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Abstract
The costs and benefits of protein expression are balanced through evolution. Expression of

un-utilized protein (that have no benefits in the current environment) incurs a quantifiable fit-

ness costs on cellular growth rates; however, the magnitude and variability of un-utilized

protein expression in natural settings is unknown, largely due to the challenge in determin-

ing environment-specific proteome utilization. We address this challenge using absolute

and global proteomics data combined with a recently developed genome-scale model of

Escherichia coli that computes the environment-specific cost and utility of the proteome on

a per gene basis. We show that nearly half of the proteome mass is unused in certain envi-

ronments and accounting for the cost of this unused protein expression explains >95% of

the variance in growth rates of Escherichia coli across 16 distinct environments. Further-

more, reduction in unused protein expression is shown to be a common mechanism to

increase cellular growth rates in adaptive evolution experiments. Classification of the

unused protein reveals that the unused protein encodes several nutrient- and stress- pre-

paredness functions, which may convey fitness benefits in varying environments. Thus,

unused protein expression is the source of large and pervasive fitness costs that may pro-

vide the benefit of hedging against environmental change.

Author Summary

An overarching endeavor in systems biology is to characterize and understand the alloca-
tion of an organism’s proteome. Common approaches to characterize proteome allocation
are based on annotations of protein functions or transcriptional regulatory targets. Here,
we develop a novel approach based on model-predicted proteome utilization. This
approach reveals that in many environments, a large fraction of the proteome is unused.
Unused protein expression is known to incur costs on organismal fitness. We show that
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changes in the allocation of the proteome to used versus unused fractions can account for
the variability in growth rates observed across environments and is a common mechanism
to increase growth rates in laboratory evolution experiments. We compare our approach
to classify the proteome based on model-predicted utilization to more traditional
approaches to reveal biological functions and transcriptional regulators underlying the
expression of unused protein. Expression of these functions may reflect ecological trade-
offs between growth, nutrient-readiness, and stress resistance.

Introduction
The costs and benefits of protein synthesis on organismal fitness shape the evolution and regu-
lation of proteome expression [1]. For microbes, the rate of cellular growth is an important
component of organismal fitness [2], and much of the microbial proteome is devoted to growth
in certain environments [3].

Protein costs and benefits are often quantified by their effects on cellular growth [1,4]. Nota-
bly, the synthetic overexpression of unused protein results in a predictable linear reduction in
growth rates [4,5]. Microbes will express some amount of unused protein in any given environ-
ment, which will reduce their growth rates [6]. However, the magnitude and variability of
unused protein expression is unknown, largely due to the challenge in determining environ-
ment-specific proteome activity. Thus, we do not yet have a baseline understanding of the per-
centage of the microbial proteome that is un-utilized in a given environment or how much
the un-utilized protein fraction can vary (or if it remains predominantly constant across
environments).

Here, we combine a recently developed genome-scale model of proteome allocation in
Escherichia coli [7] with genome-scale absolute proteomics measurements to quantify prote-
ome allocation across 16 distinct environments [8]. This approach allows us to enumerate the
unused proteome, revealing that the unused protein fraction can vary greatly across environ-
ment. We subsequently quantify the cost of unused protein expression and characterize the
processes and regulators underlying the change in unused protein expression across environ-
ments. In turn, we show that unused protein expression is the source of large and pervasive fit-
ness costs that may provide the benefit of hedging against environmental change.

Results

Defining the un-utilized and under-utilized ME proteome
We distinguish between two classes of unused protein (Fig 1A and S1 Fig). The first class is the
un-utilized protein. This is protein that, in the specified environment, is not utilized for cellular
growth. For example, in glucose minimal media, the glycerol transporter is un-utilized, but it
might be expressed. The second class of unused protein is the under-utilized protein. This is
protein that is catalytically active, but is present in excess and is thus operating under its maxi-
mal capacity.

We use a genome-scale model of proteome allocation in Escherichia coli, termed a ME-Mo-
del [7,9] to quantify un- and under-utilized protein. The ME-Model formalizes the function
and synthesis of all proteins that carry out metabolism and protein expression necessary for
growth, which we refer to as the ME proteome. The ME proteome encompasses much of the
proteome required for cellular growth and accounts for ~80% of the proteome by mass in con-
ditions of exponential growth [7].
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Fig 1. Unused protein abundances are not constant across environments. (A) Graphical illustration of the two classes of unused protein. The
first class is protein that is expressed but completely un-utilized (i.e., 0% utilized) first step in lower pathway). The second class is protein that is
under-utilized (i.e., <100% but >0% utilized; second step in upper pathway, see Methods). The percent utilization indicated is based on the upper
pathway having flux of 2, the lower pathway having flux of 0, and all enzymes having a maximal rate of 1 (see also S1 Fig). (B) The un-utilized
proteome fractions for batch and chemostat culture on glucose minimal media. The un-utilized proteome fraction is a distribution rather than a specific
value because of different potential alternative pathways and enzymes that can be used to support cellular growth (see main text). (C) The un-utilized
proteome fraction across all profiled environments—8 different carbon source batch cultures (circles), 4 glucose-limited chemostat cultures
(triangles), and 4 stress conditions (squares)—is plotted as a function of the growth rate measured in that condition. Error bars indicate 2.5 and 97.5
percentiles of the un-utilized proteome distributions for each condition (e.g. Fig 1B). The orange and green points and pie charts correspond to the
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FromME-Model simulations we identify proteins that are needed for growth in a particular
environment. By combining these simulations with quantitative proteomics data, we identify
proteome-wide changes in both un- and under-utilized protein abundances (see Methods). In
a given environment, there are several different alternative pathways and enzymes can be used
to support cellular growth [10–12]. Thus, the computed un-utilized proteome fraction needs to
be assessed across all such alternate growth states; randomized sampling of the alternate net-
work states accomplishes this and leads to a distribution of possible un-utilized proteome frac-
tions rather than a single specific value (Fig 1B, S1 Fig, see Methods). To compute changes in
under-utilized protein expression, we identify relative changes in protein catalytic activity
across environments. As the ratio of model-predicted protein demands for biosynthesis and
measured protein expression levels is proportional to in vivo enzyme turnover rates, changes in
this ratio are proportional to in vivo enzyme turnover rates and are used to quantify under-uti-
lized protein (see Methods).

