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Abstract

Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage ac-
tivity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-
rhythmic activity produced by aggregate neuronal populations, and organized spatiotempo-
ral phenomena, including waves. To assess these spatiotemporal patterns, we develop a
mathematical model consistent with the observed neuronal population activity and deter-
mine analytically the parameter configurations that support traveling wave solutions. We
then utilize high-density local field potential data recorded in vivo from human cortex
preceding seizure termination from three patients to constrain the model parameters, and
propose basic mechanisms that contribute to the observed traveling waves. We conclude
that a relatively simple and abstract mathematical model consisting of localized interactions
between excitatory cells with slow adaptation captures the quantitative features of wave
propagation observed in the human local field potential preceding seizure termination.

Author Summary

Nearly 50 million people worldwide suffer from epilepsy, a chronic neurological condition
characterized by recurrent, unprovoked seizures. Although some clinical and biological
principles of seizures are known, many aspects of spontaneous human seizures remain
poorly understood. Recordings from electrodes placed directly on and within the brain
provide a unique view of seizure activity, and have revealed specific brain voltage patterns
associated with this pathological state. In particular, there is evidence that organized waves
of activity propagate over the brain during a seizure. However, quantitatively characteriz-
ing and understanding the mechanisms that support these waves remains an open chal-
lenge. The goal of this work is to address this challenge through a combination of
mathematical modeling and clinical recordings. Through this interdisciplinary approach,
we seek to understand general features that support the spatiotemporal patterns of seizure
termination. We propose that a relatively simple and abstract mathematical model
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consisting of localized interactions of closely neighboring excitatory cells with slow adap-
tation can support the propagation of the waves found in clinical recordings. Improved
understanding of the mechanisms supporting seizure activity promises novel develop-
ments in treatment strategies tailored to the observed activity of individual patients.

Introduction

Epilepsy is a dynamical disease [1] that manifests in many ways, including as organized pat-
terns of brain voltage activity during a seizure. In general, a patient’s epilepsy may be classified
through established clinical and imaging procedures and, based on the classification, a treat-
ment strategy may be developed [2]. Although pharmacological and surgical treatment of epi-
lepsy often succeeds, the exact mechanisms that lead to different kinds of epilepsy and produce
a seizure are still largely unknown; common proposed biological mechanisms include altered
interactions between excitatory and inhibitory neurons [3, 4] and hyperexcitation [5]. Al-
though the underlying mechanisms that initiate and support the seizure may widely vary [6],
some manifestations of the seizure remain stereotyped, including clinical symptoms and volt-
age dynamics [2]. For human patients, one of the most common observations of brain activity
during seizure consists of chronic voltage recordings. These invasive or noninvasive observa-
tions provide detailed spatiotemporal information about the in vivo voltage dynamics of spon-
taneous seizures. Invasive local field potential (LFP) recordings provide fine spatial resolution
of brain voltage activity during seizure, and have recently led to new insights [7-9].

LFP recordings are thought to represent the active ionic and synaptic currents within a vol-
ume of cortical tissue; in this way, the LFP captures the aggregate activity of large neuronal
populations [10-12]. In healthy and diseased brain tissue, wave-like spatiotemporal activity
has been observed in the field activity of many systems including the olfactory system of inver-
tebrates [13] and vertebrates [14, 15], turtle visual cortex [16-20], rat visual cortex [21-23], rat
hippocampus [24], rat somatosensory cortex [25], monkey motor cortex [26], human motor
cortex [27], and human retina [28].

Coordinated spatiotemporal activity is thought to serve a functional role in computation
and communication between subsystems of the brain. For example, waves are thought to sup-
port synaptic modification during development, as observed in the visual system (e.g., [28,
29]). Although seizure activity is characterized by stereotyped voltage rhythms [30, 31] and
coupling between rhythms across space [7, 32], the role of spatiotemporal patterns (e.g., waves
[21]) remains an active research area [33, 34]. Moreover, the biological mechanisms that sup-
port these manifestations of seizure remain incompletely understood; further understanding
these features promises improved therapies for epilepsy, in addition to a deeper understanding
of organized neuronal population activity in brain function and dysfunction.

In addition to clinical and experimental recordings, computational models provide an alter-
native, powerful approach to investigate the biological mechanisms that support observed
brain voltage activity. In general, the combination of experimental data and mathematical
modeling has proved useful in understanding propagation dynamics in the brain. For example,
experimental observations made in a cultured one-dimensional slice agree with a theoretical
framework based on an integrate-and-fire model [35, 36], and the compression and reflection
of visually evoked cortical waves [37] has been modeled in [38]. Both animal models (e.g., [39])
and computational models (e.g., [6, 40]) permit controlled, detailed observations of a given sei-
zure process, and the ability to accurately manipulate this process. Importantly, unlike typical
observations from clinical recordings, models permit a detailed accounting of the biological
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mechanisms that support the observed activity. However, the starting assumptions of a model
oversimplify the biological processes of the in vivo brain (e.g., removal of a brain region from
the surrounding network, or omission of some cell types). An exact relationship between these
models and human epilepsy is often difficult to determine. Clinical observations and models
therefore provide different insights into seizure activity. Clinical recordings provide accurate in
vivo observations of spontaneous seizures from human patients, yet the biological mechanisms
that support this activity remain predominantly unknown. Models provide detailed control
and manipulations of candidate biological mechanisms, but the relationship to spontaneous
seizures in humans remains unknown. Ideally, a unified procedure would exploit the advan-
tages of each approach and mitigate the disadvantages. Implementing this type of procedure
linking human clinical recordings to mechanisms in an abstract and simple mathematical
model is one goal of this paper.

We propose to characterize invasive clinical voltage recordings from small regions of
human cortex preceding seizure termination through comparison with a mathematical model.
To do so, we simulate the cooperative synaptic transmembrane current found in clinical LFP
recordings using a relatively simple and abstract mathematical mean field model. Mean field
neural models, or neural fields, are used to represent coarse-grained variables in space, consist-
ing of thousands of interconnected neurons (i.e., spanning approximately a few hundred mi-
crometers) [41, 42]. Models of neural fields have a long history in computational neuroscience
[21, 43-45], and have been successfully employed in many areas, including the study of spatio-
temporal dynamics [46-51], with features such as periodic patterns [52], bumps and multi-
bumps [53, 54], and waves [37, 44, 55-57]. Because these models are expressed as differential-
integral equations, mathematical theory exists to rigorously analyze the model behavior. Here
we undertake a mathematical analysis of a mean field model consistent with the observed LFP
data to obtain the exact solution for traveling wave dynamics, and deduce parameter relation-
ships that support wave propagation. We then constrain the model solutions using features of
LFP recordings of traveling wave dynamics preceding seizure termination observed in a popu-
lation of human subjects during seizure. In particular, by using the observed width and speed
of the LFP waves we obtain parameter estimates consistent with known biological features of
cortex, namely timescales and the synaptic connectivity profile. We show that a relatively sim-
ple mathematical model consisting of a population of excitatory neurons with localized interac-
tions and an adaptation term is sufficient to mimic the observed LFP waves preceding seizure
termination. In this way, the proposed framework links clinical recordings with mathematical
models to propose candidate mechanisms supporting a poorly understood aspect of seizure ac-
tivity: the spatiotemporal dynamics preceding seizure termination in a small patch of human
cortex.

