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Abstract
There is still much unknown regarding the computational role of inhibitory cells in the sen-

sory cortex. While modeling studies could potentially shed light on the critical role played by

inhibition in cortical computation, there is a gap between the simplicity of many models of

sensory coding and the biological complexity of the inhibitory subpopulation. In particular,

many models do not respect that inhibition must be implemented in a separate subpopula-

tion, with those inhibitory interneurons having a diversity of tuning properties and character-

istic E/I cell ratios. In this study we demonstrate a computational framework for

implementing inhibition in dynamical systems models that better respects these biophysical

observations about inhibitory interneurons. The main approach leverages recent work

related to decomposing matrices into low-rank and sparse components via convex optimi-

zation, and explicitly exploits the fact that models and input statistics often have low-dimen-

sional structure that can be exploited for efficient implementations. While this approach is

applicable to a wide range of sensory coding models (including a family of models based on

Bayesian inference in a linear generative model), for concreteness we demonstrate the

approach on a network implementing sparse coding. We show that the resulting implemen-

tation stays faithful to the original coding goals while using inhibitory interneurons that are

much more biophysically plausible.

Author Summary

Cortical function is a result of coordinated interactions between excitatory and inhibitory
neural populations. In previous theoretical models of sensory systems, inhibitory neurons
are often ignored or modeled too simplistically to contribute to understanding their role in
cortical computation. In biophysical reality, inhibition is implemented with interneurons
that have different characteristics from the population of excitatory cells. In this study, we
propose a computational approach for including inhibition in theoretical models of neural
coding in a way that respects several of these important characteristics, such as the relative
number of inhibitory cells and the diversity of their response properties. The main idea is
that the significant structure of the sensory world is reflected in very structured models of
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sensory coding, which can then be exploited in the implementation of the model using
modern computational techniques. We demonstrate this approach on one specific model
of sensory coding (called “sparse coding”) that has been successful at modeling other
aspects of sensory cortex.

Introduction
The diverse inhibitory interneuron population in cortex has been increasingly recognized as an
important component in shaping cortical activity [1]. However, it remains unclear in many set-
tings how the inhibitory circuit specifically contributes to the neural code. While theoretical
and simulation investigations of proposed neural coding models could be extremely valuable
for providing insight into the role of inhibition, many current high-level functional and mecha-
nistic models do not include inhibitory cell populations that approach the biophysical com-
plexity seen in nature.

Though the main ideas likely extend to other areas, for concreteness we will focus the pres-
ent discussion on the primary visual cortex (V1). In V1, visual information is encoded using a
rich interconnected network of excitatory principal cells and inhibitory cells, and different cod-
ing functions appear to be implemented by distinct inhibitory populations [2, 3]. Though V1
has been extensively studied through experiment and modeling, there are often significant dis-
crepancies between what is known about biophysical sources of inhibition and how inhibitory
influences are instantiated in a model. For example, in previous high-level functional coding
models (e.g. in [4–6], with the exception of [7] as discussed later), neural activity is often
treated as a signed quantity without explicitly distinguishing between excitatory and inhibitory
cell types. On the other hand, while state-of-the-art large scale mechanistic models (e.g. [8])
typically include a distinct inhibitory population, these types of models often use a single recur-
rent connectivity pattern (e.g., weights that decrease with spatial separation). This approach
results in interneurons with uniform physiological properties and without the complex tuning
diversity observed in inhibitory interneurons.

For theoretical and simulation studies to illuminate the role of inhibition in neural coding, it
is imperative that coding models begin to incorporate experimental observations regarding the
distinct properties of excitatory cells and inhibitory interneurons. Specifically, to realistically
investigate the role of inhibition in neural coding, models should incorporate at least three
major properties while staying faithful to the coding rule and other desirable properties (e.g.,
robustness):

1. Inhibitory and excitatory interactions arise from distinct cell types, and synapses from an
inhibitory cell cannot have excitatory influences on postsynaptic cells and vice versa (Dale’s
law [9]);

2. Excitatory neurons generally outnumber inhibitory interneurons, with E/I ratios recently
estimated to be in the range 7:1 to 6:1 (apparently preserved across animals [10, 11]); and

3. The interneuron population has diverse tuning properties [12], including to varying degrees
both orientation tuned and untuned interneurons in cat [13] and rodent V1 (reviewed in
[14]).

The main contribution of this paper is to demonstrate a systematic computational method
for effectively incorporating these biophysical interneuron properties into dynamical systems
implementing neural coding models. In our proposed approach we exploit the fact that in
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many cases of interest, the total required inhibition is highly structured due to the relationship
between the coding model and the statistics of the inputs being encoded. Similar to efficient
coding hypotheses that postulate compact representations of sensory stimuli, the structure of
the sensory statistics and the coding model can also be used to implement the required inhibi-
tion with a parsimonious computational structure. Specifically, we propose to reformulate the
connectivity matrix to respect Dale’s law and exploit the inhibition structure in a matrix factor-
ization to minimize the number of inhibitory interneurons. Furthermore, we leverage recent
results from the applied mathematics community on advanced matrix factorizations to develop
an approach that demonstrates the observed diversity of orientation tuning properties in inhib-
itory interneurons.

The end result of this approach is a network implementation that is functionally equivalent
to the original model, but which has an interneuron population that better respects the three
major biophysical properties ignored by many current coding models. In addition to this pri-
mary goal of providing a recipe for including inhibitory interneurons into coding models, this
approach also suggests possible functional interpretations of some biophysical properties of the
interneuron population. In particular, we propose that while Dale’s law may reflect a physical
constraint of individual cells, in contrast the E/I ratio can be viewed as an emergent characteris-
tic of a population implementation that maximizes efficiency by minimizing the number of
interneurons and thus maintenance costs. In addition, we demonstrate that the orientation
tuning diversity in the inhibitory population can arise from differential connectivity patterns
between the excitatory and inhibitory cells.

