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Abstract
Homology modeling predicts the 3D structure of a query protein based on the sequence

alignment with one or more template proteins of known structure. Its great importance for

biological research is owed to its speed, simplicity, reliability and wide applicability, covering

more than half of the residues in protein sequence space. Although multiple templates have

been shown to generally increase model quality over single templates, the information from

multiple templates has so far been combined using empirically motivated, heuristic

approaches.

We present here a rigorous statistical framework for multi-template homology modeling.

First, we find that the query proteins’ atomic distance restraints can be accurately described

by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of

probability theory to combine restraints from multiple templates. Second, we derive theoreti-

cally optimal weights to correct for the redundancy among related templates. Third, a heu-

ristic template selection strategy is proposed.

We improve the average GDT-HA model quality score by 11% over single template

modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query

proteins. Robustness with respect to wrong constraints is likewise improved. We have inte-

grated our multi-template modeling approach with the popular MODELLER homology

modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and

also offer open source software for running MODELLER with the new restraints at https://

bitbucket.org/soedinglab/hh-suite.

Author Summary

Since a protein’s function is largely determined by its structure, predicting a protein’s
structure from its amino acid sequence can be very useful to understand its molecular
functions and its role in biological pathways. By far the most widely used computational
approach for protein structure prediction relies on detecting a homologous relationship
with a protein of known structure and using this protein as a template to model the
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structure of the query protein on it. The basic concepts of this homology modelling
approach have not changed during the last 20 years. In this study we extend the probabilis-
tic formulation of homology modelling to the consistent treatment of multiple templates.
Our new theoretical approach allowed us to improve the quality of homology models by
11% over a baseline single-template approach and by 6.5% over a multi-template
approach.

This is a PLOS Computational BiologyMethods paper.

Introduction
Homology modeling is by far the most widely used computational approach to predict the 3D
structures of proteins, and almost all protein structure prediction servers rely chiefly on homol-
ogy modeling, as seen in the community-wide blind benchmark “Critical Assessment of Tech-
niques for Protein Structure Prediction” (CASP) [1–3].

Homology modeling consists of four steps: (1) Finding homologous template proteins of
known structure, (2) Selecting the best template or set of templates, (3) Optimizing the multi-
ple sequence alignment (MSA) between query and template protein sequences, and (4) Build-
ing the homology model for the query sequence that resembles as closely as possible the
structures of the templates, accommodating for deletions and insertions of query residues with
respect to the template structures.

During the last 15 years, much progress has been made regarding the sequence-based steps
1 to 3. This is mainly owed to the development of more sensitive and accurate methods for
sequence searching and alignment that compare sequence profiles or profile hidden Markov
models (HMMs) with each other [4–6]. In contrast, improvements to the last step have been
marginal. This is illustrated by the fact that, although a number of tools for protein homology
modeling exist, to our knowledge all are older than 12 years (see [7, 8] for reviews). ModSeg/
ENCAD [9] copies template coordinates and bridges gaps by short fragments that match the
framework of the target structure. SWISS-MODEL [10] generates a core model by averaging
template backbone atom positions. NEST [11] implements an artificial evolution algorithm
where changes from the template structure such as substitutions, insertions and deletions are
made one at a time, and each mutation is followed by an energy minimization. This process is
repeated until the whole query is modeled.

These tools rely on of various heuristics. MODELLER [12], with 7500 citations clearly the
most popular and according to two studies [7, 8] also the most successful homology modeling
software to date, stands out by being based on a statistical approach to homology modeling.
MODELLER is essentially unchanged at its core since its publication 22 years ago, while exten-
sions such as refined energy functions [13] or loop modeling [14] have led to relatively minor
improvements of its already excellent performance. We therefore believe MODELLER’s success is
owed to the consistent, statistical approach at its core.

MODELLER proceeds in two steps: (1) Derive from the MSA and template structures a list of
restraints and (2) find the model structure that minimizes the restraint violations. Each restraint
is a probability density function. The most important class of template-dependent restraints are
the probability density functions for the spatial distances of pairs of atoms in the query protein.

Probabilistic Multi-template Homology Modeling
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The true distance d will be distributed around the distance dt of the equivalent atoms in the tem-
plate structure, where equivalent residues are those that are aligned to each other (Fig 1). MOD-
ELLER assumes for simplicity a Gaussian distribution for d. Its mean equals dt and its standard
deviation is predicted based on the sequence similarity between query and template. The
restraint minimization in the second step amounts to a maximum likelihood optimization,
where the likelihood is approximated as the product over the density functions of the individual
restraints. This factorisation of the likelihood assumes that the individual restraints represent
information independent of each other, because in probability theory the joint probability of
two random variables (X and Y) is the product of their probabilities, p(X, Y) = p(X) p(Y), if and
only if they are independent of each other. Although the assumption of independence of
restraints sounds rather drastic, the approximation turned out to work well in practice.

To aggregate the information from several templates, however, MODELLER does not multi-
ply the density functions of all restraints as probability theory would suggest. Instead, it relies
on an empirical observation that the distribution of the target distance informed by multiple
template distances is multi-modal. Thus, MODELLER reverts to a heuristic approach and com-
putes an additive mixture of the density functions, each derived from an individual template,
to restrain a single target distance based on multiple templates.

Here, we develop a rigorous statistical treatment of multiple template homology modeling.
We first show that the distance distributions for log(d) are very well described by two-compo-
nent Gaussian mixture distributions. In contrast to MODELLER’s one-component densities,
these two-component densities allow us to combine density functions by multiplication. Sec-
ond, we derive an algorithm to compute weights that take the statistical dependence of the dis-
tance information from the templates into account. Third, we propose a heuristic scheme for
template selection. We demonstrate that the new HHpred modeling pipeline and in particular
the new constraints yield substantially improved model qualities.