Un-utilized and under-utilized ME proteome abundance varies across
environments
We first compare the un-utilized proteome fraction during growth in glucose batch culture
and chemostat culture. As the nutrient source is the same in these two environments, the set of
proteins that can be utilized for growth in the ME-Model are identical; variation in the proteo-
mics data will determine differences in the un-utilized proteome abundances. As the two distri-
butions of un-utilized proteome abundance are non-overlapping, the un-utilized proteome
fraction does vary significantly between these two environments (Fig 1B).

When data from multiple growth conditions (8 different carbon sources in batch cultures, 4
glucose-limited chemostat cultures, and 4 stress conditions—acid, osmotic, temperature, and
aerobicity; see Methods) are analyzed in a similar manner, a clear general trend emerges in
which environmental conditions resulting in higher growth rates tend to have lower un-utilized
proteome fractions (Fig 1C). This correlation suggests that un-utilized proteome fraction is an
important source of growth rate variation.

Next we consider the under-utilized proteome under the same growth conditions by com-
puting the variation in in vivo enzyme turnover (flux per protein; see Methods). We find that
the abundance of the under-utilized proteome is not constant across environments; rather, the
average enzyme turnover tends to increase in environments with higher growth rates (Fig 1D).
This trend has been observed for several individual proteins using lower throughput methods
[7,13,14].

Thus, we find that the amount of both un-utilized protein and under-utilized protein is
reduced with increasing cellular growth rate.

Growth rate variation can be explained by unused proteome expression
Un-utilized proteome fraction and in vivo enzyme turnover are variables that are formalized in
the ME-Model. As the ME-Model accurately predicts the growth effects of unused protein
expression (Fig 2A and S2 Fig), setting these parameters to measured values can determine
how they quantitatively affect growth rates.

environments in B of the same color. (D) Enzyme turnover rates tend to increase at higher growth rates. Changes in turnover rates indicate under-
utilized protein. The mean relative turnover (across all proteins) is plotted with error bars indicating the 95% confidence interval for the mean (the full
distribution is shown in S1 Fig). Point shape indicates environment type as in C.

doi:10.1371/journal.pcbi.1004998.g001
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As a baseline for comparison, we first predict maximum growth rates across different car-
bon sources with the ME-Model while holding the un-utilized proteome fraction and in vivo
enzyme turnover rates constant across environments; this assumption allows us to assess the
growth rate variation due to changes in carbon sources independent of changes in un- and
under-utilized protein. Comparing predicted and measured growth rates across the 8 carbon
sources shows that, in general, the predictions are poor. Some particular carbon sources are
well predicted (e.g. glucose, fumarate, succinate) but the correlation between predicted and
measured growth rates is low (Pearson’s r = 0.39); furthermore, the variation in growth rates
across the experimental data is much larger than that across the computational data (s = 0.16

Fig 2. Growth rate is determined by unused protein expression. (A) To validate that the ME-Model accurately quantifies protein cost, we
compare the predicted effect of un-utilized protein (β-Galactosidase) overexpression (red squares) to experimental measurements (blue circles).
Experimental data is obtained from Scott et al. [4] The x- and y- intercept from a linear regression (dotted line) is consistent with the phenomenological
model of Scott et al. [4] The effects of the un-utilized and under-utilized protein expression (Fig 1) on growth rates are quantified in C and D. (B)
Predicted growth rates are plotted versus measured growth rates during batch growth on 8 different carbon sources. Predicted growth rates are the
computed maximal growth rates by the ME-Model, assuming the un-utilized proteome fraction and in vivo turnover rates are the same across all
environments (see Methods, this assumption is eliminated in panels B and C to assess the effects of un- and under-utilized protein on growth). (C)
Predicted maximal growth rates are computed with the ME-Model with the un-utilized proteome fraction set to the values inferred from proteomics
data (see Methods and Fig 1C). In addition to the 8 carbon sources (circles), 4 glucose-limited chemostat cultures (triangles) and 4 stress conditions
(squares) are also shown. These additional growth conditions are not included in panel A as growth rate predictions would require further information.
(D) Predicted maximal growth rates are computed with the ME-Model with both the un-utilized proteome fraction and the in vivo turnover rate
(indicative of under-utilized protein, Fig 1D) set to the values inferred from proteomics data. Point shape indicates environment type as in B (carbon
source batch cultures = circles, glucose-limited chemostat cultures = triangles, stress conditions = squares).

doi:10.1371/journal.pcbi.1004998.g002
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compared to s = 0.7; s is the sample standard deviation). Thus, there are significant contribu-
tors to growth rate variation other than the necessary changes in metabolic pathway and prote-
ome usage when the primary carbon source for growth is varied.

We next sequentially assess the contribution of changes in un- and under-utilized protein to
growth rate variation. In addition to the 8 carbon sources (circles), we can also assess the 4 car-
bon-limitation (triangles) and 4 environmental stress (squares) conditions that were proteomi-
cally profiled. In these additional environments, glucose is the carbon source, and other
environmental changes affect proteome expression and growth. Accounting for un-utilized
protein increases the correlation between predicted and measured growth rates to r = 0.82 and
increases the predicted growth rate variance to s = 0.09. Finally, accounting for the variation in
in vivo turnover rates increases the correlation to r = 0.98 and results in a predicted growth rate
variance that is similar to the experimental variance (s = 0.15).

Thus, accounting for changes in the un- and under-utilized proteome explains much of the
variation in growth rates across environments (Fig 2C and 2D).

Selection for faster growth rates results in a decrease in unused protein
expression
If the expression of unused (i.e., un-utilized and under-utilized; see Fig 1A) protein is a domi-
nant source of variation in growth rates, one would expect that a common mechanism to
increase growth rates through evolution would be to down-regulate expression of unused
protein.

