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Abstract
While the use of computer tools to simulate complex processes such as computer circuits is

normal practice in fields like engineering, the majority of life sciences/biological sciences

courses continue to rely on the traditional textbook and memorization approach. To address

this issue, we explored the use of the Cell Collective platform as a novel, interactive, and

evolving pedagogical tool to foster student engagement, creativity, and higher-level think-

ing. Cell Collective is a Web-based platform used to create and simulate dynamical models

of various biological processes. Students can create models of cells, diseases, or pathways

themselves or explore existing models. This technology was implemented in both under-

graduate and graduate courses as a pilot study to determine the feasibility of such software

at the university level. First, a new (In Silico Biology) class was developed to enable stu-

dents to learn biology by “building and breaking it” via computer models and their simula-

tions. This class and technology also provide a non-intimidating way to incorporate

mathematical and computational concepts into a class with students who have a limited

mathematical background. Second, we used the technology to mediate the use of simula-

tions and modeling modules as a learning tool for traditional biological concepts, such as

T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot

application suggest that there is promise in the use of computational modeling and software

tools such as Cell Collective to provide new teaching methods in biology and contribute to

the implementation of the “Vision and Change” call to action in undergraduate biology edu-

cation by providing a hands-on approach to biology.

Introduction
The enormous complexity that recent research has revealed in biological and biochemical sys-
tems has resulted in the emergence of mathematical modeling and computer simulations as an
integral part of biomedical research. This provides researchers with new tools to understand
the role of emergent properties in healthy and diseased cells, to generate new hypotheses, and
even screen potential pharmaceuticals for cross-reactivity and potential targets [1–3].
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Given the fact that the field is undergoing a shift in the basic way the functions of these dy-
namical systems/networks are understood, it is essential for biology education to evolve in
order to reflect these changes [4,5]. It is vital for students to learn about these structures and
the resultant emergent properties that are not obvious from looking at static pictures in text-
books. Furthermore, the National Science Foundation and the American Association for the
Advancement of Science have initiated a call to action, “Vision and Change” [6], that aims to
transform undergraduate biology education by incorporating computational methods and by
introducing key core competencies including simulation and modeling. A number of efforts
have already been initiated in this direction, including problem-based learning in the under-
graduate setting [7], translational approaches (i.e., having students serve as researchers in the
classrooms to investigate biological problems and identify solutions), as well as those led by
Carl Wieman of the Carl Wieman Institute [8] and other leaders in foundational learning (e.g.,
[9,10]).

Our group has also attempted to address this issue using our recently developed and re-
leased modeling platform called Cell Collective [11,12]. The platform enables scientists to cre-
ate, simulate, and analyze large-scale computational models of various biological systems
without the need to enter/modify any mathematical expressions and/or computer code. Be-
cause accessibility to modeling for a wide audience is the key ingredient of the technology, the
platform lends itself to application in a classroom setting. Specifically, students can create, sim-
ulate, and analyze then break and re-create and re-analyze dynamical models to understand
major biological processes. The collaborative nature of the Web-based environment enables
students to easily collaborate inside and outside of the classroom in a meaningful way. The
types of biological processes that can be explored with Cell Collective are virtually unlimited;
students can model biological processes including, but not limited to, cellular development, cel-
lular differentiation, cell-to-cell interactions, disease pathogenesis, the effects of various treat-
ments on disease, etc.

Herein, we discuss two different applications of the Cell Collective’s interactive technology
as a tool to facilitate hands-on, creative learning in the classroom and allow students to apply
their knowledge in real-time. The first is using Cell Collective in a dedicated course (In Silico
Biology) designed around the use of the technology, and the second involves introducing the
technology as a supplement to existing, traditional biology courses. Both applications have
been subjected to initial testing in a variety of undergraduate settings, and the results indicate
that both methods were successful in increasing both understanding of and enthusiasm for
complex biological systems in undergraduate student populations.