Fig 1. MODELLER’s statistical approach to homology modeling: The unknown distance d between
two atoms in residues i and j of the query protein (Q) is described by a probability distribution Prob(d)
that is peaked around the distance dt between the corresponding atoms in residues i0 and j0 of the
template protein (T). This distribution Prob(d) is a probabilistic distance restraint for the distance d. To model
a protein, tens to hundreds of thousands of such distance restraints between pairs of atoms in the query
protein are derived. The product of all these restraint functions, which is called the likelihood function in
statistics, quantifies how well a model structure satisfies all restraints at the same time. Therefore, the model
structure that maximises the likelihood function represents the best solution.

doi:10.1371/journal.pcbi.1004343.g001
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Materials and Methods

Modeling distance restraints
Our approach to multi-template homology modeling is based on the statistical approach to
homology modeling introduced by MODELLER. Our software computes improved spatial
restraints and calls the MODELLER software, which then reads in the restraints and finds a struc-
ture that optimally satisfies these restraints. We briefly recall MODELLER’s approach of homol-
ogy modeling here.

MODELLER’s maximum likelihood approach to homology modeling. MODELLER proceeds
in two steps to compute a model structure for a query sequence that is aligned to a set of tem-
plates with known structures. In the first step, it generates a list of hundreds of thousands of
restraints for the distance between pairs of atoms in the query, based on the distance of corre-
sponding atoms in the templates. E.g. if residue i of the query q is aligned to residue i0 of a tem-
plate t and similarly j is aligned to j0, then the distance d between the Cα atoms of residues i and
j in q will be restrained to be similar to the known distance dt between the Cα atoms of residues
i0 and j0 in t (Fig 1). In statistics, a restraint is described as a probability density function p(d),
and in MODELLER this distance restraint is modelled by a Gaussian function with mean dt. The
standard deviation of the Gaussian describes the expected deviation of the distance d from dt.
Distance restraints are generated for each pair of residues (i, j) for which aligned residues i0 and
j0 exist and for various combinations of atom types, for which equivalent atoms exist in the
aligned template residues, e.g. Cα − Cα, N −O, Cα − Cγ etc.

In the second step, MODELLER uses stochastic optimisation to find the model structure for
the query sequence that maximises the likelihood. The likelihood is the probability of the data,
i.e. the alignment and template structures, given the model structure. When a single template is
used for modeling, MODELLER approximates the likelihood as the product of the probability
density functions over all restraints. Although this approximation corresponds to assuming the
independence of all restraints, it has turned out to work well in practice.

Sali and Blundell [12] observed that the expected deviation d − dt depended on (1) the frac-
tion of identically aligned residues between the two sequences, (2) the average solvent accessi-
bility of the two aligned residue pairs (i, i0) and (j, j0), (3) the average distance of i, i0, j and j0

from a gap, and (4) the distance dt. They modelled the standard deviation of the Gaussian
restraint as functions of the four discretized variables. To fit these functions, they analysed a
large set of structurally aligned, homologous proteins for which they measured the distances d
= dij and dt = di0j0 between equivalent atoms in two pairs of structurally aligned residues, (i, i0)
and (j, j0). Four different functions are trained, one for each of the following combinations of
atom types: Cα − Cα, N −O, side chain—main chain, side chain—side chain.

New distance restraints that account for alignment errors. Because the analysis in [12]
relied on structurally alignable residue pairs in structure-based alignments, they were basically
free of alignment errors and therefore the distance in the query was always similar to the dis-
tance in the template. In practice, the sequence alignment will contain errors and i and i0 (or j
and j0) might not be homologous to each other. In this case, dt does not contain information
about d and may be vastly different. When the pairs of residues (i, i0) and (j, j0) are sampled
from real sequence alignments, this may lead to a stark deviation of the distance distribution
from a Gaussian.

Fig 2(A)–2(C) shows distributions of log(d) − log(dt) for sets of residue pairs (i, i0) and (j, j0)
sampled from alignments with successively lower quality. In Fig 2A only very reliable align-
ments have been sampled, with a posterior probability (pp) for (i, i0) and (j, j0) to be correctly
aligned larger than 0.9 and with a sequence similarity (sim) above 0.75 bits per aligned pair.
(See the Supporting Information for the definition of pp and sim.) Consequently, the empirical
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density distribution over log(d) − log(dt) has a single peak and is well fitted by a single Gauss-
ian. However, when the alignment quality deteriorates, as shown in Fig 2B and 2C, a second
component in the distribution manifests itself. It stems from residues (i, i0) and (j, j0) for which
either (i, i0) or (j, j0) or both are not homologous. These data points thus contribute a back-
ground distribution that does not depend on the distance dt in the template.

These observations motivated us to model the restraint function p(log dj log dt, pp, sim) =
p(log djθ) using a two-component Gaussian mixture distribution (see Fig 3A) whose means,
standard deviations and mixture weight w depend on θ = (log dt, pp, sim) or θ0 = (pp, sim):

pð log djyÞ ¼ wðyÞN ð log djmðyÞ; s2ðyÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
correctly aligned

þ ð1� wðyÞÞN ð log djmbgðy0Þ; s2
bgðy0ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

alignment errors

ð1Þ

The mixture weight w(θ) can be regarded as the probability that both (i, i0) and (j, j0) are cor-
rectly aligned. Locally unreliable alignments will lead to a stronger background component and
hence to softer distance restraints. Note that, because distances cannot be negative, they are not

Fig 2. Empirical log distance distributions between pairs of atoms are well modelled by a two-
component Gaussianmixture composed of a signal component and a background component. The
background component originates from pairs of residues with an alignment error. The plots show the
empirical distribution of log d − log dt = log dij − log di0 j0 for thousands of sampled pairs of residues (i, i0), (j, j0)
from real, error-containing pairwise sequence alignments generated with HHALIGN [15]. The two-component
Gaussian mixture distribution predicted by the mixture density network in Fig 3B is plotted in red. From (A) to
(C), the reliability of the alignments at (i, i0) and (j, j0) (as measured by pp and sim values) decreases.
Consequently, the weight of the background component increases at the expense of the signal component.
(D) Same as (C) but showing the distribution of N −O distances instead of Cα − Cα distances.

doi:10.1371/journal.pcbi.1004343.g002
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well modelled by Gaussian distributions, whose left tail can penetrate into the negative domain.
We therefore modeled the distribution of log d instead of d.