To assess this hypothesis, we estimate changes in un-utilized and under-utilized protein in
E. coli experimentally evolved under a growth rate selection pressure in glucose minimal media
batch culture [15]. Though it is unused protein (and protein cost) that is important for con-
straining growth rates, we estimate changes in unused protein with available transcriptomics
data [15]. Using the same ME-Model simulations used to define un-utilized protein in glucose
minimal media (Fig 1B and 1C), we calculate changes in the un-utilized transcriptome fraction
after evolution (Fig 3A). All strains except one (strain 8) increase their utilized transcriptome
fraction (decreasing their un-utilized transcriptome). We next calculate changes in under-uti-
lized protein after evolution (again, using the same ME-Model simulations as in Fig 1D) by
estimating changes in relative in vivo enzyme turnover (flux per protein). (Estimating these val-
ues with transcriptomics data assumes that, for a given protein, the translated protein per tran-
script is the same across the strains assessed). All strains tend to increase relative in vivo
enzyme turnover (Fig 3B; indicated by the distributions being shifted above zero). Thus, a
decrease in un-utilized and under-utilized protein expression is a common mechanism of
growth rate increase in these experimentally evolved strains.

While these evolved strains tend to decrease their unused protein expression, un-utilized
and under-utilized protein expression does not change uniformly across strains. Rather, across
strains, the decrease in un-utilized protein expression (increase in utilized protein expression)
is anti-correlated with the decrease in under-utilized protein expression (Fig 3C; increase in rel-
ative in vivo enzyme turnover). While each of these strains reaches approximately the same
growth rate of ~1.0 h-1 after evolution, they seem to employ different strategies to increase
their growth rates. Notably, strain 8, which decreases its utilized transcriptome expression
(which would tend to decrease, rather than increase growth rates), has among the highest
increases in relative in vivo enzyme turnover. Strain 8 also decreases its ribosomal protein
expression compared to wild-type, despite the higher translational demands of faster growth
rates (S3 Fig); this suggests higher relative in vivo enzyme turnover rates of ribosomal proteins
(amino acid per ribosome per second) in this strain.
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Therefore, the observed changes in gene expression after selection for faster growth rates
indicates that decreasing un-utilized and under-utilized protein expression are common mech-
anisms to increase growth rates. These mechanisms are consistent with the expression changes
observed in other evolved strains [16] and identified causal mutations [17,18]. Even though
glucose minimal media batch culture is an environment with among the lowest unused protein
expression levels across the environments profiled with proteomics (Fig 1), unused protein
expression is still substantial and decreases after adaptive evolution.

Model-driven classification of proteome segments
Why does E. coli allocate its proteome in a way that detracts from achieving its maximal growth
rate? And what regulatory processes underlie this behavior? To answer these questions, we first

Fig 3. Growth rate increases through changes in unused protein allocation in adaptive evolution experiments. (A) The change in utilized
transcriptome fraction of strains independently evolved in glucose minimal media [15] (which reached growth rates of ~1.0 h-1, compared to the wild-
type growth rate of 0.7 h-1) is calculated (see Methods). All strains except one (strain 8) show an increase in the utilized transcriptome fraction (i.e., a
decrease in un-utilized transcriptome). (B) The estimated changes in relative enzyme turnover rates compared to the wild-type (unevolved) strain are
calculated (as in Fig 1D and S1 Fig; see Methods). The distributions of all strains have a median value greater than zero, indicating a decrease in
under-utilized protein in evolved strains. (C) The mean value of the estimated change in utilized protein (y-axis, from A) is plotted versus the mean
value of the estimated change in under-utilized protein (quantified by change in relative in vivo enzyme turnover rates; y-axis, from B). The change in
utilized transcriptome is anti-correlated with the change in in vivo enzyme turnover, indicating that the independently evolved strains use different
strategies (i.e., a decrease in un-utilized versus a decrease in under-utilized protein) to increase growth rates.

doi:10.1371/journal.pcbi.1004998.g003
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systematically segment the proteome by protein function. We will then be able to attribute
changes in un-utilized and under-utilized protein to specific functional proteome segments.
We segment the ME proteome by classifying each protein by its environment-specific utility
through growth simulations with the ME-Model under all Carbon, Nitrogen, Phosphorous,
and Sulfur sources; this results in many environment-specific growth-supporting proteomes.

Comparing the environment-specific growth-supporting proteomes reveals a common
‘core’ proteome that is utilized across all (minimal media) environments, as previously detailed
in Yang et al. [19] (Fig 4A, S1 Table). This core proteome is largely involved in anabolism and
protein synthesis (including the necessary transcription, translation, and protein folding
enzymes; S4 Fig).

In addition to the core proteome, there are non-core (i.e., conditionally-utilized) proteins
that we classify by element source into the C-proteome, N-proteome, P-proteome, and S-prote-
ome (that are used for growth under alternative Carbon, Nitrogen, Phosphorous, and Sulfur
sources, respectively) (Fig 4A, S1 Table). These proteome segments are largely catabolic S4
Fig). Several of the non-core proteome segments show a large enrichment of transcriptional

Fig 4. Definition and utilization of the ME proteome functional segments. (A) The ME proteome encompasses ~80% of the proteome by mass in
glucose minimal media (pie chart). ME-Model growth simulations are used to define proteome segments (see Methods). The core proteome is composed
of proteins that are used in all minimal media environments simulated. The C-, N-, P-, S-proteome segments contain proteins that are expressed under at
least one alternative carbon, nitrogen, phosphorous or sulfur source environments. Abundance of these proteome segments in glucose minimal media
batch culture is shown. Several global transcription factors have targets that are highly enriched (p<10−15) in the segments shown. (B) In a particular
environment, the utilized proteome is composed of the core proteome and some of the non-core (condition-specific) proteome. Shown is the fraction of
the proteome that is utilized and in the non-core proteome. Boxplots indicate the range of potential values resulting from sampling of model enzyme
activity values (see Methods). Conditions are ordered by increasing growth rates. Other than growth on acetate, the fraction proteome that is non-core
and utilized remains relatively constant. Compared to the core proteomemass fraction (which is utilized under all environments by definition), the non-
core proteome comprises a relatively small proportion of the utilized proteome.

doi:10.1371/journal.pcbi.1004998.g004
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regulatory targets. The C-proteome is regulated by CRP, the N-proteome by NtrC, and the S-
proteome by CysB (Fig 4A). These global transcription factors are known to respond to
changes in the availability of the corresponding nutrient sources [20–22], supporting the
model-driven definition of these proteome segments.

