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Abstract
A drug exerts its effects typically through a signal transduction cascade, which is non-linear

and involves intertwined networks of multiple signaling pathways. Construction of such a

signaling pathway network (SPNetwork) can enable identification of novel drug targets and

deep understanding of drug action. However, it is challenging to synopsize critical compo-

nents of these interwoven pathways into one network. To tackle this issue, we developed a

novel computational framework, the Drug-specific Signaling Pathway Network (DSPath-

Net). The DSPathNet amalgamates the prior drug knowledge and drug-induced gene

expression via random walk algorithms. Using the drug metformin, we illustrated this frame-

work and obtained one metformin-specific SPNetwork containing 477 nodes and 1,366

edges. To evaluate this network, we performed the gene set enrichment analysis using the

disease genes of type 2 diabetes (T2D) and cancer, one T2D genome-wide association

study (GWAS) dataset, three cancer GWAS datasets, and one GWAS dataset of cancer

patients with T2D on metformin. The results showed that the metformin network was signifi-

cantly enriched with disease genes for both T2D and cancer, and that the network also

included genes that may be associated with metformin-associated cancer survival. Further-

more, from the metformin SPNetwork and common genes to T2D and cancer, we generated

a subnetwork to highlight the molecule crosstalk between T2D and cancer. The follow-up

network analyses and literature mining revealed that seven genes (CDKN1A, ESR1,MAX,
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MYC, PPARGC1A, SP1, and STK11) and one novel MYC-centered pathway with CDKN1A,
SP1, and STK11might play important roles in metformin’s antidiabetic and anticancer

effects. Some results are supported by previous studies. In summary, our study 1) develops

a novel framework to construct drug-specific signal transduction networks; 2) provides

insights into the molecular mode of metformin; 3) serves a model for exploring signaling

pathways to facilitate understanding of drug action, disease pathogenesis, and identification

of drug targets.

Author Summary

A deep understanding of a drug’s mechanisms of actions is essential not only in the discov-
ery of new treatments but also in minimizing adverse effects. Here, we develop a computa-
tional framework, the Drug-specific Signaling Pathway Network (DSPathNet), to
reconstruct a comprehensive signaling pathway network (SPNetwork) impacted by a par-
ticular drug. To illustrate this computational approach, we used metformin, an anti-
diabetic drug, as an example. Starting from collecting the metformin-related upstream
genes and inferring the metformin-related downstream genes, we built one metformin-
specific SPNetwork via random walk based algorithms. Our evaluation of the metformin-
specific SPNetwork by using disease genes and genotyping data from genome-wide associ-
ation studies showed that our DSPathNet approach was efficient to synopsize drug’s key
components and their relationship involved in the type 2 diabetes and cancer, even the
metformin anticancer activity. This work presents a novel computational framework for
constructing individual drug-specific signal transduction networks. Furthermore, its suc-
cessful application to the drug metformin provides some valuable insights into the mode
of metformin action, which will facilitate our understanding of the molecular mechanisms
underlying drug treatments, disease pathogenesis, and identification of novel drug targets
and repurposed drugs.

Introduction
Most drugs exert their therapeutic actions through interactions with specific protein targets.
These target proteins are dominated by two categories: enzymes that catalyze reactions essen-
tial for the functioning of organisms, and receptors that transmit signals by interacting with
messenger molecules [1,2]. The interactions of drugs and their targets initiate the signal trans-
duction cascade that is usually propagated by the involved proteins and multiple pathways.
These proteins and pathways act in the mode of crosstalk networks [3]. The process of such sig-
naling transduction converts the chemical signals to a specific cellular response such as gene
expression, cell division, and inhibition of cell death and apoptosis [4]. The signaling cascade
usually ends at the recipients of chemical signals such as transcription factors (TFs), which
have specific binding sites on DNA and play critical roles in the gene expression regulation [5].
In complex diseases such as cancer [6,7], neuropsychiatric disorders [8], and diabetes [9], these
molecules involved in the signal transduction cascade that are altered and, thus, become attrac-
tive targets for disease treatment [10,11]. Therefore, targeting signaling pathways has become
an important approach to discovering new drugs through traditional experimental methods
[12,13] and to predicting drug repositioning through systematic approaches [14]. However, the
primary challenge for utilizing signal transduction pathways for drug discovery is to synopsize
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the drug signaling pathways into one comprehensive system, including the major causal
genetic factors for pathology of the complex disease and the most elemental components in the
drug action.

Recent high-throughput technologies such as array-based mRNA and microRNA expres-
sion, genome-wide association studies (GWAS), and next-generation sequencing (NGS) have
provided massive amounts of data, enabling investigation of drug effect through pharmacoge-
nomic network approaches. For example, the Connectivity Map (CMap, build 02) studied the
effect of 1,309 small chemicals on gene expression in four cultured human cells [15]. Further-
more, multiple reliable drug-centered databases such as DrugBank [16], KEGG (Kyoto Ency-
clopedia of Genes and Genomes) DRUG [17], PharmGKB (The Pharmacogenomics
Knowledge Base) [18], and STITCH (Search Tool for Interactions Chemicals) [19], provide
comprehensive and detailed drug information for computational discovery and/or drug design.
Therefore, it is possible to integrate known drug targets, genes involved in drug pharmacoki-
netics (PK) and pharmacodynamics (PD) processes, drug-induced gene expression data, and
disease-gene associations. Additionally, network-assisted approaches have become powerful
tools to explore disease-gene, gene-gene, as well as drug-target associations in pharmacology
and human disease [20–23]. Therefore, we hypothesized that the construction of a signaling
pathway network to connect the upstream components and downstream signal recipients for
an individual drug would increase power to identify genes that play critical roles in drug action
or disease development.

In this study, we develop a computational framework, called DSPathNet, to construct one
signaling pathway network (SPNetwork) for a particular drug via amalgamating drug knowl-
edge with drug-induced gene expression data. The main purposes are to capture the principal
components in the drug signal transduction process and to provide an alternative approach to
identifying critical elements and modules (subnetworks) relevant to drug action. We illustrate
the utility of DSPathNet using the metformin, one of the most widely prescribed anti-diabetic
drugs in the world which has been recently shown to be useful for cancer treatment and pre-
vention in people at higher risk [24–26]. We started with the collection of known drug-related
genes and inference of TFs from metformin-induced gene expression data. Considering that
most of the known drug-related genes participate in PK and PD processes and are located in
the upstream of the signaling cascade based on their function, we defined them as “metformin
upstream genes.” Likewise, we defined the TFs that receive and transmit the chemical signals at
the end of the signaling cascade as “metformin downstream genes.” After overlaying the two
sets of genes onto human SPNetwork, we employed random walk algorithms to construct a
metformin-specific SPNetwork. The random walk-based methodology aims to identify the
pathways that are closet to the known disease genes compared to other methods [27] and offers
the best predictive performance [28]. The network is expected to enrich with signaling genes
involved in metformin signal transduction. We performed the comprehensive gene enrichment
analyses of the network using the disease genes of type 2 diabetes (T2D) from GWAS catalog
[29], cancer genes from Cancer Gene Census [30], one T2D GWAS [31], three cancer GWAS
[32,33], and one novel GWAS of cancer patients with T2D using metformin from BioVU [34].
The enrichment analysis results showed that the network contained a significant number of
T2D and cancer disease genes and genes related to metformin action, indicating that the frame-
work is promising as a method to identify critical genes involved in disease pathology and drug
action. Additionally, the metformin-specific SPNetwork generated here provides potential
metformin targets and molecular insights for further delineating the mechanism of metformin
action.
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Results

DSPathNet, a novel computational framework for exploring drug-specific
signaling pathway network
In this study, we develop a novel computational framework to build a Drug-specific Signaling
Pathway Network, namely DSPathNet, for constructing a signaling pathway network (SPNet-
work) for an individual drug of interest. The drug-specific SPNetwork is expected to contain
critical components in the drug’s signal transduction cascade. These components are genes
that harbor genetic variations contributing to the pathology of the drug indication or drug
response. Thus, the drug-specific SPNetwork would facilitate our understanding of the molecu-
lar mechanisms of drug action, disease pathogenesis, and identification of novel drug targets.
To prove the principle, we utilized the drug metformin as an example to evaluate the
framework.

Fig 1 outlines the framework to build the metformin-specific SPNetwork and S1 Table sum-
marizes the data sources, software and evaluation data used in the study. Briefly, we first col-
lected metformin upstream genes from multiple sources and inferred metformin downstream
genes from metformin-induced gene expression data. We compiled a human SPNetwork from
two databases, Pathway Commons [35] and TRANSFAC [36], as a background pathway sys-
tem for all signal transduction processes in humans. To weight the association of each node
with metformin action, we assigned a functional similarity score to each node based on their
Gene Ontology (GO) annotations and metformin upstream genes. The human SPNetwork
included 37,881 edges and 4,367 nodes. Then, we utilized the metformin upstream and down-
stream genes as seeds to produce the metformin-specific SPNetwork from the human SPNet-
work via random walk approaches. In this process, we applied a crossing network strategy to
generate the drug-specific SPNetwork from background human SPNetwork by longitudinal
and lateral movements. Finally, we computationally evaluated the metformin-specific SPNet-
work by examining the enrichment of genes in the network using two types of data. The first
includes the disease genes of type 2 diabetes (T2D) and cancer, the two diseases in which met-
formin has been actively studied. The second contains the individual genotyping data from five
GWAS datasets: one T2D GWAS dataset, three cancer GWAS datasets, and one GWAS dataset
of cancer patients with T2D treated by metformin. Our evaluation results indicated that the
metformin-specific SPNetwork was significantly enriched with genes with mutations that
could contribute to the pathology of T2D and cancer, and genes that may be associated with
metformin-associated cancer survival (Table 1). To further investigate the molecular mecha-
nisms underlying metformin action, we built a crosstalk subnetwork based on common genes
to T2D and cancer, network topology, and functional analyses. We revealed several critical
components, modules, and pathways that might be involved in metformin action.