Mixture density networks. To predict the five parameters of the Gaussians mixture distri-
bution in Eq (1), we trained four mixture density networks [16], one for each combination of
atom types listed above. A mixture density network is a special kind of neural network that
learns the optimum adaptive functions for predicting the parameters of a Gaussian mixture
distribution. It is trained by maximizing the likelihood of a set of training data that consists of
the input features together with the value log d whose distribution should be learned. We used
the R package netlabR to implement a mixture density network with five hidden nodes as
illustrated in Fig 3(B). As input features we used θ = (log dt, pp, sim). The local alignment
quality pp(i, j) and the global BLOSUM62 sequence similarity sim are parsed from the output
of HHALIGN in the hh-suite package [15], a widely used software for remote homology detec-
tion and sequence alignment (see Fig 8, green points). The set of three features was obtained by
starting from a more redundant set of alignment features described in Table B in S1 Text and
successively eliminating features whose omission did not significantly deteriorate the likeli-
hood on the training set (in particular probability and raw score).

Combining restraints frommultiple templates. When several templates cover residues i
and j of the query, the restraints on the distance d of atoms in residues i and j from those tem-
plates have to be combined. Multiplying the restraint functions as probability theory would
suggest (see below) would not work in MODELLER’s case. When one of the restraints is wrong
due to an alignment error, for instance, the restraint function of the incorrect restraint would
severely distort the model structure, because the probability density of its single-component
Gaussian falls off very fast for increasing distance from its mean, which effectively forbids any
gross violation of the restraint. Therefore, MODELLER resorts to a heuristic to estimate the proba-
bility density p(djd1, d2) resulting from the restraints of two templates t1, t2 with corresponding
distances d1 and d2: It adds both probability densities p(djd1) and p(djd2) (Fig 4A) using some

Fig 3. (A) Illustration of the two-component Gaussians mixture distribution in Eq (1). (B) Mixture density
network to predict the parameters (w, μ, σ, μbg, σbg) of the Gaussian mixture distribution given the three
variables θ = (log dt, pp, sim) (dt: distance in template, pp: posterior probability for both aligned residue pairs
to be correctly aligned, sim: sequence similarity). Since the background component does not depend on dt,
the nodes for μbg and σbg are only connected to the two lowest hidden nodes that are not connected to log dt.

doi:10.1371/journal.pcbi.1004343.g003
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weights:

pðdjd1; d2; s1; s2Þ � aðs1Þ pðdjd1Þ þ aðs2Þ pðdjd2Þ : ð2Þ

Here s1 and s2 measure the average sequence similarity in the sequence neighbourhoods
around the two pairs of aligned residues from q and t1 and from q and t2, respectively. The opti-
mum functions α(s1), α(s2) were found by training on a large number of structurally aligned
triplets of proteins q, t1, t2 [12].

This heuristic approach leads to undesirable behaviour, as illustrated in Fig 4A and 4C.
According to elementary statistical principles, a restraint function for a distance d based on
restraints from multiple templates should contain more information and be more sharply
resolved than any single-template restraint function. However, the additive mixture density
restraint in Eq (2) is wider, not narrower, than any single restraint.

The new two-component distance restraints allow us to apply the rules of probability to
combine the information from the two templates. By Bayes’ theorem we obtain

pðdjd1; d2Þ ¼
pðd1; d2jdÞ pðdÞ

pðd1; d2Þ
: ð3Þ

If the information in the templates was approximately conditionally independent given d, i.e., p
(d1, d2jd)� p(d1jd) p(d2jd) we would obtain

pðdjd1; d2Þ
pðdÞ � pðd1jdÞ

pðd1Þ
pðd2jdÞ
pðd2Þ

¼ pðdjd1Þ
pðdÞ

pðdjd2Þ
pðdÞ ; ð4Þ

where Bayes’ theorem was applied to each factor in the second step.

Fig 4. Comparison of how restraints frommultiple templates are combined in MODELLER (top row) and in our new approach (bottom row). (A) In
MODELLER, two restraints functions (green and blue) are additively mixed with mixing weights that have to be learned on a set of triples of aligned protein
structures. (B)Our new restraints are multiplied instead of being added. The background component ensures that the restraint function becomes constant
and the restraint thus becomes inactive (i.e. ignored) when the distance d is far from the distance in the template. (C)MODELLER’s additive mixing leads to a
total restraint function that is wider than any of the single-template restraints, not narrower as it should. (D) The multiplication of restraints functions according
to probability theory leads to the desired behaviour of the total restraint function becoming more pointed with each restraint. Note that our new restraints are
expressed as odds instead of densities (see also Eq 6).

doi:10.1371/journal.pcbi.1004343.g004
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In practice, the query and templates are related to each other through evolution along phy-
logenetic trees, and conditional independence cannot be assumed. We therefore approximate
the dependence among the templates by weighting their odds ratios, with weights wk 2 [0, 1].
This method is analogous to weighting sequences according to their similarity with other
sequences in a multiple sequence alignment in order to compute a sequence profile [17] or
some other family-dependent features [18]. We will derive a method to determine optimal
template-specific weights wk in the following subsection. The previous formula can then be
generalised to K templates, giving

pðdjd1; . . . ; dKÞ
pðdÞ �

YK
k¼1

pðdjdkÞ
pðdÞ

� �wk

: ð5Þ

Here, p(d) is the probability independent of any template, i.e., the background distribution
N ðdjmbg; s

