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Abstract

The community, the assemblage of organisms co-existing in a given space and time, has

the potential to become one of the unifying concepts of biology, especially with the advent of

high-throughput sequencing experiments that reveal genetic diversity exhaustively. In this

spirit we show that a tool from community ecology, the Rank Abundance Distribution (RAD),

can be turned by the new MaxRank normalization method into a generic, expressive

descriptor for quantitative comparison of communities in many areas of biology. To illustrate

the versatility of the method, we analyze RADs from various generalized communities, i.e.

assemblages of genetically diverse cells or organisms, including human B cells, gut micro-

biomes under antibiotic treatment and of different ages and countries of origin, and other

human and environmental microbial communities. We show that normalized RADs enable

novel quantitative approaches that help to understand structures and dynamics of complex

generalized communities.

Author Summary

Living things are parts of complex communities, similar to humans living in cities. A

quantitative way of describing such communities is to measure the abundance of each spe-

cies in the community so that a sorted list of abundance numbers is produced, a so-called

Rank Abundance Distribution (RAD). With recent breakthroughs in genome analysis this

approach can also be applied to very complex communities, such as the community of the

myriads of microbes in a human gut (gut microbiome), or the diverse set of human

immune cells. One problem with this approach is that it is not trivial to quantitatively

compare RADs for different communities, especially if they are highly complex. We show

that it is possible to computationally “normalize” RADs so that they can be quantitatively

compared across many different communities. In this way, this normalization enables
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insight into structures and dynamics of arbitrary communities. We demonstrate this with

applications to human immune cells, gut microbiomes under antibiotic treatment or

under different nutritional regimes, and environmental microbiomes.

Introduction

The community, i.e. the assemblage of organisms co-existing in a given space and time, is cen-

tral to much of ecology [1], and since Darwin’s “entangled bank” [2] one of the great chal-

lenges of biology is to explain the observed species diversity in communities mechanistically as

a consequence of interactions and evolution. Modern experimental methods of high-through-

put sequencing have brought us closer to complete inventories of community diversity. More-

over, these methods enable us to widen the scope of the community concept to generalized
communities, that we define as assemblages of genomically diverse entities, which include,

apart from communities in classical ecology, for instance B or T cell repertoires of the adaptive

immune system, viral quasi-species, tumors, or human microbiomes.

An intuitive description of a community composition is a table with columns species and

abundance, possibly ordered from most to least abundant species (we use the term species here

in a loose sense for operational taxonomic units or other genomically distinct biological enti-

ties). A visually more accessible graphical representation of this table would be a plot that

arranges the species along the horizontal axis and the abundances as vertical bars, sorted from

highest to lowest bar. While such a plot is expressive for a specific community, it does not lend

itself to quantitative comparisons between communities. To illustrate this point, consider a

comparison of a community of South-American animal species with one of Sub-Saharan Afri-

can animal species from regions with otherwise similar conditions. The two species columns

of our table would have practically no overlap so that a direct comparison of these tables or

plots is not possible. The same lack of overlap has to be expected for other generalized commu-

nities. For instance if we compare high-throughput sequencing data of B cell receptors of two

persons, it is unlikely that there are receptors on mature B cells that occur in both persons.

Nevertheless, it is a meaningful biological question whether the abundance structures of the

two sets of B cells differ, e.g. whether the B cell repertoire is dominated by a few clones with

high cell numbers, or whether it is distributed over many different clones with low cell

numbers.

A popular method for community comparison even in the absence of species overlap is to

compute for each community a diversity index [3], i.e. a single number that characterizes one

aspect of the community, for instance the species richness, the evenness of the distribution, the

Shannon entropy, or one of many related measures [4], and then to compare the values of

these indices between communities. The main disadvantage of this index approach is that it

reduces a feature-rich abundance distribution to a single number, which may neglect impor-

tant characteristics of that distribution.

An alternative approach that had a major influence on the development of the theoretical

foundations of modern ecology is to discard the species labels of the species-abundance table,

which then becomes a so-called Species Abundance Distribution (SAD; for excellent reviews

see [5], or [6], chapter 9). There are several established ways of presenting the information

contained in a SAD (see Fig 1 of [5]), for instance as straightforward histogram with species

abundance as function of a species index, or as a binned histogram, typically with doubling bin

widths with decreasing abundance. Here we focus on the Rank Abundance Distribution or

RAD (Fig 1) as SAD representation. RADs are simply vectors of species abundances sorted in

Quantitative Comparison of Abundance Structures of Generalized Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005362 January 23, 2017 2 / 29

Competing Interests: The authors have declared

that no competing interests exist.



decreasing order, usually visualized as two dimensional plots, possibly with one or both axes

scaled logarithmically. In comparison to the mentioned simple and binned histograms, RADs

are more smooth due to their component sorting [7], and they retain the full biological resolu-

tion of the sampling experiment. The information content in RADs and probability distribu-

tion functions is the same, and one can be transformed into the other (see e.g. [8, 9]).

Obviously, RADs retain the complete shape information of species-abundance tables. The

abstraction of species information means that RADs enable analysis of generic abundance dis-

tribution features of generalized communities, independently of the actual species

composition.

Fig 1. A typical Rank Abundance Distribution (RAD). A RAD with species abundances plotted in decreasing order from the most

abundant (rank 100 = 1) on the left to the least abundant species sampled from the community on the right. Both axes are scaled

logarithmically to reveal the global structure of the RAD. Quantities such as the number of sampled individuals or the richness of the

sample can be easily retrieved from the RAD.

doi:10.1371/journal.pcbi.1005362.g001
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RADs, and more generally SADs have been a key conceptual tool in the development and

benchmarking of mechanistic models of ecological communities [10–15]. The mathematical

functions resulting from mechanistic or statistical models, such as the log-normal distribution,

were usually fitted to empirical RADs or SADs to identify the best community model. This

basic research has paved the way for the application of these distributions to community com-

parisons, for instance to the characterization of community changes with changing environ-

mental conditions (see e.g. [16, 17]. In these cases, the community comparison is typically a

parameter comparison between fits of generic mathematical models to different RADs or

SADs, or it is a purely visual comparison of these distributions [5].

In real-world samples, RADs are often not adequately described by a uniform mathematical

model, e.g. a single log-normal distribution [18]. In macroecology, knowledge about the prop-

erties and relations between the observed animals and plants can be used to deconstruct multi-

modal distributions, and to fit simple models to fractions of the samples [3]. This knowledge is

generally not available for high-throughput sequencing data of complex generalized communi-

ties, so that RAD analyses based on simple parametric models are difficult. This calls for a

non-parametric approach. A further problem is that in practice the number of sampled species

or sequences usually differs between samples. This means that RADs often have different

dimensions and cannot be compared directly. It is possible to test for arbitrary pairs of RADs

the null hypothesis that they originate from the same distribution using the Kolmogorov-Smir-

nov test [3, 19], but this is usually not helpful for quantitative comparisons. Technically, differ-

ences between a pair of RADs of different richness m, n could be also quantified by the

Kolmogorov-Smirnov statistic D evaluated for the corresponding pair of cumulative distribu-

tion functions. However, it is problematic to interpret D in such cases since we are forced to

equate non-reporting of |m − n| ranks in the shorter RAD with zero abundance, although the

non-reporting may have technical reasons, e.g. limited sequencing depth. Thus, the question

arises whether quantitative RAD comparisons are possible between samples of different rich-

ness. We quote from the widely cited SAD review by McGill et al. [5]:

“How do we compare SADs? Nearly all comparisons of SADs along gradients, deconstruc-

tions or time trajectories to date have been purely by visual inspection (. . .). Most particularly,

these visual inspections have been performed on rank-abundance plots which, by using an x-

axis that runs from 1 to S (i.e. species richness), seriously confounds the effects of species rich-

ness per se with other changes in the shape of the SAD (. . .). Changes in species richness are a

legitimate factor that should be considered a change in shape of the SAD. However, changes in

richness so strongly dominate in rank-abundance plots that no other changes are easily con-

sidered. Is there any other change in the shape of an SAD after controlling for the fact that pro-

ductivity affects richness? We cannot say at the present time (. . .) More rigorous multivariate

methods are needed.”