The core proteome is utilized across all environments (by definition), but in any given envi-
ronment, a portion of the non-core (conditionally-utilized) proteome will also be utilized. We
found that an approximately constant ~6% of the proteome is non-core and utilized across the
environments profiled with proteomics (other than growth on acetate as a carbon source as an
outlier). Thus, across the environments profiled with quantitative proteomics, the non-core
proteome is largely un-utilized, and the core proteome constitutes the vast majority of the uti-
lized proteome (Fig 4B). In the following sections, we detail the regulation of the core and non-
core proteome segments to relate changes in these proteome segments to the observed changes
in un-utilized and under-utilized protein (Fig 1).

The core ME proteome is under-utilized
The core proteome abundance increases linearly with growth rate, consistent with higher bio-
synthetic demands at faster growth rates. This linear relation with growth rate has been
observed for individual proteins within the core proteome [14], and serves to further validate
the model-based definition of the core proteome [19].

While the core proteome is (defined to be) utilized under all environments examined,
enzymes in the core proteome may vary in their in vivo rate of catalysis across environments
(e.g., due to changes in the concentrations of substrates, products, or allosteric regulators), as
observed in Fig 1D. While the core proteome abundance increases linearly with growth rate, it
is over-expressed compared to its biosynthetic demands, as evidenced by the non-zero y-inter-
cept in Fig 5A. This overexpression of proteins in the core proteome was previously observed
for ribosomal proteins, leading to the realization that translation rates are growth rate depen-
dent: the catalytic rate of ribosomes (amino acids per second per ribosome) increases with
higher growth rates, approaching its maximal catalytic rate at the E. coli’smaximal growth rate
[7,13,14]. A similar trend appears to be true for the core proteome more generally (Fig 5B). At
higher growth rates, the core proteome abundance approaches its demand, resulting in an
increase in in vivo enzyme turnover at higher growth rates; at lower growth rates, the core pro-
teome is under-utilized. As the core proteome comprises the majority of the utilized protein
across the (minimal media) environments profiled with proteomics (Fig 4B), over-expression
of the core proteome underlies much of the observed changes in under-utilized protein across
environments (Fig 1D).

The non-core ME proteome is largely un-utilized in any particular
minimal media environment
The largest non-core proteome segment is the C-proteome (Fig 4A). In the conditions exam-
ined with quantitative proteomics, which predominantly comprise shifts and limitations in car-
bon sources, the C-proteome abundance decreases linearly with growth rate (Fig 6A). This
linear relation with growth rate has been observed for individual proteins within the C-prote-
ome proteome [23] (due to catabolite repression regulated by the transcription factor CRP)
and serves to further validate the model-based definition of the C-proteome.

As previously shown, the non-core proteome (i.e., the C-, N-, P-, and S- proteome seg-
ments) is largely un-utilized. An important implication of this observation is that up-regulation
of the non-core proteome segments largely results in increased expression of un-utilized pro-
tein (in the minimal media environments examined here). Across these environments profiled
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with proteomics (which predominantly comprise shifts and limitations in carbon sources), var-
iation in the C-proteome abundance accounts for nearly all of the observed change in un-uti-
lized protein (Fig 1C). Thus, up-regulation of the C-proteome under shifts in carbon sources
and under carbon limitation, increases the expression of un-utilized protein.

The C-proteome is highly enriched in targets of the transcription factor CRP (Fig 4A), and
CRP is known to up-regulate its target genes under growth limitation by carbon [23]. The
change in abundance of the C-proteome under the conditions examined with proteomics may
therefore be largely attributed to the action of CRP. We therefore hypothesized that higher
CRP activity would result in higher un-utilized protein expression. To assess this hypothesis,
we utilized CRP activity and growth rate data from You et al., measured from E. coli grown on
12 distinct carbon sources. The maximum unused protein fraction in each carbon source envi-
ronment was calculated with the ME-Model while setting the growth rate to its measured val-
ues. Indeed, the model-predicted unused protein fraction is positively and linearly correlated
with the measured CRP activity across environments (Fig 6B). These data and simulations fur-
ther support the hypothesis that CRP activation largely results in the up-regulation of un-uti-
lized protein in minimal media environments.

Thus, across these environments examined, changes in un-utilized protein can largely be
attributed to the C-proteome and its regulators, including CRP. In other types of nutritional
shifts (i.e., N, P, S limitations), however, the other identified proteome segments and regulators
likely play a more predominant role. It may be that several of the global regulators identified as

Fig 5. The core proteome is under-utilized. (A) The core proteomemass fraction plotted as a function of growth rate in the profiled environments. The
dashed line is a linear regression (y = 0.33 x + 0.26, r2 = 0.85, p < 10−5). Point shape indicates environment type (carbon source batch cultures = circles,
glucose-limited chemostat cultures = triangles, stress conditions = squares). (B) Depicted is a depiction of how the expression trends of the core
proteome result in under-utilized protein. The core proteome abundance (solid line) is expressed at a level above its demands for growth (dashed line) at
lower growth rates, resulting in under-utilized protein and a growth rate-dependent change in in vivo enzyme activity (Fig 1D). These growth rate-
dependent changes have been experimentally demonstrated for ribosomal proteins [13,14].

doi:10.1371/journal.pcbi.1004998.g005
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enriched in non-core proteome targets also largely result in the induction of un-utilized protein
in minimal media environments.