2
bgÞ. According to Eq (1), the restraint functions are now (for the sake of brevity we

omit θ and θ0)

pðdjdkÞ
pðdÞ ¼ ð1� wÞN ð log djmbg; s

2
bgÞ þ wN ð log djm; s2Þ

N ð log djmbg; s
2
bgÞ

¼ 1� wþ w
N ð log djm; s2Þ
N ð log djmbg; s

2
bgÞ

: ð6Þ

Note that the ratio of the two Gaussians is again a Gaussian, because subtracting two qua-
dratic functions of d again yields a quadratic function. Fig 4B and 4D illustrate how restraints
from multiple templates are combined under our new statistical approach and that this leads to
the expected desirable behaviour of the total restraint restraining more strongly than the one-
component restraints.

Dividing by the background has two effects: first, it prevents the background to become
dominant when the individual background components of all P(djdk) are multiplied. Second,
the negative logarithm of MODELLER’s distance restraint is quadratic in d, and hence unsatisfi-
able restraints can lead to extreme values during optimization. Dividing by the background
avoids this quadratic increase because P(djdk)/P(d) has flat tails where it approaches a constant
(1 − w). In cases of incorrect alignments with a wrong distance dt in the template, the restraint
will not disrupt the query’s model structure as d will be pulled away from dt into the flat region
of the restraint. Combining two component distance restraints as shown in Fig 4D thus rein-
forces consistent restraints while avoiding distortions from incorrect restraints.

Running MODELLER with the new distance restraints. After having picked a set of tem-
plates, we run the MODELLER (version 9.10) automodel.homcsr(0) command that gener-
ates a file with the list of restraints from the query-template alignment. We parse the list of
restraints and replace each template-dependent distance constraint (which is either a Gaussian
function for a single-template restraint or a Gaussian mixture for a multi-template restraint)
with a set of our own distance restraints, one for each template. For this purpose, we added a
restraint function that computes the logarithm of Eq (6) to MODELLER. All template-indepen-
dent restraints such as main chain and side chain dihedral angle restraints, bond lengths etc.
are left unchanged. We run MODELLER with the modified restraints list to generate a 3D model.

Template weighting
Motivation. As a motivation for the template weighting scheme, consider the case shown

in Fig 5A. Giving all three templates the same weight ignores the dependencies described by
the tree [18]. Template t3 should get a weight of 1, since conditioned on q it is independent of
the other two templates. But templates t1 and t2 should get weights clearly smaller than 1, since
they do not contribute independent information to d. On the other hand, they are not identical

Probabilistic Multi-template Homology Modeling
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and hence should receive a weight clearly larger than 0.5. But how do we compute the exact
optimum weights wk for templates 1, . . ., K given a phylogenetic tree with known edge lengths?

Iterative restructuring. We begin by rooting the phylogenetic tree at the query, and giving
its leaf nodes initial weights of 1. By iteratively applying the elementary step in Fig 5B to sub-
trees, we can transform a tree with arbitrary topology into a tree with a star-like topology, as
shown in Fig 5C. At each step, one inner node is removed and the procedure continues until all
template leaves are directly connected to the query. At each step, we simply need to update the
template weights to obtain the final weights wk for the star-like tree. In the star-like tree which
we finally obtain, all template distances dk are conditionally independent, and hence we obtain
for the odds ratio the result in Eq 5, using the final weights wk from this iterative process.

Elementary step. For the elementary step, we will show that the upper (sub)tree T in Fig
5B yields exactly the same odds ratio for d0 as the transformed, star-topology tree T 0 below,

pðd0jd1 . . . dK ;w1 . . . ;wK ; T Þ
pðd0Þ

¼ pðd0jd1 . . . dK ;w0
1 . . . ;w

0
K ; T

0Þ
pðd0Þ

; ð7Þ

Fig 5. Iterative scheme for computing weights for templates by transforming the phylogenetic tree
connecting them and the query protein into an equivalent tree with star-like topology with the query in
the center. (A) Templates t1 and t2 are closely related and should be down-weighted with respect to t3. (B)
Any tree T with a structure at an internal node with unknown distance dh to which all templates are connected
in a star-like topology (top) can be transformed into an equivalent tree T 0 (bottom) with star-like topology,
where equivalence means that the restraint on the distance d0 of the top node is the same for both trees. τ1,
. . . τK indicate evolutionary distances. (C) Iterative restructuring of a phylogenetic tree. In each step, the basic
transformation from Fig 5B is applied to the subtree colored in blue. Weights and edge lengths get updated
until all templates are directly connected to the query.

doi:10.1371/journal.pcbi.1004343.g005
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if the new weights w0
k are chosen according to

w0
k ¼

1=t0 þ 1=tk
1=t0 þ

PK
l¼1 wl=tl

wk: ð8Þ

The updated weights are proportional to the old wk with a proportionality factor approaching
1 for τ0 � τk. The sum of weights over all K templates is

ðPK
k¼1 wk=t0 þ

PK
k¼1 wk=tkÞ=ð1=t0 þ

PK
k¼1 wk=tkÞ, which goes to 1 for τ0 �max{τk}, signify-

ing that in this case the information in the templates is completely redundant.
To show that the odds ratio in Eq (7) is conserved when transforming the tree T into T 0 in