Here, we introduce MaxRank normalization of RADs, a new method that enables quantita-

tive comparison of RADs, including their shapes. The approach is non-parametric and allows

for the direct quantitative comparison of complex RADs without deconstruction and model

fitting. An essential component of the method is the re-sampling of RADs up to a given rich-

ness. Consequently, the resulting normalized RADs (NRADs) are largely agnostic about the

true richness of the original sample.

The fact MaxRank normalization uses re-sampling may lead to conflation with rarefaction
and rarefying (on the distinction between the terms see [20]), two other techniques that also

use re-sampling. Rarefaction [21] is typically used to estimate and compare richness between

samples, i.e. exactly the quantity that is not of interest in MaxRank normalization. Rarefying
(e.g. [22]) is applied to normalize OTU counts between samples. However, it is precisely the

purpose of RADs and MaxRank normalization to abandon OTUs, and thus to make
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quantitative comparisons of abundance structures of different communities possible, irrespec-

tive of OTUs.

We show here that results from the quantitative comparison of normalized RADs reflect

biological differences between samples. To emphasize the versatility of the method, we have

chosen a diverse set of high-throughput sequencing data representing different types of gener-

alized communities, namely, human B cell receptor repertoires, and various human and envi-

ronmental microbiomes.

As one example of generalized communities we use human B cell receptor (BCR) reper-

toires. The diversity of BCRs in an individual is crucial for the recognition of antigens and the

adaptive immune response [23]. Here we focus on the so-called heavy part of the receptor

encoded by combinations of gene segments of the Ig heavy chain (IGHV) locus (Fig 2A; [24]),

and especially on the diversity of the “variable” VH segments in that part (Fig 2B). Based on

sequence homology, the VH segments are grouped into seven families (VH1—VH7), with mem-

bers of a family having more than 80% sequence homology [25]. The sizes of the families vary

from 1 (VH6 family) to 18–21 (VH3 family). The primary repertoire of rearranged IGHV genes

Fig 2. Diversity of the VH region of BCRs. (A) The human genome contains sets of VH, DH, and JH gene segments. (B) The “variable” VH segments can

be grouped into seven VH families based on sequence similarity. (C) A genetically diverse pool of B cells is generated by V(D)J recombination. (D)

Exposure to antigens induces an adaptation of the BCR repertoire, generating genetic variants and changing the usage pattern of VH gene segments.

doi:10.1371/journal.pcbi.1005362.g002
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among naïve, antigen-inexperienced B cells (Fig 2C) typically encompasses all available VH
segments, although abundances can vary considerably between VH gene segments. Exposure

to antigens leads to a selective adaptation of the BCR repertoire that results in individual-spe-

cific sets of memory B cells (Fig 2D). In the course of this complex maturation process, the

usage of VH segments in BCR rearrangement repertoires may change. On top of this layer of

complexity, several classes of BCRs with different biological functions, such as IgG or IgM, are

generated by class switching. Depending on the chronological order of these different pro-

cesses, and on the individual immune histories, we can expect more similar or more divergent

IGHV gene diversity between receptor classes and individuals in memory B cells. We study

this question with RADs computed from High-Throughput Sequencing (HTSeq) data.

HTSeq technology is also transforming the study of microbial communities, because it

allows us for the first time to see these complex assemblages in their full diversity [26, 27]. For

instance, we now start to see the diverse composition of human gut microbiomes, and we

begin to understand the links between the human microbiome, health and disease [28]. How-

ever, the deluge of data makes us also aware of the need for new ways to analyze and model

such complex systems, e.g. with methods developed in ecology [29], such as RADs. We have

selected three HTSeq data sets to demonstrate the potential and limitations of RADs for the

analysis and the modeling of microbiomes: the considerable effect of antibiotics on gut micro-

biomes [30], a large collection of gut microbiomes from countries where different life styles

prevail [31], and a diverse set of human and environmental microbiomes [32]. In these exam-

ples, we use RADs as an analytic tool to generate easily interpretable results, and as a basis for

quantitative models.

Materials and Methods

Datasets

In the work presented here we used high-throughput sequencing (HTSeq) amplicon data from

four different sources to compute and analyze NRADs, as described in the following.

B cell dataset. HTSeq amplicon data of IGHV genes were obtained for four different

memory B cell fractions, IgG+CD27− (for short: IgG+), IgG+CD27+, IgM+IgD+CD27+,

IgMþ
onlyCD27þ, from two unrelated healthy donors, as published in [33] and in NCBI Sequence

Read Archive (SRA) entry SRP062460. Since each fraction was split evenly into two indepen-

dently processed subsamples, the total number of analyzed samples was 16. Sequence process-

ing was described in [33]. Briefly, reads of bad quality were removed, and remaining reads

collapsed to single sequences to eliminate PCR bias. Sequences were then assigned to their

respective VH gene segments. For all 16 samples, NRADs were computed using VH gene seg-

ments as “species” and the number of distinct sequences assigned to each VH gene segment as

abundance of the respective species.

Gut microbiome dataset. HTSeq data (bacterial 16S rRNA gene fragment amplicons)

from 528 human gut microbiomes [31] were retrieved from MG-RAST project 401 (http://

metagenomics.anl.gov/). The dataset comprised 114 samples from rural Malawi, 315 samples

from US metropolitan areas, and 99 samples from the Amazon region of Venezuela. Human

subjects were aged between 11 days to 83 years with a median of 14 years.

GlobalPatterns dataset. Caporaso et al. [32] evaluated diversity patterns of microbial

communities across a panel of HTSeq samples (bacterial 16S rRNA gene fragment amplicons)

from diverse sources, including samples from human feces, skin, and tongue, environmental

samples from ocean, estuary sediment, freshwater, soil, and three mock communities. Data

from 26 of these samples were available through the R-package phyloseq [34], version 1.12.2.

We used the OTU (Operational Taxonomic Unit) tables provided by phyloseq to compute
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NRADs. For better readability, samples were renamed according to the type of sample origin

and given a consecutive sample number, e.g. from old names LMEpi24M, SLEpi20M in [32] to

new names lake1, lake2. For human origins tongue, palm, feces, the same sample numbers refer

to the same individuals, e.g. tongue1 and feces1 come from the same person number 1. A corre-

spondence table linking old and new names is provided in S1 Table.

Antibiotic treatment dataset. Dethlefsen et al. [30] studied the effect of the antibiotic

Ciprofloxacin on gut microbiomes of three healthy human individuals using HTSeq data (bac-

terial 16S rRNA gene fragment amplicons) before (8 measurements), during (4 measure-

ments), and after treatment (6 measurements). The corresponding 18 OTU tables were

retrieved from the supplementary material of [30].

Computation of normalized RADs (NRADs)

For each dataset we followed the flowchart in Fig 3.

Compilation of abundance vectors. For each of the samples we had a two-column table

of sequences and the corresponding numbers of sequence reads (here proxies for abundances),

as obtained from the HTSeq experiment, or, equivalently, an OTU table with OTU names or

numbers and the corresponding abundances in the sample. All data had been pre-processed

and controlled for quality as described in [33], [30], [31], and [32], respectively.

The species columns were discarded, so that only a list or vectors of abundances remained

for each sample. Abundances of each vector were sorted in descending order, bringing the

highest abundance to the first element of the vector (= rank 1), the second highest to rank 2,

etc. The resulting abundance vectors, one for each sample, were then normalized in the next

step.

MaxRank normalization. MaxRank normalization is the key step to make abundance

structures of generalized communities comparable, thus enabling all succeeding analyses.

MaxRank normalization maps all rank abundance vectors to the same rank range from 1 to a

common maximum rank R. The normalization procedure is explained in the following.

First we chose the maximum rank or “MaxRank” R (symbol R is used for the MaxRank

throughout this work). The minimum R is 2 because R = 1 would eliminate all abundance

structure. The maximum R is the minimum dimension of rank abundance vectors included in

the analysis. For instance for the GlobalPatterns dataset, we had rank abundance vectors with

dimensions from 2067 to 7679, and the maximum possible R for the whole set is therefore

2067. A value of R larger than this maximum would mean that we had to invent new ranks

that have not been observed for at least one sample. In practice, this maximum R is often a

good choice since it retains the abundance structure of all included communities in the great-

est possible detail. We have therefore chosen in all analyses the maximum possible R.