Major steps to improve DSPathNet’s performance
In order to generate a complete and reliable SPNetwork, we extensively collected the metfor-
min related genes, rigorously selected the expressed genes induced by metformin, and compre-
hensively compared the performance using T2D GWAS data after the SPNetwork generation.
For each step, we provide the detailed information as below.

Collection of metformin upstream genes. We first collected the 46 genes related to met-
formin from two databases DrugBank and PharmGKB. Among them, 21 genes existed in the
4,367 genes in the human SPNetwork. To collect the metformin-related genes to the maximum
extent possible, we further performed literature mining on the MEDLINE abstracts to identify
the gene entities that have a relation with metformin by calculating the semantic distance
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Fig 1. Overview of DSPathNet, a novel computational framework to construct a drug-specific signaling pathway network (SPNetwork): metformin
as a case. Step 1: we collected the metformin upstream genes frommultiple sources and inferred metformin downstream genes frommetformin-induced
gene expression data. We also compiled one human SPNetwork. Step 2: we utilized the metformin upstream and downstream genes as seeds to generate a
metformin-specific SPNetwork from the human SPNetwork. The process involved longitudinal and lateral movements. Step 3: we utilized disease genes and
genome-wide association studies (GWAS) data to evaluate if the metformin-specific SPNetwork was enriched with disease genes for type 2 diabetes (T2D)
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among the hidden topics uncovered by Latent Dirichlet Allocation (LDA) model [37]. We
obtained 29 genes. Among them, ten overlapped with the 46 genes and 19 were uniquely iden-
tified by the literature searching method. Of these 19 genes, 15 were found in the human
SPNetwork (S2 Table, S1 Fig). Collectively, we obtained a total of 65 genes that were regarded
as metformin upstream genes, among which 36 genes could be mapped to human SPNetwork.

Inference of metformin downstream genes. We inferred the metformin downstream
genes based on gene expression data in cancer cells after metformin treatment from Connectiv-
ity Map (CMap) (build 02) [15]. Among the ten gene expression datasets of metformin treat-
ments (S3 Table), four had significantly consistent with each other (absolute value of the
enrichment score> 0.5 and FDR q-value< 0.001) (Fig 2 and S2 Fig) by performing the gene
set enrichment analysis (GSEA) [38]. Then, based on the top and bottom 100 probes for the
four treatments, we identified 140 up-regulated and 215 down-regulated genes, respectively.
From these genes, we identified 29 TFs whose targets were significantly enriched in up-
regulated genes and 38 TFs whose targets were significantly enriched in down-regulated genes
(Hypergeometric test P-value< 0.05) compared to the pairs of TFs and their targets (Materials
and Methods). There was one TF (TEAD4) shared between the two sets of TFs. Thus, we iden-
tified 66 TFs in total (S4 Table). Among these TFs, only one TF (JUN) was observed in the list
of the up-regulated genes and two TFs (SMAD3 and NR1I2) in the down-regulated genes. Our
observation is in general agreement with previous reports that many TFs are not regulated at
the transcriptional level [39,40].

Generation and evaluation of metformin-specific SPNetwork. We noticed that only two
genes (PPARG and NR1I2) were common between the metformin upstream gene list and the
metformin downstream gene list (Fig 3A). The observation indicated that some of the key com-
ponents in the metformin signal transduction cascade were missed in the two sets of metfor-
min-related genes. To address this issue, we employed a two-step strategy of random walk-
based propagation to recruit more genes via a sequential two-step strategy from the human

and cancer, genes associated with metformin action. Furthermore, we derived a crosstalk network of metformin action for T2D and cancer in order to identify
key components in the metformin signal transduction via network topological and functional analysis. The nodes in orange correspond to the drug-related
upstream genes, the nodes in green to the drug-related downstream genes, and the nodes in red to the nodes common to the upstream and downstream
gene networks.

doi:10.1371/journal.pcbi.1004202.g001

Table 1. Comparison of genes in metformin-specific signaling pathway network with T2D and cancer genes and genes with smallest P-value less
than 0.05 in five GWAS data sets.

Data Number of genesa Number of genes with smallest P< 0.05 Hypergeometric test P-valueb

T2D disease genes 131 11 1.36 × 10–4

T2D GWAS 445 169 3.08 × 10–5

Cancer genes 509 64 1.64 × 10–29

Breast cancer GWAS 469 157 0.0144

Pancreatic cancer GWAS 468 170 0.0120

Prostate cancer GWAS 469 172 0.0053

Metformin GWASc 458 177 0.0181

a For the five GWAS data sets, each number denotes the number of genes with genotyping data in corresponding GWAS data. The T2D genes were

extracted from the GWAS Catalog database and the cancer genes were obtained from Cancer Gene Census.
b For disease genes, the hypergeometric test was performed by comparing with all protein-coding genes in the human. For GWAS data, the

hypergeometric test was performed by comparing with genotyping data in the corresponding GWAS data set.
c Metformin GWAS: the GWAS for identifying genetic variants associated with survival among cancer patients with T2D using metformin.

doi:10.1371/journal.pcbi.1004202.t001
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SPNetwork (Materials and Methods). Table 2 summarizes the number of nodes and edges gen-
erated at each step. Through two network movements, we obtained 215 upstream extended
genes and 303 downstream extended genes. Then we generated one upstream network by the
direct links of metformin upstream extended genes (SPNetwork_up) and one downstream net-
work by the direct links of metformin downstream extended genes (SPNetwork_down). They
had 41 common nodes and 84 common links. After merging the two networks by their com-
mon nodes and common links, we obtained a metformin-specific network with 477 nodes and
1,366 edges.

Compared to the two common genes between the metformin upstream genes and down-
stream genes, the overlap was increased 20.5 times (Fig 3A). Among the 41 nodes, besides the
two common genes (PPARG and NR1T2), two genes belonged to the metformin upstream

Fig 2. Gene Set Enrichment Analysis (GSEA) enrichment score curves of metformin-induced probes in three treatments vs. treatment 1. The four
sets of probes of metformin treatments were obtained from the gene expression profiles from Connectivity Map. The three treatment instance IDs are 2, 3,
and 4. The graphs on the top panels represent the ranked, non-redundant, and up-regulated probes in the second, third, and fourth treatment groups
compared with probes in the first treatment group. The graphs on the bottom panels represent the ranked, non-redundant, and down-regulated probes in
second, third, and fourth treatment groups compared with probes in the first treatment group. In each graph, probes on the far left (red) correlated with the
most up-regulated probes in the treatment 1 and probes on the far right (blue) correlated with the most down-regulated probes in treatment 1. In each graph,
the vertical black lines indicate the position of each of the probes of the studied probe set in the ordered, non-redundant data set. The green curve denotes
the ES (enrichment score) curve, the running sum of the weighted enrichment score in GSEA.

doi:10.1371/journal.pcbi.1004202.g002
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Fig 3. Metformin-specific signaling pathway network (SPNetwork). A) A four-way Venn diagram summarizes the number of shared genes among
metformin upstream genes represented by ‘Upstream genes’, metformin downstream genes (‘TF genes’), metformin upstream extended genes in the
metformin upstream network (‘Upstream extended genes’), and metformin downstream extended genes in the metformin downstream network (‘Downstream
extended genes’). B) Metformin-specific SPNetwork with 477 nodes and 1366 edges. The nodes and edges in orange correspond to nodes and edges only in
the metformin upstream network. The nodes and edges in green correspond to the nodes and edges only in the metformin downstream network. And the
nodes and edges in red correspond to the nodes and edges common to the metformin upstream network and the metformin downstream network. C) Degree
distributions and average degrees (vertical lines) of the four gene sets in the metformin-specific SPNetwork. The four gene sets are 41 common nodes, 174
nodes only in the metformin upstream network (SPNetwork_up), 262 nodes only in the metformin downstream network, all 477 nodes in the metformin-
specific SPNetwork (SPNetwork_down). The Y-axis represents the proportion of proteins having a specific degree. D) The subnetwork of the 38 hub nodes
extracted frommetformin-specific SPNetwork. The legends for orange nodes and edges, red nodes and edges, and green nodes and edges are same as
those in the subFig B. The nodes in yellow correspond to the genes that exist in the pathway ‘MAPK signaling pathway’ according to KEGG annotation.

doi:10.1371/journal.pcbi.1004202.g003

Decipher Signaling Pathway Networks for Understanding Drug Action

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004202 June 17, 2015 8 / 35



genes (SLC2A4 and TP53), and six genes belonged to metformin downstream genes (ESR1,
HNF4A, HNF4G,MYCN, NR2F1, and PPARA). The remaining 31 genes (75.6%) were novel
linkers, suggesting they might play important roles in metformin action. Considering that
these 41 nodes act as bridges to link the SPNetwork_up and SPNetwork_down, we defined
them as bridge nodes.

To assess the ability of recruiting disease genes of each step, we produced one corresponding
network for each step and perform disease gene enrichment analysis based on the T2D GWAS
data from the Wellcome Trust Case Control Consortium (WTCCC) T2D study [31]. The con-
cept is based on that the more significant enrichment of disease genes the corresponding net-
work has, the more powerful the network-generating method is. Table 2 summarizes the
corresponding evaluation P-values. Starting from the unique 129 genes of metformin upstream
genes and TF genes, a network with 98 nodes and 179 edges was produced (S3 Fig). The largest
module contained 74 nodes and 178 edges, which indicated that metformin upstream genes
and downstream genes could regulate each other to a certain degree. Among 98 nodes, 93
had genotyping data in T2D GWAS, of which 36 genes belonging to the T2D-related genes.
Compared with all genes with genotyping data in the GWAS, the hypergeometric test P-value
was 0.02.