Fig 5B, we integrate over the unknown, hidden distance dh,

pðd0jd1 . . . dK ;w1 . . . ;wK ; T Þ ¼
Z

pðd0jdh;w0Þpðdhjd1 . . . dK ; T Þ dðdhÞ ; ð9Þ

and apply Eq (5) to the second term in the integrand,

pðd0jd1 . . . dK ;w1 . . .wK ; T Þ ¼
Z

pðd0jdh;w0Þ
YK
k¼1

pðdhjdk; tkÞ
pðdhÞ

� �wk

dðdhÞ: ð10Þ

We now make the very reasonable assumption that the evolution of the distance between
pairs of atoms manifests diffusive behaviour. This behaviour results if the change in distance
can be modelled by many small, independent changes, each change being the consequence of a
sequence mutation that will slightly change the protein structure. Concretely, this means the
probability of observing a distance dl after an evolutionary time τkl, when in the ancestor the
distance was dk, is given by

pðdljdk; tklÞ ¼ N ðdljdk; gtklÞ ð11Þ
with some rate constant γ. Note that at time τkl = 0 the standard deviation vanishes and the
right hand-side becomes equal to the delta functional, as it should. Substituting the conditional
probabilities in the integral with these expressions, we see that the integral is over a product of
Gaussians and can be solved analytically by the method of completing the square (see Suppl.
Material). This results in a Gaussian distribution which is shown in the Supporting Informa-
tion to be equivalent to the tree T 0 with transformed weights w0

k given by Eq (8).
For simplicity, we use the UPGMA algorithm [19] to construct the initial tree T . The dis-

tances are computed as dist(tk, tl) = −log(TMscorepred(tk, tl)), where TMscorepred is the
TMSCORE [20] predicted by a neural network similar to the one in the next subsection (Supple-
mental Fig. S1), but without the experimental resolution as input feature. The tree constructed
in this way is subsequently rearranged so that the query q is at its root.

Note that by its construction the final tree with star-like topology has the same edge lengths
between the query and any template as the real tree. This is important, since the restraint func-
tion for template tk from the mixture density network depends on the similarity between q and
tk. In order for the new star-like tree to be equivalent to the real one, it has to represent the
same pairwise q − tk similarities as the real tree.

Template selection
Single template selection. HHSEARCH ranks templates by the probability Phom for the tem-

plate to be homologous to the query protein. To pick the template best-suited for homology
modeling, we trained a simple neural network with three hidden nodes (Supplemental Fig. S1)
on the training set (see Results). The network predicts the TMSCORE [20] of the model built

Probabilistic Multi-template Homology Modeling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004343 October 23, 2015 10 / 20



with the query-template alignment, given various alignment features described in Table B in S1
Text. The idea is similar to [21], who proposed a neural network (NN) for picking the first tem-
plate. We tried several feature combinations and, similar to previous work described in [22],
found that the following features yielded the best results: HHSEARCH raw score, secondary struc-
ture similarity score divided by query length, expected number of correctly aligned target resi-
dues divided by query length, resolution of template structure in Angstroms. For each query,
we picked the protein with highest predicted TMSCORE among all proteins found by HHSEARCH

as the first template.
Multiple template selection. Picking the right set of templates for homology modeling is a

difficult problem. The main beneficial effect of adding more templates is to increase the num-
ber of residues for which distance restraints can be generated [7]. However, picking too many
templates can decrease the model quality because, as we discussed in the context of how MOD-

ELLER’s restraints work, even a single bad template that gives rise to wrong distance restraints
can severely distort the resulting 3D model.

To our knowledge, no theoretically well founded strategy for multi-template protein homol-
ogy modeling has been developed so far, which contrasts with its widespread use in virtually
every successful prediction pipeline. Contrary to single template selection, picking further tem-
plates is fundamentally complicated by complex dependencies between all selected structures.
Current methods are therefore based on heuristics [23–25]. Some methods [26, 27] build a set
of models based on several different template lists and then post-select a final model according
to some quality measure [28].

As a simple baseline approach to multiple template selection, we employ the network of the
previous section to select the first template. Further templates are added if 1) their predicted
TMSCORE is at least 90% of the first template, 2) they are structurally similar to the first template
(TMALIGN score> 0.7) and 3) all selected templates are structurally similar to each other (pair-
wise TMALIGN score> 0.8).

Next, we propose here a heuristic method which aims to optimise the trade-off between
increasing the query sequence coverage and decreasing the restraint quality of already covered
residues due to adding more diverged templates with less reliable alignments.

We select the set of templates from among the top 100 found by HHSEARCH in the following
way (Fig 6). The first template t1 is selected by the neural network that predicts the TMSCORE.
For each template in the template list L (lower dashed box in the figure) a score S(t) in (see Eq
14) is (re)calculated that rewards a high coverage while penalising the addition of templates
whose alignment quality is worse than that of already selected templates. The template with
highest score (t4 in Fig 6) is added to the selected set if its score is still positive. The process is
iterated until no template is left in L that has a positive score.

To calculate the score S(t) (see Eq 14 below), we first define the local quality score,

sði; tÞ ¼ PhomðtÞ pði � i0jq; tÞ; ð12Þ

which is simply the product of the probability Phom that template t is homologous to q times

the probability p(i � i0jq, t) that residue i from q is homologous (i.e. correctly aligned) to residue

i0 in t. The latter probability is estimated by HHALIGN and HHSEARCH by a Forward-Backward
algorithm. The local improvement (or impairment) of s(i, t) with respect to the best local score

s(i, t0) among already selected templates t0 2 T acc is

Dsði; tÞ ¼ sði; tÞ � max
t02T acc

fsði; t0Þg: ð13Þ

To weight the positive values more strongly than the negative ones, we apply the exponential
function to Δs(i, t), subtract a per-residue threshold β and sum over all aligned residue pairs
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(i, i0) in the alignment A(q, t) between q and t:

SðtÞ ¼
X

ði;i0Þ2Aðq;tÞ
½ eaDsði;tÞ � b �: ð14Þ

The parameters α and β influence the degree of non-linearity and greediness of the selection,
respectively. They were optimised with a simple grid search on the optimisation set as
explained in the Results section.