Once the maximum rank had been fixed to a common R for all samples, we applied the

MaxRank normalization separately to each sample. To this end we first generated for each

sample s a pool of Ns ¼
PRs

r¼1
Asr individuals, with Rs the original maximum rank (i.e. the rich-

ness) of sample s, and Asr the abundance of rank r in that sample. From this pool we drew indi-

viduals at random with uniform probability and without replacement as long as the number of

sampled ranks did not exceed R. In this way we generated a new, reduced abundance vector of

R ranks, with a reduced number N 0s of individuals. Division of these reduced abundances by N 0s
transforms the reduced abundance vector to a probability distribution (or relative abundances)

for the R ranks with rank probabilities summing up to 1. We use therefore the terms probabil-
ity and abundance in the remainder of the article as synonyms.

If R = Rs, the procedure above reproduces exactly the original RAD. If R< Rs, the random

drawing of individuals from the pool in general introduces a sampling error in the
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abundances. To control this error, we repeated the procedure several times (typically 10–100

times) and averaged over all sampled abundance distributions. This average abundance distri-

bution was returned as the final “normalized RAD” (NRAD) for each sample, together with

90% confidence intervals for the mean abundance at each rank, estimated as the interval

between the 5% and 95% percentile of the bootstrapped averages at the respective rank.

For the NRAD of sample i we use as notation in the following a vector ai of R abundances air:

ai ¼ ðai1; ai2; . . . ; aiRÞ ð1Þ

Fig 3. General process employed in this work. Flowchart of procedure from original species/abundances

or sequence/reads data (top box) to original RADs, then to NRADs, and analyses based on NRADs.

doi:10.1371/journal.pcbi.1005362.g003
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with elements air 2 ]0, 1] (ranks r = 1, 2, . . ., R) that are sorted (aik� aiℓ for ranks k< ℓ), and

normalized (
PR

r¼1
air ¼ 1).

Software implementation of MaxRank normalization. We have implemented the meth-

ods used in this work in free open source software packages RADanalysis and RankAbundance-
Distributions available in R (https://cran.r-project.org/web/packages/RADanalysis/) and Julia

(https://github.com/DanielHoffmann32/RankAbundanceDistributions.jl).

Analyses of NRADs

The last box of the flowchart Fig 3 indicates that sets of RADs normalized to a common R can

be analyzed in numerous ways. In this article we used methods from three branches of data

analysis: ordination, clustering, and classification. Since many ordination and clustering meth-

ods require a distance between the studied objects, we first describe how we computed dis-

tances between pairs of NRADs, and then the actual analysis methods.

Distances between NRADs. In this work, if not mentioned explicitly otherwise, a distance

dR between a pair of NRADs ai,aj is the Manhattan distance:

dRðai; ajÞ ¼
XR

r¼1

jair � ajrj: ð2Þ

The reason for using the Manhattan distance was that it accounts for NRAD-NRAD differ-

ences in a balanced way: NRADs typically show the largest differences in the first few ranks (in

the “heads” of the NRADs, Fig 1), while the differences are typically small in the “tails” of the

NRADs, which comprise many more ranks than the heads. The Manhattan distance gives the

few large differences in the small heads and the many small differences in the large tails

approximately the same weights.

All pairwise distances dR(ai, aj) between NRADs in a dataset were collected in a distance

matrix for that dataset. The distance matrix was then used for distance based ordination and

clustering.

We tested the practical suitability of the Kolmogorov-Smirnov statistic D as a distance mea-

sure using the function ks.test of R-package stats [35], version 3.2.2.

Ordination. We used classical multi-dimensional scaling (cMDS) [36] as an ordination

method to arrange NRADs (Eq 1) of each dataset in an expressive and visually accessible way,

usually in two dimensions called first coordinate and second coordinate. For a cMDS analysis,

the distance matrix of the dataset to be analyzed was submitted to the cmdscale function of the

R-package stats [35], version 3.2.2, or the classical_MDS function of Julia package Multivariate-

Stats, release 0.1.0 (https://github.com/JuliaStats/MultivariateStats.jl).

Clustering. NRADs of the B cell and GlobalPattern data were clustered hierarchically by

applying function hclust of R-package stats, version 3.2.2, to the NRAD distance matrix using

the complete linkage cluster criterion.

NRAD averaging. Groups of NRADs, for instance the three groups of NRADs of gut

microbiomes of individuals (a) before, (b) during, or (c) after treatment with Ciprofloxacin

[30], or NRADs of gut microbiomes of individuals in certain age intervals [31] were summa-

rized by computing an average NRAD �aðgÞ ¼ 1

n

Pn
i¼1

ai for each group g with members

i = 1, 2, . . ., n. Note that averages of NRADs are NRADs themselves with the same MaxRank R
and total abundance of 1. The 90% confidence interval for the mean NRAD of each group g
was estimated for each rank, estimated as the interval between the 5% and 95% percentile of

the bootstrapped averages at the respective rank.

Classification. For the classification of gut microbiomes according to country of origin

we trained random forests [37] models with R-package randomForest, version 4.6-12 [38]
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with NRADs as predictors and country (MV vs. US) as class labels. The importance of each

rank for the classification was estimated by computing the effect on the classification perfor-

mance of randomly permuting class labels for each rank. Models were tested by threefold

cross-validation, i.e. threefold training of a model on a randomly selected 2/3 of the data, fol-

lowed by predicting the labels of the left-out 1/3, and comparison of predictions with ground

truth from [31]. Prediction performance was quantified by the accuracy ACC and the κ statis-

tic [39]:

ACC ¼
ncorrect
N

; ð3Þ

k ¼
ACC � ACCexpect

1 � ACCexpect
; ð4Þ

with N predictions of which ncorrect were correct, and ACCexpect the accuracy expected by ran-

domly guessing from the given true distribution of labels with guessing probabilities as

obtained from the model. For example, for N instances labeled by country X or Y we predict

with the model npred,X and npred,Y, while the true numbers are ntrue,X, ntrue,Y, and we have then

ACCexpect = (npred,X/N) � (ntrue,X/N) + (npred,Y/N) � (ntrue,Y/N). We report κ because ACC can be

biased if the different labels are not represented by approximately equal numbers of instances.

A simplified interpretation of κ is the fraction of prediction accuracy that is not explained by

guessing. A perfect model has κ = 1, a randomly guessing model κ = 0.

Model fitting. For the B cell data, geometric distributions were fitted to VH gene sequence

counts with a maximum likelihood method in Julia v0.4 package Distributions (https://github.

com/JuliaStats/Distributions.jl) and tested for consistency by a one-sample Kolmogorov-Smir-

nov test in Julia v0.4 package HypothesisTests (https://github.com/JuliaStats/HypothesisTests.jl).

For the model of gut microbiome entropy as function of age, we computed Shannon entro-

pies HR from NRADs with function entropy from Julia v0.4 package StatsBase (https://github.

com/JuliaStats/StatsBase.jl). Age was provided by the dataset given by [31].

The model was fitted to the set of (entropy, age) pairs by least-squares minimization with

the Levenberg-Marquardt algorithm [40], as implemented in Julia v0.4 package LsqFit (https://

github.com/JuliaOpt/LsqFit.jl). Starting conditions for the fit were the same for the MV and

US set, namely H0
R ¼ 3:5, λR = 0.19, Hmax

R ¼ 6:0, obtained from a rough data-based estimate.

Confidence intervals were estimated from the Jacobians at the optimally fitted parameters, as

implemented in LsqFit function estimate_errors.
Comparison to standard distributions. Five standard distributions commonly used to

model RADs were fitted to the RADs of the GlobalPattern set as described in [41] and imple-

mented in the radfit function of R-package vegan, version 2.2-1 [42]: broken stick (null model,

no free parameter), preemption (geometric series), log-normal, Zipf, and Mandelbrot. Fits to

the Mandelbrot distribution did not converge, so that only the other four distributions are

shown.

Results

B cell dataset: Abundance structures of biologically distinct generalized

communities

With their highly diverse repertoire of antigen-binding receptors, human memory B cells are

an example of what we have earlier termed generalized community. This diversity is achieved

by a process that is only partly understood and currently subject of intense research [43, 44]: it

starts with the genetic recombination of triplets of specific VH, DH, and JH gene segments from
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genetic pools of these segments, followed by various mutation and selection steps, and eventu-

ally leads to distinct classes and sub-classes of memory B cells.