In the first step (longitudinal movement), from upstream genes, we obtained 103 genes, of
which 36 were upstream genes and 67 were novel genes (S4A Fig). From metformin down-
stream genes, we obtained 125 genes that contained 62 metformin downstream genes and 63
novel genes (S4B Fig). Between the 103 genes and the 125 genes, there were nine common
genes. Then, a subnetwork was created by their direct interactions with 219 nodes (S5 Fig). In
the network, the largest module included 151 (68.9%) of the 219 genes, indicating that about
one-third of genes (68, 31.1%) could not be recruited in the biggest subnetwork. In addition,
among the 219 nodes, 207 had genotyping data, in which 74 were T2D-related genes. Com-
pared with all genes with genotyping data in the T2D GWAS, this network module is statisti-
cally enriched with genes having small P values (Hypergeometric test, P-value: 0.01), but the
significance is not very strong.

In the second step (lateral movement), from the metformin upstream longitudinal genes
(103), we obtained 215 genes, including 34 metformin upstream genes, 60 metformin upstream
longitudinal genes, and 121 novel genes (S4A Fig). From the metformin downstream longitudi-
nal genes (125), we obtained 303 genes comprised of 60 metformin upstream genes, 56 metfor-
min upstream longitudinal genes, and 187 novel genes (S4B Fig). After merging their direct
interactions, we obtained a network with 477 nodes and 1,366 edges. Among the 477 nodes,
473 nodes (99.2%) formed a big module. The network had the strongest association with T2D-

Table 2. Summary of genes and hypergeometric tests at each step in the process of metformin-specific SPNetwork construction.

#. genes Network P-valueb

Upstream Downstream Overlap #. nodes a (All/largest) #. nodes with P <0.05 #. edges

Starting seed 65 66 2 98/74 36 179 0.02

Longitudinal movement 103 125 9 219/151 74 384 0.01

Lateral movement 215 303 41 477/473 169 1,366 3.08 ×10-5

a The first number denotes the number of the nodes in the whole network while the second number denotes the number of nodes of the largest

subnetwork in the network.
bThe P-value was calculated from the hypergeometric test by comparing the number of T2D-related genes that have at least one SNP with P-value less

than 0.05d with all genotyping genes in the T2D GWAS data based on.

doi:10.1371/journal.pcbi.1004202.t002
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related genes (P-value: 3.08 ×10–5). More importantly, the number of common nodes
increased to 41. Therefore, the crossing movement strategy is promising to capture the cascade
of signal flow and complexity of cross-talking among different pathways involved in signal
transduction from the upstream genes and downstream genes.

Metformin-specific SPNetwork provides a valuable source for
understanding metformin action
The final metformin-specific SPNetwork generated above comprised 477 nodes and 1,366
edges (Fig 3B, S5 Table). Among the 477 nodes, 215 belonged to metformin upstream network,
while 303 belonged to metformin downstream network. There were 41 bridge nodes between
them. Thus, 174 genes were unique to the metformin upstream network, and 262 genes were
unique to the metformin downstream network. From here, we refer to the three gene sets as
upstream genes (number of genes: 174), downstream genes (262), and bridge genes (41) for fol-
low-up network topological and functional analyses.

To explore the topological properties of this SPNetwork, we calculated node degrees (con-
nectivity) and their distribution [41]. In this network, degree values of nodes ranged from 1 to
79 and the average degree was 5.73. The degree distribution was strongly right-skewed, indicat-
ing that most nodes had a low degree and only a small portion of the nodes had a high degree
(Fig 3C). The nodes with a high degree act as hubs in the network and hold the whole network
together [41]. In biological networks, hubs are more likely to be essential genes [42] and disease
genes [43–45]. Using the hub defining method proposed by Yu et al. [46], we determined 38
hubs whose degrees were larger than 14. Among them, one gene (PPARG) belonged to both
metformin upstream and downstream gene sets, two genes (TP53 and SREBF1) were metfor-
min upstream genes, 13 belonged to the metformin downstream gene set only, and 22 were
novel genes. After extracting these hubs from metformin-specific SPNetwork, we generated a
hub-centered subnetwork (Fig 3D). Among the 38 hubs, 19 (50.00%) are included in ‘pathway
in cancer’ and 9 (23.68%) in ‘MAPK signaling pathway’ according to KEGG pathway annota-
tion. The MAPK signaling pathway plays important roles in the pathology of both cancer [47]
and diabetes [48]. Thus, the 477 genes had two genes belonging to metformin upstream and
downstream genes, 33 to the metformin upstream genes, 58 to the metformin downstream
genes, and 384 novel genes (S6 Table). The novel genes may provide a valuable resource for
further investigation of the pathology of T2D and cancer, and the metformin action.

We further examined pathway enrichment in these 477 nodes based on KEGG pathway
annotation using the online tool WebGestalt [49]. We identified 69 significant pathways
(adjusted P-value< 1.00 × 10–4) (S7 Table). According to the KEGG pathway first-level
category annotation (Materials and Methods), 12 pathways belonged to ‘environmental
information processes,’ nine to ‘cellular processes,’ 18 to ‘organismal systems,’ and 29 to
‘human disease.’ Among these 12 environmental information processes pathways, eight were
signal transduction pathways, of which the top three pathways were ‘MAPK signaling
pathway’ (32genes, adjusted P-value: 3.39 × 10–22), ‘mTOR signaling pathway’ (13 genes,
adjusted P-value: 6.39 × 10–14) and ‘ErbB signaling pathway’ (15 genes, adjusted P-value:
1.89 × 10–13). Among the 18 pathways related to organismal systems, five belonged to the
endocrine system, of which the top three pathways were ‘adipocytokine signaling pathway’ (22
genes, adjusted P-value: 3.19 × 10–25), ‘PPAR signaling pathway’ (22 genes, adjusted P-value:
5.36 × 10–25), and ‘insulin signaling pathway’ (23 genes, adjusted P-value: 1.91 × 10–19).
Among the 29 pathways related to human disease, 15 were directly related to cancer.
Importantly, the pathway ‘type II diabetes’ (10 genes, adjusted P-value: 1.12 × 10–10) and the
‘maturity onset diabetes of the young’ (8 genes, adjusted P-value: 1.94 × 10–10) were among the
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enriched pathways. Together, the evidence indicates that the metformin-specific SPNetwork
involves both diabetes and cancer at the pathway level.

Network topological and functional properties of bridge genes
In the metformin-specific SPNetwork, there were 41 genes (bridge genes) common to both the
metformin upstream and downstream networks. As mentioned above, most of them (31,
75.6%) were novel linkers (S6 Table). To interrogate their roles, we compared them with
upstream genes (174) and downstream genes (262) via network topological and functional
analyses, as described below.

Bridge genes tended to have higher degree. In the metformin-specific SPNetwork, the
average degree of these bridge genes was 16.39, significantly higher than that of upstream genes
(3.82, Wilcoxon's test, P-value: 2.41×10–6) or that of downstream genes (5.32, P-value:
1.69 × 10–6) (Fig 3C). The result indicated that the bridge genes strongly connected in the
metformin-specific SPNetwork. In line with this, the bridge nodes are more likely to be the
hubs: 15 out of 41 (36.9%) as compared to 1 out of 174 upstream genes (0.57%) or 22 in 262
downstream genes (7.6%). These 15 genes were SP1 (degree: 79 in the metformin-specific
network),MYC (55), TP53 (52), EP300 (44), ESR1 (44),MAX (40), HNF4A (36), NCOA1 (33),
SP3 (31), POU2F1 (27), STAT1 (25), CDKN1A (24), APOA1 (19), FOXA2 (19), and PPARG
(17). This observation indicates that these nodes might play important roles to maintain the
network topology that is important for biological function.

Bridge genes had different functional tendencies. To further explore the functional char-
acteristics of these bridge genes, we first compared them with upstream genes and downstream
genes based on the GOMolecular Function domain using the online tool PANTHER Classifi-
cation System [50] (Fig 4A). The proportion of genes in the following three GO terms were
higher in the bridge genes than that in the upstream or downstream genes: binding
(GO:0005488), receptor activity (GO:0004872), and transcription regulator activity
(GO:0030528). However, for the following three GO terms, the proportion of upstream genes
was significantly higher than that in other two gene sets: catalytic activity (GO:0003824),
enzyme regulator activity (GO:0030234), and transporter activity (GO:0005215). For the
downstream genes, only one GO term, structural molecule activity (GO:0005198), had a higher
proportion.

We also examined the enriched pathways in the three sets of genes according to the KEGG
enrichment analyses using the tool WebGestalt. By applying an adjusted P-value of less than
0.05, we found that 92 pathways were significantly enriched in the 174 upstream genes, 105
pathways in the 262 downstream genes, and 28 pathways in 41 common genes (S8 Table). To
simplify the comparison, we categorized them into seven categories at the first level and 43 cat-
egories at the second level in the KEGG pathway annotation system (Materials and Methods).
To represent the relative abundance of the pathways, we further calculated a Z-score for each
category at the second level (Materials and Methods). Accordingly, among the 92 pathways for
upstream genes, 73 pathways were grouped into the five first-level categories and 15 second-
level categories (Z-score> 0). Among 106 enriched pathways in downstream genes, 86 path-
ways were grouped in five first-level categories and 15 second-level categories (Z-score> 0).
All of the 28 enriched pathways in 41 common genes were categorized into five first-level cate-
gories and 11 second-level categories (Z-score> 0) (S9 Table). Fig 4B summarizes the compar-
ison of the three sets of genes at the first-level category. We observed that each of the three sets
of genes had their own participating tendency in particular biological processes. For example,
among the 73 enriched pathways in the upstream genes, 15 (20.55%) belonged to the metabo-
lism category, which was substantially higher than that in the common genes (1, 3.57%) or that
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Fig 4. Functional comparison of the common genes, upstream network genes, and downstream network genes. The common genes were those
found in both metformin upstream network and downstream network. The upstream network genes were those only belonging to the metformin upstream
network. The downstream network genes were those only belonging to the metformin downstream network. A) Proportion of genes of interest in Gene
Ontology (GO) molecular function domain. B) Comparison of proportion of enriched pathway in the three gene sets at the first-level category of KEGG
annotation. C) The clustering of enriched pathways for the three gene sets at second-level category of KEGG annotation.

doi:10.1371/journal.pcbi.1004202.g004
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in the downstream genes (0). Among the 28 enriched pathways in the common genes, 15
(53.57%) belonged to the human diseases, which was higher than that in the upstream genes
(19, 26.03%) or that in the downstream genes (32, 37.21%). Fig 4C further shows the pathway
comparison of the three sets of genes at the second level. While all genes in the three gene sets
were enriched in the pathways related to cancer, compared to upstream and downstream
genes, the bridge genes were the likeliest to be involved in the cancer-related pathways.