Results

Benchmark sets
We filtered the sequences from the PDB database of protein structures (May 2010) down to
20% and 70% maximum pairwise sequence identity and a minimal pairwise E-Value of 0.1
(using scripts pdb2fasta.pl and pdbfilter.pl in the HHSUITE package v2.0.16). For
all sequences in the resulting pdb20 and pdb70 databases, we built multiple sequence align-
ments (MSAs) with our sensitive, iterative sequence search tool HHBLITS (v2.0.16) that is based
on the pairwise alignment of profile hidden Markov models (HMMs) [15]. We used standard
HHBLITS parameters with three search iterations against the uniprot20 database to get suffi-
ciently diverse MSAs that are well suited to detect even remotely homologous proteins. The
query sequences were picked from among the pdb20, and the template database was obtained
from the pdb70 as explained below.

We extracted three disjoint query sets from the pdb20, a test, a training and an optimization
set, with 1000, 1000, and 500 proteins, respectively. To achieve a good balance of easier and
more challenging queries for modeling, we aimed to obtain the same distribution of query-tem-
plate sequence identities as for the 108 queries in the CASP7 experiment shown in Supplemen-
tal Fig. S2 (which is similar to the distribution in CASP11, see Fig. S2). We computed the total
amount of queries needed in each sequence identity bin (0%–5%, 5%–10%, . . ., 95%–100%).
We then randomly picked query sequences from the pdb20 without replacement. For each
picked query, we searched for possible templates in the pdb70 database and found the template

Fig 6. Selection of multiple templates. T acc is the set of accepted templates, L is the set of template
candidates. For each template in L, its score is calculated according to Eq (14) and the template with the
highest score (t4) is added to T acc. This process is iterated until there is no more template with a positive
score, or T acc contains more than 8 templates.

doi:10.1371/journal.pcbi.1004343.g006
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most structurally similar to q according to TMALIGN (excluding the query itself) and recorded
the sequence identity given by TMALIGN. q was then put into one of the three sets if the
sequence identity bin for that set was not yet filled up. Otherwise, q was rejected. Finally, for
each of the three query sets we constructed a template set by removing the sequences in the
query set from the pdb70.

We then searched with each query sequence q in one of the three sets through the corre-
sponding template database using HHSEARCH, a slower and slightly more sensitive version of
HHBLITS, resulting in a list tlist(q) of potential templates.

Distance restraints
Mixture density network. As training data for the mixture density networks for two-com-

ponent distance restraints, we used the 3D models generated with single templates picked by
the neural network. The alignment features for the network were again parsed from the
HHSEARCH results. We fitted distributions of log(d) with the mixture of two Gaussians. MODEL-

LER includes four different classes of distances depending on the atom types involved: between
two Cα atoms (Cα–Cα), N-O atoms, side chain—main chain and side chain—side chain. We
generated four sets of training data with 3 million training cases for Cα–Cα and N–O pairs, 1
million for SC–MC and 300k for SC–SC. Optimizing the log-likelihood of the mixture density
network was done by conjugate gradient ascent until convergence was reached. Bad local
optima were avoided by picking the run with maximum likelihood from among 50 random
initializations.

Two-component distance restraints. We replaced all of MODELLER’s template based dis-
tance restraints with our new two-component Gaussian mixture restraints. The optimization
schedule was kept unchanged. The new restraints improved single-template modeling by 0.8%
from a GDT-HA model quality score (GDT-HA is a high accuracy version of GDT-TS, see [29])
of 0.447 to 0.450, even though they were developed with multiple template modeling in mind.
We then investigated the influence of replacing the new restraints when using our new multi-
template selection strategy. We obtained an improvement of the average GDT-HA score over
the 1000 queries in the test set by 2.5%, from 0.480 to 0.492 (Table 1 and Fig 7A), which is
highly significant according to a paired t-test (P-value:< 2.2 × 10−16).

Template selection
Single template neural network. We selected the first template based on the query-tem-

plate alignment features produced by HHSEARCH using the neural network with three hidden
nodes shown in Fig. S1 (see Methods). To train the network, we built 3D models with MODEL-

LER (version 9.10) for each query in the training set and each of the maximal 10 best-ranked
HHSEARCH hits in tlist(q) as templates. This yielded 9212 models (since some queries had less
than 10 database matches), whose model quality we evaluated using TMSCORE. To learn the net-
work parameters we ran a standard back-propagation procedure. In order to avoid local
optima, training was started from several random initializations, which all turned out to opti-
mise to a similar likelihood on the training-set. The correlation between the network predic-
tions and the true TMSCORE values was 0.89. Compared to selecting the first hit in the
HHSEARCH results list for single template modeling, the neural network-based template selec-
tion led to a 0.9% increase of the average GDT-HA from 0.443 to 0.447 (Table 1).

Multiple template selection. Choosing multiple templates increases both the coverage
and the probability to detect a correct template. However, a higher number of templates leads
to accumulation of noise and wrong templates which decreases the model quality. As described
in the Methods section, our template selection heuristic has two parameters, α and β. They
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were optimized on a grid (α, β) 2 {0.9, 0.95, 1, 1.05, 1.1}� {0.8, 0.9, 1, 1.1, 1.2} using all
sequences in the optimization set as queries. For each parameter combination, templates were
selected according to the score in formula (14). The alignment features between the query and
all templates then served as input for MODELLER and 3D structures were generated. We found α
= 0.95 and β = 1 to maximize the cumulative TMSCORE of all models.