Results

Our goal is to isolate and characterize in a relatively abstract mathematical model the mecha-
nisms that support the emergence of traveling wave dynamics preceding seizure termination.
To do so, we first characterize these dynamics as observed in invasive brain voltage recordings
from a population of human subjects during seizure. We show that stereotypical traveling wave
patterns emerge in the LFP with consistent quantitative features. Then, we implement an
activity-based mathematical model of neural population dynamics. We obtain explicit traveling
wave solutions for the model together with conditions that ensure the existence of a wave of
given speed and width. We then further constrain the model parameters using the wave fea-
tures observed in the in vivo LFP data. Finally, we use these model results to propose candidate
mechanisms that support the observed traveling wave activity preceding seizure termination.
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Analysis of in vivo LFP data during seizure reveals traveling wave
dynamics

Description of clinical data

LFP data were collected from three patients: (Patient 1) a 32 year old male with cortical dyspla-
sia and mesial temporal sclerosis, (Patient 2) a 45 year old male with unknown etiology, and
(Patient 3) a 21 year old male with a dysplastic lesion. The data were recorded using the Neuro-
Port array (Blackrock Microsystems, Salt Lake City, UT) which, as in previous studies [7, 8],
consisted of a 4 mm by 4 mm microelectrode array composed of 100 platinum-tipped silicon
probes (either 1.0 or 1.5 mm long shanks). In each subject, the array was placed in an area of
cortex which was expected to be resected at the time of definitive surgery, 1-3 cm outside of
the nominal seizure focus as determined from electrocorticography, but well within an area to
which the seizure rapidly spread. Recordings were made from 96 active electrodes and data
were sampled at 30 kHz (0.3-7 kHz bandwidth). LFP data were extracted by bandpass filtering
the original recordings from 2-50 Hz (fourth-order Butterworth, zero-phase digital filtering)
and downsampling to 5000 Hz. All patients were enrolled after informed consent was obtained
and approval was granted for these studies by local Institutional Review Boards.

lllustration of traveling waves during seizure
We analyzed the LFP data recorded during three seizures from Patient 1; we labeled these “Sei-

» o«

zure 17, “Seizure 2” and “Seizure 3”. From Patient 2 we analyzed two seizures, labeled “Sei-
zure 4” and “Seizure 5”; and from Patient 3 we analyzed three seizures labeled “Seizure 67,
“Seizure 7” and “Seizure 8”. In all cases, we focused on LFP data recorded near seizure termina-
tion; the data for Seizure 1, Seizure 2 and Seizure 3 began approximately 31 s, 47 s and 43 s, re-
spectively, before seizure termination and lasted 18 s. Within this time interval, we observed
numerous traveling waves, which consisted of transient, large amplitude organized patterns of
LFP activity that propagated across the microelectrode array (two example wave events are
shown in Fig. 1). Within Seizures 1, 2, and 3, we observed 40, 41, and 59 waves events, respec-
tively. The data for Seizure 4 and Seizure 5 began approximately 44 s and 43 s respectively be-
fore seizure termination and lasted 20 s and 18 s, respectively. Within Seizures 4 and 5, we
observed 33 and 52 traveling waves, respectively. The data for Seizure 6, Seizure 7, and

Seizure 8 began approximately 21 s, 19 s, and 27 s, respectively, before seizure termination and

7 paths 14 ms 26 ms 38 ms 64 ms 78 ms

Ilr"ir }

9 paths 10 ms 20 ms 32 ms 44 ms 70 ms
\

I -
L T

Figure 1. lllustrations of one-dimensional wave propagation. (a) Example of the 4 mm by 4 mm microelectrode array (black, in center of figure) implanted
in human cortex. (b) Each subfigure displays the spatial pattern of the LFP activity recorded from a 10-by-10 microelectrode array at different times. Warm
(cool) colors indicate high (low) voltage values (standardized) for two instances of wave propagation in the top and bottom rows. For each wave different one-
dimensional paths (black lines in leftmost columns) beginning at the filled circles capture the wave propagation across the microelectrode array. (Top row)
Visual inspection suggests a wave of organized activity during Seizure 2 (Patient 1) that propagates from the lower right corner of the microelectrode array to
the upper left corner. (Bottom row) A wave of organized activity during Seizure 1 (Patient 1) that propagates from the lower part of the microelectrode array
to the upper part.

doi:10.1371/journal.pcbi.1004065.g001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004065 February 17,2015 4/34



@‘ PLOS | soMpuTaTioNAL
-~z BIOLOGY A Mathematical Model of Cortical Waves Preceding Seizure Termination

lasted 12's, 18 s, and 26 s, respectively. Within Seizures 6, 7, and 8, we observed 49, 53, and 61
traveling waves, respectively. Traveling waves of increased LFP activity were observed in all re-
cordings (see Methods). Visual inspection of these waves (Fig. 1) suggested that propagation
was dominated by movement in one spatial direction, and that this dominant movement ap-
peared at each wave event. An algorithm was constructed to estimate the one-dimensional
path of propagation for each wave across the microelectrode array (see Methods). The one-di-
mensional motion of each wave, as illustrated in Fig. 1, formed the basis for subsequent analy-
sis. Other types of propagation were also found in the clinical recordings but not included in
the following analysis (for details, see Methods).

Estimation of wave features

We focused our analysis on two fundamental features of the one-dimensional wave propaga-
tion: speed and width. The speed was computed by determining the evolution in time of a
point with large voltage amplitude across ten different electrodes along the one-dimensional
path of the wave through the micro electrode array. Width was computed by estimating the
spatial extent (i.e., the number of electrodes) exceeding a fixed, large amplitude (see Methods).
In addition to these two fundamental wave features, we also determined the time interval be-
tween the initial, large amplitude wave propagation across the microelectrode array and a sub-
sequent, smaller amplitude fluctuation or “reverberation” (examples in Fig. 2), we label this the
“reverberation time” (see Methods). We show the results for the wave speeds and widths of all
the analyzed waves in Fig. 3, and the reverberation times histograms in Fig. 4. These results are
summarized for each seizure in Table 1 where we show the mean speeds, mean widths, and
mean reverberation times for the waves analyzed in each seizure. For each wave, we computed
the mean values of the quantity of interest (speed, width, or reverberation time) over the differ-
ent one-dimensional paths. The minimum/maximum values correspond to the minimum/
maximum obtained for the mean values of the quantity over the total of number of waves ana-
lyzed for a given seizure. We note that for Patient 3 the data analysis was restricted due to the
quality of the recordings (see Methods).