Among the 41 bridge nodes, 25 were TFs according to TRANSFAC database. Among them,
eight (ESR1, HNF4A, HNF4G, MYCN, NR1I2, NR2F1, PPARA, PPARG) were inferred met-
formin-related TFs based on metformin-induced gene expression data and the remaining 16
TFs were identified as the novel linkers between metformin upstream and downstream net-
work. They were ARNTL, CDX2, EP300, FOXA2, MAX, MYC, NCOA1, PHOX2A, POU2F1,
RORA, RXRG, SP1, SP3, STAT1, TGIF1, and USF2. Among them, MYC is encoded by a well-
known oncogene that acts as a pluripotent modulator of transcription during normal cell
growth and proliferation [51]. Interestingly, several other TFs cooperate with MYC under
some particular conditions such as CDX2 [52], MAX [53], SP1 [54–57], SP3 [58], and STAT1
[54]. For example, CDX2, one caudal-related homeobox transcription factor, mediates E-
selectin ligand expression in colon cancer cells with MYC together [52].

In summary, our network and functional analyses indicated that these common genes act as
bridges between the metformin upstream and downstream networks so that they might act in
metformin-specific SPNetwork. Therefore, these bridges genes, especially the novel genes, are
warranted for further investigation of their roles in the signal transduction cascade of metfor-
min action.

Metformin-specific SPNetwork is significantly enriched with T2D
associated genes
Since metformin is a well-studied drug for T2D treatment, the metformin-specific SPNetwork
was expected to contain genes that have genetic association with T2D. To examine this expec-
tation, we comprehensively performed enrichment analysis using two sets of genes. The first
one contained 131 genes collected from 66 T2D GWAS studies curated by the NHGRI GWAS
Catalog database (April 1, 2014) [29]. Those genes have been reported to be significantly asso-
ciated with T2D based on GWA studies. Here, we selected these genes having at least one SNP
with P-value less than 1.0 × 10–8 as T2D associated genes. The second set included the T2D-
related genes from the WTCCC T2D study [31] as mentioned above.

Among the 477 nodes in the metformin-specific SPNetwork, 11 genes were found in the
first set of 131 genes. Compared to the human protein-coding genes (20,716), the network was
significantly enriched for T2D associated genes (Hypergeometric test, P-value: 1.36 × 10–4).
Similarly, among the 131 T2D disease genes, 43 existed in the human SPNetwork (4,367).
Thus, compared to all nodes in the human SPNetwork, the metformin-specific SPNetwork was
significantly enriched for T2D associated genes too (P-value: 3.62 ×10–3). These 11 genes were
CDKN2B, HNF1A, HNF4A, IRS1, ITGB6, KCNJ11, LEP, PPARD, PPARG, SND1, and TCF7L2.
Among them, KCNJ11, PPARG, and TCF7L2 have the strongest genetic association among
genes that appear in the T2D GWAS studies based on a comprehensive review [59].

Among the 477 genes in metformin-specific SPNetwork, 445 had genotyping data from
WTCCC T2D GWAS dataset. Among them, 169 genes belonged to T2D-related genes. Com-
pared with all genes with genotyping data in the GWAS, the network was significantly enriched
with T2D-related genes (Hypergeometric test P-value: 3.08 ×10–5). We further compared the
169 genes with the genes having genotyping data in the human SPNetwork. Among the 4,367
nodes in the human SPNetwork, 3,446 genes had genotyping data, in which 1,048 genes were
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T2D-related genes. Thus, the metformin-specific SPNetwork was significantly enriched for
the T2D-related genes as compared to the whole human SPNetwork in this study (P-value:
7.47 ×10–3). Fig 5A shows the comparison of P-value distributions of genes in whole GWAS
data (T2D GWAS), human SPNetwork, and metformin-specific SPNetwork. These
comparisons indicate that the network is enriched with genes that might be involved in the
pathology of T2D.

We further generated a subnetwork for 169 nominally significant genes with T2D (Fig 5B)
by their direct links. Among the 169 genes, 50 genes had SNPs whose P-values were less than
0.01 in the WTCCC T2D GWAS. In addition, there were six genes observed in both the 131
GWAS Catalog genes and the 169 genes; they are CDKN2B, ITGB6, KCNJ11, PPARD, PPARG,
and TCF7L2. Among them, the SNP rs4506565 in gene TCF7L2 has the strongest significance
(P = 5.68 ×10–13). TCF7L2 encodes a transcription factor that regulates the transcription of
several genes. It is a key element in the WNT signaling pathway, which has been reported to
contribute to T2D risk significantly [59].

Metformin-specific SPNetwork is enriched with cancer genes
Above pathway analysis indicated that the metformin-specific SPNetwork was significantly
associated with cancer-related pathways. Here, we further examined if the SPNetwork is
enriched with cancer genes from four data sets. The first one included 509 cancer genes down-
loaded from the Cancer Gene Census (December 11, 2013, http://cancer.sanger.ac.uk/cosmic/
census). Among them, 64 genes were included in the metformin-specific SPNetwork. Com-
pared to all human genes or the protein-coding genes in the human SPNetwork, the network
was significantly enriched with cancer genes (Hypergeometric test, P-value: 1.64 × 10–29 and
6.48 × 10–8, respectively). Interestingly, 3 of the 64 genes (HNF1A, PPARG, and TCF7L2) were
in the T2D GWAS Catalog gene list, and 21 genes belonged to 169 T2D-related genes (see
above). This observation strongly indicates that metformin may affect the shared genetic risk
factors between T2D and cancer. Such information provides clues for how metformin acts in
T2D and cancer treatments. This observation also provides evidence for epidemiological
studies of metformin in both T2D and cancer [50].

Additionally, we performed the GSEA of the metformin-specific SPNetwork using three
cancer GWAS datasets from the Cancer Genetic Markers of Susceptibility (CGEMS) projects
(breast cancer [32], pancreatic cancer [33], and prostate cancer [32]). Table 1 summarizes the
corresponding gene numbers in each GWAS dataset. Compared with all genes with genotyping
in each GWAS dataset, the metformin SPNetwork was slightly significantly enriched in nomi-
nally significantly associated genes (Hypergeometric test P-values: 0.0144, 0.0120, and 0.0053
for breast, pancreatic, and prostate cancer, respectively). Though the results of these statistical
tests are not as robust as that of the genotyping data from the T2D GWAS study, the results
confirm that the metformin-specific SPNetwork was enriched with genetic factors associated
with cancer development.

Metformin-specific SPNetwork is enriched with genes associated with
overall survival of cancer patients with T2D using metformin
From above analyses, the metformin-specific SPNetwork is enriched with genes associated
with T2D and cancer. Several studies over the last few years have demonstrated that patients
using metformin have reduced cancer risk and improved cancer survival in T2D patients
[24,26,60,61]. Thus, we evaluated whether metformin-specific network enrich genes associated
with cancer survival among cancer patients with T2D using metformin. In this study, we took
advantage of GWAS data of cancer subjects with T2D treated with metformin from BioVU
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Fig 5. (A) Comparison of gene-level P-value distribution in T2D GWAS among three gene sets from the metformin-specific SPNetwork, human SPNetwork,
and genes covered by T2D GWAS. (B) Interactions were extracted frommetformin-specific SPNetwork. These interactions occur between T2D-related
genes, namely, their smallest P-value less than 0.05 in T2D GWAS. The legends for orange nodes, red nodes, and green nodes are same as in Fig 3.

doi:10.1371/journal.pcbi.1004202.g005
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[34,62] (Materials and Methods). Hereafter, this dataset is referred as “metformin GWAS.”
Among the 477 nodes in the metformin-specific SPNetwork, 458 genes had genotyping and
177 genes were nominally significantly (P-value< 0.05) associated with T2D with better sur-
vival. Compared with all genes with genotyping data in the metformin GWAS data, the metfor-
min-specific SPNetwork was enriched with nominally significant genes too (Hypergeometric
test, P-value: 0.0181). We further compared the P-value distribution of metformin GWAS data
for three gene sets: the metformin-specific SPNetwork, human SPNetwork, and all genes in
metformin GWAS data set (S6 Fig). The genes in the metformin SPNetwork had the highest
proportion of P-values (P-value< 0.05) in metformin GWAS data at the gene level.

Among the 177 genes, 81 genes were included in the 169 genes whose smallest P-values
were less than 0.05 in T2D GWAS data. While most of them did not link to each other (S7 Fig),
these 81 genes directly linked to other 175 genes to form a subnetwork that included 256 nodes
and 910 edges. This feature indicated that the 81 genes and their direct interactors dominated
the metformin-specific SPNetwork. For example, the 256 nodes accounted for 53.7% of all
nodes and the 910 edges accounted for 66.6% of all edges in the metformin-specific SPNet-
work. Additionally, among the 81 genes, 17 belonged to ‘pathway in cancer’: COL4A1,
COL4A2, ERBB2, GLI3, ITGB1,MECOM,MMP1, PLD1, PRKCA, RARB, RXRG, SMAD3,
TCF7L1, TCF7L2, TGFA, TGFB2, and ZBTB16. Collectively, the above observations indicate
that the network was enriched in genes that might contribute to overall survival among cancer
patients with metformin therapy.