The new multi-template selection strategy picked on average 4.6 templates per query (Sup-
plemental Fig. S3), which resulted in a mean coverage of 94% of the query residues (i.e. 94% of
query residues where aligned to at least one template residue). The new selection strategy leads
to an improvement of 3.9% from an average GDT-HA score of 0.462 to 0.480 (Fig 7B) compared
to the following baseline selection strategy: We sorted all templates with respect to their pre-
dicted TMSCORE given by the single template neural network. The first template in this list is
always selected and up to 10 templates along this ranking are chosen as long as their predicted
TMSCORE is at least 90% of the very first one (Table 1).

Compared to the single template modeling approach, the improvement of multiple-tem-
plate modeling without any further refinements (using the simple selection strategy and MOD-

ELLER restraints) was 4.3%, from average GDT-HA 0.443 to 0.462 (Table 1 and Fig 7C). The total
improvement from the baseline, single template modelling to the most refined multi-template
modelling strategy sums up to 11.1% (Fig 7D, fist and last line in Table 1).

Note that the improvement in modelling quality of multiple vs. single template modelling
does not show a dependence on GDT-HA scores or sequence identities. In other words, diffi-
cult targets profit to the same degree as simpler targets from using multiple templates. This is
consistent with the observation that both for single- and multi-domain targets, the average
number of selected templates was similar across the entire range of sequence identities tested,
from 0% to 80% (Supplemental Fig. S3).

Evaluation on cores
Most model quality assessment scores, such as the GDT-HA, do not penalize incorrect regions
and thus reward adding more templates to increase the fraction of the query structure for
which restraints can be derived. [30] assessed the effect of using a single or multiple templates
on model quality and concluded that most of the gains are due to increased coverage of query
residues by template residues. We wanted to discriminate between improvements in model
quality due simply to increased coverage and improvements owed to reducing statistical noise
by increasing the number of distance restraints on “core residues”, conveniently defined here
as residues covered by the alignment to the first, top-ranked template. We remove all non-core

Table 1. Averagemodel quality scores for different variations of template selection strategies and restraints used with MODELLER on a test set of
1000 single- andmulti-domain proteins in the pdb20 database. The GDC-all score is similar to GDT-HA but also includes side-chain atoms in its assess-
ment. Percent improvements are with respect to the first line. P-values are calculated based on a paired t-test with respect to the GDT-HA score in the previous
line.

Method GDT-HA P-value GDC-all

Name Templates Template selection Restraints

s.1st.old Single first hit MODELLER 0.443 (+0%) - 51.9 (+0%)

s.NN.old Single neural network MODELLER 0.447 (+0.9%) 1.5E-6 52.4 (+1.0%)

s.NN.new Single neural network new 0.450 (+1.5%) 8E-6 52.8 (+1.7%)

m.ss.old Multiple simple selection MODELLER 0.462 (+4.3%) 1E-10 53.5 (+3.1%)

m.mt.old Multiple new multi-template MODELLER 0.480 (+8.4%) 2E-16 55.1 (+6.2%)

m.mt.new Multiple new multi-template new 0.492 (+11.1%) 2E-16 56.3 (+8.5%)

doi:10.1371/journal.pcbi.1004343.t001
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Fig 7. (A) Our two-component mixture restraints improve GDT-HA model quality over MODELLER’s default restraints in multi-template modelling by 2.5% on
average. (B) Our multi-template selection strategy improves GDT-HA scores over the simple multi-template selection strategy by 3.9% on average. (C) Multi-
template modeling improves GDT-HA scores over single-template modelling (using MODELLER restraints) by 4.3% on average. (D) Overall improvements
through new restraints, template weights, and the new multiple template selection over the baseline, single-template version (s.1st.old in Table 1) is 11.1%.

doi:10.1371/journal.pcbi.1004343.g007
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residues in the input alignment to MODELLER. In that way, distance constraints can only be gen-
erated on cores. Then we evaluate the resulting models on core residues only and we compare
the GDT-HAs with the general case.

Table 2 shows that, first, using multiple templates leads to a clear improvement over single
templates both in the core regions and overall. This shows that the effect of adding further tem-
plates to the first selected template does indeed improve model quality to a similar extent in the
core and non-core regions. Similarly, the improvements due to our new two-component
restraints are of the same order in the core regions (+2.0%) as overall (+2.5%), leading to a sim-
ilar conclusion, that the new restraints improve the model to the same extent in the core and
non-core regions.

Robustness with respect to wrong restraints
Our probabilistic multi-template modeling approach should have the advantage over the MOD-

ELLER restraints of being more robust towards wrong restraints, because the new distance
restraints become flat when log d deviates strongly from log dt, i.e., when the restraint cannot
be satisfied at all. Therefore, completely wrong restraints practically get ignored in the new
approach. Note that this was not a design target of our method but it is simply a consequence
of a correct statistical treatment. To test our hypothesis on the robustness of the new restraints,
we modified the template selection as follows.

For each query in the test set, we constructed three different template sets (Table 3). The
three sets contained two good templates each, and 0, 1 or 2 bad templates, respectively. The
good templates were the top two templates according to the TMSCOREs predicted by the neural
network in Fig. S1 that also attained a true TMSCORE of> 0.5. The bad templates were the low-
est ranked templates with a true TMSCORE < 0.3. The average model quality obtained with
these three selections are shown in Table 3. As expected, the models built with the new
restraints proved to be considerably more robust than the models built with the standard MOD-

ELLER pipeline.

CASP assessment
CASP (Critical Assessment of Structure Prediction) is a community wide, double-blind experi-
ment that takes place every second year to objectively test the performance of various

Table 2. Multi-template homologymodeling and the new restraints improvemodels within core regions independent of increased query sequence
coverage.Mean GDT-HAs on query protein core regions, defined as the residues that are covered by the first template. Percent improvement with respect to
the previous line.