Results

Network implementation of neural coding models
In a recurrent network implementing a neural coding model, each node in the network is gen-
erally driven by both exogenous inputs (i.e., bottom-up inputs due to the stimulus or top-down
feedback) and lateral connections from other cells in the same network. These lateral connec-
tions are often described in terms of a connectivity matrix G, where the element [G]m, n

describes synaptic strength from the nth neuron to themth neuron. While G can take many
forms, the structure is governed by the coding model and the statistics of the stimuli being
encoded.

To illustrate how G arises for a family of commonly-used coding models, we consider the
Bayesian inference paradigm that has found increasing support as a framework for studying
neural coding [15]. While there are many ways to develop a neural coding model based on the
ideas of optimal inference, one of the most common approaches is to assume a generative
model where the sensory scene is composed of a linear combination of basic features (i.e.,
causes) that must be inferred. Specifically, a linear generative model for vision proposes that an
image patch s 2 R

N (i.e., an N-pixel image patch) can be approximately written as a linear
superposition ofM dictionary elements {ϕi} representing basic visual features (i.e., there areM
principal cells):

s ¼
XM
i¼1

ai�i þ n ¼ Faþ n; ð1Þ

where the coefficients for each feature are {ai}, n represents a noise source, and the N ×M
matrix F consists of one dictionary element on each column. These dictionary elements are
often interpreted as the receptive fields (RFs) of a principal cell, such as spiny stellate cells or
pyramidal cells.
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Given the dictionary F and the stimulus s, the coefficients a in the linear generative model
(taken to be principal cell activities, such as instantaneous firing rates) can be found by maxi-
mum a posteriori (MAP) estimation. Assuming Gaussian noise and a prior distribution P(a),
the MAP estimate is found by minimizing the negative log of the posterior:

EðaÞ ¼ 1

2
ks� Fak22 � l logPðaÞ; ð2Þ

where λ is a scalar capturing the model SNR. When the prior distribution is log-concave (as are
many common distributions including the exponential family [16]), the inference can be
achieved by simple descent methods. The simplest dynamical system for this coding strategy
would be a network implementing gradient descent with population dynamics given by

t _a ¼ FTs� Gaþ lr logPðaÞ;
where τ is the system time constant and theM ×M recurrent weight (connectivity) matrix is
given by G = FTF. G can be interpreted as a recurrent matrix because its off-diagonal terms
capture the influence between cell activities. In particular when we assume that the prior is
independent, i.e. log P(a) = ∑i log P(ai), as is common in efficient coding models, G captures all
the recurrent influence. Note that any dynamical system involving a derivative of an energy
function such as Eq (2) will contain a recurrent matrix G of this form.

While the most obvious implementation of the network would use a single interneuron for
each entry of G (connecting two cells), there are many implementations that would result in a
functionally equivalent coding rule. For example, one of the approaches we will utilize is to
model the connectivity between the interneurons and principal cells using a matrix factoriza-
tion:

G ¼ USVT

where the VTmatrix captures the synaptic connections onto a set of interneurons from the
principal cells, the Umatrix captures the synaptic connections from these interneurons back
onto the network of principal cells, and S is a diagonal matrix representing the independent
gains/sensitivity of each interneuron.

Example: Sparse coding
As a concrete relevant example, we will demonstrate the proposed approach in the context of a
dynamical system implementing a sparse coding model of V1, where a population of cells
encodes a stimulus at a given time using as few active units as possible. The sparse coding
model (combined with unsupervised learning using the statistics of natural images) has been
shown to be sufficient to explain the emergence of V1 classical and nonclassical response prop-
erties [17–19], potentially has many benefits for sensory systems [20–23], and is consistent
with many recent electrophysiology experiments [24–26]. The sparse coding model has been
implemented in networks that have varying degrees of biophysical plausibility (e.g., [18, 27–
30]), though this model has rarely been implemented with distinct inhibitory neural popula-
tions (excepting [7], discussed later).

The sparse coding model can be viewed as a special case of inference in the linear generative
model described above with

EðaÞ ¼ 1

2
ks� Fak22 þ lkak1; ð3Þ

where kak1 ¼
PM

i¼1 j ai j, corresponding to a Laplacian prior with zero-mean. We base our
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discussion on a dynamical system proposed in [27] that uses neurally plausible computational
primitives to implement sparse coding. This system has strong convergence guarantees [31,
32], can implement many variations of the sparse coding hypothesis [33], and is implementable
in neuromorphic architectures [29, 34, 35]. Specifically, the system dynamics for this sparse
coding model are:

_uðtÞ ¼ 1

t
FTs� uðtÞ � ðG� IÞaðtÞ� �

aðtÞ ¼ TlðuðtÞÞ;
ð4Þ

where I is the identity matrix, u are internal state variables for each node (e.g., membrane
potentials), G = FTF governs the connectivity between nodes, and Tλ(�) is the soft thresholding
function. Note that despite not using steepest descent on Eq (3), this network model still has
recurrent connections described by the connectivity matrix G = FTF. In the simulations in this
study, the dictionary F is pre-adapted to the statistics of the natural scene with a standard
unsupervised learning method, resulting in Gabor wavelet-like kernels that resemble V1 classi-
cal receptive fields [17].

This dynamical system model requires influences between cells that are described by the
matrix G, but it is agnostic about the network mechanism that implements these interactions.
Specifically, the model as described in [27] does not incorporate a separate population of inhib-
itory interneurons with any non-trivial interneuron structure, and this naïve description would
only imply a point-to-point connection between all pairs of cells in the network as illustrated
in Fig 1. This model is therefore unhelpful in its current form for understanding the coding
properties of the inhibitory population.

This sparse coding network will serve as a concrete demonstration of the proposed strategy
to incorporate more biophysically realistic inhibitory interneurons. The example network we
use has 2048 excitatory neurons and has the same parameters as in a previous work [19] (see
Materials and Methods).