For the three seizures of Patient 1 we observed consistent ranges of speed (= 80-380 um/ms),
width (= 1900-5600 um), and reverberation times (= 30-150 ms). This suggests that similar,
one-dimensional wave propagation patterns occur in the three seizures from this patient. For the
two seizures of Patient 2, we also observed consistent ranges of speed (= 100-500 xm/ms), width
(=2000-5300 um), and reverberation times (= 30-230 ms). Finally, for the three seizures of Pa-
tient 3, we observed broader ranges of speed (= 90-2400 um/ms), width (= 1300-4300 ums),

~ 0 6 _ o 6__
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Figure 2. lllustration of two large amplitude waves followed by a reverberation of activity. The waves
are plotted in one-dimensional space (vertical axis) as a function of time. The one-dimensional path extends
across the two-dimensional microelectrode array (examples in Fig. 1). This large amplitude wave is followed
by a subsequent “reverberation” a smaller amplitude wave (yellow or green in color). The horizontal black
line indicates the reverberation time (7). Warm (cool) colors indicate high (low) voltage values; scale bar at
right.

doi:10.1371/journal.pcbi.1004065.9002
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Figure 3. Width versus speed of the traveling wave activity for the three patients. Each subplot shows the mean width and mean speed of each wave
(red dots) together with a 90% confidence interval for both width and speed for each wave (vertical and horizontal blue lines). The confidence intervals are
computed for each wave over the replicates of one-dimensional paths established for each wave (Fig. 1). In some cases, the existence of different one-
dimensional paths produces a broad confidence interval for the estimate of the speed and width. In other cases, the existence of a unique one-dimensional
path, or the estimation of the same quantity from the different one-dimensional paths, produces a narrow confidence interval.

doi:10.1371/journal.pcbi.1004065.9003
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Figure 4. Reverberation time histograms of the seizure activity for the three patients. Each subplot shows the number of occurrences (or “counts”) of
each reverberation time. For Seizures 1, 2 and 3 the maximum number of counts is between 60 to 70 ms; for Seizure 4, the values are broadly distributed
between 100 and 200 ms; for Seizure 5 between 70 to 100 ms; and for Seizure 5, 6 and 7 between 40 to 70 ms.

doi:10.1371/journal.pcbi.1004065.9004
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Table 1. Mean speeds, mean widths, and mean reverberation times for the waves analyzed in each seizure.

Seizure number Speed (um/ms) Width (um) Reverberation time (ms)
1 [82, 389] [1891, 4841] [29, 161]
2 [91, 380] [2361, 5069] [39, 150]
3 [86, 240] [2815, 5621] [40, 120]
4 [137, 506] [2411, 5361] [48, 213]
5 [101, 424] [2059, 5085] [28, 237]
6,7 and 8 [89, 2416] [1360, 4360] [22, 304]

In this table, [a,b] indicate the minimum (a) and the maximum (b) of the corresponding measurement over the total number of waves analyzed for a given

seizure.

doi:10.1371/journal.pcbi.1004065.t001

and reverberation times (= 20-300 ms). These characterizations of the in vivo wave dynamics
provide information about the clinical observations, however an important question remains:
what biological mechanisms support this traveling wave activity preceding seizure termination in
the LEP? We propose to begin addressing this question in the next section through the inclusion
of a mathematical model.

A mathematical model of traveling wave dynamics in LFP recordings

The mechanisms that produce organized neuronal population activity are extremely complex
[58]. In an effort to characterize and understand the neuronal population activity observed in
the clinical recordings preceding seizure termination, we implement here a relatively simple
neural field model [59]. The biophysical basis for these types of models are understood by con-
sidering the interaction of a finite number of synaptically coupled neurons. Many different for-
mulations for neural fields exist [60], with implications for the interpretation of the model
variables and parameters. These different mathematical formulations of neural field models
can be broadly separated into two categories: voltage-based formulations, and activity-based
formulations [59]. In a voltage-based model, the time scale of the dynamics is related to the
membrane properties of the post-synaptic cells, while in an activity-based-model, the time
scale of the dynamics is related to the synaptic decay [59]. We choose the latter formulation
here. In its simplest form, the activity-based model is one of the most basic models to arise in
mathematical neuroscience [61]. Beyond this simple form, activity-based models have been ex-
tended to include additional features (e.g., absolute refractoriness [41, 62]). In addition, the
activity-based model is consistent with the notion that the LFP dynamics are dominated by the
time scale of synaptic effects [10, 63], and activity-based models have been proposed as more
realistic than voltage-based models [64, 65]. We note that most mathematical analysis of neural
field models utilizes the voltage-based formulation [44, 65, 66]. In particular, in [67] the au-
thors performed a complete analysis of the existence and stability of traveling wave solutions in
the voltage-based formulation. To the best of our knowledge, a mathematical analysis of travel-
ing wave existence and stability in an activity-based model with adaption has not been
performed.

We now develop a one-dimensional model to describe important features of the neuronal
population activity observed in vivo. The choice of a one-dimensional model is motivated by
the observation that a majority of traveling waves observed in the LFP recordings travel in ap-
proximately one-dimension, with features as described in the previous section. To simplify the
model, we consider only a single population of excitatory neurons. In doing so, we will show
that—in the mathematical model—inhibitory neurons are not required to mimic features of
the observed LFP data immediately preceding seizure termination. To prevent the activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004065 February 17,2015 7/34
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from remaining in a permanent excited state, which will give rise to a front solution (see Meth-
ods), we include an adaptation term that directly regulates the activity. This adaptation ac-
counts for a natural process that will drive the population activity back to a rest state. From the
mathematical point of view, adding this adaptation term permits traveling pulse solutions in
the model consistent with key features of the clinical recordings. As we describe, using this rela-
tively abstract and simple activity-based model with an adaptation term, we are able to replicate
the reverberation observed in the LFP recordings.

The specific neural field model we employ is

=l

u,(x,t) = —ou(x,t) + oH <%/ ) e 7 u(y,t)dy + P(x,t) — k) —afl,q(x,t)

—00

(1)
qt(xv t) = 5u(x7 t) - 5q(x7 t)’

where u(x, t) is the mean synaptic activity, q(x, t) is the adaptation, and P(x, f) is an external
input, all evaluated at position x and time ¢. In particular, we consider that u(x, t) represents
the activity of a cortical column with extent less than 20 yum situated at position x and time ¢.
We interpret u(x, t), a dimensionless quantity, as the deviation from a baseline of activity.
Therefore, u(x, t) = 0 represents a resting state of activity, and negative values represent a de-
pression of resting activity [41]. We note that “negative activity” (i.e., a reduction in activity
below the baseline rate) in one region reduces the input received in neighboring regions. In this
formulation, we interpret the adaption term, g(x;, t), as representing a local homeostatic regula-
tion mechanism that evolves on a slower timescale than u(x, t) and acts to maintain the activity
near a target baseline. When the activity u(x, t) falls below the baseline value (i.e., u(x, t) < 0),
the adaption g(x, t) decreases which acts to increase u(x, t). Conversely, when the activity in-
creases above baseline (i.e., u(x, ) > 0), the adaption g(x, t) increases and acts to decrease

u(x, t). We note that homeostatic regulation mechanisms act on a variety of timescales, includ-
ing relatively short timescales (on the order of seconds) [68]. H is the Heaviside function,
which becomes non-zero when the synaptic input exceeds a synaptic threshold k:

H( " 1 ifx>k
X — =
0 ifx<k

We note that the adaptation term in (1) is located outside of the Heaviside function. In this
phenomenological model with a simple adaptive scheme, the adaptation term acts as a local
feedback mechanism to depress the synaptic drive. This model is motivated by the linear nega-
tive feedback proposed in [44]. We note that, in voltage-based models, different formulations
for adaption exist; these include negative feedback both inside the threshold function [44, 51,
69] and outside of the threshold function [49, 53]. We show in SI Text of Supporting Informa-
tion that the model (1) updated to include the adaption term inside of the Heaviside function
does not produce damped oscillations; instead, the traveling wave solution returns monotoni-
cally to rest after excitation. This monotonic evolution is inconsistent with the reverberation
observed in the LFP data of interest here (examples in Fig. 2).