Crosstalk subnetwork intertwines the key genes for metformin action in
T2D and cancer
From above analyses, we observed that the metformin-specific SPNetwork was enriched with
genes associated with T2D and cancer, and genes associated with metformin-associated cancer
survival. To gain more insights into how metformin act in T2D and cancer treatment, we gen-
erated a subnetwork to synopsis the crosstalk between T2D and cancer based on the common
genes with nominal significance (P-value< 0.05) among the four GWAS data sets (T2D,
CGEMS breast cancer, pancreatic cancer, and prostate cancer). There were 25 genes common
to all the four gene sets (Fig 6A), and there were only five edges in the metformin-specific
SPNetwork (S8 Fig). By further examining degree distributions of the common 25 genes and
their direct interactors (71 genes), we found that their interactors had significantly more inter-
actions than the 25 genes as well as all the genes in the metformin-specific SPNetwork (Wilcox-
on’s test P-value: 2.1 × 10–4 and 2.4 × 10–9, respectively) (Fig 6B). The 25 genes included one
hub (PPARG) while the 71 genes included 21 of the 38 hub nodes in the metformin-specific
SPNetwork. Similarly, the 25 genes contained three bridge nodes while the 71 genes contained
15 of the 41 bridge nodes between metformin upstream and downstream network. These
observations indicate that the interactors of the 25 common nodes were more likely to play
important roles for signal transduction.

Starting with the 25 genes and their 71 interactors, we assembled a subnetwork by their
direct links among 96 nodes. The subnetwork comprised 96 nodes and 269 edges (S9 Fig). To
further explore the metformin treatment mechanisms in T2D and cancer through the protein
modules, we utilized software CFinder to perform network cluster and community analysis
[63]. We required each node in one module participate at least one 3-vertex clique. Accord-
ingly, we obtained three modules, which contained 6, 9, and 51 genes, respectively (S10 Fig).
We found no gene shared between the first and second modules, but one gene (STK11) com-
mon to the first and third modules, or five genes (EIF4E, PPARGC1A, PRKCA, RPS6KB1, and
SREBF1) common to the second and third modules. All the genes of the first and second
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modules belonged to metformin upstream network while most of the genes in the third module
belonged to metformin downstream network. We merged them to form a network, which
included 60 nodes and 210 edges (Fig 6C). Since this subnetwork was generated from common
genes to T2D and cancer genotyping data, we defined it as a crosstalk subnetwork of metformin
action in T2D and cancer.

We realized that, if we removed the nodes (CDKN1A, ESR1, MAX, MYC, PPARGC1A,
STK11, and SP1), the connections among three modules would be lost (S11 Fig). Among them,
three (MAX, MYC, and SP1) were both the bridge nodes and hub nodes. Therefore, these

Fig 6. Common genes and a crosstalk subnetwork between T2D and cancer. (A) The four-way Venn diagram summarizes the number of shared genes
among the four gene sets with smallest P-value less than 0.05 in the T2DGWAS and the three types of cancer GWAS data sets (breast, pancreatic, prostate)
in metformin-specific SPNetwork. (B) Degree comparison of common genes among the four gene sets in A, common genes’ direct interactors, and all genes
in metformin-specific SPNetwork. (C) A crosstalk subnetwork of metformin action for T2D and cancer with three modules and enriched pathways. The
legends for orange nodes, red nodes, and green nodes are same as in Fig 3. The nodes with underlines are key components in the metformin signal
transduction process.

doi:10.1371/journal.pcbi.1004202.g006
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seven nodes might be functionally critical in the metformin signal transduction cascade. To
further explore how the three modules and the seven key nodes might be related to metformin
treatment in term of biological function meaning, we performed the KEGG pathway enrich-
ment analysis on each module. Table 3 summarizes the enriched pathways for each module
(adjusted P-value< 1.0 × 10–4). We labeled the enriched KEGG pathways (adjusted P-
value< 1.0 × 10–9) for each module in Fig 6C.

In the first and second modules, there were two common pathways: adipocytokine signaling
pathway and insulin signaling pathway. Adipocytokine signaling pathway was the top pathway
in the first module (adjusted P-value: 2.01 × 10–13). The adipocytokine is a group of cytokines
secreted by adipose tissue, which contributes to the development of insulin resistance, T2D,
and cardiovascular disease [64,65]. The insulin signaling pathway, the top pathway in the
second module, plays important roles in many complex diseases such as diabetes, obesity [66],
and neurological disorders [67]. In addition, the mTOR signaling pathway and ErbB signaling
pathway were also enriched in the second module. There were 28 pathways enriched in the
third community. According to KEGG pathway annotation at the second level, 15 of these 28
pathways belonged to human disease, six to signal transduction, and three belonged to the
endocrine system, one to cell communication, one to cell growth and death, one to
development, and one to environmental adaptation. Among the 15 human disease related
pathways, 11 were for specific types of cancer. Therefore, the three modules reflected different
biological processes involved in T2D and cancer. Additionally, the pathway analyses
highlighted the seven nodes that are not only topological linkers but also functional linkers in
the crosstalk SPNetwork of metformin action in T2D and cancer.

Literature mining further reveals a novel MYC-centered pathway may
play critical roles in metformin action
Starting from above crosstalk subnetwork and the seven key nodes, we manually checked their
publications and integrated the experimental evidence for further understanding their roles in
the metformin actions. Through careful review, we summarized their function and action
together and found that a novel MYC-centered pathway was hidden under the crosstalk sub-
network, which may play important roles in metformin action in T2D and cancer (Fig 7). The
Myc-centered pathway included AMPK, STK11, MYC, SP1, and CDKN1A, which formed two
small motifs: AMPK-STK11-MYC and MYC-SP1-CDKN1A.

It is well known that metformin exerts anti-diabetes and anti-cancer effects via mitochon-
drial complex I inhibition [68,69]. Mitochondrial complex I inhibition increases AMP/ATP
ratio, which activates AMP-activated protein kinases (AMPKs) [70] to cause human disease
[71]. In the crosstalk subnetwork, the first module contained core members of AMPK signaling
pathways (PRKAA2, PRKAB2, and PRKAG2), which is linked to the second and third modules
through the STK11-MYC interaction. The gene LKB1encodes a key upstream activator of
AMPK [51] and is known to be inactivated through mutations during lung carcinogenesis
[72]. Furthermore, the metformin induces activation of LKB1 [73]. For the MYC and LKB1,
several lines of evidence show they are in opposite action in tumor. For example, LKB1 is over-
expressed partly by degradation of MYC protein to inhibit lung carcinoma cell proliferation
[74]. Nevertheless, their direct relationship is not clear. Recent studies have shown that metfor-
min has an ability to reduce MYC protein level in vivo and in vitro in several types of cancer,
including lung cancer [75] and prostate cancer [76]. Based on the integrative network and
function analyses with experimental evidence, we suggested a feed-forward loop
(AMPK-STK11-MYC) exists in metformin action. This network motif may act cohesively to
strengthen the inhibition of MYC expression.
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Table 3. KEGG pathways overrepresented in genes in three modules of the reduced common network
between T2D and cancer for metformin.

Pathway #. interest genes Adjusted P-valuea

Module # 1

Adipocytokine signaling pathway 5 2.01 × 10-13

Insulin signaling pathway 4 3.00 × 10-9

Hypertrophic cardiomyopathy (HCM) 3 1.83 × 10-7

Module # 2

Insulin signaling pathway 7 1.05 × 10-15

mTOR signaling pathway 4 1.18 × 10-9

Adipocytokine signaling pathway 3 1.04 × 10-6

ErbB signaling pathway 3 1.65 × 10-6

Aldosterone-regulated sodium reabsorption 2 6.64 × 10-5

Type II diabetes mellitus 2 7.25 × 10-5

Acute myeloid leukemia 2 8.77 × 10-5

Module # 3
Pathways in cancer 19 6.89 × 10-26

Small cell lung cancer 8 2.94 × 10-12

Prostate cancer 7 2.06 × 10-10

ErbB signaling pathway 7 2.06 × 10-10

Non-small cell lung cancer 6 6.09 × 10-10

PPAR signaling pathway 6 2.54 × 10-9

MAPK signaling pathway 8 8.80 × 10-9

Huntington's disease 7 1.66 × 10-8

Focal adhesion 7 2.74 × 10-8

Colorectal cancer 5 7.08 × 10-8

Hepatitis C 6 7.15 × 10-8

Adipocytokine signaling pathway 5 9.45 × 10-8

Leishmaniasis 5 1.17 × 10-7

Thyroid cancer 4 1.76 × 10-7

Bladder cancer 4 7.65 × 10-7

Cell cycle 5 1.46 × 10-6

Wnt signaling pathway 5 3.53 × 10-6

Glioma 4 3.76 × 10-6

Pancreatic cancer 4 4.82 × 10-6

Chronic myeloid leukemia 4 5.43 × 10-6

Circadian rhythm—mammal 3 6.86 × 10-6

TGF-beta signaling pathway 4 8.65 × 10-6

Osteoclast differentiation 4 4.40 × 10-6

Toxoplasmosis 4 4.75 × 10-5

Insulin signaling pathway 4 5.44 × 10-5

mTOR signaling pathway 3 7.46 × 10-5

Endometrial cancer 3 7.46 × 10-5

Jak-STAT signaling pathway 4 7.67 × 10-5

aAdjusted P-value was calculated from hypergeometric test following by Benjamini-Hochberg multiple

testing correction.