Achieving Dale’s law through factorization
As a first step towards a biologically realistic interneuron population encoding model, we show
that Dale’s law can be respected in the model by decomposing the recurrent connectivity
matrix G into matrices representing excitatory and inhibitory interactions. Specifically, the
recurrent connectivity matrix G can be decomposed into inhibitory and excitatory effects:

G ¼ Gþ þ G� ¼ GInhib þ GExcite; ð5Þ

where G+ are the positive elements of the matrix (representing the inhibitory recurrent connec-
tions) and G− are the negative elements (representing excitatory recurrent connections).

While GExcite can be implemented by direct synapses between excitatory principal cells, the
inhibitory component GInhib requires inhibitory interneurons between the relevant principal
cells. To capture these disynaptic connections, we factor the inhibitory matrix into two matri-
ces: GInhib = UVT. For a simple stylized illustration, the network in Fig 1 shows an example
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implementation with

GInhib ¼

0

0

wI1 ;E3

0

0
BBBB@

1
CCCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
U

ðwE1 ;I1
wE2 ;I1

0 0 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VT

; ð6Þ

and

GExcite ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 wE4 ;E3
0

0
BBBB@

1
CCCCA: ð7Þ

Using the approach above, we can derive a network implementation that is equivalent to the
dynamical system instantiating the desired neural coding rule but that also has inhibitory cell
properties that can be varied by the choice of factorization for GInhib. For a simple concrete
example, we can achieve the same encoding as Eq (4) while incorporating an inhibitory

Fig 1. Achieving Dale’s law. (A) An example generic neural network of visual encoding with feedforward and bi-directional recurrent connections (arrows)
showing the implementation details of a single cell E3 (other cells would be similar but are not pictured for simplicity). The sparse coding dynamics in Eq (4) is
a special case. The internal state u3 (e.g., membrane potential) of this neuron is determined by the filtered input hϕ3,si, with the dictionary elements ϕ’s
depending on the natural scene statistics (e.g., [17]), the inhibitory recurrent input (green inputG13 a1 andG23 a2 from E1 and E2), and the excitatory recurrent
input (blue inputG43 a4 from E4). The membrane potential is thresholded by function Tλ(�) to generate the response a3 (e.g., the instantaneous spike rate) that
drives other neurons. Note that both the excitatory and inhibitory influences are generated by the same generic cell type, violating Dale’s law. (B) In this
study, we incorporate distinct inhibitory interneuron populations (e.g. I1) that are connected to the principal cells (the E-population) in specific patterns. The
computational property of this type of E-I network can be shown to be equivalent to the one in (A).

doi:10.1371/journal.pcbi.1004353.g001
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population by using the decomposition:

GInhib ¼ IGþ ð8Þ

where I is the identity and plays the role of U; G+ as defined in Eq (5) plays the role of VT. The
resulting network is shown in Fig 2A. While this approach does utilize distinct excitatory and
inhibitory sub-populations, it still requiresM inhibitory neurons (i.e., one for each principal
cell) and all inhibitory cells in this implementation have the same orientation tuning properties
as the excitatory cells (see Supporting Information S1 Text “RFs of inhibitory cells in the direct
implementation”). While this may introduce orientation tuning diversity due to the orientation
tunings of the excitatory population, the diversity is distributed uniformly [36] instead of a
bimodal dichotomy observed in the inhibitory population [37].

Achieving E/I ratio through low-rank decomposition
In areas such as V1, the principal excitatory cells are presumed to form the explicit representa-
tion of the stimulus that is communicated to higher cortical areas while inhibitory neurons are
presumed to play a more localized computational role within a circuit. Using limited physical
resources, there are many desirable properties for the stimulus representation: informational
efficiency matched to scene statistics [38], stability to small stimulus changes [4], and simple
downstream decoding [39]. The principal cell population in V1 appears to be substantially
overcomplete (i.e., in both cats and primates, the estimated ratio between the output fibers and
the input fibers ranges from 25:1 to 50:1 [40]), which is a feature adopted in some coding mod-
els because it can help achieve these desirable properties [40].

In contrast, if inhibitory neurons only need to achieve a computational goal for the circuit
without requiring these same stimulus coding properties, there is no need for an overcomplete
inhibitory population. In fact, the system could exploit this structure to use the fewest number
of inhibitory cells possible to avoid incurring unnecessary cell maintenance costs [41]. In con-
trast to the direct model of Fig 2A, this approach would require interneurons that communi-
cate simultaneously with a population of excitatory neurons rather than a single excitatory
neuron. As an aside, we note that the reasoning above suggests that the inhibitory population
should be overcomplete in systems where these neurons do form the explicit stimulus represen-
tation. Indeed, this is proposed in a theory of olfactory bulb encoding where granule cell inter-
neurons form the olfactory representation and are an overcomplete population [42].

A natural question to ask is, what is the minimum number of inhibitory cells required to
implement the influences specified by the matrix G? Said mathematically, what choice of fac-
torization results in the fewest number of inhibitory cells, corresponding to the number of col-
umns of U and V? In many cases of interest, the connectivity matrix G is likely to be low-rank
(i.e.M> rank(G)), providing an opportunity to achieve an efficient implementation of the
interneuron population by “compressing” the recurrent connectivity to its most essential com-
ponents. There are two different causes of low-rank structure in G for the types of models con-
sidered in this study. First, an overcomplete representation of the principal cells implies
directly that G is low-rank (i.e.,M> N� rank(F) = rank(FTF) = rank(G)). Second, natural
images are highly structured, meaning that image patches have fewer “degrees of freedom”

than the number of photoreceptors N being used to transduce the image (i.e. N> rank(F) =
rank(G)) [43, 44]. This high level of input redundancy means that the connectivity structure
implementing this coding rule also has structure that can lead to a simplified implementation.
Taking both of these aspects together, models that encode stimuli with low-dimensional struc-
ture using an overcomplete code could expect to efficiently implement the encoding rule with
highly-structured, low-rank connectivity matrix G.