The non-ME proteome expression balances growth and stress
resistance
Thus far, we have characterized only the proteome that is encompassed by the ME-Model (i.e.,
the ME proteome). We next examine the abundance, regulation, and function of the non-ME
proteome. In glucose minimal media, the non-ME proteome comprises ~20% of the proteome
by mass (Fig 7A, pie chart). The non-ME proteome allocation is not constant across environ-
ments, however, and overall, the non-ME proteome is slightly more abundant at lower than
higher growth rates (Fig 7B).

To understand the function and regulation of the non-ME proteome, we first manually clas-
sify non-ME proteins by function using annotations and descriptions present in EcoCyc [24].
Much of the non-ME proteome mass can be classified by focusing on its most abundant pro-
teins. We therefore classify the most abundant non-ME proteins that together comprise at least
80% of the non-ME proteome by mass across all 16 conditions examined (S1 Table). The abun-
dant non-ME functions include replication, regulation, stress responses, and proteins of
unknown function (encoded by so called y-genes). In glucose minimal media, the most abun-
dant non-ME proteome functions are regulatory proteins and proteins of unknown function
(Fig 7A).

Fig 6. The non-core proteome is largely unutilized in a given environment. (A) The proteomemass
fraction of the C-proteome is plotted as a function of growth rate in the profiled environments (which
predominantly comprise carbon source shifts and carbon limitation). The dashed line is a linear regression
(y = -0.28 x + 0.40, r2 = 0.81, p < 10−4). Point shape indicates environment type (carbon source batch
cultures = circles, glucose-limited chemostat cultures = triangles, stress conditions = squares). The allocation
to the C-proteome at different growth rates is shown in the pie charts based on the regression. (B) As the
fraction of the proteome that is non-core and utilized remains relatively constant, the induction of non-core
proteome segments by transcriptional regulators is expected to result in an increase in un-utilized protein.
Using the ME-Model, the maximum un-used protein fraction under different carbon sources is computed
based on measured growth rates from You et al. [23]. Measured Crp activity under different carbon sources
from You et al. [23] is compared to the model-predicted un-used proteome fraction. The data is consistent
with the hypothesis that Crp induces the expression of un-used protein.

doi:10.1371/journal.pcbi.1004998.g006
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While overall, the non-ME proteome is slightly more abundant at lower than higher growth
rates, some non-ME proteome functions are positively correlated with growth rate, whereas oth-
ers are negatively correlated with growth rate (Fig 7C). Broadly speaking, the functions that are
positively correlated with growth rate are those related to growth, including cell division, replica-
tion, proteostasis, and protein translocation. The functions that are negatively correlated with
growth rate are those related to stress resistance and survival, including osmotic, acid, and oxida-
tive stresses. Thus, at higher growth rates, the growth-related functions are more highly expressed,
and at lower growth rates, several stress resistance functions are more highly expressed.

Discussion

Microbial growth rates may be largely determined by unused protein
expression
Since the first growth rate model by Monod [25], the quantitative determinants of microbial
growth rates have been under investigation. As unused protein expression has been shown to

Fig 7. Growth versus stress regulatory logic. (A) The non-ME proteome encompasses ~20% of the proteome by mass in glucose minimal
media (pie chart). The functional composition and abundance of the non-ME proteome (S1 Table) is shown based on proteomics data in
glucose minimal media. (B) The proteomemass fraction of the non-ME proteome is plotted as a function of growth rate in the profiled
environments. The dashed line is a linear regression (y = -0.09 x + 0.26, r2 = 0.53, p < 0.01). Point shape indicates environment type (carbon
source batch cultures = circles, glucose-limited chemostat cultures = triangles, stress conditions = squares). (C) The median correlation of the
proteins in each non-ME function is shown in the heatmap in rank order. While the overall non-ME proteome fraction is larger at higher growth
rates, the trend depends on the specific function. Generally, functions positively correlated with growth rate (blue) are associated with
biosynthetic and growth functions whereas functions negatively correlated with growth rate (brown) are associated with stress resistance.

doi:10.1371/journal.pcbi.1004998.g007
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have a causal role in decreasing growth rates in synthetic protein over-expression studies [4,5],
microbial growth rates across different environments may largely be determined by unused
protein expression as well. In support of this, we have shown that: 1) quantifying the cost of
unused protein expression across several growth conditions explains the variability in growth
rates across those environments (Fig 2), 2) strains selected for fast growth rates consistently
decrease unused protein expression (Fig 3), and 3) the global regulator CRP predominantly
regulates unused protein (across the minimal media environments examined) and the activity
of the global regulator correlates with predicted unused protein expression levels (Fig 6). Thus,
efforts to engineer strains for bioprocessing applications may benefit from directly eliminating
highly expressed unused protein [6], utilizing adaptive evolution experiments to eliminate
unused protein [18], or targeting transcription factors known to regulate unused protein [26].

While genome-scale models of metabolism are capable of accurate predictions of growth
yields (gram dry weight per gram substrate) [27,28], predictions of growth rates by have only
resulted in moderate correlations (Fig 2B) [7,29,30]. Our results suggest that unused protein
expression is a key source of growth rate variability that has not been accounted for in genome-
scale models to date and has limited the accuracy of growth rate predictions. Incorporation of
the regulation of unused protein into genome-scale models may enable more accurate growth
rate predictions [23,31].

We do not intend to imply that local rate-limiting bottlenecks in metabolic flux do not limit
growth rates. Rather, these local bottlenecks and the global proteome allocation to unused pro-
tein can simultaneously limit growth rates; alleviation of either global or local bottlenecks can
increase cellular growth rates. In fact, due to a cell’s native sensing and regulatory mechanisms,
alleviation of local bottlenecks may naturally also result in reduction in unused protein expres-
sion (and vice versa). As an example, a mutation in glycerol kinase, glpK, alleviates a local rate-
limiting step in glycerol metabolism during growth on glycerol [32]; this mutation also results in
lower cAMP levels, which affects the expression of unused protein via its effect on the global
transcriptional regulator CRP (Fig 3). On the other hand, a mutation in the RNA polymerase
subunit rpoB (which can be considered a global regulator), results in the down-regulation of sev-
eral un-utilized genes (mostly related to stress resistance) and the subsequent up-regulation of
genes related to cellular growth [18]. Both mutations in global regulators and local rate-limiting
bottlenecks are often found in adaptive evolution experiments [17,32–34], suggesting that allevi-
ation of both local and global bottlenecks are viable mechanisms to increase cellular growth.