We assume as a working hypothesis that all memory B cells underwent the same diversity

generating process. If this is true, we should see a very similar VH gene rearrangement pat-

tern (Fig 2) in all sub-classes of memory B cells, leading to the same normalized RADs

(NRADs) of memory B cells in all sub-classes. To test this hypothesis, we used HTSeq data

of the immunoglobulin heavy-chain variable (IGHV) regions of four large memory B cell

sub-classes, IgG+, IgG+CD27+, IgMþ
onlyCD27þ, IgM+IgD+CD27+, from two donors. The IGHV

regions derive from the genomic pool of 38–46 VH segments (Fig 2A) and have been modi-

fied by mutation and selection steps. If we interpret the original set of VH segments as the

“species” to be ranked according to their abundances, we should under our working hypoth-

esis see the same NRADs in all memory B cell sub-classes. To exclude distortions of abun-

dances due to primer bias, we collapsed abundances of VH segments from the measured read

numbers to the numbers of distinct VH sequence variants. Thus, in this case an abundance is

the number of distinct sequences that originate from the same VH segment, and that have

been diversified by somatic mutations and clonal expansions. Fig 4 summarizes the results.

The non-normalized RADs (top left of Fig 4) have similar, boomerang-like shapes, although

direct comparisons is difficult since differences in abundance span more than one order of

magnitude, and maximum ranks differ between 35 and 40. For direct comparison we therefore

normalized the RADs to a MaxRank R = 35 (top right of Fig 4). The resulting NRADs have

overall very similar shapes, lending support to our working hypothesis of a common genera-

tion and selection process. However, there are notable features that differentiate between

groups of NRADs. For instance at rank 1 the most diverse IGHV regions in IgM receptors of

donor 1 (green curves in Fig 4) are more abundant than all other rank 1 abundances. Con-

versely, for donor 2 the most diverse IGHV regions in IgM (blue curves) are the least abundant

of all rank 1 abundances. Towards higher ranks, IgM abundances of both donors (blue and

green) are more similar to each other. IgG receptors (red and orange) have more similar abun-

dance structures throughout all ranks, and have stronger right tails than IgM receptors, indi-

cating a more even VH segment diversity in IgG than IgM receptors.

The differences between the NRAD curves are subtle, but they emerge clearly when we

quantitatively analyze NRAD distances (Eq 2). In the hierarchical clustering tree of the dis-

tances (Fig 4) we see three main clusters of NRADs, a big cluster of IgG+ and IgG+CD27+

NRADs on the right of the tree in red and orange, and two clusters of IgM related NRADs.

These three clusters appear robustly, no matter whether the average linkage or the complete

linkage criterion is used for clustering.

As expected for replicates, (A, B) and (C, D) of the same sub-class coming from the same

donor yield NRADs that are most similar and thus fall into the same lowest-level clusters.

Beyond this, memory B cell sub-classes have remarkably different cluster structures. The big

IgG+/IgG+CD27+ cluster (red and orange) of eight NRADs has a substructure of an IgG+ cluster

and a separate IgG+CD27+ cluster, i.e. here the memory B cell sub-class has a stronger impact

on the NRAD than inter-donor differences. This is different for the IgMþ
onlyCD27þ and

IgM+IgD+CD27+ clusters. There, each of the two donors forms a cluster of its own that com-

bines both IgMþ
onlyCD27þ and IgM+IgD+CD27+ NRADs, i.e. in these two IgM sub-classes,

inter-personal differences in VH diversity patterns are stronger than differences between sub-

classes.

Our working hypothesis was that we have basically a single, diversity generating process for

all memory B cell sub-classes, leading to the same NRADs for VH gene rearrangement pattern

in all sub-classes. Overall, our results are consistent with this big picture since all NRADs are
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Fig 4. Rank abundance distributions of memory B cell receptors. Four different B cell receptor sub-classes from donors 1 (replicate samples A, B)

and 2 (replicates C, D) are compared. Top left panel: Log-log plot of RADs prior to normalization. Top right: Log-log plot of corresponding NRADs. Legend

for RADs and NRADs is given in bottom right panel. Bottom left: Hierarchical clustering tree based on all pairwise distances between the 16 NRADs.

doi:10.1371/journal.pcbi.1005362.g004
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variants of the same boomerang shaped template. However, the quantitative analysis of NRAD

distances picked up differences that require refinements of this model. This is not surprising

since some of the steps that potentially affect VH rearrangement diversity, for instance class

switching, cannot apply equally to all memory B cell sub-classes. What is surprising are the

specific differences in VH rearrangement diversity between IgM and IgG sub-classes, e.g. the

structure of the IgG cluster discussed above suggests that there could be significantly different

selection pressures towards the final memory B cells in the two sub-classes IgG+ (i.e.

IgG+CD27−) and IgG+CD27+.

Recently, we have used the same HTSeq data for a detailed sequence-based analysis of the

clonal composition and genealogy of memory B cells [33]. Although our current NRAD-based

analysis disregards much of the information used in [33], results are consistent: First, the VH
gene rearrangement composition is mostly very similar across the studied sub-classes of mem-

ory B cells, in agreement with a shared generation process [45]. Second, IgM+IgD+CD27+ and

IgMþ
onlyCD27þ show almost the same VH gene rearrangement diversity, likely due to their

clonal relatedness as described in [33]. Third, there are significant and consistent differences

between IgG+CD27+ and IgG+CD27− with respect to mutation load in both donors, also in

agreement with [46] or [47].

To conclude this section, we return to the conspicuous boomerang shape that is the tem-

plate common to all B cell receptor RADs and NRADs (Fig 4). When testing for similarity to

standard model distributions in ecology, we found that the broken stick distribution [13] is a

good description for the NRADs of sub-class IgG+CD27+ (Fig 5). If included in the hierarchical

clustering, the broken stick NRAD appears among the branches of the IgG+CD27+ sub-tree

(inset of Fig 5). However, even for the other sub-classes, we cannot reject the broken stick dis-

tribution (p-values from Kolmogorov-Smirnov tests between 1.0 and 0.87 with a median of

0.99), though they deviate more than IgG+CD27+. Note that the normalized broken stick distri-

bution in Fig 5 has no free parameters and therefore has not been fitted.

Several mechanisms in community ecology and elsewhere lead to broken stick RADs [13,

48–50]. A simple explanation for the observed RADs of VH segment usage could be the follow-

ing. Assume a fixed number nVH of VH segments in the genome, and a fixed total number Nt of

all BCR sequence variants (i.e. summed over all VH segments). The biological purpose of fixing

Nt could be to provide a sufficient number of BCR variants to cover the typical antigen diver-

sity. These two assumptions fix the average number Nt=nVH of sequence variants per VH seg-

ment. If this is all we know, the Maximum Entropy principle states that the geometric

distribution is the most parsimonious explanation fulfilling these requirements [51]. The geo-

metric distribution is the discrete equivalent of the continuous exponential distribution, which

generates the broken stick RAD [48]. Thus, our argument posits a random process that pro-

duces numbers of sequence variants per VH segment with a geometric distribution. In fact,

sequence counts of most RADs are compatible with geometric distributions according to Kol-

mogorov-Smirnov tests at significance level 0.05 (exception: sample D of IgM+IgD+CD27+

with p = 0.04). Given that there is good agreement between the RADs of the BCR sub-classes

(Fig 4), and also good agreement in the usage of individual VH segments between human

donors [33], our argument suggests the following two testable hypotheses. First, the random

mechanism leading to the broken stick RAD could be encoded in the human genome and con-

served among individuals with intact immune systems. Second, since our argument is generic,

we should see the broken stick RAD also in other species with similar BCR rearrangement

mechanisms.
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Antibiotic treatment dataset: Abundance structure reacts to

perturbations

Dethlefsen et al. [30] reported the effects of a short course of Ciprofloxacin (Cp) treatment on

the gut microbiomes of three healthy human individuals. When comparing gut microbiomes

prior to treatment and during treatment, they found markedly perturbed taxonomic composi-

tion, richness, diversity, and evenness. These perturbations varied between individuals. After

treatment, the community compositions recovered within four weeks to states close to pre-

treatment, though with some species lost. We tested whether the dynamics of perturbation

and recovery is reflected by changes of NRADs.