Modeling Inhibitory Interneurons in Efficient Sensory Coding Models
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Fig 2. Achieving E/I cell ratio. (A) A subnetwork showing the connectivity and RFs in the network
implementation of Eq (8). The excitatory connection weight from Ei to the inhibitory interneurons Ij is −hϕi, ϕji
(forming the (i, j)th entry ofG+ in Eq (8)). The recurrent connections from the inhibitory neurons back to the
excitatory ones (in green) are one-to-one (rows of the identity matrix). This implementation results in an
inhibitory population with similar size and orientation tuning properties as the presynaptic excitatory cells. (B)
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In detail, these two sources of low-rank structure can be exploited to achieve the same cod-
ing function of Eq (4) with fewer interneurons than a direct implementation of Eq (8). The
original description in Eq (4) of G as a Gramian matrix gives rise to the following decomposi-
tion of the recurrent matrix:

G ¼ FTF ¼ ðFþ þ F�ÞTðFþ þ F�Þ ¼ FT
þFþ þ FT

�F�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
GInhib

þFT
þF� þ FT

�Fþ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
GExcite

; ð9Þ

shown in Fig 2B. Assuming first that we only take advantage of an overcomplete representation
(i.e. the Fmatrix has more columns than rows becauseM> N), the resulting E/I ratio isM:N
and requires (potentially many) fewer inhibitory cells than excitatory cells. However, this
implementation does not produce the diversity of tuning properties observed in V1 interneu-
rons, which can be either orientation tuned or non-orientation tuned (with no apparent struc-
ture) [37]. In fact, when using sparse dot stimuli to map out the RFs [17] of these interneurons,
the resulting RFs have a dot-shaped structure (Fig 2B) inconsistent with cortical observations
(see Supporting Information S1 Text “RFs of inhibitory cells in the Gramian decomposition”
for discussion relating this RF shape to the network structure).

Further assuming that we exploit the fact that G encodes redundant structure in natural
scenes, the recurrent connectivity can be represented by an even lower dimensional decompo-
sition than Eq (9). This can be achieved by seeking a lowest-rank (i.e., fewest number of inter-
neurons) recurrent matrix that is also a good approximation to G (noting that up to this point
we have only examined strategies that exactly solve the original encoding problem). Written
mathematically, this approximation is:

L ¼ arg min
L

rankðLÞ; s:t: kG� LkF � � ð10Þ

where k�kF is the Frobenius norm. This is equivalent to solving:

L ¼ arg min
L

kG� LkF ; s:t: rankðLÞ � r

with a suitable choice of r and �. The solution to this problem can be found by the truncated
singular value decomposition (SVD), known commonly as Principal Component Analysis
(PCA). Note that in our case the truncated singular values are equivalent to the truncated
eigenvalues because G is symmetric semi-positive definite. Specifically, we can decompose

G � L ¼ USVT

¼ ðUþ þ U�ÞSðVT
þ þ VT

�Þ
¼ ½UþSV

T
þ þ ð�U�ÞSð�VT

�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GInhib

� þ ½U�SV
T
þ þ UþSV

T
�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GExcite

�;
ð11Þ

where U and V are truncated singular vectors with orthogonal columns and implement the

A stylized sub-network showing the network implementing Eq (9). The RFs (mapped out by sparse dots [17])
of the interneurons are dot-like, with extreme localization and no orientation tuning. (C) A stylized sub-
network implementing Eq (11). The interneurons receive excitatory inputs weighted by the corresponding row
in VT

þ , adjust the gain by the corresponding diagonal entry in Σ, and projects back to the excitatory population
with connectivity weights determined by the corresponding row inU+. These interneurons receive dense
input frommany principal cells and have unstructured receptive fields, again with no discernible orientation
tuning.

doi:10.1371/journal.pcbi.1004353.g002
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recurrent synaptic weights (see the Discussion section for the biological plausibility of assum-
ing orthogonal connectivity); S is a positive diagonal matrix truncated from the full SVD and
implements the interneuron gain (see Materials and Methods).

The resulting inhibitory population receives dense, low-rank connections from the principal
cells with synaptic weights defined by VT

þ (i.e., each row representing synapses convergent onto
a single interneuron) as illustrated in Fig 2C. Note that another group of low-rank inhibitory
cells with different detailed connectivity is defined by�VT

� , but the qualitative characteristics
of these cells are similar to those defined by VT

þ . Both groups in this population have a gain
modulation defined by the diagonals of S, followed by projection back to the principal cells
with synaptic weights defined by U+ and −U− (i.e., each row represents synapses convergent
onto a single principal cell).

In our example sparse coding network, this implementation only requires 220 interneurons
to capture about 99% of the variance in G, representing a significant savings compared to 2048
and 256 interneurons required in Eqs (8) and (9) respectively. However, the resulting interneu-
rons are again not orientation tuned, lacking the diversity observed in V1 interneurons
(Fig 2C). In the Supporting Information S1 Text “RF of inhibitory cells in low-rank decomposi-
tion”, we show that the receptive fields of this population approximate the principal compo-
nents of F in a generative linear model and are thus untuned.

Achieving tuning diversity via convex optimization
Inhibitory neurons are diverse. There are at least two populations with either tuned or untuned
orientation selectivity [37]. At the same time, different inhibitory neurons connect to the excit-
atory population with different frequencies [45]. Could the diverse connectivity contribute to
the differences in tuning? It is indeed conceivable that inhibitory neurons densely connected to
the excitatory population combine inputs from different sources, and as a result have a broader
selectivity. Conversely, inhibitory neurons connecting more sparsely and locally with the excit-
atory population might be more selective to the stimulus.