Expression of an under-utilized core proteome may enable faster
adaptation to improved growth conditions
While overexpression of an under-utilized core proteome incurs a fitness cost to steady-state
growth (Fig 2D), the expression pattern of the core proteome (Fig 5) points to potential fitness
benefits.

The over-expression of the core proteome may enable a fitness benefit upon encountering
more favorable growth environments that can support faster growth rates (Fig 8B). Rather
than depending solely on de novo protein synthesis to meet the demands of faster growth, an
over-expressed core proteome can enable faster adaptation. To demonstrate this effect, we sim-
ulate growth upon shifting from the lowest growth carbon source profiled (galactose) to the
highest (glucose) with the ME-Model. The expressed proteome before the environmental shift
is used to constrain the growth phenotype immediately following the shift (see Methods). If the
core proteome is expressed in excess when growing in galactose, the organism grows faster
upon the environmental ‘up-shift’; otherwise, the maximum instantaneous growth rate on glu-
cose will be the same as that on galactose. This fitness benefit upon environmental up-shifts is
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consistent with experiments showing protein over-expression to incur a higher fitness cost
upon environmental up-shifts (where the over-expressed core proteome becomes important
for growth in the new environment) than down-shifts [35].

Expression of an un-utilized C-proteome may balance resource
allocation to growth versus nutrient readiness
While overexpression of the non-core (largely un-utilized) proteome segments incurs a fitness
cost to steady-state growth (Fig 2C), the expression pattern of the C-proteome (Fig 6) points to
potential fitness benefits.

Fig 8. Fitness benefit of unused protein expression in changing environments results in fitness trade-offs. (A) Green line indicates
organismal growth rate through an environmental shift. After an environmental shift, the instantaneous maximal growth rate is computed using the
ME-Model (asterisk; which is limited by the expressed proteome prior to the shift) and is the measure of fitness used in B and C. (B) Expressing an
under-utilized core proteomemay provide a fitness benefit under changing environments. When shifting from galactose (the lowest growth carbon
source profiled) to glucose (the highest growth carbon source profiled), having the core proteome initially in excess beyond the needs for
biosynthesis enables a higher growth rate upon the nutrient up-shift (see Methods). (C) When carbon-limited, readiness for alternative carbon
sources confers a fitness benefit whereas readiness for alternative nitrogen sources does not (see Methods). Up-regulation of the C-proteome under
carbon limitation (but not nitrogen limitation) provides a fitness benefit. (D) The pie charts summarize the proteome allocation across the
environments profiled. In environments with lower growth rates, the proteome allocated towards growth is lower, but the proteome allocated to
nutrient readiness (the portions of the C-, N-, P-, and S- proteomes not utilized for growth) and stress resistance (portions of the non-ME proteome) is
higher. As the proteome is a limited resource, proteome allocation to the different segments results in fitness trade-offs between growth, nutrient
readiness, and stress resistance. Proteome segments are calculated based on regressions and proteome segments delineated in Figs 4–7.

doi:10.1371/journal.pcbi.1004998.g008
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The expression of the non-core proteome likely enables readiness for environmental change
(Fig 8C). To demonstrate this effect, we simulate nutrient supplementations under C- and N-
limitation with the ME-Model. Under C-limitation, supplementation with nitrogen sources
provides no fitness benefit. On the other hand, supplementation with alternative sources of the
limiting element provides growth advantages (Fig 8C). Thus, expression of the C-proteome
provides a fitness benefit under C-limitation but not under N-limitation. While the non-core
proteome segments are largely un-unutilized in a current environment, they may provide a fit-
ness advantage upon environmental shifts. Indeed, higher activity of CRP has been shown to
result in shorter lag phases at a cost of slower growth rates resulting in higher levels of catabo-
lite repression to be beneficial in variable environments [36].

Proteome allocation reflects fitness tradeoffs and ecological strategies
The previous sections suggest that the expression of unused protein can be attributed to prote-
ome segments whose expression incurs a fitness cost on steady-state growth but also confers
fitness benefits in varying environments.

Here, we summarize the model-defined proteome segments and their regulation with
growth rate under variation in carbon source identity and availability. The proteome devoted
to cellular growth in these minimal media environments is primarily composed of an invariant
core proteome (Figs 4 and 5). Also contributing to growth is smaller portions of the non-core
ME (Fig 4B) and non-ME proteomes (Fig 7C). The remaining non-core ME proteome can be
considered to be devoted to nutrient readiness (Fig 6); these proteins can be utilized for growth
when alternative nutrients become available. The non-ME proteome that is not devoted to cel-
lular growth is predominantly related to stress functions (Fig 7C). Thus, quantifying the utili-
zation and function of the proteome reveals its allocation towards growth, nutrient readiness,
and stress resistance. At low growth rates, nutrient readiness and stress resistance functions
are more abundant; at higher growth rates, allocation to these functions decreases to enable
increased allocation to cellular growth (Fig 8D). Nutrient readiness and stress resistance func-
tions can be considered ‘hedging’ functions that enable readiness for environmental change
rather than being actively utilized, resulting in trade-offs between growth, nutrient readiness,
and stress resistance due to proteome allocation constraints. Indeed, several studies have
shown that slower growing cells are more resistant to cellular stresses [37–39].