There are 5 parameters in the model (1). Each possesses a biological interpretation: ¢ is the
decay rate parameter for the synaptic activity term, & is the decay rate parameter for the adapta-
tion term, ¢ is the spatial rate of decay of connectivity, k is the synaptic input threshold, and S,
accounts for the strength of the adaptation term on the synaptic dynamics. For simplicity we
set B = offp. Both time and space units were scaled to represent milliseconds and microns, re-
spectively (see Methods). There are two additional parameters that we employ in the subse-
quent analysis: ¢ is the wave speed, and w is the wave width. These parameters are not directly
specified in the model, but instead are features of the traveling wave dynamics.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004065 February 17,2015 8/34
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Our goal is to identify the parameter configurations that support traveling waves in this
model consistent with the observed LFP activity. In particular, we are interested in solutions
that support only one extremum of high amplitude activity, so called pulses, as these have been
characterized using the LFP data. To that end, we first determine under what parameter config-
urations traveling waves of high amplitude activity exist in the model. To do so, we rewrite the
equations in a moving coordinate frame z = x—ct; this frame is moving with a constant
speed c. By identifying the stationary solutions of this system, we determine solutions that
move with a constant speed ¢, and a constant width w, without changing their shape: so
called traveling waves. Depending on the model parameters, we find that the linearization of
the associated system in the moving coordinate frame consists of either purely real or
complex eigenvalues. The explicit traveling wave solutions for both the real and imaginary
case are now considered. We state the solutions here; detailed analysis may be found in
Methods.

Traveling Wave Solution: Real Eigenvalues Case
We begin by considering the case in which the eigenvalues of the associated linear system of

(1) are purely real. This occurs when ff < % (see Methods), and the traveling wave solution

of the activity of width w and speed c in the moving coordinate frame z = x—ct is:
0 ifz>w

% Ay (z—w A_(z—w
(A& E(S —ch,) — 2, — ca ) +8(h, — 1))

S+ p)(A, —2.)

fo<z<w
o

oo+ B)(4y = 2) (_(e = 1)(0 —cd )™ + A, (L —e™)(0 = cA_)e")

if z <0,

where 2, = - (a4 0 £ \/(oc +0)° — 46(a + f)). In this traveling wave solution (Fig. 5a), a

pulse is followed by a depression of activity; this depression is due to the adaptation term. The
activity then returns to a rest state after this depression in a monotonic fashion.

A B
0.4 04
z z
= 0 = 0
< <
_04 _04
-5000 0 5000 -4000 0 4000
Distance (um) Distance (um)

Figure 5. Analytic solution for the traveling pulse in the real and complex eigenvalue case. (a) The
onset of the pulse consists of a rapid increase in activity, followed by a rapid decrease due to adaptation, and
then a monotonic return to rest (zero activity). In this figure a =20/s, 6 =2/s, §=1.5, 0 =200 pm, ¢ = 180 um/
ms and w = 3500 um. (b) In the complex eigenvalue case there is a pulse followed by a depression of activity
due to the adaptation term. Unlike the solution in the real eigenvalue case, damped oscillations follow this
depression as activity returns to the rest state. In this figure a = 20/s, 6 = 2/s, §=4.6, 0 = 160 um, ¢ = 250 um/
ms and w = 3000 ym.

doi:10.1371/journal.pcbi.1004065.9005
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Traveling Wave Solution: Complex Eigenvalues Case

the linearization of the associat-

ed system of (1) contains imaginary eigenvalues, and the traveling wave solution of the activity
of width w and speed ¢ in the moving coordinate frame z = x—ct is:

0 ifz>w
* 4 20/Pel#) ) —sin o _2 — zto | H0<z<w
w@) =1 TP pyaps — 62y C
%)) 40 — (x— o)
20/Bel*) — Dcos ! 2(0C : Z+ ¢, ifz<0,
V(o B)(4B5 — (6 — )’) C

where

D= \/1 — 2e*W(%ﬁd) coS (4()/?2_(“_)2 ) +e W(xto>

, n o if 4 <0 , moifdy <0
@y = tan”' () + , P2 = tan_l(A_Z) +
0 ifd; >0 0 ifdy >0

A =2 +a— 5)sin( wﬁ > \/45ﬁ — a)*cos (Mw)

Ay = —(2f 4o — 5)005( 4()ﬁ ) \/45/3 —a sm(\/‘mﬁ 20)" )

240,

A3 = 45ﬂ — ( 5) =+ eiTWAl
A4 = (2ﬁ + o — 5) =+ e‘T”’AQ.

The solution for the complex eigenvalue case results in a pulse followed by a depression of ac-
tivity due to the adaptation term. Unlike the solution in the real eigenvalue case, damped oscil-
lations follow this depression as activity returns to the rest state (example in Fig. 5b). We note
that the damped oscillations are dominated by a single positive deviation above rest, following
the depression. This positive deviation is similar to the reverberation of activity following the
traveling wave observed in the LFP (Fig. 2). We note (see S1 Text of the Supporting Informa-
tion) that a different model with the adaption term included inside of the Heaviside function
in (1) is unable to reproduce the damped oscillations observed in the LFP data.

Solution curves from matching conditions

The interactions of neighboring cells affect the activity at a point x. In the presence of a pulse of
high activity, such interactions reach the synaptic threshold k at exactly two points, say x,

and x;. The distance between x, and x; is the width of the wave w and the points x contained

within (xo, x;) satisfy 5 / e u(y t)dy > k. At both x, and xy, this inequality becomes an

equality, i.e., the interaction term equals the synaptic threshold k. Equating the interaction
terms at xo and x; defines the matching conditions. To simplify the analysis, and without loss
of generality, we consider x, = 0 and x; = w. By fixing the parameters ¢, 8, ¢ and 8 and by set-
ting the matching conditions to equal the same threshold k we obtain two curves, one for the
position x = 0 (blue curves in Fig. 6) and the other for x = w (red curves in Fig. 6). In the
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Figure 6. Width versus speed in the mathematical model for different values of the threshold k. The
four subplots show the existence of waves given by the points of intersection of the matching conditions. The
blue and red curves indicate the matching conditions at the points 0 and w, respectively. We fix a = 25/s, 6 =
2.5/s, 0=120 um, 8 =2.05, and by varying k we obtain the existence of no waves (d), one wave (a,c), or two
waves (b). (a) The two curves intersect at a single point to specify a wave with speed 30 um/ms and width
112 um. (b) The two curves intersect at two points, resulting in a wave with speed 33 um/ms and width

164 ym, and a wave with speed 220 ym/ms and width 2679 um/ms. (c) The two curves intersect at a single
point to specify a wave with speed 71 um/ms and width 350 um. (d) The two curves do not intersect, and
therefore no wave solutions exist.

doi:10.1371/journal.pchi.1004065.9006

c-w plane, the intersection of these curves determines the existence of traveling wave solutions
to the model (1). Depending on the choice of parameters, there may exist no traveling waves,
one traveling wave, or two traveling waves (examples in Fig. 6). We find that, for a solution
with two traveling waves, one of the waves is slow and narrow, and the other wave is fast and
wide (Fig. 6b).