To test the hypothesis that tuning diversity could arise from differential connectivity, we
decompose the recurrent connectivity matrix into two distinct matrices L and S

G ¼ Lþ S; ð12Þ
where L is a dense matrix and S is a sparse matrix capturing relatively few inhibitory influences
in G. To also respect the E/I cell ratio constraint, we would like L to be low-rank in particular
so that a condensed representation could be achieved using SVD as demonstrated in the previ-
ous section.

Recently the applied mathematics community has developed a principled algorithmic
approach known as Robust PCA (RPCA) [46–48] that effectively solves this decomposition
problem. In this approach, a sparse matrix S that models “outliers” (having a disproportionate
effect on the rank of G) is included so that the remainder L has a lower rank than G.

In the context of our study, an unstructured sparse connectivity matrix can result in a rela-
tively large number of interneurons because there can be a large number of columns containing
at least one non-zero value. To maintain the small number of interneurons, we also want the
sparse matrix to be row or column-sparse (see for example the connectivity represented in Eq
(6)). To achieve this, we used an adaptive version of RPCA (ARPCA) [49] to decompose the
recurrent connectivity matrix G = FTF into a low-rank matrix L and a column-sparse matrix S
by solving the following convex optimization program iteratively:

L; S ¼ argmin
L;S

kLk� þ kLSk1; subject to G ¼ Lþ S; ð13Þ

Modeling Inhibitory Interneurons in Efficient Sensory Coding Models
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where k�k� is the nuclear norm (i.e., the sum of absolute values of eigenvalues) to encourage L
to have low rank, k�k1 is the ℓ1-norm (i.e., the sum of absolute values of the vectorized matrix)
to encourage sparsity, and Λ is a diagonal weighting matrix updated at each iteration to
encourage column sparsity in S. The update rule for Λ is given by

Li;i ¼
b

kSðiÞk1 þ g
; ð14Þ

where S(i) is the ith column of S, and β and γ control the speed of adaptation. At each iteration,
the columns of S with smaller entries are assigned larger values of λ, thus encouraging the val-
ues in that column to become even smaller and eventually approach zero. The end effect is that
the algorithm converges to a decomposition where only a few columns in S are non-zero (see
Materials and Methods for details). We note that the RPCA formulation in Eq (13) is a natural
extension to SVD in Eq (10): instead of constraining the power in G−L (via the Frobenius
norm), we now model this difference using a structured matrix S.

After convergence, as before we perform a singular value decomposition (SVD) on the low-
rank matrix L = USVT. To respect Dale’s law we separate out the excitatory and inhibitory
influence similar to Eq (9) in each matrix:

G ¼ Lþ S ¼ USVT þ S

¼ ðUþ þ U�ÞSðVT
þ þ VT

�Þ þ ðSþ þ S�Þ
¼ ½UþSV

T
þ þ ð�U�ÞSð�VT

�Þ þ Sþ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GInhib

� þ ½U�SV
T
þ þ UþSV

T
� þ S�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GExcite

�:
ð15Þ

With this decomposition, the recurrent matrix can be rewritten with separate excitatory and
inhibitory recurrent interactions. In the sparse coding model example described earlier (Eq
(4)), the equivalent network dynamics are:

_uðtÞ ¼ 1

t
FTs|{z}

feed�forward

� UþSV
T
þ þ ð�U�ÞSð�VT

�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
low�rank

þ SþD|{z}
sparse

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
recurrent inhibitory

aðtÞ þ ðI � GExciteÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
recurrent excitatory

aðtÞ � uðtÞ

2
6666664

3
7777775
; ð16Þ

where D is a diagonal matrix with 0s and 1s on the diagonal and represents the synaptic
weights on the sparsely-connected interneurons made by the principal cells (Fig 3).

With a parameter choice that strikes a balance between sparseness and low rank (see Mate-
rials and Methods), the E/I cell ratio in the model network is also close to the observed ratio.
Specifically, with 2048 principal cells and 320 inhibitory interneurons (220 in the low rank
population and 100 in the sparse population), the model network has an E/I cell ratio of 6.4:1.

Decomposing the connectivity matrix in this manner results in two distinct populations of
inhibitory interneurons with a relative size controlled by the magnitude of the average weights
in the matrix Λ. The first subpopulation (exemplified by the inhibitory cell I1 in Fig 3) origi-
nates from the low-rank connectivity matrix L, and has properties described in the previous
section. The second subpopulation (exemplified by I2 in Fig 3) originates from the sparse con-
nectivity matrix S. This population receives one-to-one (i.e. sparse) connections with unit
weights defined by the diagonal matrix D from the principal cells, and projects back to the
principal cells with weights defined by S. Because S is column-sparse, the rows in D that corre-
spond to the zero columns in S can be set to 0 without altering the recurrent influence. Said
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another way, we can eliminate the zero rows of the Dmatrix and the zero columns of S, mean-
ing that only a few interneurons are required in this subpopulation (Fig 3).

This model network accurately solves the sparse coding inference problem (Eq (3)), despite
using only the top principal components of L in the approximation to the recurrent matrix.
This is shown in Fig 4, where we compare the original network (i.e., the idealized implementa-
tion of Eq (4) that is not biophysically plausible) with the approximation described above in
the metrics of interest. Specifically, for a number of grating test patches we plot the final value
of the energy function (i.e., the quantity to be minimized in Eq (3)), along with the individual
quantities relevant to the objective: the sparsity of the final answer (measured by the number of

Fig 3. Low-rank plus sparse decomposition of the recurrent connectivity matrix.On the left we show a stylized network structure of the model with low-
rank plus sparse decomposition of the recurrent connectivity matrix. The first inhibitory neuron I1 belongs to the low-rank subpopulation. The second
inhibitory neuron I2 belongs to the sparse subpopulation. It receives inputs from a single excitatory neuron (E2 in this illustration) with the connectivity matrix
implemented by the diagonal matrix D, and sends projections back to the excitatory population with weights determined by a non-zero column of the
connectivity matrix S+. This inhibitory cell has the same receptive field as E2. The matrices on the right show the decomposition of the recurrent inhibitory
connections exemplified in the network on the left. The low rank and sparse inhibitory populations together implement the recurrent inhibition −GInhib. The
excitatory recurrent influences are implemented by direct connections I−GExcite between the principal cells.