An important implication of the identified fitness trade-offs is that cellular growth rates
may be primarily determined by environmental history, rather than nutrient quality (i.e.,
the maximum growth rate possible with a specified nutrient, Fig 2A). As growth rates are
determined by the proteome allocated towards growth, evolutionary and ecological factors
may be more important than the identity and quality of the substrates themselves. For
example, while glucose and galactose have similar inherent qualities as sole carbon sources
(chemically and as defined by the growth potential of E. coli on these substrates), glucose is
the highest growth substrate in this dataset and galactose is the lowest. Galactose may be a
more rarely or transiently encountered carbon source or perhaps it is often associated
with harsher environments, which would make environmental readiness and stress resis-
tance comparatively more important components of overall cellular fitness [40–42]. The
different regulatory patterns (e.g., different slopes and intercepts of the regressions in Figs
5A and 6A) observed across strains [4,23,43,44] may reflect and dictate their ecological strat-
egy and environmental history and be balanced through the activity of global regulators
[36,45].
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The proteome burden of a generalist species
While we broadly classify the proteome here based on nutrient readiness and stress resistance
functions, it is important to realize that within these proteome segments is a variety of distinct
functions enabling readiness for specific nutrients and stresses. Concerted up-regulation of
these segments results in a general nutritional readiness and stress resistance. However, as an
organism becomes prepared for a wider array of nutrients or stresses, these proteome segments
must become larger. Therefore, in addition to a trade-off between the different components of
organismal fitness identified here (growth, environmental readiness, stress resistance), prote-
ome allocation constraints also result in a trade-off in specialist versus generalist ecological
strategies. E. coli is a generalist species, capable of growing in a variety of environments. Its
broad environmental niche results in large proteome burden. On the other hand, specialist spe-
cies (capable of growing on a narrower range of substrates) would require a smaller proteome
allocation to be equally ready for environmental change. Proteome allocation constraints will
therefore also result in a trade-off between specialist and generalist strategies [46].

Methods

Proteomics dataset and normalization
The proteomics data was obtained from Schmidt et al. The dataset contains absolute protein
counts per cell for Escherichia coli K-12 BW25113 grown in 16 different environments. The
environments include batch culture with 8 different carbon sources (glucose, galactose, acetate,
glycerol, glucosamine, fumarate, succinate, pyruvate) as the sole carbon substrate, 4 glucose-
limited chemostat cultures (μ = 0.12, μ = 0.20, μ = 0.35, μ = 0.5), and 4 stress environments
(high temperature [42°C], acid stress [pH 6], and osmotic stress [50 mMNaCl], anaerobic).
Data from undefined rich media (LB) and stationary phase are not considered here as these
environments cannot be readily simulated with the ME-Model. In total, global absolute abun-
dance estimates are obtained for 2039 proteins across all conditions. All abundances are
reported in copy number per cell. Growth rates from each environment are obtained from
Volkmer et. al. [47]. For all analysis here, the protein copy numbers were transformed to mass
fractions using the protein molecular weights.

Quantifying the utilized and un-utilized proteome
To identify sets of proteins that can be utilized under a particular environment, we sample
ME-Model enzymatic rate parameters; we then identify growth rate optimizing proteomes (for
each parameter set) based on the growth-maximizing procedure outlined in O’Brien et al. [7].
We independently sampled all enzymatic rates in the ME-Model based on the global distribu-
tion of kcat across all enzymes; we used a (base 10) lognormal distribution with mean μ = 1.11
and σ2 = 1.31, based on data from Bar-Even et al. [48]. All other model parameters are the
same as described in O’Brien et al. [7].

For each carbon source present in the proteomics dataset, we simulated growth with 100 dif-
ferent sampled sets of enzymatic rates; these simulations result in 100 sets of proteins that are
predicted to be utilized in that environment [19], and the abundance of these protein sets are
interrogated in the proteomics data to obtain utilized and un-utilized proteome fractions (Fig
1B and 1C, S1 Fig).

Quantifying the under-utilized proteome
For all proteins in the core proteome (see ME proteome classification), the ME-Model was
used to predict the protein demand (for cell growth). Protein demand is defined as the protein
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abundance predicted by setting the growth rate to its measured value and maximizing the
expression of an un-modeled protein. This procedure results in the minimal necessary expres-
sion of other proteins used for cell growth. Taking the ratio of the protein demand (i.e., model-
predicted protein abundance) and the measured protein abundance, then gives a measure of
the protein utilization. For each protein, to get the relative in vivo turnover for that protein (on
a scale from 0 to 1), this ratio was then normalized by the maximum value (of the ratio) for
that protein across all profiled environments (Fig 1D, S1 Fig).

Growth rate predictions
Maximum growth rates are determined with the computational procedure described in
O’Brien et al. [7]. Unused protein fraction and mean in vivo enzyme activity are changeable
variables in the ME-Model that affect predicted growth rates. The values of these 2 variables
inferred from the proteomics data (Fig 1) are set in the ME-Model to assess their effect on
growth rates (Fig 2). The inferred un-utilized protein fraction (Fig 1C) is quantitative and
directly set in the ME-Model. However, the inferred average in vivo enzyme activity (Fig 1D) is
relative (on a scale from 0 to 1) and requires a quantitative value in one environment to deter-
mine the quantitative values from the other environments. This is accomplished by determin-
ing the average in vivo turnover that would result in the growth rate measured in glucose
minimal media when the unutilized protein fraction is set to its inferred values (Fig 1C) and all
other model parameters are the same as described in O’Brien et al. [7]. (S2 Fig). When the
unused protein fraction and mean in vivo enzyme are kept constant across all environments
(Fig 2A), they are set to the values inferred from glucose batch culture. All other model param-
eters are the same as described in O’Brien et al. [7].

Quantifying un-utilized and under-utilized transcriptome from adaptive
evolution experiments
These values are computed the same way as the un-utilized and under-utilized proteome frac-
tion (Fig 1; see “Quantifying the utilized and un-utilized proteome” and “Quantifying the
under-utilized proteome”). Rather than using proteomics data, however, transcriptomics data
is used. The protein-coding gene’s transcriptome fraction was estimated using its gene length
and expression level measured in FPKM obtained from cufflinks and provided in LaCroix et al.
A gene’s transcriptome fraction was taken to be the product of FPKM and the gene length,
divided by the sum of this product over all genes. The utilized transcriptome fraction was then
calculated by summing the transcriptome fractions of all utilized genes. The utilized transcri-
tome fraction is computed for all sets of utilized genes found by sampling enzymatic parame-
ters (see “Quantifying the utilized and un-utilized proteome”), resulting in a distribution of
utilized transcriptome fraction values.