If we consider instead fixed values of ¢, w, @, § and solve the matching conditions, we obtain a
solution curve in the - plane that determines, if they exist, parameters 5 and ¢ for which we have

+00
a pulse with given speed ¢ and width w. Moreover, by considering k = ;- / e"iﬂ‘u(y, t)dy or

—00

+00 B
k= / e u(y, t)dy, we can solve for the threshold k corresponding to the choice of o and

00

B (for more details, see Methods). To illustrate the application of the matching conditions, we con-
sider one typical traveling wave observed in the LFP recording with speed ¢ = 179 um/ms and
width w = 3500 pum. For this example, we fix o = 20/s and & = 2/s, and find a solution curve for the
wave of the specified speed and width as a function of the two parameters  and ¢. The solution
curve consists of both real and imaginary parts (blue and red, respectively, in Fig. 7), corresponding
to the real and complex eigenvalue cases of traveling wave solutions of the model (1). We note that
all of the points along the solution curve satisfy the constraints of speed and width; additional con-
straints are required to select a single point on this curve.
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Figure 7. Solution curve in the o-g plane obtained from the matching conditions in the mathematical
model. We show the complex eigenvalues case (red) and the real eigenvalues case (blue). The parameters
are ¢ =179 pm/ms, w = 3500 um, a = 20/s, 6 = 2/s. The curve shows pairs of 8 and o for which a wave of
speed c and width w exist. By using the matching conditions we can determine the parameter k
corresponding to a choice of S and 0.

doi:10.1371/journal.pchi.1004065.g007

The period of the reverberation fixes the model parameter 8

The mathematical model (1) contains five free parameters: ¢, 8, g, f and k. In the previous sec-
tion, we began restricting these parameters by establishing relationships between parameters
that support traveling wave solutions. In particular, by fixing the time scales @ and J, together
with a choice of speed ¢ and width w deduced directly from the LFP data and hence constrained
by the clinical observations, we may solve for the remaining parameters f3, g, and k. The match-
ing conditions establish a relationship between ¢ and 3 (example in Fig. 7), and by choosing
and ¢ we can solve for the corresponding k, as described in the previous section. We now pro-
ceed to use the “reverberation” observed in the clinical data (examples in Fig. 2) to estimate the
parameter f3 for each wave. In doing so, we will have used the clinical data and biophysical intu-
ition to constrain further the model parameters.

Visual analysis of the in vivo LFP data shows that high amplitude pulses are followed by a
reverberation, i.e., a secondary, smaller amplitude increase in activity (for more details, see
Methods). Due to the nature of the traveling wave solutions, this feature is only present in the
complex eigenvalue solution, i.e., when damped oscillations follow the pulse of high amplitude
activity (example in Fig. 5b); we propose that the damped oscillations following the main pulse
of the traveling wave mimic the reverberations observed in the LFP recordings. Hence, we re-
strict the following analysis to the complex eigenvalue case. We use the reverberation times es-
timated from the LFP data to fix the parameter j for each wave; we label these estimates
Bempiricar- To do so, we set the periodic portion of the complex eigenvalue solution to possess a
period consistent with the observed reverberation: given a reverberation time 7 (example in

Fig. 8), then B, = (‘51;)2 + % (see Methods). In this way we constrain the model to repli-
cate the period of the secondary bump (i.e., reverberation) present in the data (Fig. 8). Having
done so, the model parameters f3, o, and k are now directly determined for each observed LFP

wave.
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Figure 8. lllustration of the parameter g in the mathematical model estimated from the LFP data. Given
a wave with a reverberation time of =45 ms (left figure) and the approximate period of the complex

eigenvalue pulse solution (right figure) we obtain a corresponding f,,,,ics = + (%2 + @)
doi:10.1371/journal.pcbi.1004065.9008

Restriction of the ratio between activity and adaptation timescales

In the previous sections, we used features of the traveling wave data (the speed, width, and re-
verberation time) to constrain three model parameters: 5, g, and k. Two model parameters - o
and ¢ - remain unconstrained. We now consider how different choices of the model timescales
o and 6 impact the existence of traveling wave solutions consistent with the LFP data. To do so
we focus on two different orders of magnitude between the timescales and consider /6 = 10
and /8 = 100. These equations and the model (1) are consistent with the notion that adapta-
tion (with timescale determined by 6) occurs more slowly than synaptic activity (with timescale
determined by o). Moreover, once we fix the ratio 6 = /10 (or 6 = a/100) we can estimate ¢, w
and S from the clinical recordings and obtain ¢ and k from the matching conditions. Therefore,
only a single free parameter remains: a. The rest of the parameters are constrained by either
the clinical data or the matching conditions of the mathematical model.

To characterize the impact of different choices of o, and the ratio /8, we fix both parame-
ters in the model and determine whether the model supports wave activity consistent with the
observed data and physical assumptions in the model. We therefore exclude solutions in which
the matching conditions specify a connectivity extent (o) of less than 20 um; these solutions
are too small and inconsistent with the notion that the model (1) represents the activity u of
coupled cortical columns. In Fig. 9 we show the percentage of waves for each seizure with a
physically reasonable value of ¢ > 20 um for different choices of o and ratios a/6. For all of the
seizures from all three patients, we find that the model successfully reproduces the observed
waves, and remains physically reasonable (¢ > 20 um), for intermediate values of o and & =
0/10 (Fig. 9a—c). For a smaller value of § = /100, the model performs more poorly; i.e., the
model produces more physically unreasonable solutions (Fig. 9d-f). We note that, for
Patient 3, the waves are more difficult to reproduce compared to the other two patients. We
conclude that the model best replicates the observed traveling waves in the LFP data preceding
seizure termination when 8 = a/10. At this ratio, a broad range of values in « exist that support
physically reasonable solutions.

Relationship between adaptation timescale and model parameters By, k and o
With the ratio § = /10 now fixed, we proceed to analyze the relationship between o and three
other model parameters: f, k and g. We recall that 3, is the strength of the adaptation and

Bo = Pla. In Fig. 10 and Table 2 we summarize the results of these relationships for the three pa-
tients. Based on the analysis shown in Fig. 9, we examine a between 12/s and 75/s, for which
the model tends to successfully reproduce the observed waves for all three patients. In particu-
lar, above 90% of the analyzed waves are replicated in this range of ¢ for all seizures. We find
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Figure 9. The percentage of waves from each seizure for which it is possible to find a physically reasonable solution (o > 20um) as the parameter
ais varied. In the first row we fix 6 = a/10, a difference of one order of magnitude between the timescales. In the second row we fix 6 = a/100. (a) We note
that for the three seizures of Patient 1 a value of a between 15/s and 53/s produces physically reasonable solutions for all analyzed waves. (b) For the two
seizures of Patient 2 a value of between 15/s and 75/s produces physically reasonable solutions for 90% of the analyzed waves. (¢) For all seizures of
Patient 3, given a between 25/s and 150/s produces physically reasonable solutions for 90% of the analyzed waves. (d-f) At the ratio & = a/100, the model
solutions tend to be unphysical (i.e., o becomes too small) for a >12/s. This analysis suggest that the model best replicates the observed LFP data when & =

a/10.

doi:10.1371/journal.pcbi.1004065.9009

for Patients 1 and 2 that the values of the parameters 3, , and k tend to remain consistent
from seizure to seizure as a function of o. We also note that, for a sufficiently large (i.e., o >
25/s), the variability of these estimates across the traveling wave events is relatively small
(Fig. 10). Moreover, the parameter estimates produce similar values, both within each patient
and between the two patients (Fig. 10 and Table 2). For Patient 3, we find that the parameter
estimates exhibit more dependence on a and are more variable. However, even these estimates
remain consistent with the other patients and seizures.