doi:10.1371/journal.pcbi.1004202.t003
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In addition, in the crosstalk subnetwork, three nodes (CDKN1A, MYC, and SP1) formed a
3-node clique. The network small motif bridges the three modules together. The SP1 is a TF
that binds to the GC-rich motif of numerous genes’ promoters and is involved in many cellular
processes, including cell differentiation, cell growth, apoptosis, immune responses, response to
DNA damage, and chromatin remodeling. It has been reported that SP1 could cooperate with
MYC to activate transcription of the human telomerase reverse transcriptase gene (TERT),
which is responsible for maintenance of the length of telomeres and its defects may lead to dis-
eases including cancer [77]. During the process of carcinogenesis, expression ofMYC and SP1
is known to be up-regulated [78]. It has been reported that metformin has an ability to down-
regulate MYC [75,76] and SP1 [61]. Additionally, MYC [79,80] and SP1 [81,82] are also the
key transcription factors involved in the regulation of insulin and insulin regulated gene tran-
scription. MYC could directly induce both impaired insulin secretion and loss of β-cell mass

Fig 7. A novel metformin action pathway. Solid lines indicate the proposed mechanisms as supported by experimental evidence from literature. The two
black dashed lines indicate the drug effects. The red dashed line indicates the relationship is existed but the direction is unknown. The arrows beside the
gene names or biological processes indicate the metformin effects. Up-arrows indicate the corresponding genes or processes are up-regulated while the
down-arrows indicate the corresponding genes or process are down-regulated.

doi:10.1371/journal.pcbi.1004202.g007
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[83]. SP1 could regulate the upstream target STK11 expression [84,85]. MYC could activate
AMPK in multiple cell lines [86]. AMPK activation could reduce SP1 translocate from cyto-
plasm to nucleus [87]. The CDKN1A, a cyclin-dependent kinase inhibitor p21, inhibits prolif-
eration both in vitro and in vivo. After metformin treatment, the expression of CDKN1A is
upregulated in hepatocellular carcinoma [88] and bladder cancer cells [89]. Additionally, mul-
tiple lines of evidence have demonstrated that MYC can suppress the expression of CDKN1A
in cancer like colorectal cancer [90]. Therefore, taken all evidence together with the crosstalk
network, we propose a new biological pathway for metformin action focused on four key nodes
(CKDN1A, MYC, SP1, and STK11) (Fig 7). The pathway highlights several new questions,
which may have been missed by previous studies. Specifically, we speculate that MYC and its
networks are the key downstream targets of metformin. Further investigations are needed to
illustrate this mechanism.

Discussion
In this study, we developed a computational framework (DSPathNet) to construct a signaling
pathway network for a given drug, specifically, metformin. The framework first collected met-
formin upstream genes from different data sources and inferred chemical signaling receptor
TFs based on metformin-induced gene expression data. Then, a metformin-specific SPNet-
work was produced using the random walk-based algorithms by applying longitudinal and lat-
eral movements starting from metformin upstream genes and downstream TFs. By examining
the enrichment of disease genes in the network, the metformin-specific SPNetwork proved to
be enriched with genes that could contribute to the pathology of T2D and cancer, or reducing
cancer risk in T2D patients undergoing metformin treatment. Starting from the genes common
to T2D and cancer GWAS data, we further produced a crosstalk subnetwork of metformin
action in T2D and cancer. Through comprehensive network and functional analyses and litera-
ture mining, we identified seven critical genes (CDKN1A, ESR1,MAX,MYC, PPARGC1A,
STK11, and SP1), some of which have been implicated in previous studies. Furthermore, the
MYC and its motifs were suggested to play important roles in metformin action. In summary,
this study has the following major results: 1) we developed a computational framework for
building drug-specific signaling pathway networks; 2) we generated a metformin-specific sig-
naling pathway network that is significantly enriched with genes associated with T2D, cancer,
or metformin-associated cancer survival, and 3) we pinpointed the MYC-centered pathway
that may play important roles in metformin action. These results demonstrate that the compu-
tational framework effectively integrates various types of data, such as prior drug knowledge
and drug-induced gene expression to identify critical genetic factors responsible for drug indi-
cations and drug response. This framework is a novel approach that provided a broader and
deeper understanding of metformin actions in both T2D and cancer. This computational
approach can be applied to other drugs as well.

This framework applies a new network generation strategy that focused on a drug of inter-
est. In our framework, we utilized the gene expression data to infer the drug related gene
expression regulators TFs, which is different from the methods that have been developed to
infer signaling pathway networks directly from gene expression data [91]. As we know, the
gene expression represents the transcriptional changes in the downstream genes of a pathway
and provides an indirect view of pathway structure and gene activity after modulation of the
system. Thus, the gene expression cannot directly represent the activity state of many signaling
components that mediated the cellular response [92]. It is well known that the signal transduc-
tion network is not linear; rather it is quite complex [3]. During the development of this frame-
work, we observed only two genes overlapped between metformin upstream genes and
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downstream genes. This small overlap presents us with a big challenge: how to fill the gap to
rebuild a complete cascade for drug action? To tackle this challenge, we proposed a novel strat-
egy from background human SPNetwork through both longitudinal and lateral movements.
For the longitudinal movement, we employed the software NetWalker that implemented the
random walk with a starting probability. For the lateral movement, we took advantage of
K-Walk algorithm that simulates random walks in the network using a Markov Chain to build
the most relevant subnetwork. In this study, we combined them together to achieve our goal.
Table 2 summarizes the number of genes in each step and the hypergeometric tests based on
the number of genes with smallest P-value less than 0.05 in the corresponding network com-
pared to all genotyping data in T2D GWAS data. The evaluation results indicated that the pro-
cess is promising since it recruited more informative genes; the significance of the association
between the network and disease-related mutation signals became stronger.

However, the major concern regarding the framework is to rebuild a complete and reliable
human SPNetwork and to control false positives from both public data and prediction results
caused by the computational tools. To balance these two factors, we rigorously compiled the
information involved in the signaling pathways, extensively collected the drug related data
from multiple data sources, applied rigorous parameters during the use of computational
approaches, and performed comprehensive evaluations for metformin-specific SPNetwork. To
increase the accuracy of results, we only included the protein-protein pairs with experimental
evidence and excluded the pairs only involved in the protein complexes. Thus, the coverage of
the human SPNetwork was lower than a typical protein-protein interaction network; it con-
tained only 37,881 edges and 4,367 proteins. With the rapid development of human experi-
mental technologies, we believe more data with higher coverage and accuracy will become
available, which will enable the construction of a more comprehensive signaling pathway net-
work with high quality. To collect as many metformin-related genes as possible, in addition to
the public databases DrugBank and PharmGBK, we further performed literature mining from
PubMed abstracts, which provided an additional 19 genes. To ensure the accuracy of TF infer-
ence, we only utilized gene expression data from the four treatments of metformin that showed
significant consistency with each other. To comprehensively evaluate if the metformin-specific
SPNetwork was enriched with mutation signals of T2D and cancer, we not only took advantage
of the well-studied disease genes but also individual genotyping data from GWAS data sets.
Thus, our framework has the ability to recruit more key components in the drug signal trans-
duction process. It could be potentially applied to other drugs for the purpose of deciphering
their signaling pathway networks and identifying critical genes. Another limitation of this
framework is the absence of a control network representing the normal state. The signaling
network at the normal state may provide additional insights into drug action. However, it is
very difficult and challenging to construct a normal-state signaling transduction network for
drug action. Though some pathway data sources such as KEGG provide the relevant signaling
networks in the normal state, most of them only provide a limited view by focusing on one or
two related pathways. Compared to these individual pathway networks, the metformin-specific
SPNetwork provides a comprehensive view by including many well-known metformin-related
pathways, T2D-related pathways, and cancer-related pathways (Results).

This computational framework is strongly dependent on the available literature about the
investigated drugs. Thus, it is not suitable for these drugs or chemicals that do not have many
basic research reports. However, it is known that, during the drug development, most of them
cannot be approved by FDA even after entering the clinical trials [93]. Furthermore, as the
time and costs for developing novel drugs dramatically increased recently, many drug develop-
ers prefer to find new uses for existing drugs including the approved and non-approved drugs.
As more large-scale data become publicly available, researchers could utilize the framework to
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build a SPNetwork for each drug of interest, and then examine the relationship between the
network and disease genes, or calculate network similarities with the known drugs for a certain
indication. These relationship or network similarities may provide more clues for drug repur-
posing at the network level. Therefore, the framework will be promising for identification of
drugs that may be used to treat secondary indications by constructing and comparing the
drug-specific SPNetworks. Moreover, since the drug-specific SPNetwork contains comprehen-
sive information regarding the drug action of the components, we speculated that some off-tar-
gets might be included in the network. Thus, our network approach can be extended to
evaluate the association between drugs and their potential side effects. However, it is challeng-
ing to identify large-scale side effect data associated with genes or their proteins. So far, several
studies have used the available biochemical data to determine candidate targets for specific side
effects [94–96]. Such data is limited and likely with a high false positive rate. When more rele-
vant data becomes available in future, our approach will be applied to assess drugs’ side effects.

An important output of this study is the metformin-specific SPNetwork consisted of met-
formin related genes, metformin related TFs, and many novel genes. The network provides a
valuable gene pool for further investigation of metformin action. Metformin has been used to
treat diabetic disorders for many years because of its ability to lower glucose levels and improve
insulin sensitivity [97]. Recently, several findings from epidemiological studies have shown
that metformin can reduce cancer risk and improve cancer survival in the T2D patients
[60,98,99], including a recent electronic health record (EHR) study we participated in that
demonstrated the effect was seen for many cancer types [26]. However, the molecular mecha-
nisms underlying metformin action are complex and remain unclear, especially for its ability
of decreased cancer risk [100,101]. In this study, we first constructed a complex metformin-
specific SPNetwork and then produced a crosstalk subnetwork from the metformin-specific
SPNetwork. This subnetwork contained three modules highlighting different pathways
(Fig 6C). The first and second modules were enriched with genes from the insulin signaling
pathway and adipocytokine signaling pathway, and the third module was enriched with genes
involved in cancer related pathways. The adipocytokine signaling pathway contains the major
components of AMPK signaling pathway according to KEGG annotation. Through seven
nodes, the first and second modules were linked to the third module. These observations sug-
gest that the metformin possibly affects the AMPK signaling pathway and the insulin signaling
pathway directly, which subsequently decrease the chance of cancer development. This outlook
is consistent with a previous review [102].