doi:10.1371/journal.pcbi.1004353.g003

Fig 4. The network implements efficient coding.Comparison of original sparse coding network model to approximation with idealized interneurons.
Different markers represent results using different stimuli. (A) The energy function representing the total objective being optimized. (B) The sparsity of the
response a. (C) The relative ℓ2 error of the image reconstruction.

doi:10.1371/journal.pcbi.1004353.g004
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active coefficients kak0) and the relatve ℓ2 error for the input image (ks−Fak2/ksk2). As dem-
onstrated in Fig 4, the approximation achieves performance very similar to the original (mean
relative error of energy approximation 0.008±0.001). We note specifically that in both the
approximated and the original network, the activity is very sparse—only up to 5% of all 2048
neurons are active.

Interestingly, the sparse and low-rank interneuron populations in RPCA show the same
kind of diverse orientation tuning as V1 inhibitory cells in vivo. The low-rank inhibitory popu-
lation has RFs that are mostly untuned (Fig 5A and 5C; orientation tuning mapped using a
grating stimulus centered in the middle of the visual field), comparable to the untuned inhibi-
tory neurons observed in cats [37] (Fig 5B). The sparse inhibitory population has RFs that
resemble the primary cell RFs in F and are orientation tuned (Fig 5D and 5F; orientation tun-
ing mapped using a grating stimulus centered on the RF of the interneuron), comparable to the
tuned inhibitory neurons observed in cats [37] (Fig 5E). This tuning dichotomy is expected
from the difference in connectivity: the orientation-tuned inhibitory RFs arise from orienta-
tion-selective inputs from single principal cells (i.e., sparse synaptic connections), whereas
untuned RFs arise from dense synaptic inputs from many principal cells of different tunings.

For simplicity in the above model we treat the interneurons as instantaneous linear units
(Eq (16)). To make the model more biologically realistic, we can incorporate the same first-
order dynamics (i.e., leaky integration) used by the principal cells into the interneurons. Specif-
ically, the full population dynamics can be written as:

_uðtÞ ¼ 1

t
FTs� UþaI; L1ðtÞ þ ð�U�ÞaI; L2ðtÞ þ SþaI; SðtÞ

� �þ I � GExciteð ÞaðtÞ � uðtÞ� �

aðtÞ ¼ TlðuðtÞÞ

_aI; L1ðtÞ ¼ 1

t
ðSVT

þaðtÞ � aI; L1ðtÞÞ

_aI; L2ðtÞ ¼ 1

t
ðSð�VT

�ÞaðtÞ � aI; L2ðtÞÞ

_aI; SðtÞ ¼ 1

t
ðDaðtÞ � aI; SðtÞÞ;

ð17Þ

where aI, L1(t) and aI, L2(t) are the dynamic responses of the two low rank interneuron popula-
tions and aI, S(t) is the response of the sparse population. Here we assume that inhibitory neu-
rons have the same time constant as the principal cells. As shown in Fig 6, the model defined in
Eq (17) still accurately solves the original sparse coding problem (mean relative error of energy
approximation 0.029±0.004). Note that due to the added dynamics, the new dynamical system
needs more numerical integration steps to converge (all systems run for 100 steps in Fig 6 vs.
25 steps in Fig 4, resulting in some differences in the sparsity-rMSE tradeoff).

Discussion
The main contribution of this study is a biologically plausible computational framework for
including inhibitory interneurons in efficient dynamical system models of neural coding based
on ideas from matrix factorization and convex optimization. From the demonstrated results,
we conclude that techniques such as low-rank plus sparse decomposition can be used to find
implementations of a recurrent connectivity matrix that produce equivalent population
dynamics while using an inhibitory structure that matches many biophysical properties,
including respecting Dale’s law, known E/I cell ratios, and diversity of orientation tuning prop-
erties. In our example of a network implementing sparse coding, the resulting representation is
nearly as accurate as the idealized coding model while being much more faithful to the
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biophysics of the inhibitory population. Because the proposed approach only depends on the
structure of the recurrent matrix (which may be common among many energy based models,
including many other derivatives of sparse coding [33]), we expect that the results will be appli-
cable to many dynamical systems implementing neural coding models.

Our approach suggests that the excitatory to inhibitory cell ratio in V1 is an emergent prop-
erty of interneurons implementing efficient visual coding in a resource-conserving way. Specif-
ically, in our model a comparatively small number of interneurons efficiently route the

Fig 5. Achieving tuning diversity. (A) Example RFs of the low-rank subnetwork of inhibitory interneurons in
the simulation. (B) An example RF and orientation tuning curve from physiological recordings (Reprinted by
permission fromMacmillan Publishers Ltd: Nature Neuroscience, Fig 7c from [37]); (C) An example
orientation tuning curve from the simulation. (D) Example RFs of the sparse subnetwork of inhibitory
interneurons. (E) An example RF and orientation tuning curve from physiological recordings (Reprinted by
permission fromMacmillan Publishers Ltd: Nature Neuroscience, Fig 4d from [37]); (F) An example
orientation tuning curve from the simulation.

doi:10.1371/journal.pcbi.1004353.g005
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inhibitory influence by taking advantage of the overcomplete and low-rank (redundant) struc-
ture in the recurrent connectivity pattern. We have further demonstrated that the tuning diver-
sity of interneurons could arise from differential connectivity with the excitatory population—
a prediction that could be tested experimentally.