We note that, for large values of @, the estimates of 3, tend to converge to similar values
(Fig. 10). To understand this, we use the explicit formula for SB,,.piricas in terms of the reverbera-

o .
tion time: f3,,,icr = <O;§) + %; =P T fzii Substituting 6 = @/10 we then obtain
= 8ly 4 107 Thigimplies that smaller values of & and the reverberation T have bigger
empirical 40 2 p gg

impacts on the value of Be,npiricar- Due to the small values of 7 obtained from Patient 3 (see
Table 2), larger variability in the values of B, appears at small o (Fig. 10). Moreover, since

B, = W =84 fz’gj , we obtain that as a increases B, converges to 3 (this limit is determined
by the specific choice 6 = a/10), explaining the convergence seen in Fig. 10 to a specific value of
Bo. Similar trends appear in the other parameter estimates (Fig. 10) and the implicit equations
of the matching conditions determine these trends. To illustrate, we observe in Fig. 7 that as 8
increases (and S, decreases), o decreases, explaining the convergence of ¢ as a increases

(Fig. 10, middle row).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004065 February 17,2015
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Figure 10. Relationships between the timescale parameter and other model parameters suggest similar features across all patients and seizures.
The subplots show the relationship between a and B, (row 1), aand o (row 2), and a and k (row 3). Patient 1 is in column 1, Patient 2 in column 2, and
Patient 3 in column 3. For Patient 1, B, is between 2 and 3, o is between 40 and 250 um/ms, and k is between 0.15 and 0.17. For Patient 2, 8, is between 2
and 3, ois between 40 and 1000 yum/ms, and k is between 0.15 and 0.17. For Patient 3, for 25/s < a <75/s, By is between 2 and 10: o is between 60 to

4000 ym/ms and k is between 0.1 t0 0.2.

doi:10.1371/journal.pcbi.1004065.9010

Table 2. Range of parameters supporting wave propagation, fixing & = a/10.

Seizure number a(1/s) Bo (strength) o (um) k (synaptic threshold)
1 15-53 2-2.5 50-250 0.15-0.17

2 15-58 2-2.3 40-180 0.16-0.17

8 15-55 2-2.3 40-130 0.15-0.17

4 15-78 2-2.2 40-600 0.16-0.18

5 15-150 2-2.3 20-300 0.16-0.17

6,7, and 8 25-150 2-4 60—4000 0.12-0.2

Seizures 1, 2 and 3 correspond to Patient, 1, Seizures 4 and 5 correspond to Patient 2 and Seizures 6, 7 and 8 correspond to Patient 3. We note that
consistent parameter ranges for o, 0 and k appear in seizures of the same patient. We also note in comparison with Patient 1, the parameters for o
include larger values for Patient 2 and Patient 3.

doi:10.1371/journal.pcbi.1004065.t002
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Numerical simulations of the model produce one-dimensional waves
consistent with the LFP data

As a final illustration of the suitability of the model, we consider an example numerical simula-
tion of the model (1) (see Methods). To do so, we choose a particular wave from the LFP data
of Seizure 1, estimate ¢ and w directly from the data, and fix & = 7.5/s, as for this value of
non-trivial parameters from both the real and complex eigenvalue solutions can be obtained
from the matching conditions. Following an initial stimulus (5 ms initial input at position

0 um) the model produces a traveling pulse that is followed by a smaller amplitude reverbera-
tion. A comparison of a wave from the clinical recordings with the real and complex eigenval-
ues case is shown in Fig. 11. We note that both simulations accurately replicate features of the
observed LFP wave (namely, the speed and width), but that the complex eigenvalue case solu-
tion also produces a secondary bump of activity consistent with the reverberation in the ob-
served LFP wave. We also note that, in the model, the activity decreases below 0 between the
mean crest of the traveling wave and the subsequent reverberation of activity in Fig. 11(c). A
decrease in activity also appears in the in vivo data between the crest of the traveling wave and
the reverberation (example in Fig. 11(a)); however, this decrease is smaller in magnitude than
that produced in the model. An updated model that includes inhibition helps reduce this dis-
crepancy, as illustrated in the next subsection.

Numerical simulations of a model with inhibition produce additional
consistency with the LFP data
The original model formulation (1) is analytically tractable and capable of reproducing impor-
tant features of the observed traveling wave dynamics. However, as expected, this relatively
simple model exhibits some inconsistencies with the in vivo data, for example the large negativ-
ity following the traveling wave crest.

Increasing the complexity of the model through the addition of more biological features
may help reduce these inconsistencies. To that end, we consider an updated model that in-
cludes an inhibitory population. In particular, we implement the following system:

u(x, 1) = —oru(x, t) + 0, H(g, ® u(x) — g @ v(x) + P(x,t) — k,) — afyq(x, 1)
qt(xa t) = 5u(x7 t) - 5q(x7 t) (2)
Vt(xv t) = _aiv('xv t) + ‘xiH(gei & u(x) —8&:® V(x) + Q(x’ t) - ki)’

5 B o 008 C o . wm0.06
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Figure 11. The simulated and observed data are consistent. (a) A wave from Seizure 1 with speed ¢ = 179 pm/ms and width w = 3535 ym.

(b) Parameters obtained from the real eigenvalue solution, a=7.5/s, By =2.9, o= 100 um. The wave has a speed of ¢ = 178 um/ms and width w = 3698 um.
(c) Parameters obtained from the complex eigenvalue solution, a =7.5/s, B, = 2.5, o = 160 um. The wave has a speed of ¢ = 178 um/ms and width w = 3698
pm. The positive activity reverberation in yellow is visible following the main wave in red and blue. The color scale is chosen to allow visualization of the

smaller amplitude reverberation.

doi:10.1371/journal.pcbi.1004065.g011
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Figure 12. A model that includes inhibition produces additional features consistent with the in vivo data. (a) Wave profile obtained from the original
model without inhibition (g,; = 0, g,, = 0 and g; = 0). The parameters used are a, = 25/s, 6 = 2.5/s, =5, 0ge = 52 pm and k. = 0.14. The depression of
activity reaches approximately -0.5 and is followed by a small reverberation of activity. (b) Wave profile obtained in the updated model that includes inhibition
9. =1,9.=1,9; =1). The wave has a smoother profile and the depression of activity does not reach -0.5. The width of the wave is reduced to around
1800 pm, in comparison with the 3000 um of (a). (¢) Using the parameters of (b), we obtain wave propagation.

doi:10.1371/journal.pcbi.1004065.9012

where u(x, t) is the mean synaptic activity of the excitatory population, v(x;, t) is the mean syn-
aptic activity of the inhibitory population, q(x, f) is the adaptation term in the excitatory popu-
lation, and P(x, t) and Q(x, t) are external inputs to the excitatory and inhibitory populations,
respectively. The convolutions account for the spatial extent of the synaptic connectivities,

1 Foo Jf;y\
G =gag [ ¢ T wind,

Jjk /=00

where j ={e, i}, k={e,i},and g; = {0,1}. H is the Heaviside function, which becomes non-
zero when the total input exceeds the threshold ;.