The NRADs fall into two clusters, one well-defined “off-Cp” cluster of NRADs before and

after treatment (blue and green in Fig 6), and one wider “on-Cp” cluster during treatment (red

in Fig 6). All on-CP NRADs have heavier heads and less weight in the tails, consistent with the

decreased gut microbiome diversity under treatment discovered by [30]. After normalization,

we could compute distances between all pairs of NRADs and apply multidimensional scaling

(MDS) to the distance matrix. The MDS plot Fig 6B captures the abundance dynamics from

the well-defined off-Cp cluster on the right to the wider on-Cp cluster on the left and back

again to the off-Cp cluster on the right. We usually find in MDS analyses a strong correlation

of the first coordinate with Shannon entropy. Hence, the dynamics in the MDS plot Fig 6B

from right (pre-Cp) to left (Cp) to right (post-Cp) corresponds to a succession of high-low-

Fig 5. Broken stick distribution (solid line) and NRADs of IgG+CD27+ fractions (points). Inset: section

of hierarchical clustering dendrogram where broken stick distribution appears. This plot adopts the usual

presentation of the broken stick distribution in the literature with linear horizontal axis and logarithmic vertical

axis. Therefore the boomerang shapes of the log-log Fig 4 appear horizontally stretched.

doi:10.1371/journal.pcbi.1005362.g005
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high entropy. This can also be seen directly from the NRADs: the off-Cp NRADs have a rela-

tively heavy tail and weak head, i.e. a more even distribution with higher entropy, correspond-

ing to a more diverse gut microbiome. Conversely, the on-Cp NRADs have a more heavy head

and weaker tail, i.e. a less even distribution with lower entropy, corresponding to a less diverse

gut microbiome, partly decimated by the effect of the antibiotic.

Dethlefsen et al. [30] remarked that after treatment several taxa failed to recover, while the

participants in the study had normal intestinal function, and they argued that the eliminated

taxa after treatment may have been replaced by other taxa with similar functions. The fact that

pre- and post-Cp NRAD ensembles have the same shapes and form a single compact off-Cp

cluster (Fig 6) supports this assessment.

It is instructive to compare our analysis based on the abundance structure with an OTU

composition analysis as in Fig 6 of Ref [30]. The OTU based PCA in Ref [30] has a cluster

structure that is influenced by both the individual microbiome donor and by the treatment

state. The conflation of both influences makes the result of the PCA richer but also more

difficult to interpret: If we consider individual microbiome compositions, all three individ-

uals have different microbiome dynamics under treatment. Conversely, the NRAD based

analysis is blind to individual differences in microbiome composition. This blindness to

composition means on the other hand to focus on the abundance structure, which makes

the result in our Fig 6 more easy to interpret: In terms of the abundance structure, all three

individuals behave in the same way, clearly showing a generic effect of the antibiotic

treatment.

Gut microbiomes dataset: NRADs enable quantitative models

Yatsunenko et al. [31] found in 528 gut microbiomes from Malawi, United States and Venezu-

ela, that (1) species richness of gut microbiomes increased with age from birth to about the

third year, and then was much less variable, and (2) taxonomic composition of adult gut

Fig 6. Abundance dynamics of gut microbiomes of three individuals under treatment with antibiotic

Ciprofloxacin (Cp). (A) NRADs before (green), during (red), and after (blue) treatment. Bold lines are mean

NRADs, shaded regions are 90% confidence intervals of the means. (B) MDS of NRADs with one point per NRAD

using the same color code as in panel A. For each of the three individuals, arrows connect points corresponding to

the last measurement before treatment, measurements during treatment, and the first measurement after treatment.

The two coordinates of the MDS plot explain 89% of the NRAD distances.

doi:10.1371/journal.pcbi.1005362.g006
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microbiomes from the Unites States differed strongly from those of Malawi and Venezuela,

while the latter two showed less pronounced differences. In our analysis we do neither use

richness (we normalize to a common richness), nor taxonomic labels, but we use solely the

abundance vectors (Eq 1) as quantitative descriptors of NRAD shapes. Nevertheless, we will in

the following show results consistent with key results from [31] with NRADs. Additionally, we

will present a novel NRAD-based quantitative model for the development of gut microbiome

entropy as function of age.

Prior to normalization, the richness of the samples covered three orders of magnitude,

from 4105 to 296214 different ranks. All 528 RADs were normalized to the same MaxRank of

R = 4105 to make RAD shapes and quantities computed thereof comparable.

NRADs differentiate between ages and countries. First we applied MDS to the distance

matrix of all 528 NRADs to see whether NRADs of different countries (especially between

US = United States and MV = Malawi/Venezuela) and ages can be distinguished (Fig 7A). We

found a banana shaped distribution in the MDS plot, arranged along the first coordinate that

explains two thirds of the spread between NRADs (the banana shape also appears with non-

metric MDS [52]). The banana reaches from babies and small children on the left to adults on

the right. Thus we have a clear age related trend of NRADs. It is remarkable that while the

points for the smallest children have the largest scatter, the averages between MV and US are

the same within the margin of error. Above the youngest age group, NRADs split up into two

branches, one for MV and one for US. For adults the means of the MDS clusters of MV and

US have small errors and are clearly separated. Differences between the older age groups

within the same country are small. The described patterns in the MDS plot is consistent with

the taxonomy based results in [31].

Yatsunenko et al. [31] had trained a statistical model that identified bacterial species charac-

teristic to each of the countries. These species could be used to predict the country of origin

from the taxonomic composition.

The pattern in the MDS plot (Fig 7A) suggests that it could be possible to train for the older

age groups a statistical model that correctly predicts the country of origin of a sample from the

shape of the NRAD. To test this hypothesis we trained a random forest model to classify

NRADs from individuals older than 3 years according to country Malawi/Venezuela (MV, 89

NRADs) or United States (US, 254 NRADs). We found a high accuracy ACC = 0.94 ± 0.02

(mean ± standard error) of the model in threefold cross-validation. However, since the dataset

is by far not evenly distributed over both countries, ACC could grossly overrate the perfor-

mance. We therefore computed the κ-statistic and found κ = 0.85 ± 0.05, confirming the very

good performance of this statistical model for predicting country of origin from NRAD. To

avoid misunderstandings, we emphasize that “country of origin” is here a proxy for conditions,

e.g. life style or diet, prevailing in a sample set that lead to a certain type of NRAD. If these con-

ditions are similar, it is conceivable that NRADs will be similar too and therefore cannot be

separated accurately.

It is interesting that not the head or tail region is most important for the classification per-

formance, but that two separate regions in the middle carry most of the information about the

country of origin (Fig 7B). Thus we could have normalized to even smaller R values without

too much loss of information for the classification.

A quantitative model for the change of gut microbiome NRAD entropies with age.

Yatsunenko et al. [31] observed that the taxonomic richness in gut microbiomes increased

strongly during the first 3 years of age, and then stabilized. We asked whether NRADs reflect

this dynamics, even though NRADs ignore taxonomy and eliminate richness. For the first

analysis (Fig 8) we split the dataset into log-age intervals of approximately equal lengths, so

that we have shorter age intervals at young age when most of the changes are expected, and
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longer age intervals in the more stable later regime. We then averaged all NRADs in these

intervals, irrespective of country of origin.

The NRADs in Fig 8 have a clear dynamics with age: The average abundance in the head

region up to about rank 100.6� 4 decreases continuously from the youngest to the oldest age

groups, while in the middle and tail regions the average abundance increases from youngest to

oldest. These changes are fast in the youngest age groups, and slow down in the oldest groups

that have practically the same NRADs. The change from NRADs with strong heads and weak

tails in the young, to NRADs with weaker heads and stronger tails in the old means that the

evenness of the distribution increases. Since evenness is one aspect of diversity [3], we con-

clude that the growing species richness described by [31] in their taxonomy-driven analysis is

mirrored by an increase of evenness with age as computed from NRADs.

We now proceed from the qualitative comparison of NRADs in Fig 8 to a quantitative

model of Shannon entropy as a function of age. Quantitatively, Shannon evenness J(i) of

NRAD i can be expressed in terms of entropy H(i) and species richness S(i) as [3]:

JðiÞ ¼
1

logSðiÞ
� HðiÞ with HðiÞ ¼ �

XR

r¼1

air logair; ð5Þ

where we have used rank abundances air according to Eq (1), and, for simplicity, plain symbols

J, H instead of the commonly used J0, H0. Since by definition for MaxRank normalized RADs

we have S = R = const, the evenness J computed from NRADs is proportional to the Shannon

entropy H of these NRADs. Thus, we can rephrase our observation that NRAD evenness J
grows with age as an increase of NRAD entropy H with age, or, because entropy is a measure

of diversity, as growth of diversity with age.