Related studies
Recently a few studies explicitly introduced inhibitory interneuron populations into high-level
functional encoding models. Lochmann et al. [50] developed a generative model that demon-
strates contextual effects in sensory coding and includes a population of inhibitory neurons.
These inhibitory cells contribute to efficient perceptual inference through input targeted divi-
sive inhibition. However, this model only works with binary one dimensional inputs and the
inhibitory connectivity pattern predicted by this model presently lacks anatomical support at
the cortical level. Therefore, its connection with realistic visual encoding remains unclear.

In a more recent work, Boerlin et al. [51] illustrated a way to include a separate inhibitory
population in an efficient coding spiking network that estimates the state of an arbitrary linear
dynamical system. While providing a spiking model for the inhibitory cells, their approach did
not investigate the issues of excitatory-inhibitory cell ratio and tuning diversity. It should also
be noted that the Gram recurrent matrix in our model also occurs in their model (their Eq 10).
It is therefore possible that our approach could be applied in their scenario.

Another recent study [7] has developed a spiking sparse coding network based on [28] that
incorporates a population of inhibitory cells with connectivity weights adapted to natural
scenes. Similar to the results of our study, the work in [7] has found that a relatively small num-
ber of inhibitory cells are sufficient to provide recurrent competition required for sparse cod-
ing. In contrast, the present study formulates a framework for including biologically plausible
inhibitory interneurons in a wide range of models in a way that can potentially be proven
equivalent computationally to the original model objective (e.g., Eq (2)). Furthermore, the
present work captures the observed tuning diversity of inhibitory interneurons in V1. We note
that the work in [7] does use a more biophysically realistic learning rule, whereas the present
paper uses a global convex optimization approach on a fixed connectivity matrix that may
have been established through a learning process.

Fig 6. A network with dynamic interneurons implements sparse coding.Comparison of original sparse
coding network model to approximation with plausible interneurons with a dynamical model. Different
markers represent results using different stimuli. (A) The energy function representing the total objective
being optimized. (B) The sparsity of the response a. (C) The relative ℓ2 error of the image reconstruction.

doi:10.1371/journal.pcbi.1004353.g006
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Model predictions on the interneuron properties
Our model gives several experimentally verifiable predictions of interneuron properties that we
detail in this section. We also note that while biologically plausible, there are limitations with
the current model (see the Caveats section later).

First of all, our model predicts the existence of two distinct connectivity patterns between
inhibitory interneurons and principal cells: the recurrent connections between principal cells
and the low-rank interneurons are dense while the recurrent connections between the principal
cells and the sparse interneurons are selective. According to these patterns, a likely biological
correlate for the low-rank interneurons in mice is the fast-spiking parvalbumin-expressing
(PV) interneurons, which receive dense synaptic inputs from nearby pyramidal cells of diverse
selectivities [52], and project densely back to neighboring pyramidal cells [53]. Interestingly, as
predicted by our model, the PV neurons indeed have broader selectivity than principal cells
[54]. Similarly in cats, a subgroup of fast-spiking interneurons were found to have broader tun-
ings than other interneurons [55]. Note that this broad selectivity means that the interneuron
population derived from the low-rank component will use a dense code (i.e., most cells partici-
pating for most stimuli) even in coding rules such as the sparse coding example used in this
work.

It is less clear what biological correspondence is most appropriate for the sparse interneuron
population arising in the model. One candidate is the irregular firing cannabinoid receptor-
expressing (CB1+) neurons, which have been shown to be more sparsely connected to the prin-
cipal cells than the PV neurons [45]. However it is unclear what selectivity properties these
neurons have in the visual cortex. Another candidate is the somatostatin expressing (SOM)
neurons, which are orientation selective and have weaker response [54], similar to the sparse
population in our model. If they indeed correspond to the sparse population in our model, we
predict that these neurons receive sparser connections from the principal cells compared to the
PV neurons (this however might differ from layer to layer, as evidenced by a recent study in
L2/3 [56]).

In addition to general connectivity patterns, our model also provides predictions on the dis-
tribution of inhibitory synaptic weights in V1. As shown in Fig 7A, we observe a near log-

Fig 7. Distribution of synaptic weights. (A) The non-zero inhibitory synaptic weights in the RPCAmodel
have a near log-normal distribution. (B) The Quantile-Quantile (QQ) plot of the starndardized log of the model
distribution vs. a standard normal distribution. A line is drawn through the 25% and 75% quantile to illustrate
the goodness of fit. The model distribution has a visible tail towards the smaller weights.

doi:10.1371/journal.pcbi.1004353.g007
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normal distribution of the inhibitory synaptic weights when using a dictionary adapted to the
statistics of natural scenes. Compared to a standard log-normal distribution however, the
model distribution has a longer tail towards the smaller values as visible from the Q-Q plot
(Fig 7B). Note that while the heavy tail is significant, in fact only a small part of the distribution
deviates from log-normal (below the -2.33 quantile—corresponding to 1% of the cumulative
density). Compounded with the difficulty of measuring from weak synapses, we anticipate that
this tail would be hard to capture from experimental measurements. We note that there was a
previous study [57] demonstrating a log-normal distribution between excitatory neurons, but
we are unaware of similar findings for inhibitory cells. It should be noted that this model distri-
bution is in agreement with the prediction of a previous model of spiking sparse coding [28].
Whether this is true in physiology requires further experimental validation.

In discussing the recurrent connections in the network of Fig 3, we concentrate mostly on
the inhibitory connections represented by the GInhib term. The excitatory influences are
assumed to be implemented by direct excitatory-excitatory connections represented by the
connectivity matrix I−GExcite. The identity matrix I is assumed to be implemented by an inde-
pendent mechanism that results in self-excitation. Biologically, there are at least three ways this
self-excitation could be achieved: through “autapses” [58] (although most of these self-connec-
tions were observed in inhibitory cells); through excitatory interneurons that connect back to
the principal cells; or through dendritic back-propagation [59].