Templates Selection Restraints GDT-HA score overall GDT-HA score cores only

Single first hit MODELLER 0.443 (-) 0.464 (-)

Multiple new multi-template MODELLER 0.480 (+8.4%) 0.504 (+8.6%)

Multiple new multi-template new 0.492 (+2.5%) 0.514 (+2.0%)

doi:10.1371/journal.pcbi.1004343.t002

Table 3. The probabilistic multi-template modeling approach is less negatively affected by bad templates.Mean GDT-HA scores of 1000 models built
with templates sets containing 0, 1 and 2 bad templates (TMSCORE < 0.3) along with two good templates (TMSCORE > 0.5).

Good templates Bad templates MODELLER restraints New restraints

2 0 0.474 (-) 0.480 (-)

2 1 0.466 (−1.7%) 0.475 (−1.0%)

2 2 0.458 (−3.4%) 0.471 (−1.9%)

doi:10.1371/journal.pcbi.1004343.t003
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predictors. HHPRED regularly participates in the server based structure prediction category
competing with 70–80 other servers. For CASP9 and CASP10, we integrated all methods
described above into the HHPRED pipeline.

Depending on whether there existed a suitable template in the databases, all queries are sub-
divided into two categories: template based (TBM) and free (FM). Due to the ever increasing
database sizes, most of the queries are TBM (121 vs. 26 in CASP9 and 111 vs. 15 in CASP10).
As Fig 8 shows, for TBM HHPRED is among the most accurate servers (top 1 in CASP9 and top
7 in CASP10 according to the official CASP ranking—all three servers differ only in minor
technical details, see [31, 32]). At the same time HHPRED is faster by a factor of* 350 com-
pared with the other leading groups. Fig 8 summarizes the official results in the TBM category
from two community-wide assessments of techniques for protein structure prediction, CASP9
(121 query proteins) and CASP10 (111 query proteins) [1, 3]. The values used in the figure
were downloaded from the official CASP website (http://predictioncenter.org/). For detailed
results, see Supporting Information. When replacing the new restraints with MODELLER’s
default restraints for the CASP10 set on the same selection of templates, the gdtts-score
decreased by 3%.

When considering HHpred’s performance in CASP9 and CASP10, note that assessors fil-
tered out targets that will be too simple to predict by eliminating targets for which a high-confi-
dence homologous template could be found using HHsearch. This procedure thus selectively

Fig 8. Cumulative Z-score of all server predictions in the template-basedmodeling category of the
CASP9 and CASP10 community-wide assessment of techniques for protein structure prediction [1,
3]. HHPRED servers are red, other servers using our HHSUITE software are shown in green.

doi:10.1371/journal.pcbi.1004343.g008
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biases the targets at the detriment of HHpred by eliminating targets that would be easy for
HHpred to predict.

Discussion
Protein structure prediction is a mature field, in which the best methods differ only by a few
percent in performance according to recent CASP benchmarks. Even so, great progress has
been made in the last 10 to 15 years in template-based protein structure prediction, fuelled by
advances in techniques for remote homology detection and alignment [6] and techniques for
model quality assessment [3]. In contrast, most successful servers in CASP employ MODELLER

to build their 3D homology models, a software whose core has changed very little since its pub-
lication 22 years ago. This speaks to the enormous success of MODELLER’s statistical approach to
homology modeling. In this study we have shown how to generalize the statistical approach by
taking account of alignment errors and treating restraints from multiple templates in a proba-
bilistically satisfactory way.

These theoretical insights have led to improvements in average model quality (around
6.5%) that are somewhat smaller than what we expected initially. In hindsight, MODELLER’s heu-
ristic to derive multi-template restraints works surprisingly well. Also, since MODELLER’s inter-
nal workings (e.g. the stochastic optimization) are optimized together with its own restraints, it
might well be possible to improve on the presented results by specifically optimizing MODEL-

LER’s model building procedure with our new restraints. We note, however, that an average
model score improvement of 4.4% (m.ss.old versus m.mt.new in GDT-TS, see Table A in S1
Text) corresponds to the difference in GDT-TS scores between the 3rd best and 14th best server
in CASP10 [5]. This is a considerable success in particular because our theoretical approach is
quite general and can be transferred to other homology modelling methods and to the up-and-
coming field of modeling large protein complexes from heterogeneous experimental data [33].

We noted during our tests that the positive impact of the new restraints on model quality is
strongest when evaluated with the strictest score, GDT-HA, as compared to the less strict GDT-
TS or TMSCORE (Table A in S1 Text). Here, strictness refers to how severely already small devia-
tions of the model from the true structure are penalized. This observation shows that the
improvements of our new restraints are to a substantial degree in the high-precision regime,
i.e., below 1 Å, by further improving regions of the model that are already fairly well modeled.
Since the best-modeled regions are expected to largely coincide with the highly conserved and
hence functionally most important parts of the protein, we expect the new restraints to have
the strongest impact on the functionally most important regions of the model.

We are convinced of the power of probability theory in describing quantitative phenomena
under uncertainty. MODELLER is an excellent case in point. An interesting idea is to carry the
probabilistic view further by probabilistically integrating structural and sequence information.
All approaches so far start from a fixed query-template alignment (or from a set of alternative
alignments) and try to find the 3D model that is best compatible with the alignment. To allow
information from the 3D modelling to be fed back to the alignment stage and vice versa, it
seems promising to explore the joint posterior probability distribution of alignment and 3D
structure. One way to do this would be by Markov Chain Monte Carlo Gibbs sampling of the
alignment and the model structure from appropriate conditional distributions.

Supporting Information
S1 Text. Contains supplemental figures (single template neural network, sequence identity
distributions), tables (model quality scores, alignment features, CASP results) and methods
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(details of template weighting).
(PDF)

S1 Fasta. Training, optimization and test set. These correspond to the supplemental files
S2_training_set, S2_test_set.fasta and S2_optimization_set.fasta, respectively.
(ZIP)
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