Entropy is sensitive to sampling errors, and therefore not an ideal measure of diversity [3].

For instance, bigger samples from the same biological system have often higher richness which

directly affects entropy. MaxRank normalization eliminates richness and thus attenuates this

Fig 7. Country of origin and age as determinants of gut microbiomes NRADs. (A) MDS-ordination of NRADs of

those 489 gut microbiomes from Malawi/Venezuela (MV) and United States (US) with age information. Small

symbols represent individual NRADs, large symbols are averages. Error bars are 90% confidence intervals of the

averages. The two coordinates of the MDS plot explain 83% of the NRAD distances. (B) Importance of each of the

4105 NRAD ranks for the random forest classification according to country of origin (MV vs. US). The two peaks

around ranks 20 and 200 are the NRAD regions that carry most information about the country of origin.

doi:10.1371/journal.pcbi.1005362.g007
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error. This property invites quantitative comparison of evenness or entropy across many sam-

ples. Here we exploit this to study the 489 HTSeq datasets of gut microbiomes that had infor-

mation about age in their metadata. The richness in these samples varies over three orders of

magnitude, between 4 × 103 and 3 × 105.

In Fig 9A entropies of the 489 gut microbiomes with age information are plotted against

age. The dynamics of average entropy with age is consistent with Fig 8 discussed previously,

namely a strong increase in the youngest and stabilization in older individuals.

The empirically observed change of entropy with age could be explained by a simple quanti-

tative model. We assume that the youngest babies have a gut microbiome of very low diversity.

Every microbial intake by the child will therefore have potentially a large impact on the diver-

sity of its microbiome. This will lead to an increasing diversity of the gut microbiome with age.

However, as the diversity increases, the impact of new intakes on the diversity will decrease

since some of the species have already been taken up earlier. Thus we expect an increase that

asymptotically approaches a diversity typical for the environment and life style of the individ-

ual. One of the simplest models for entropy HR as measure of diversity with age t that shows

this behavior is:

HRðtÞ ¼ Hmax
R � ðHmax

R � H0

RÞ e
� lRt; ð6Þ

with three parameters, the maximum entropy Hmax
R defining the asymptotic diversity, the

entropy H0
R of the gut microbiome shortly after birth, and the entropy growth rate λR. All

Fig 8. Averaged NRADs of gut microbiome data in six age groups. The number of NRADs per group from

youngest to oldest were 9, 18, 55, 64, 34, and 309, respectively. Solid lines are mean NRADs, shaded areas

are 90% confidence intervals for the means.

doi:10.1371/journal.pcbi.1005362.g008

Quantitative Comparison of Abundance Structures of Generalized Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005362 January 23, 2017 18 / 29



quantities have an index R to remind us that we base our model on NRADs with a certain

MaxRank R.

We have fitted two sets of optimal parameters, one with the MV and one with the US data

(Table 1).

H0

R H
0
R The corresponding models are the solid lines in Fig 9. Fig 9B and 9C show that the

fitted models capture the average development of diversity with age and the differences

between MV and US. The models have a reasonable accuracy with coefficients of determina-

tion of r2
MV ¼ 0:74 and r2

US ¼ 0:52. For all points in Fig 9B and 9C data and model are consis-

tent, with one boundary case being the US model around age 3 yr (�100.5 yr), where it has a

Fig 9. Development of gut microbiome entropy HR with age t. (A) EntropiesHðiÞR (with R = 4105) in nats for

181 samples from Malawi and Venezuela (MV, blue dots), and 308 samples from the United States (US,

orange dots). Log-scaled horizontal axis is age in years. Superimposed are models forHMVR ðtÞ (blue line) and

HUSR ðtÞ (orange line) according to Eq (6). Areas around the model lines shaded in blue and orange are the

corresponding 90% confidence intervals of the respective models. (B) and (C) Comparison of mean entropies

of measured data (red points) and their corresponding 90% confidence intervals (error bars), with the model

(solid gray lines) and its 90% confidence interval (shaded areas), for MV (panel B) and US (panel C). Model

lines and shaded areas are the same as in panel A.

doi:10.1371/journal.pcbi.1005362.g009

Table 1. Optimal parameters for the model of gut microbiome NRAD entropy as function of age.

H0
R HmaxR λR (yr−1)

MV 3.41 ± 0.17 5.82 ± 0.06 0.69 ± 0.09

US 3.43 ± 0.19 5.27 ± 0.03 1.16 ± 0.27

Parameters of optimal models Eq (6) fitted separately to the data from MV and US. Errors are 90%

confidence intervals.

doi:10.1371/journal.pcbi.1005362.t001
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larger error because only a small number of measurements were available (see Fig 9A at this

age).

The models are consistent with the observations by [31] in their taxonomy-based analysis,

such as the increase of gut microbiome diversity in babies and children up to about three

years, the split between MV and US in small children, and the turn to the higher asymptotic

level in MV and the lower asymptotic level in US. Quantitatively, the model predicts that the

youngest babies on average have gut microbiomes with H4105� 3.42 in both MV and US. The

averages cannot be distinguished between MV and US up to about 2 yr (= 100.3 yr). On aver-

age, children in the US reach the plateau Hmax;US
4105 ¼ 5:27 at about 3.2 yr (= 100.5 yr), children in

MV reach the higher plateau Hmax;MV
4105 ¼ 5:82 at about 5.6 yr (= 100.75 yr). It must be empha-

sized that the model predicts average diversities as a function of age, not individual diversities.

The large spread of entropy values around the average model in Fig 9A shows that inter-indi-

vidual variation cannot be neglected. Finally, although the model is simple, plausible and fits

the data well, other mathematical forms than Eq (6) are possible.

GlobalPatterns dataset: Strengths and limitations of NRADs

Analyses with NRADs are complementary to taxonomy-based analyses: NRADs are blind to

taxonomy, which is both a limitation and an advantage. It is a limitation because community

biology is a function of taxonomic composition. It is an advantage because it enables quantita-

tive comparison between taxonomically different generalized communities and thus discovery

of generic community biology that is independent of actual taxonomic composition. A dataset

where these aspects can be explored is the GlobalPattern dataset of Caporaso et al. [32] with 26

samples from human microbiomes, various environments, and mock communities. We trans-

formed OTU tables to RADs and normalized them to MaxRank R = 2067, the minimum rich-

ness in the set, and we computed a distance matrix of all pairs of NRADs.

Hierarchical clustering of the distance matrix (dendrogram in Fig 10A) led to close cluster-

ing of some samples that also form taxonomic clusters [32], namely the creek samples and a

lake sample, the mock communities, or the human tongue and most feces communities. The

NRADs in these clusters have low distances and thus are similar (e.g. Fig 10B).

Other relationships are more unexpected. The taxonomy-based analysis by [32] clusters

tongue and palm microbiomes together and clearly separates human microbiomes from envi-

ronmental samples. Conversely, NRADs of microbiomes of human palms do cluster closer

with environmental samples than with microbiomes of tongues or feces. For instance, the

NRAD palm1 does not cluster with the microbiome tongue1 of the same individual, but most

closely with the sediment samples. NRADs of both palm1 and sediment2 have a lower abun-

dance of rank 1 than tongue1 but more heavy tails (Fig 10C), were palm1 and sediment2 fit

almost perfectly. Reasons for this unexpected clustering are not known. It could be that micro-

biomes in tongue and feces are more strictly controlled by the host body and the microbiome

itself, while microbiomes on palms are more exposed to the environment.

In the GlobalPatterns dataset, entropies HR range from 2.67 (tongue2) to 6.58 (soil2) with a

median of 4.10 and a standard deviation of 1.06, and one may be tempted to explain the

observed clustering by different entropies. However, such a simple approach is not successful

here. For instance, the three NRADs in Fig 10D have almost the same entropies

(Hcreek3
R ¼ 3:98, Hmock2

R ¼ 3:95, Htongue1
R ¼ 3:91), but have completely different shapes, and are

members of different clusters. In general, the rich information content of an NRAD cannot be

reduced to a single scalar quantity.