The seven nodes act as bridges linking the first and second modules to the third module.
We predicted they might play critical roles in the metformin signaling transduction process
(Fig 6C). Among them, two genes (PPARGC1A and STK11) belonged to metformin upstream
genes; one (ESR1) to metformin downstream genes; four genes (CDKN1A,MAX,MYC, and
SP1) were both hubs and bridge nodes. It is well known that gene STK11, also known as LKB1,
encodes a member of the serine/threonine kinase family that regulates cell polarity and func-
tions as a tumor suppressor [103]. Additionally, previous studies have shown that mutations in
the STK11 gene influence insulin sensitivity and metformin efficacy [104,105]. TheMYC gene
encodes a protein that plays a role in cell cycle progression, apoptosis, and cellular transforma-
tion [106]. It has been shown thatMYC gene plays important roles in the anticancer metabolic
effects of metformin [75,76]. The PPARGC1A gene encodes a transcriptional coactivator that
regulates the genes involved in energy metabolism. Its variant rs2970852 has been reported to
modify the effects of metformin on triacylglycerol levels [107]. Recent studies have shown that
gene regulation induced by metformin involves the transcription factor SP1 in cancers
[61,108]. Moreover, the expression of CDKN1A (also known as P21) is upregulated in hepato-
cellular carcinoma [88] and bladder cancer cells [89] after metformin treatment. The evidence
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from these studies suggests that our approach is effective for identifying the key components in
the signaling pathway. To further investigate detailed information for these genes, more experi-
mental validations are needed. To our knowledge, there is no any positive evidence for the
association of the genes ESR1 andMAX of the seven critical genes with metformin action.
Thus, they are two novel genes for further experimental validation.

In addition to the DSPathNet framework to effectively recruit critical components in the
mode of drug action, there are other ways to expand this approach. First, integrating multiple
layers of data involving the signal cascade beyond gene expression data into a comprehensive
method might improve our ability to identify the association between the genetic changes and
their response to drugs. Second, although we have shown the utility of two sources for compil-
ing the human SPNetwork, there are other data worth exploring such as those involved in the
metabolism, protein phosphorylation, and protein kinase and phosphatase interactions. While
this study focused on one medication, metformin, the computational framework is broadly
applicable to any drug for which induced gene expression data is available. Moreover, several
experimental data sources are available for further data integration and mining such as the
Connectivity Map project [15], Genomics of Drug Sensitivity in Cancer [109], Cancer Cell
Line Encyclopedia (CCLE) [110], and anticancer compounds in breast cancer [111]. Finally,
analyzing the crosstalk among different types of diseases in the context of networks will offer
an intriguing opportunity to explore the underlying molecular mechanisms of drug action,
which will provide an alternative approach for drug repurposing.

Materials and Methods

Compilation of one human SPNetwork with weighted nodes
Before generating the metformin-specific SPNetwork, we need a global signal transduction net-
work for humans as the background network. We therefore integrated signaling transduction
related associations from Pathway Commons with experimental evidence [25], and TF-TF/tar-
get pairs from TRANSFAC [26]. The Pathway Commons database collected publicly available
pathways from multiple organisms with over 1,400 pathways and 687,000 interactions. We
first downloaded the edge data specific for humans from the Pathway Commons (release
2011.10). Since the interactions that occur within the protein complexes do not reveal the flow
of signaling information [3], we excluded the edges that came from the same complex. This
process resulted in 33,614 pairs among 3,502 proteins. Additionally, we obtained 1,325 pairs
among 487 TFs, and 2,723 pairs between 428 TFs and 1,315 targets downloaded from TRANS-
FAC database (release 2011.4). The TRANSFAC database manually collects eukaryotic TFs,
their genomic binding sites, and DNA binding profiles with experimental evidence [112]. After
merging the two data sets and removing the redundancies, we obtained a network with 37,881
edges and 4,367 nodes. This network was used to represent global signaling pathways in
humans.

To further weight the association of each node in human SPNetwork with metformin
action, we assigned a functional similarity score by calculating its functional similarity to the
metformin upstream genes using the R package GoSemSim based on GO annotations [113].
GO annotations have three functional domains (k): molecular function (MF), biological pro-
cess (BP), and cellular component (CC). First, for a given node i in each domain (k), we calcu-
lated its score as Scorei ¼

Pn
j¼1 Scorei;j=n, where n is the number of existing scores between

node i and metformin upstream gene j. Second, for the given node i in all domains, we calcu-

lated a final score as Ŝ ¼ PN

k¼1

Scorek=N; where N is the number of the domains having scores for

the node.
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Inference of metformin downstream genes
Gene expression profiles of cancer cells following drug treatment are useful for better under-
standing cellular changes reflective of drug treatment [114]. In this study, we integrated the
known TF-target association and drug-induced gene expression data to infer the metformin
downstreams. We first comprehensively collected the TF-target associations, then calculated
the up- or down-regulated genes from drug-induced gene expression data, and finally per-
formed the hypergeometric test to evaluate the over-representation of the up- or down-regu-
lated genes in multiple TF target gene datasets.

To compile a target gene set for each TF comprehensively, we downloaded data from two
sources: TRANSFAC Professional (release 2011.4) and MSigDB database [38]. From the
TRANSFAC database, we extracted known TFs and their targets in human. From the MSigDB,
we downloaded the gene sets that share one TF binding site. The gene sets were derived from a
comparative analysis of human, mouse, rat, and dog genomes and were organized by TF bind-
ing motifs. Genes associated with different binding motifs that correspond to a common tran-
scription factor were combined into one gene set. After merging the two data sets, we obtained
666 human TFs and 8,502 human targets.

To calculate the potential differentially expressed genes induced by metformin, we down-
loaded ten gene expression datasets from Connectivity Map website (version 2.0). The gene
expression datasets were generated from metformin treated cell lines. We calculated the ranked
probes by using the method described in Lamb et al. [15] and selected the top 100 and bottom
100 probes in each treatment to represent the differentially expressed probes [115]. We exam-
ined the expression consistency among them using the software GSEA. We noticed that,
among ten metformin treatment data sets, four had the highest consistency based on GSEA
analysis [38]. Therefore, we utilized these four treatment gene expression data to perform the
GSEA leading edge analysis to detect differentially expressed probes. Then, by mapping the dif-
ferently expressed probes to genes using Ingenuity Pathway Analysis Tool (http://www.
ingenuity.com/), we obtained the up-regulated genes and down-regulated genes.

Finally, we performed the hypergeometric test to evaluate the over-representation of the up-
or down-regulated genes in the different TF gene sets. The TFs with P-value less than 0.05 were
identified as significant TFs related to metformin action and their genes as metformin down-
stream genes.

Construction of metformin-specific SPNetwork
Considering that the signal transduction cascade is not linear, we adopted a two-step strategy
to construct the metformin-specific SPNetwork from the human SPNetwork. More specifically,
in the first step, we utilized the software NetWalker to expand metformin upstream genes and
downstream genes for longitudinal conduction [116]. The NetWalker implements the random
walk with a starting probability. In this study, we gave equal starting probability of 0.5 to each
gene in the metformin upstream genes and downstream genes and required those nodes with
both local P-value< 0.05 and global P-value< 0.05 as the expanded genes. In the second step,
we expanded the nodes from in the first step by lateral movement by applying the K-Walk
method implemented in the Python package GenRev [117]. The K-Walk algorithm simulates
random walks in the network using a Markov Chain to build the most relevant subnetwork,
connecting seed nodes by walk a fixed length L or up to a maximal length Lmax in a large net-
work. A subnetwork is obtained by keeping only edges that are above a minimal relevance
threshold. The threshold is automatically fixed after the subnetwork has the maximum score.
As such, the limited K-Walk algorithm computes edge and node relevance from random walks
connecting the seed nodes [118].
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GWAS data sets
We used one T2D GWAS data set, three cancer GWAS data sets, and one GWAS data set for
T2D patients with metformin treatment. The T2D GWAS data was individual-level genotype
data generated from the WTCCC [31]. The three cancer GWAS datasets were generated by the
Cancer Genetic Markers of Susceptibility (CGEMS) project: breast cancer [32], pancreatic can-
cer [33], and prostate cancer [32]. We downloaded the genotype data from the National Center
for Biotechnology Information (NCBI) dbGaP with approved access for the CGEMS project.
For these four GWAS datasets, we first removed individuals with genotyping rate< 95% and
SNPs with missing rate>5%. A single SNP associated test was conducted using the Armitage
trend test for SNPs with a minor allele frequency (MAF)> 0.05. S10 Table summarizes the
data.