To characterize the behavior of this model, we perform numerical simulations. We set the
parameters to match the wave speed and width used for the original model (1) in Fig. 5b, and
fix a;=2.5/s, k; =1, 06,; =20 um, ;. = 20 pum, and o;; = 0. We first consider the case g, = 0,

g. = 0and g, = 0 so that the excitatory and inhibitory populations do not interact. The result-
ing wave profile (Fig. 12a) reveals a large amplitude pulse, followed by a deep depression of ac-
tivity, and then a smaller amplitude reverberation, as expected for the original model
formulation (1). Then, using the same parameter settings, we activate interactions between the
excitatory and inhibitory populations (g, = 1, g, = 1, g; = 1). The resulting wave profile
(Fig. 12b,c) exhibits qualitative differences from those in the original model; by including inhi-
bition, the wave profile becomes smoother and thinner, and the depression of activity following
the large amplitude pulse is shallower. These results suggest that a neural field model with ad-
aptation and inhibition produces wave profiles with additional features consistent with the in
vivo data, including a smoother wave profile and a shallower depression of activity following
the main pulse. We conclude that the original model (1), even in the absence of inhibition, sup-
ports wave propagation as observed in the clinical recordings. However, incorporating addi-
tional biological features in the model - such as inhibition - may improve fidelity with the
clinical data.

Discussion

In this paper, we considered invasive local field potential (LFP) recordings from a population
of human patients during seizures. We showed that, in the late stages of seizures, spatiotempo-
ral patterns of activity propagate across a small patch of cortex. These patterns can be well ap-
proximated as one-dimensional plane waves, and we characterized important features of these
waves (i.e., the speeds and widths). We found traveling wave speeds of ~ 80-380 ym/ms, con-
sistent with the propagating velocity of a pulse when GABAergic local inhibition is blocked
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(e.g., 60-90 um/ms in [70], 70 um/ms in [71], 130-190 um/ms in [25], and 120-150 um/ms in
[72]). In addition, we examined the features of small amplitude “reverberations” in the voltage
activity following each wave.

To further characterize the observed LFP waves, we implemented a relatively simple neural
tield model consisting of an excitatory population of cells with adaptation. This abstract mathe-
matical model is flexible enough to replicate important features of wave propagation near sei-
zure termination for the population of patients and seizures. Moreover, the relative simplicity
of the model permits analytic solutions; we showed here, for the first time, that traveling wave
solutions exist and are stable in this activity-based model formulation with adaptation. In addi-
tion, the model parameters permit biophysical interpretation (e.g., as the extent of synaptic
connectivity). By combining analytic model solutions with features of the observed waves -
such as the speed and width - we estimated parameters in the model. The estimated parameters
included the timescales of activity and adaptation, and the spatial extent of the connectivity.
We find that the timescale of the model consistent with the observed LFP data is biologically
reasonable: the adaption is an order of magnitude slower than the activity. Measures of synap-
tic connectivity in a local neighborhood of cortical tissue have been reported to range from
40 um to 2 mm [12, 41, 63, 73-75]. For the deduced range of parameters obtained in this
study, we find that the extent of connectivity, o, for Patients 1 and 2 coincides with this estab-
lished range. For Patient 3, we obtain connectivities between 60 um to 4 mm, which is larger,
but not wholly inconsistent with existing estimates. We find for all three patients that the pa-
rameter S, which is the strength of the adaptation, is between 2 and 4; and the parameter k,
which accounts for the synaptic threshold, is between 0.12 and 0.2. The variability in the esti-
mates of o, ) and k may reflect changing biophysical features during seizure (e.g., progressive
changes in synaptic efficacy or changes in the extracellular environment) as well as the variabil-
ity inherent in measuring a noisy biological system. We also note that for the three patients, as
the timescale of the activity increases, the extent of the connectivity decreases (Fig. 10) suggest-
ing that faster activities (large a) require less distant connectivity. Finally, we note that the pa-
rameter estimates are consistent both within individual patients, and across the population of
patients and seizures. We conclude from these results the following hypothesis: plane waves
observed in vivo late in human seizure can be supported in a relatively simple mathematical
model without inhibition, consistent with in vitro slice and theoretical work (e.g., [25, 36, 70-
72,76-78]). However, we note that inclusion of inhibition may improve features of the model
(e.g., may better mimic aspects of the wave profile, see Fig. 12 and S2 Text in Supporting Infor-
mation for additional illustrations).

The analysis and modeling focused on an interval preceding seizure termination, in which
the data have transitioned to large amplitude spike-and-wave (or spike-and-polywave) oscilla-
tions. A goal of this modeling study was to simulate some of the spatiotemporal aspects of this
spike-and-wave activity. Animal studies suggest the mechanisms that support this spike-and-
wave activity are complex. Some studies have suggested that the “wave” component of the
spike-and-wave oscillation reflects inhibitory GABAergic processes [79-81]. However, other
animal studies instead propose that slow intrinsic currents (e.g., a calcium-activated potassium
current) support the “wave” component of the spike-and-wave oscillation [82-87], and in vitro
slice experiments indicate that features of wave propagation (i.e., wave velocity and wave am-
plitude) during epileptiform activity do not depend on inhibition [88]. In addition, during sei-
zures with spike-and-wave oscillations, neural populations are (at least transiently) highly
active and thereby drive large changes in intra- and extracellular ion concentrations (e.g., intra-
cellular chloride accumulation and extracellular potassium accumulation) [89]. This may result
in pathological changes in brain dynamics, for example the reversal potential of GABA-
receptor-mediated inhibitory postsynaptic potentials may shift to positive values [85], and
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inhibitory mechanisms may engage in the generation of the depolarizing component of
spike-and-wave oscillation.

Here we have implemented a mathematical model with a tight focus on one aspect of the
late seizure interval: the (approximately) one-dimensional traveling waves that appear in spike-
and-wave oscillations near seizure termination. In doing so, we have presented a modeling for-
mulation more consistent with the proposed intrinsic current mechanisms of spike-and-wave
oscillations. Nevertheless, we suspect that inhibition plays a fundamental role in seizure, for ex-
ample at seizure onset [90, 91] when fast-spiking interneurons are highly active. We expect
that the addition of more biophysical features to the model (including inhibition) will permit a
better match to the in vivo LFP data (see Fig. 12 and S2 Text of Supporting Information), at the
cost of increased model complexity and reduced analytic tractability.

In this work we implemented a relatively simple one-dimensional neural population
model, consisting of a synaptic activity variable and an adaptation variable. The simplicity of
the model allows rigorous mathematical analysis, although the biophysical mechanisms re-
main relatively abstract. The validity of the model is based on the reproduction of wave fea-
tures present near seizure termination, and parameter estimates consistent with known
physiology (i.e., estimates of synaptic connectivity and difference in timescales). The purpose
of this model is not to capture the detailed biophysical mechanisms of seizure, as in more re-
alistic computational models [92, 93]. However, we may use the mathematical model to make
the following prediction: the traveling waves near seizure termination represent relatively
“simple” brain phenomena. Consistent with this notion, we hypothesize that the diversity of
complex components that support normal cortical function (e.g., the diversity of inhibitory
neuronal populations [94, 95]) have shut down, and allowed these simple dynamics to domi-
nate. Restoration of this diversity and complexity (e.g., activation of silenced inhibitory neu-
ronal populations) would then help disrupt these pathologically organized and simple
traveling waves.