Caveats
We note that some of the biological features of inhibitory circuits modeled in this work are still
controversial among physiology studies. For example, although Dale’s law is a generally
accepted operating principle, it was recently suggested that neurons can segregate neural trans-
mitters to different synapses [60]. As another example, the diversity of tuning properties and
the functional roles of inhibitory interneurons are still controversial. Most studies on this topic
were conducted in rodents (the study we compared our simulation to [37] in the Results being
a notable exception), with few implications for primates and leaving substantial uncertainty
even in mouse neocortex [14]. For example, it is still unclear whether PV interneurons have a
diversity of tuning properties [61] or are mostly broadly tuned [62]. In addition, in our simula-
tion the recurrent inhibition sharpens the orientation tuning of the principal cells [19]; in phys-
iology, there are conflicting accounts of whether this is the case [2, 3]. In summary, the
modeling results here should be considered as a demonstration of the capability of a theoretical
model to reproduce a variety of detailed biological phenomenon, not as support for any specific
anatomical inhibitory circuit structures and functions.

There are several biological details of the inhibitory population that the current model does
not capture. First, the non orientation-tuned inhibitory interneurons in cat primary visual cor-
tex have complex cell characteristics such as overlapping ON/OFF receptive fields (Fig 5B). To
capture such features, a coding model involving complex cells may be necessary. Second, the
current model does not attempt to capture the prevalent electrical and chemical interconnec-
tions between inhibitory interneurons in the cortex [1, 63]. These recurrent connections can
potentially be incorporated by allowing off-diagonal entries in the gain matrix S. Third, we
have treated inhibitory interneurons as continuous-time units with instantaneous dynamics
(Eq (16)) or with first-order dynamics (Eq (17)). In reality, interneurons emit spikes and have
diverse temporal dynamics involving short-term plasticity [64]. A previous work from our
group [35] showed that the non-spiking sparse coding network (without a separate inhibitory
population) can be equivalently implemented by a network of integrate and fire cells. While we
would expect a spiking network with a similar connectivity pattern as we have demonstrated
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would exhibit similar kind of interneuron properties, it is unclear without further analysis
whether using more biologically realistic spiking neurons would affect the overall dynamics.
Finally, though it is well-known that thalamic inputs innervate inhibitory interneurons consti-
tuting feedforward inhibition [1], the model discussed in the main text does not include a
detailed model of this feedforward component. However, we argue in the Supporting Informa-
tion S1 Text “Feedforward inhibition” section that the cell ratio and orientation tuning proper-
ties could be modeled in a similar manner as the recurrent network.

It is known that neural network models with different parameters may share the same
input-output functionality [65]. Similarly, there are other model configurations (i.e. inhibitory
connection patterns) not considered in this work that could implement the same coding func-
tionality. For one example, in the Supporting Information S1 Text “Global inhibition” section
we consider the example of global inhibition structures. In this case, while very few inhibitory
cells are needed, only non orientation-tuned inhibitory cells can be modeled.

A remaining question is whether the proposed decomposition can be learned in a biologi-
cally plausible way. While it is out of the scope of the current study, we do expect the orthonor-
mal low-rank connectivity matrices to be learnable in a biologically plausible fashion. Indeed,
with Sanger’s learning rule—a classical unsupervised learning method for feedforward neural
networks that can be implemented locally—the network weights converge to orthonormal
eigenvectors of the input [66]. Note that while the orthonormality emerges automatically from
the learning rule, we are not suggesting that the singular vectors are the only plausible weights
in the interneuron network. For example, performing a linear transform (e.g. a rotation) in the
low-rank principal subspace gives rise to an alternative decomposition that maintains the cell
ratio and tuning properties we have modeled. This alternative implementation may in fact
have additional computationally benefits. For example, a linear transform equalizes the gain
distribution in the SVD and potentially improves the robustness of the network against noise.

Materials and Methods

Adaptive Robust PCA
Eq (13) is a convex optimization problem that can be solved efficiently through numerical opti-
mization techniques. In this study we solve this optimization problem through an adaptive ver-
sion of Alternating Direction Method of Multipliers (ADMM), a robust dual ascent method
[67]. Specifically, the inner loop of the algorithm finds the optimal L and S given a choice of Λ
by alternating between a primal update that achieves (augmented) Lagrangian minimization
and a dual update. The outer loop updates Λ according to Eq (14). See [49] for details of the
algorithm.

Implementation details
We start with a model network of 2048 principal neurons with receptive fields adapted to
16 × 16 natural image patches using sparse coding [17]. The principal cell activities are inter-
preted as the sparse coefficients of a dynamical system implementing sparse coding (a in Eq (4)
constrained to be positive) [27] with a threshold value λ = 0.1, as was done previously in [19].

In the proposed implementation, the required number of inhibitory interneurons is gov-
erned by the rank of L and the number of non-zero columns in S. To achieve a biophysically
accurate small E/I cell ratio, we would like both the rank of L and the number of non-zero col-
umns of S to be small. However, these are two competing requirements whose tradeoff depends
on the parameters in Eqs (13) and (14). Indeed, making L lower rank necessarily makes S less
column-sparse. To find a compromise solution, we chose the following set of parameters: the
initial diagonal of Λ is 0.038; α = 2.5; β = 0.01. After convergence, we chose to keep 110 cells
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(implementing top 110 eigenvalues in L) in each of the two low-rank inhibitory populations
with a total of 220 cells so that 99% of the variance in L was retained. We also used 220 inter-
neurons in the SVD implementation to facilitate comparison between the models.

Supporting Information
S1 Text. Mathematical derivations of model receptive fields; models of feedforward inhibi-
tion and global inhibition.
(PDF)

S1 Fig. Feed-forward inhibition. Feedforward push-pull could also be implemented with
fewer inhibitory neurons than excitatory neurons.
(TIF)

S2 Fig. Global inhibition. (A) The recurrent network that implements the global inhibition
(Eq. (S8)). I1 pools all activities from the excitatory population, weighs them by c, and projects
back to the excitatory population. (B) The orientation tuning curve of the inhibitory neuron I1.
(TIF)
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