A New Course Designed for Integrated Learning of Biological and
Computational Concepts
In Silico Biology is a course that was designed de novo to use Cell Collective as the central tool
for teaching students complex biochemical systems by recreating them in silico. The individual
objectives of the course include helping students to expand their analytical skills and become
interested in computational sciences, learn to actively read primary journal articles, critically
analyze and interpret data, and use interactive computational models to learn about biological
networks. This is facilitated throughout the course via three major topics and strategies incor-
porated into the course:

1. Introduction of biological concepts from a systems perspective
The focus of the biological component of the In Silico Biology course is on complex networks
found in biological systems. A series of lectures at the beginning of the semester provide
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students with the foundation of molecular biology of the cell, including the principles of intra-
and intercellular signal transduction. During this session, students also learn to think about
biochemical protein regulatory mechanisms from a holistic perspective; that is, rather than fo-
cusing on individual protein–protein interactions, students are expected to research and under-
stand the overall regulatory mechanism of a given protein while taking into account most
known interaction partners.

For example, students are required to go beyond the traditional representation of the regula-
tion of the Raf protein (Fig. 1). Raf is a key component of the mitogen activated protein kinase
(MAPK) pathway, which regulates numerous cellular functions (e.g., growth, apoptosis, etc.).
Students learn that Ras is only one of many components required to successfully activate, as
well as deactivate, Raf via a combination of biochemical events (Fig. 1B) [13,14]. In the final
part of this session, students are expected to research (from published literature) and describe
the complete regulatory mechanism of an enzyme of their choice, as a system of multiple inter-
action components. In this session, students are also introduced to Cell Collective, and are ex-
pected to create and simulate a simple pathway model such as the one illustrated in Fig. 1A, as
well as to model the regulatory dynamics of the researched enzyme. Importantly, with this ap-
proach, the students learn how to read and critically analyze primary journal articles.

(Fig. 1 adapted from [14])

2. Introduction to the dynamics of biological systems via computational
modeling
In this part of the course, students learn the principles of the technology and modeling frame-
work on which Cell Collective is based (Section 1 in S1 Text) [15–20]. This includes the differ-
ent types of representation of Boolean functions, as well as concepts of state transition graphs,
feedback loops, attractors, attractor stability, etc. All of these concepts are tied to and demon-
strated in the Cell Collective platform and applied to biological examples. Students also learn
about nonlinear dynamics such as bistability and oscillations associated with positive and nega-
tive feedback loops, respectively. By the end of this session, students are able to represent com-
plex biological regulatory mechanisms as Boolean functions and create and simulate the
dynamics of their corresponding models (by hand, as well as in Cell Collective). An example of
a biological system well-suited to the approach is bacterial chemotaxis (Section 2 in S1 Text).

3. Blurring the line between education and research: incorporating
meaningful undergraduate research experiences into the classroom
A large part of the course is devoted to a hands-on project during which students learn about a
biological system by integrating the biological and computational concepts they learned in the
course. Specifically, students select a biological network process of interest that they research,
construct a computational model representation of, and study the dynamics of the process by
simulating the model in Cell Collective.

From our experience, it is the learning-by-building approach that enables students to learn
and appreciate the diversity and complexities of biological systems. This method fosters curios-
ity from the students, which keeps them motivated and active in the project. Reading the litera-
ture with an objective to create a functional computer model forces the student to truly parse
and analyze the information contained in published papers in order to distill the underlying
logic of the system. Section 3 in S1 Text provides an example of how students learn by reading
the literature and performing virtual research.
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Incorporating Computational Modeling in Existing Life Sciences
Courses
As it is not always possible or practical to create a complete course de novo, the Cell Collective
platform has also been used to aid in various existing undergraduate and graduate courses.
These include undergraduate/graduate (online) cancer biology, undergraduate microbiology,
and graduate (online) immunology courses.

