an ideal low-pass filter, the value of this integral can be

approximated to

PN ’ 2l:BW ð49Þ

For our analysis we used Eq (49) with a bandwidth calculated at 3 dB drop in gain. A design of

a non-ideal low-pass filter with cutoff frequency equal to BW, 1 dB ripple in the pass band, and

60 dB attenuation in the stop band yielded practically identical results.

Calcium-channel voltage-clamp traces

Digitized current and voltage values were obtained from previous voltage-clamp experiments

performed in the accessory radula closer muscle of Aplysia californica. Solutions, drug delivery,

and experimental conditions are described in detail in reference [66].
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G-protein coupled receptor activity measurements in Xenopus oocytes

Oocytes were isolated and microinjected with equal volumes (50 nl), as previously described

[67]. In all two-electrode voltage-clamp experiments (TEVC), oocytes were injected with 1 ng

of mGluR2, 2 ng of 5-HT2AR, and 2 ng of GIRK4�, and were maintained at 18 ºC for 14 days

before recording.

Whole-cell currents were measured by conventional two-electrode voltage-clamp (TEVC)

with a GeneClamp 500 amplifier (Axon Instruments, Union City, CA, USA. A high-potassium

(HK) solution was used to superfuse oocytes (96 mM KCl, 1 mM NaCl, 1 mM MgCl, 5 mM

KOH/HEPES, pH 7.4) to obtain a reversal potential for potassium (Ek) close to zero. Inwardly

rectifying potassium currents through GIRK4� were obtained by clamping the cells at - 80 mV.

A solution of 3 mM of BaCl in HK solution was perfused at the end of each trace to ensure that

the current measured corresponded to GIRK4�, as previously described [52].

Supporting information

S1 Fig. Signature of poles, zeros, and gain. Second-order transfer-function values of the time

constants associated with the poles and zero, and the gain resulting from applying the three

canonical configurations to combine two first-order processes defined by time constants τa = 5

ms and τb = 80 ms and strengths (gains), ka and kb, ranging from -10 to 10.

(TIF)

S2 Fig. Convergence of the Classifier Module. Study of the convergence properties of the par-

allel and feedback optimization problems when tested with two processes, a and b, characterized

by τa = 15 ms and τb = 150 ms combined in parallel (A) with ka 2 [−10, 10] and kb 2 [−10, 10],

or in feedback (B) with ka 2 [−10, 10], and kb2 [0, 10] (negative kb yields unstable positive-feed-

back systems). Left panel indicates, in red the value for the cost function of the parallel problem

(fvalp) and in blue the value for the cost function of the feedback problem (fvalf), as a function of

the number of iterations in the optimization algorithm. First column indicates the normalized

Euclidean distance between the real parameter values (τa, τb, ka, kb) and the solution obtained

by the parallel optimization problem (top), and the feedback optimization problem (bottom).

Second column indicates the values for the cost functions of the parallel optimization problem

fvalp (top) and the feedback optimization problem fvalf (bottom). Finally, the third column indi-

cates the value of the logical condition tested by the Classifier Module to discriminate between

parallel and the feedback configurations (Fig 3). Identical studies were performed testing the

Classifier Module with all possible configurations for τa = [5, 10, 15, 20] and τb = [100, 150, 200,

300] with similar results. Boundary conditions used for optimization problems are ka and kb 2
[−20, 20], τa 2 [1, 50] ms and τb2 [50, 350] ms. We restricted kb2 [0, 20] for the feedback prob-

lem since negative kb would yield positive-feedback unstable systems for negative values. The

results indicate that the parallel and feedback optimization problems converge for a wide range

of parameters and that the implementation of the Classifier Module is capable of discerning

between the parallel and feedback configurations in second-order transfer functions.

(TIF)

S1 Text. Additional mathematical derivations and scalability. (1) Constraints for optimiza-

tion problems. (2) Derivation of molecular kinetic schemes for the canonical configurations.

(3) Scalability. (4) Noise.

(DOCX)

S1 Data. Experimental Traces. (1) L-type calcium ion-channel current elicited by voltage

steps from -90 to 0 mV, first in the absence of nifedipine, and after addition of nifedipine at
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100 nM and 1 μM concentration. (2) G-protein sensitive ion-channel (GIRK4�) current traces

elicited by a step in LY379268 concentration from 0 to 1 μM.

(ZIP)
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