In the introduction we have mentioned that a theoretical possibility to quantitatively com-

pare pairs of RADs of different richness (a strength of MaxRank normalization) is the use of
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Fig 10. GlobalPatterns dataset. (A) Hierarchical clustering dendrogram based on distances between NRADs. (B) NRADs of three samples of similar

origin that form a cluster. (C) Microbiome of human palm of human individual 1 clusters closely with sediments 2 and 3, but is more distant to tongue

microbiome of individual 1. (D) Three differently shaped NRADs with same entropy.

doi:10.1371/journal.pcbi.1005362.g010

Quantitative Comparison of Abundance Structures of Generalized Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005362 January 23, 2017 21 / 29



the Kolmogorov-Smirnov statistic D, without RAD normalization. This corresponds to using

the Chebyshev distance between the corresponding two cumulative distribution functions

with different support. Although it is obvious that this approach treats the tail regions in a

problematic way, it is unclear whether this problem is of practical relevance. To test this, we

treated D as a distance and reran the hierarchical clustering with this distance. In fact, this D-

based tree recovers some of the features of Fig 10A, but in general shows less biologically

meaningful clusters (S1 Fig). We conclude that a D-based analysis is in practice no alternative

to MaxRank normalization.

As mentioned in the introduction, one commonly used procedure for quantitative RAD

comparisons is a parametric approach. Typically, a standard distribution such as the log-nor-

mal is fitted to a set of RADs and the comparison is then reduced to a comparison of the fitted

parameters. We have tested the viability of this approach by fitting to the RADs of all Global-

Patterns samples five standard distributions, broken stick as null model, preemption, log-nor-

mal, Zipf, and Mandelbrot [41]. For most samples, with the exception of some soil and

sediment samples, we found clear qualitative deviations from all five fitted distributions (S2

Fig), or, in other words, only few fitted distributions reflected the actual RAD shapes. This

means that this parametric approach is in general not an option for quantitative analysis of

HTSeq data. In contrast, with our non-parametric approach we can quantitatively compare all

information-rich NRADs in a consistent and detailed way.

Robustness of analyses based on MaxRank normalization

The key feature of MaxRank normalization is that it enables quantitative RAD comparisons by

mapping RADs with diverse richness values to NRADs of a common richness R. It is clear that

the lower R, the less information can be carried by NRADs. This could make analyses based on

NRADs sensitive to R. To test this, we have tested how the choice of R affects NRAD based

classification, NRAD distances, and NRAD entropies, as used in the previous sections.

First, we address the question whether NRAD based classification is sensitive to R using the

classification of gut microbiomes described earlier. We use the same random forest classifica-

tion and threefold cross validation as before to classify NRADs of gut microbiomes of individ-

uals older than 3 years into MV (Malawi/Venezuela) or US (United States). The results for

R = 4105, 1000, and 250 are summarized in Table 2.

The table shows a weak reduction in accuracy and κ statistic with decreasing R and increas-

ing errors, both explainable by a loss of information stored in the NRADs with lower R. How-

ever, the reduction of R from 4105 to 1000 affects the accuracy of the classifier barely, and even

the classifier computed from NRADs with R = 250 has still a good accuracy. The weak depen-

dency is consistent with the importance plot (Fig 7B) where the regions of high importance

cover two extended rank intervals that can be mapped down to NRADs with R = 250 or lower,

though with some losses.

Table 2. Accuracy of NRAD-based classification.

R ACC κ
4105 0.948 ± 0.018 0.862 ± 0.049

1000 0.947 ± 0.022 0.860 ± 0.057

250 0.917 ± 0.025 0.784 ± 0.064

Accuracy ACC and κ statistic of NRAD-based classification for country of origin of gut microbiome as

function of MaxRank R.

doi:10.1371/journal.pcbi.1005362.t002
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Secondly, we test the effect of R reduction on NRAD distances for the GlobalPatterns data

set. Fig 11A demonstrates that NRAD distances (Eq 2) are well-conserved even if R is an order

of magnitude lower than the richness of the original RADs. Approximately halving R from

R = 2067 (the maximum possible R in the GlobalPatterns set) to R = 1000 does not affect dis-

tances between NRADs: the points are very close to the diagonal (coefficient of determination

r2 = 1.000). If we reduce R more drastically to 250 (green points in Fig 11A), deviations appear,

but we still have r2 = 0.976. The small deviations of NRAD distances in Fig 11A for R = 250 are

all towards smaller NRAD distances (points shifted to the left of the diagonal), because lower-

ing R from 2067 to 250 means that for R = 250 we straighten some of the fine-grained structure

of NRADs with R = 2067 that allows for larger NRAD distances. Even for R = 100 we still have

r2 = 0.913.

In Fig 11B we show for comparison how reduction of R affects NRAD distances for a sim-

pler normalization scheme in which ranks above a given R are cut off (“cutoff normalization”),

i.e. information in the tails with ranks higher than R is completely neglected. The scatter of the

points is generally wider for all three values of R with r2 = 0.995, 0.874 and 0.614, respectively.

These lower r2 values point to the importance of the tails that are neglected by cutoff normali-

zation. NRAD pairs with differences predominantly in the neglected tails appear in Fig 11B

shifted to the left of the diagonal, while NRAD pairs with more divergent heads and more sim-

ilar tails appear right shifted. Cutoff normalization clearly is less robust than MaxRank nor-

malization with respect to the choice of R.

As a consequence of the robustness of NRAD distances, the down-stream analyses that

make use of NRAD distances are also quite robust. For instance, the hierarchical clustering

(Fig 10A) of the GlobalPatterns dataset is identical between R = 250, R = 1000, and R = 2067

up to an agglomeration height of 0.98 (vertical axis in Fig 10A). Cluster assignments differ

Fig 11. Dependence of NRAD distances dR on MaxRank R. Co-ordinates are distances dR between all 26 � (26 − 1)/2 = 325 NRAD pairs of the 26

GlobalPatterns samples at three different values of R. If the distance of an NRAD pair is the same for both R, the point lies on the diagonal. (A) MaxRank

normalization; (B) cutoff normalization.

doi:10.1371/journal.pcbi.1005362.g011
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only above this agglomeration height at the highest branching points and thus at the most

fuzzy cluster level.

Thirdly, we find for each sample i a regular and systematic R dependence of NRAD entropy

HðiÞR (Eq 5):

HðiÞR = logR � cðiÞ: ð7Þ

with a sample dependent constant c(i). This approximation works reasonably well if R is not

varied by more than an order of magnitude. Eq (7) corresponds formally to the definition of

Shannon evenness with R interpreted as richness (Eq 5), i.e. Shannon evenness changes weakly

with R. Moreover, this equation means that entropy or information content will systematically

decrease with decreasing R. This decrease will depend weakly on R since log R changes only

slowly with R.

As the NRAD entropies change systematically with R, this must also affect our model of

entropy of gut microbiome NRADs as function of age. For instance if we approximately halve

R from 4105 to 2000 and repeat the fitting of the model Eq (6) we arrive at

H0;MV
2000 ¼ 3:34� 0:16, H0;US

2000 ¼ 3:35� 0:19, l
MV
2000
¼ 0:70� 0:09 yr� 1, l

US
2000
¼ 1:18� 0:27 yr� 1,

Hmax;MV
2000 ¼ 5:62� 0:06, and Hmax;US

2000 ¼ 5:12� 0:03. Entropic model parameters H2000 are sys-

tematically lower by a small amount than the corresponding H4105 values (Table 1) as expected

from an approximate scaling (Eq 7). If all entropic factors in Eq (6) scale in the same way, the

scaling factor cancels, and the exponential growth term e−λt should stay the same. In fact, the

growth parameters λ are almost unaffected by the decrease of R from 4105 to 2000.

Finally, one important aspect of robustness is the following. If we take several samples of

different size and therefore different richness of the same, well-mixed generalized community,

then determine the RADs of those samples, and finally normalize these RADs to the same R,

we should obtain the same NRAD for all samples. Only if this requirement is met can NRADs

inform reliably about a generalized community. To test fulfillment of this requirement, we

first down-sampled original HTSeq data sets by an order of magnitude in richness. Fig 12A

shows as an example the original RAD and the down-sampled RAD of the first sample in the

Fig 12. Robustness of NRADs against varying sampling depth. (A) original RAD of first sample of [31] (black) and down-sampled RAD (red). (B) the

two NRADs obtained by MaxRank normalization to R = 1000 of the RADs in panel A are almost indistinguishable. (C) comparison of NRAD distances of

the first 50 samples of the data set of [31]. Left violin plot: density of distances between NRADs computed by MaxRank normalization to R = 1000 of the

original RADs; middle violin plot: same for down-sampled RADs; right violin plot: distances between corresponding original and down-sampled NRADs.