In order to facilitate the introduction of modeling into existing courses, a series of modeling
modules were created; these modules are currently available in a new problem-based workbook
[21] focused on cancer biology. Students utilized the models that comprise the various modules
to simulate and analyze the dynamics of the biological processes as a way to visualize and rein-
force the content discussed during regular lectures. The interactive nature of the technology en-
ables students to alter any component or pathway of the process and, via instant feedback,
observe the effects of the change made to the system.

The modules are complementary to the traditional method of teaching as an interactive, dy-
namic process with learning objectives that match the covered topic. For example, from the ex-
ercises used in the cancer biology course, learning objectives focused on 1) determining the

Fig 1. Comparison of linear and systems representation of Raf regulation. A) Traditional (linear) representation of MAPK signaling [13]. B) Detailed
regulatory mechanism of Raf regulation that takes into account the role of most Raf interaction partners.

doi:10.1371/journal.pcbi.1004131.g001

Table 1. List of developed modeling modules.

Example Biological Concept Taught Course Type/Topic

Malaria lifecycle Microbiology

Positive feedback loops Cancer biology

Negative feedback loops Cancer biology

Cell cycle regulation Cancer biology

DNA damage Cancer biology

CD4+ T cell differentiation Cancer biology, immunology

Cell communication networks Cancer biology

doi:10.1371/journal.pcbi.1004131.t001
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dynamic, complex signaling processes that regulate tumor development and tumor regression
and 2) the ability to illustrate feedback loops that contribute to tumor progression and regres-
sion after use of the Cell Collective. Learning objectives of the computational module used in
the microbiology course centered on the life cycle of Plasmodium spp., which leads to the de-
velopment of malaria. Specifically, after dynamically modeling and manipulating developmen-
tal processes of the Plasmodium lifecycle, students should be able to 1) draw and describe the
complex life cycle and 2) define “vector,” “reservoir,” and “transmission.”

Table 1 provides a list of modeling modules developed so far. As an example, one of these
modeling modules used for more effective learning is discussed next.

T cell differentiation and response to pathogen
T cell differentiation is an important concept taught in many immunology courses. Precise reg-
ulation of the differentiation process of naive CD4+ T cells (a subset of T-lymphocytes) to one
of the helper T cells or regulatory T cells (Tregs) is critical for the proper functioning of the im-
mune system. At the intracellular level, the differentiation process is regulated via a wide varie-
ty of types of signaling receptors and pathways that are mutually cross-linked and form highly
interconnected biochemical networks. Additionally, cytokines produced by each cell further
modulate the activation and behavior of neighboring cells, as well as the entire immune system
[22,23]. Hence, the complex network structures and nonlinear dynamics governing this pro-
cess, via both intra- and intercellular paths, make T cell differentiation a great candidate for an
interactive modeling approach. As such, a modeling module that mimics concepts and rela-
tionships (Fig. 2) was created and used to aid the learning of T cell differentiation in Cell
Collective.

An advantage to the availability of a tool such as Cell Collective is that students can alter ex-
ternal and internal conditions of the cell and observe real-time “output” or consequences at the
molecular and/or cellular level. For example, students are asked to simulate the model by first
activating antigen presenting cells (APCs) and naive T cells by introducing a “pathogen.” Path-
ogens can be introduced by changing a simple activity slider on the user interface (Fig. 3A). As
illustrated in Fig. 3B (left), the dynamical response to the change of the environment is imme-
diate. Students can subsequently simulate Th2 differentiation by introducing IL4 (Fig. 3B mid-
dle), as well as the effects of regulatory T cells (Treg) by activating TGF beta (Fig. 3B right). In
addition to the time-series, real-time simulation output, students can view the dynamics of the
entire model in a network representation in which each component of the model interactively
assumes different colors based on the activity level of the component (Fig. 3C).

Students are assigned a number of similar exercises to better understand the dynamics gov-
erning T cell regulation during the activation of the immune system, including positive feed-
back loops and associated bistable behaviors. Note that this model is one of many possible
computational model representations of T cell differentiation. Other logical models that in-
clude greater detail as to specific molecular interactions have been previously published by oth-
ers [24–26], and some of these are also available in Cell Collective for simulations.