ME proteome classification
All growth-supporting minimal media were simulated with the ME-Model. The minimal
media were defined by starting from the default glucose M9 medium (with ammonium as a
nitrogen source, phosphate as a phosphorus source, and sulfate as a sulfur source) and by indi-
vidually changing all carbon, nitrogen, phosphorous, and sulfur sources. In total, 333 environ-
ments were simulated, corresponding to 180 carbon, 93 nitrogen, 49 phosphorus, and 11 sulfur
sources. Isozymes were required to be used in equal abundance. All expressed proteins were
identified as those with non-zero translation fluxes. Proteins expressed across all simulated
environments were considered the core proteome. The difference in the definition of the core
proteome provided here and that of Yang et al. is that isozymes are required to be used in equal
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abundance. Proteins not in the core, but expressed under certain alternative Carbon, Nitrogen,
Phosphorous, or Sulfur sources are considered in the C-, N-, P-, and S-proteome segments,
respectively. A protein may belong to more than one non-core proteome segment (S3 Fig). All
other model parameters are the same as described in O’Brien et al. [7].

Fitness benefit simulations for the under-utilized core proteome
Steady-state growth was first simulated with the ME-Model in the initial environment (galac-
tose batch culture). Two scenarios were considered: one in which the in vivo enzyme turnover
was equal to that measured in the proteomics data in galactose batch culture and the other in
which the in vivo enzyme turnover was equal to that measured in the second environment (glu-
cose batch culture). The predicted protein abundance to support growth for all proteins in the
core proteome were obtained from the simulation output. Then, the maximal growth rate after
an environmental shift (to glucose batch culture) was computed subject to the expression level
of the core proteome expression prior to the shift for both scenarios.

Fitness benefit simulations for the non-core ME proteome
The uptake rate of glucose and ammonium was limited in glucose minimal media to simulate
carbon (C-) and nitrogen (N-) limited growth by limiting the uptake reaction flux. Then, sub-
ject to the glucose and ammonium uptake limitations, additional carbon (glycerol) sources
were supplied in excess and maximal growth rates predicted.

non-ME proteome classification
A subset of the proteins outside of the scope of the ME-Model (i.e., the non-ME proteome) was
manually classified by function. For each environment, the most abundant proteins, compris-
ing at least 80% of the non-ME proteome mass were annotated based on descriptions from
EcoCyc [24].

Supporting Information
S1 Fig. Computational method to identify the utilized proteome and relative in vivo
enzyme turnover. (A) There is more than one set of proteins that can support growth under a
given environment. This uncertainty is accounted for in the depicted procedure that combines
both model simulations and measured proteomics data (see Methods). First, the sets of pro-
teins that can support growth in the specified environment are enumerated by the ME-Model
through sampling different model parameters (enzyme activities), each resulting in protein
expression vectors. Each expression vector then defines a utilized protein set, and the total
abundance (proteome mass fraction) of these proteins is determined in the proteomics dataset.
Calculating the expressed proteome mass fraction of all utilized protein sets results in a distri-
bution for the utilized proteome fraction. (B) The distributions of relative in vivo enzyme turn-
over across all proteins in the core ME proteome are shown, with boxplots plotted arranged
according to the growth rate in that environment. Red dots and line indicate median values,
and boxes indicate quartiles; outliers (crosses) are considered greater than 1.5 times the inter-
quartile range.
(TIF)

S2 Fig. Model parameterization of quantitative average in vivo enzyme turnover to predict
growth rates. To predict growth rates with the ME-Model (Fig 2), average in vivo enzyme
activities must account for changes the under-utilized proteome (Fig 1D). The inferred in vivo
enzyme activity (Fig 1D) is relative (on a scale from 0 to 1) and requires a quantitative value in
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one environment to determine the quantitative values from the other environments. To accom-
plish this, the average in vivo enzyme turnover in glucose minimal media is inferred based on
the measured growth rate (blue circle). The un-used proteome fraction is set to the level
inferred in Fig 1C. All other model parameters are as defined in O’Brien et al. Dotted line is a
linear regression based on ME-Model computed maximum growth rates (red squares).
(TIF)

S3 Fig. The relationship between change in ribosomal protein transcriptome fraction and
enzyme turnover in experimentally evolved strains. To corroborate the inferred change in in
vivo enzyme turnover rates in experimentally evolved strains from LaCroix et al. (Fig 3B), we
compare the change in in vivo enzyme turnover to the change in the ribosomal protein tran-
scriptome fraction. As all of the evolved strains have similar growth rates, a lower ribosomal
protein transcriptome fraction implies a higher translation rate (amino acids per ribosome per
second). Consistent with this, the change ribosomal protein fraction is negatively correlated
with the change in in vivo enzyme turnover. One strain (strain 8) actually decreases the expres-
sion of ribosomal proteins compared to the wild-type strain even though the evolved strain’s
growth rate is ~1.0 h-1 compared to 0.7 h-1 in the wild-type, suggesting that translation rates
are higher in the evolved strains.
(TIF)

S4 Fig. Core and non-core (conditionally-utilized) proteome composition and abundance.
Shown is the functional composition of the ME-Model-defined core proteome (A) and condi-
tionally-utilized (non-core) proteome (B), based on KEGG annotations. Visualization was cre-
ated using Proteomaps (www.proteomaps.net). (C) Overlap of proteins in the conditionally-
utilized ME proteome sectors is shown in the 4-way Venn diagram.
(TIF)

S5 Fig. Non-ME proteome composition and abundance. Shown is the functional composi-
tion of the non-ME proteome, based on KEGG annotations. The large ‘Not mapped and “other
enzymes’ indicate an incomplete functional annotation of protein comprising the proteome
outside of the ME-Model. Areas are proportional to abundances based on the measured
expression levels in glucose minimal media. Visualization was created using Proteomaps
(www.proteomaps.net).
(TIF)

S1 Table. ME and non-ME proteome segments.
(XLSX)
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