The biologically meaningful NRAD distance distributions are robust against differences in sample size (left and middle violin). In comparison, the distances

related to differences in sample size are negligible (right violin).

doi:10.1371/journal.pcbi.1005362.g012
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gut microbiome data of [31] (MG-RAST ID 4.4899263e6). We then normalized both to the

same MaxRank R = 1000 (Fig 12B). For all samples we found that both RADs, the original and

the down-sampled, led to practically the same NRAD. The violin plot Fig 12C makes a quanti-

tative statement about this property: the biologically relevant distance distributions between

NRADs are the same for both the original and down-sampled data (left and middle violin in

Fig 12C are equal). In comparison, the distances between corresponding pairs of NRADs of

original and down-sampled RADs are negligible (right violin in Fig 12C) as it should be for a

normalization procedure that is robust against the size of the source sample.

In summary, we found that NRADs are robust quantitative descriptors of RADs. However,

it is also clear that there are critical values of R below which essential RAD structures are lost

and analyses become inconclusive. These critical values will depend on the studied RADs and

on the analysis method. We recommend to monitor NRAD quality with methods suitable for

the respective question. For instance, if the cluster structure of a set of NRADs is of interest,

clustering and ordination methods as those presented above can be used to detect loss of struc-

ture when results for several R values are compared.

Discussion

MaxRank normalization makes communities of different richness quantitatively comparable

by mapping their RADs to NRADs of a common richness R. This is similar to projecting

objects of different higher dimensions to one common lower dimension where the projec-

tions can be compared directly. The price to be paid is information loss, especially loss of

richness information. However, the remaining information enables new approaches to com-

munity analysis. In particular, we could show that the information extracted from NRADs is

sufficient to generate quantitative models of the dynamics or composition of generalized

communities.

MaxRank normalization is not the only possible algorithm that maps higher richness

RADs to a common lower richness, but it has crucial advantages over other procedures. For

instance, another procedure is to cut off in all RADs ranks beyond a common maximum

rank R. Obviously, this simple procedure neglects information in the RAD tails, leading to

lower robustness as shown earlier. An alternative would be to scale the rank axis to the same

maximum number. This would lead to fractional pseudo-ranks; the corresponding pseudo-

rank abundance vectors have different dimensions and thus cannot be compared directly.

Another alternative is the coarse-graining of the rank axis to a given number of pseudo-

ranks. This is also not satisfying as the coarse-graining would treat samples of different rich-

ness differently, and because the pseudo-ranks are not observables. Conversely, MaxRank

normalization is conceptually attractive since it corresponds to a real experimental sampling

process with the attainment of a given richness as stop criterion. In fact, a similar observa-

tional protocol (“m-species list”), i.e. sampling up to a constant maximum rank, has been

used in field ecology [53]. MaxRank normalization does not impose a specific model, i.e. the

approach is model-free and generally applicable. For instance, we have applied it not only to

HTSeq data but also to data from conventional ecological sampling of macro-invertebrates

from fresh-water systems (unpublished).

MaxRank normalization (re-sampling up to a given maximum rank) may be confused

with rarefying (re-sampling up to a given maximum number of individuals) [20, 22]. How-

ever, the two methods answer different diversity questions: rarefying allows answering ques-

tions that relate to sample richness (and typically also to OTU abundance), while NRAD

comparison largely eliminates richness (and OTUs) and puts emphasis on abundance struc-

ture difference.
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There are a number of limitations of MaxRank normalization. First, it is obvious that most

information about richness is lost. Interestingly, it is not completely lost, but partially encoded

in the NRADs, as a detailed technical analysis shows (to be published elsewhere). Nevertheless,

if mainly changes or differences in richness are of interest, NRADs are not suitable.

Second, and related to the previous limitation, it is possible that some of the samples to be

compared are richness-limited while others are not. In this case the information loss men-

tioned above can turn the method useless. To illustrate this point, imagine two systems that

should be compared, one with two species, the other with thousands of species. In this case we

would normalize the system to R = 2 and lose almost all the information in the RAD of the

richer system. This limitation is usually not serious for the analysis of HTSeq data of general-

ized communities such as microbiomes. One strategy to cope with outlier samples of extremely

low richness that would enforce the use of a low R and severe loss of information in NRADs is

to discard such outliers, thus sacrificing some breadth for higher accuracy.

Third, a more severe problem with HTSeq data is the often implied assumption that read

counts are quantitative measures of abundances. Unfortunately, HTSeq data can be biased by

the experimental protocol, e.g. by preferential PCR amplification of certain species and non-

amplification of others, or it can contain false positives, e.g. error mutants or chimeras pro-

duced in the experimental process [54, 55]. Since RADs are derived from OTU tables, any

abundance bias that affects OTU tables will also affect RADs. Although these problems do not

limit applicability of MaxRank normalization, they do limit the possible biological interpreta-

tion of the results. Related to this point, we found that changes in HTSeq protocols can signifi-

cantly impact RADs and therefore NRADs. Thus, a stringent control is required if results from

different studies are to be compared. Such a control can be implemented e.g. by comparing

RADs resulting from the application of the different protocols to common reference samples.

As HTSeq technology develops rapidly, some of these experimental problems may be solved in

the near future. But even with these imperfections, NRADs can be used as generic quantitative

descriptors to discover new community biology.

Fourth, analyses based on NRADs alone are blind to taxonomic composition. This can be

an advantage because in this way generic effects that influence the abundance structure can

become clearly visible. But this blindness to taxonomy makes NRAD based analyses inade-

quate if differences or changes in taxonomic composition are of major interest.

Supporting Information

S1 Fig. Kolmogorov-Smirnov statistic D as RAD-RAD distance. Hierarchical clustering

dendrogram of GlobalPatterns RADs, using Kolmogorov-Smirnov statistic D between pairs of

non-normalized RADs as distance (results with the Anderson-Darling statistic were essentially

the same). Some of the samples (e.g. soil1 and soil2) are clustered similar to the NRAD-NRAD

distance based dendrogram Fig 10A of main text. More often, clustering based on NRAD dis-

tances is biologically more meaningful than D-based clustering (e.g. ocean1/2/3). In some

cases, the D-based clustering is biologically outright wrong as for the cluster formed by the

high-evenness mock samples and the low-evenness tongue samples.

(PDF)

S2 Fig. Fits of four standard distributions to RADs of GlobalPatterns set.

(PNG)

S1 Table. Meta-data for GlobalPatterns and correspondence of original sample IDs and

new sample names.

(PDF)

Quantitative Comparison of Abundance Structures of Generalized Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005362 January 23, 2017 26 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005362.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005362.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005362.s003


Author Contributions

Conceptualization: MSa FF DH.

Data curation: MSa FF BB.

Formal analysis: MSa FF DH.

Funding acquisition: RK DH.

Investigation: MSa FF DH.

Methodology: MSa FF DH.

Project administration: DH.

Resources: MSa FF MSe RK BB DH.

Software: MSa FF DH.

Supervision: RK AMW DH.

Validation: MSa FF RK MSe AMW DH.

Visualization: MSa FF DH.

Writing – original draft: MSa FF DH.

Writing – review & editing: MSa FF BB AL AMW MSe RK DH.

References
1. Morin PJ. Community Ecology. Wiley-Blackwell; 1999. Available from: http://www.worldcat.org/isbn/

0865423504.

2. Darwin C. On the Origin of Species. J. Murray, London; 1859.

3. Magurran AE. Measuring Biological Diversity. Wiley; 2004. Available from: https://books.google.de/

books?id=tUqzLSUzXxcC.

4. Hill MO. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology. 1973; 54(2):pp.

427–432. doi: 10.2307/1934352

5. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, et al. Species abundance distri-

butions: moving beyond single prediction theories to integration within an ecological framework. Ecol

Lett. 2007; 10(10):995–1015. doi: 10.1111/j.1461-0248.2007.01094.x PMID: 17845298

6. Magurran AE, McGill BJ. Biological Diversity: Frontiers in Measurement and Assessment. Oxford biol-

ogy. OUP Oxford; 2011.

7. Newman M. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics. 2005; 46(5):323–

351. doi: 10.1080/00107510500052444

8. May RM. Patterns of species abundance and diversity. In: Cody M, Diamond J, editors. Ecology and

evolution of communities. Harvard University Press; 1975. p. 81–120.
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