T2D cancer patients from Vanderbilt University Medical Center (VUMC) were identified
using the Synthetic Derivative (SD), a de-identified copy of the electronic health records from
VUMC. Eligible subjects were individuals who 1) had a cancer diagnosis (excluding non-mela-
noma skin cancers) between January 1, 1995 and December 31, 2010 identified through the
Vanderbilt tumor registry, and 2) were older than 18 years at the time of cancer diagnosis.
Using a previously developed algorithm [119,120], we identified T2D subjects having at least
two pieces of clinical information in their medical record: 1) ICD9 code for type 2 diabetes, 2)
medications for type 2 diabetes, or 3) clinical labs suggestive of T2D (random glucose>200
mg/dl or hemoglobin A1c> 6.5%). Individuals without at least two of the above types of infor-
mation were excluded. At least two mentions of metformin use (mono-therapy or combined
therapeutic) and one mention of metformin use within 5 years after cancer diagnosis were
required for study inclusion. Individuals on other T2D medications were excluded from analy-
sis. Subjects were followed for overall mortality that was determined through linkage with the
Vanderbilt tumor registry. Physician-reported European descent individuals with an available
DNA sample in the Vanderbilt biobank (BioVU) [121] were genotyped on either the Illumina
HumanOmni1-Quad or the Illumina HumanOmni5-Quad. Only the consensus single nucleo-
tide polymorphisms (SNPs) between the two genotyping platforms were used. Standard quality
control (QC) procedures were applied to remove individuals and autosomal SNPs not meeting
standard QC criteria (i.e. related individuals, discordant sex, sample efficiency< 98%, genotyp-
ing efficiency < 98%, deviations from Hardy-Weinberg equilibrium (p< 1×10–6), and
MAF< 5%). Palindromic SNPs were also removed. After QC, 461 individuals and 551,745
SNPs remained. Principal components were estimated using EIGENSTRAT [122]. The
association between each SNP, assuming an additive genetic model, and overall survival was
examined using Cox proportional hazards models, adjusted for age, sex and one principal
component, using the GenABLE package of R [123]. The GWAS analysis of this set is ongoing
and will be reported in a separate publication.

In this study, we defined the genes having at least one SNP with nominal P-value less than
0.05 as disease or drug related genes. The SNP is located in the gene’s region or its 20kb up- or
down-stream sequence based on the gene annotation and human reference genome build 36
for T2D GWAS study and cancer GWAS studies and build 37 for metformin GWAS study.

Pathway enrichment, network analysis and visualization
To identify pathways overrepresented in gene sets, we performed KEGG pathway enrichment
analyses using WebGestalt [49] (version 1/30/2013). Given a list of genes, a hypergeometric
test was performed for the enrichment of these genes, which was implemented in the WebGes-
talt tool. To control the error rate in the analysis results, WebGestalt also provides a corrected
P-value based on the Benjamini-Hochberg method [124]. To summarize the enriched
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pathways, we took advantage of KEGG pathway category annotation, which included the two-
level categories and represent the relative abundance of the pathways [125]. These pathways
are grouped into seven categories at the first level of KEGG annotation and 43 categories at the
second level of KEGG annotation. At the second-level category, we further calculated a Z-score
for each category to represent the KEGG pathway relative abundance: Z-score = x�u

s , where x is

the number of pathways in one category in the first or second level, u is the mean of the path-
way number in the first or second category, σ is the standard deviation of the pathway number
in the first or second category. The pathway categories were selected for further analysis if their
Z-scores were higher than zero.

In this study, we adopted the statistical design for gene set enrichment analysis [126] to
compare a gene set (A) in the drug-specific network to a reference gene set (B). The design has
been commonly used to conduct the gene annotation enrichment analysis [127]. Suppose that
the gene set (A) has n genes, of which most genes (n’) belong to the reference gene set (m).
Among n’ gene, k genes belong to a given category (C). And the reference gene set has j genes
belong to the same category (C). Based on the definition of the hypergeometric test, we per-
formed the hypergeometric test to get a P-value to evaluate the significance of enrichment for
category C in the gene set A.

For network property analysis, we calculated degree of each node and degree distribution of
all nodes, which are the most basic measures of biological networks [41]. The node degree
(connectivity) is the number of links of a node in the network. If degree distribution of one net-
work follows a power law, the network would have only a small portion of nodes with a large
number of links (i.e., hubs) [41]. To determine the hubs in metformin-specific SPNetwork, we
adopted the method utilized by Yu et al. [46], as we did in a previous study. We first drew a
degree distribution for the whole network to define a specific degree value as a cut-off point
(S12 Fig). If a node has the degree greater than the cut-off value, then the node is a hub. To
identify the modules, we performed the cluster and community analysis using the software
CFinder (version 2.0.5) [63]. CFinder is a fast program to locate and visualize overlapping,
densely interconnected groups of nodes in undirected network. We required each node in the
module being involved in at least one 3-vertex clique. We visualized the networks using Cytos-
cape (version 3.2) [128].

Supporting Information
S1 Fig. The three-way Venn diagram summarizes the number of shared genes among the
three gene sets. The “Human SPNetwork node” represents the genes corresponding to nodes
in the human SPNetwork, ‘Gene_46’ represents the metformin-related genes obtained from
DrugBank and PharmGKB, and ‘Gene_29’ represents the metformin-related gene obtained by
literature searching approach.
(TIFF)

S2 Fig. GSEA (Gene Set Enrichment Analysis) enrichment score curve for six probe sets of
six treatments (Instance IDs: 61, 1694, 1816, 1858, 5068, and 5487) compared to the probes
from one treatment (Instance ID: 1). In each graph, the vertical black lines indicate the posi-
tion of each of the probes of the studied probe set in the ordered, non-redundant data set. The
green curve corresponds to the ES (enrichment score) curve, which is the running sum of the
weighted enrichment score in GSEA.
(PDF)

S3 Fig. Network of metformin upstream gene and downstream genes. This network was
generated by mapping them129 unique genes of metformin upstream genes and TF genes to
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human SPNetwork. The nodes and edges in orange correspond to nodes and edges only in the
metformin upstream network. The nodes and edges in green correspond to the nodes and
edges only in the metformin downstream network. And the nodes and edges in red correspond
to the nodes and edges common to the metformin upstream network and the metformin
downstream network.
(PNG)

S4 Fig. Summary of genes by longitudinal and lateral movements from metformin
upstream genes and downstream genes via three-way Venn diagrams. A) Summary of the
number of shared genes among metformin upstream genes represented by ‘Upstream gene’,
the genes obtained by longitudinal movement represented by ‘Longitudinal gene’ based on
‘Upstream gene’, and the genes obtained by lateral movement based on ‘Longitudinal gene’. B)
Summary of the number of shared genes among metformin downstream genes represented by
‘Downstream gene’, the genes obtained by longitudinal movement represented by ‘Longitudi-
nal gene’ based on ‘Downstream gene’, and the genes obtained by lateral movement based on
‘Longitudinal gene’.
(PNG)

S5 Fig. Network of extended genes of metformin upstream genes and downstream genes by
longitudinal movement. The network was generated by mapping the unique 219 genes of
extended genes of metformin upstream gene and downstream genes by longitudinal moving to
the human SP Network. The legends for orange nodes, red nodes, and green nodes are same as
in S3 Fig.
(PNG)

S6 Fig. P-value distribution of metformin GWAS data of the metformin-specific SPNet-
work, human SPNetwork, and metformin GWAS. The details of the data were provided in
Materials and Methods section.
(PNG)

S7 Fig. The subnetwork for 81 genes. The genes were common to the 169 genes whose small-
est P-values were less than 0.05 in T2D GWAS data and the 177 genes had at least one SNP
with P-value less than 0.05 in metformin GWAS data. The legends for orange nodes, red
nodes, and green nodes are same as in S3 Fig.
(PNG)

S8 Fig. The subnetwork for 25 genes. These genes were common among the 169 genes whose
smallest P-values were less than 0.05 in T2D GWAS data, 157 genes whose smallest P-values
were less than 0.05 in breast cancer WAS data, 170 genes whose smallest P-values were less than
0.05 in pancreatic cancer GWAS data, 172 genes whose smallest P-values were less than 0.05 in
prostate cancer GWAS data. The legends for orange nodes and edges, red nodes and edges, and
green nodes and edges are same as in S3 Fig.
(PNG)

S9 Fig. The subnetwork for 25 common genes and their direct interactors. The 25 common
genes that were among the T2D GWA study and the three cancer GWA studies. The legends for
orange nodes and edges, red nodes and edges, and green nodes and edges are same as in S3 Fig.
(PNG)

S10 Fig. The networks for three modules. The legends for orange nodes and edges, red nodes
and edges, and green nodes and edges are same as in S3 Fig.
(PNG)
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S11 Fig. Seven highlighted nodes in yellow in the subnetwork for 25 common genes and their
direct interactors (A) and three 3-clique communities after removing the highlighted nodes
(B). The legends for orange nodes and edges, red nodes and edges, and green nodes and edges
are same as in S3 Fig.
(TIFF)

S12 Fig. Degree distribution of the 477 nodes in metformin-specific SPNetwork. This distri-
bution is used for determination of hubs.
(TIFF)

S1 Table. Summary of data sources, software, and evaluation data used in the study.
(DOCX)

S2 Table. Metformin upstream genes and their sources.
(DOCX)

S3 Table. List of metformin treatments from Connectivity Map database.
(DOCX)

S4 Table. Metformin downstream genes encoding transcription factors inferred from met-
formin-induced gene expression data from Connectivity Map.
(DOCX)

S5 Table. Pairs of metformin-specific signaling pathway network (SPNetwork).
(XLSX)

S6 Table. List of genes in the metformin-specific SPNetwork.
(XLSX)

S7 Table. KEGG pathways overrepresented in 477 genes in metformin-specific SPNetwork.
(XLSX)

S8 Table. KEGG pathways overrepresented in upstream genes (174) only belonging to met-
formin upstream network, downstream genes (262) only belonging to metformin down-
stream network, and genes (41) common to metformin upstream network and downstream
network.
(XLSX)

S9 Table. First-level and secondary level categories of the KEGG pathway overrepresented
in upstream genes (174) only belonging to metformin upstream network, downstream
genes (262) only belonging to metformin downstream network, and genes (41) common to
metformin upstream network and downstream network.
(XLSX)

S10 Table. Summary of three cancer GWAS data.
(DOCX)
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