Outcomes and Discussion
A number of efforts to incorporate computation into life science courses have been established.
For example, BioQuest consortium (http://www.bioquest.org) provides access to software
tools, datasets, and other materials developed by educators and developers engaged in educa-
tion and research in science. Another example includes NetLogo, a programming environment
for agent-based modeling that has been used to study dynamics of complex systems, as well as
for teaching of complex systems in many settings (middle schools, high schools, and
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universities) [27]. Our approach provides a novel take on the implementation of problem-
based methods in life sciences in that it offers a Web-based, systems- and network-focused,
interactive, and real-time simulation-driven environment without the need for computer pro-
gramming or manipulation of complex mathematical equations.

We have used a Cell Collective “learning by modeling” approach both as a stand-alone class
and as a supplement to complement existing classes. In both cases, student outcomes were
highly positive (Section 5 in S1 Text). Future studies will include a comprehensive study using
both quasi-experimental and randomized control groups to determine the effect that use of
Cell Collective has on student understanding, long-term retention, critical thinking, applica-
tion, and overall mastery of material.

In addition to directly addressing the challenging problem of teaching students about com-
plex, highly connected networks, there is an additional benefit; it provides these students with
an opportunity to become interested in additional training in computational methods, some-
thing that is critical for the current and the next generation of biomedical researchers. Making
the class accessible for students with a wide range of skills such as biology, computer science,
mathematics, etc., creates an ample environment for learning from one another, resulting in
cross-pollination across disciplines.

Fig 2. CD4+ T Cell differentiation asmodeled for classroom use.

doi:10.1371/journal.pcbi.1004131.g002

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004131 March 19, 2015 6 / 9



Furthermore, one of the major components of utilization of Cell Collective was blurring the
line between learning and research. This is a non-trivial aspect of this teaching method and, in-
deed, it is in some ways the most exciting—for both the students and potentially the instruc-
tors. In the course of their learning, students have the opportunity to be constructing the very
first model of the system they are studying or, if working on an existing model, they have the
opportunity to add information from recent literature to significantly update an existing
model. This means that students, while learning, are engaging in real research. In our applica-
tion of this teaching method, we have had a number of student-created and/or student-
initiated modeling projects that led to research findings, some of which were subsequently
presented by the students at an external research conference [28], and even accepted for publi-
cation in a peer-reviewed journal [29].

A positive consequence of this is that it is possible for faculty to further their own research
during the course of teaching the material. We have had several experiences of students who
had no knowledge of what they might be interested in studying being assigned a project in the
class that aligned with a research interest of our group. In several cases, the results were ulti-
mately useful to the group, and in subsequent semesters new students were assigned to either
re-create, significantly update, or provide fresh analysis of the model.

All students that made significant contributions to the models were included as authors on
all publications using that information. This result is a true win-win situation; faculty responsi-
ble for teaching a course have the possibility of actually furthering their research, while stu-
dents have the possibility to perform and be recognized for research participation. Real

Fig 3. Interactive simulation of a T cell differentiation model. A) Simple sliders can be used to change the activity levels of various stimuli. B) Example of
an interactive, real-time simulation. Left: Activation of Pathogen results in the stimulation of Antigen Presenting Cells and Naive T Cells. Middle: Stimulation
with IL4 results in the activation of Th2 cells. Right: Addition of TGF beta stimulates Tregs, resulting in the suppression of Th2 cells. C) Network view of the
changing dynamics during a real-time simulation. (Color range from bright red [inactive components] to bright green, which denotes full activity.)

doi:10.1371/journal.pcbi.1004131.g003
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undergraduate research is not only a major goal for many universities, it is also very important
for any undergraduate looking for entry into graduate programs.

Supporting Information
S1 Text. Integrating interactive computational modeling in biology curricula.
(PDF)
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