To further validate the model results, in vitro experiments that reproduce important features
of the human in vivo data (e.g., the spectrographic properties [90, 96]) would allow detailed
pharmacological exploration of the proposed biophysical mechanism of this model. In particu-
lar, the more abstract model parameters (like 5y, the strength of the adaptation) may be better
understood in terms of specific neuronal mechanisms through experiments in controlled bio-
logical systems. These experiments may in turn motivate future work developing more biologi-
cally detailed models to provide additional insight into the spatiotemporal dynamics of seizure
activity. One important future modeling direction is the further analysis and inclusion of inhib-
itory populations in this activity-based formulation. Such inclusions may further illuminate the
mechanisms of wave propagation, and might help to explain differences in waves seen during
the initial and terminal stages of human seizure.

We have focused here on the analysis of the observed LFP plane waves near seizure termina-
tion. Rich spatiotemporal patterns also emerged in the clinical LFP data throughout the seizure
(and perhaps in other functional states, such as sleep) and will require an expanded two-
dimensional model for characterization. For example, we note that near seizure onset complex
spatiotemporal patterns emerge, without obvious traveling wave dynamics. The mechanisms
that govern the transition from these disorganized spatiotemporal dynamics to more organized
traveling waves remain unknown. The analysis of seizures from more patients may help to de-
velop more sophisticated - and biologically detailed models - to explain these complex phe-
nomena. The combination of quantitative data analysis and mathematical modeling of seizure
activity across space remains an active research area with important implications for improved
treatment of epilepsy.
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Materials and Methods
Ethics Statement

All patients were enrolled after informed consent was obtained and approval was granted for
these studies by local Institutional Review Boards.

Data Analysis

For each patient and seizure, we analyzed a subset of the diverse spatiotemporal patterns ob-
served approaching seizure termination. We focus here on the analysis of one-dimensional
plane waves of activity, which were the most common type of wave we observed in Patients 1
and 2 (Seizure 1, 36 out of 40 waves; Seizure 2, 36 out of 41; Seizure 3, 39 out of 59; Seizure 4,
26 out of 33; Seizure 5, 35 out of 52). Upon visual inspection, the excluded waves exhibited dif-
ferent spatiotemporal patterns, including disorganized waves of high activity, and two-
dimensional patterns, such as waves that initiated at the center of the microelectrode array, and
spiral waves. Again, we focus here only on the one-dimensional plane waves and estimates of
the model parameters from these waves. For Patient 3, we focused on a contiguous half (2 mm
by 4 mm) subsection of the entire (4 mm by 4 mm) microelectrode array. For this patient, we
were able to detect waves moving closer to the horizontal direction (from —45° to 45° and from
135° to 225°). Having selected these one-dimensional waves from the three patients, all waves
were analyzed using the same set of data analysis algorithms described below. Components of
these data may be made available by request to the corresponding author.

The purposes of the data analysis were: i) To obtain a time interval for the propagation of
each planar wave; ii) To obtain the direction of wave propagation; iii) To obtain the different
one-dimensional paths through the two-dimensional microelectrode array for a given direc-
tion; iv) To obtain the speed, width, and reverberation time along each one-dimensional path;
and v) To obtain the mean speed, mean width and mean reverberation time for each wave
across different paths. To determine the time interval for the propagation of each planar wave,
we computed the gradient of the LFP activity at each moment in time. The gradient assigns to
each spatial location a vector specifying the direction and magnitude of maximal increase in ac-
tivity (Fig. 13a). To compute the gradient, we analyzed voltage differences between adjacent
electrodes. A histogram of the angles of the gradient at each position, weighted by the magni-
tude of the gradient, was then constructed for each moment in time (Fig. 13b). We label t, the
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Figure 13. Example of LFP data analysis procedure. (a) Example of a vector field before a wave enters the microelectrode array. For each of the interior
electrodes, an angle is assigned according to the gradient. (b) Example weighted angle distribution for the time interval (to — 14 ms, t, + 100 ms) for a single
wave during a seizure. In this example, t,is = 14 ms and t;,, = 100 ms. The peak of the distribution occurs at angle 6. () lllustration of the different
computed quantities: 6, is the peak of the distribution; 6; = 6,+180c, where ¢ = +1 (depending on the value of 6y); tj,i1ia is the time at which the phase interval
(60-20, Bp+20) acquires non-zero counts; t, is the time at which the LFP z-scored signal at the center of the microelectrode array exceeds a threshold; and
tinal IS the last time at which counts appear in the angular interval around 6;.

doi:10.1371/journal.pcbi.1004065.9013
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time at which the LFP z-scored signal at the center of the microelectrode array exceeded a
threshold of 2.5. We then determined the peak of the unimodal angle distribution at time t,,
which we labeled 0,. We considered angles between 0,—20 and 0y+20 degrees and analyzed the
proportion of angles within the interval (0,—20, 0,+20), forward and backwards in time start-
ing at to. The time t;,;;,; denotes the first time at which the number of counts in the angular in-
terval becomes non-zero. The time g, is the last time at which counts appear in the angular
interval. In this way, each wave is assigned a time interval (;isias tfinar) for which angles appear
in the interval (0y—20, 0,+20). In this time interval, the weighted histograms of the angles
showed a clear organization of the gradient directions and appearance of two peaks in the his-
togram distributions (Fig. 13b). These two peaks account for the preferred angle before the
wave enters the microelectrode array and after the wave exits the microelectrode array. To de-
termine the direction of each wave we focused on the first peak (Fig. 13b). This peak typically
occurs in the time interval (a1 to). In addition, we visually inspected each peak and verified
that the associated angle accurately described the direction of propagation for each wave. The
notions of to, tinitiai tfinarand O are illustrated in Fig. 13c.

Having determined the angle at which LFP activity propagated, we then constructed one-
dimensional paths spanning the microelectrode array. Each path consisted of 10 adjacent elec-
trodes and ran parallel to the direction of the observed wave. Along each such path we deter-
mined the speed and width of the wave. For each path, we determined the time at which the
activity at each electrode exceeded a threshold of one standard deviation above the mean LFP
computed for the entire duration of seizure termination investigated. In this way, every elec-
trode along a path was assigned a time of wave onset, which was used to compute the speed.
We used all possible combinations of the 10 electrodes along each one-dimensional path to
compute the speed, resulting in a total of 45 estimates of speed. To mitigate the impact of outli-
ers, the speed for each one-dimensional path was then calculated as the median of the 45 speed
estimates. We then estimated the speed for each wave as the mean speed among the different
one-dimensional paths. Depending on the direction of the wave, from the 10 electrodes that
form a one-dimensional path, there is one electrode at which the large amplitude activity of the
wave reaches last, and we label this the “last electrode” (example in Fig. 14). To measure the
wave width, for each one-dimensional path we computed the time at which the activity at the
last electrode exceeded a threshold of 2.5 of the LFP z-scored signal. At that instant in time, the
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Figure 14. The width of a wave along a one-dimensional path is defined as the distance from the “last
electrode” to the first electrode along the path whose activity is below the activity threshold.

doi:10.1371/journal.pcbi.1004065.9014
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activity of the other electrodes along the path was also determined. The location at which the
activity transitioned from above the threshold (of 2.5 of the LFP z-scored signal) to below the
threshold was determined. The spatial extent from the last electrode to this transition point

on the one-dimensional path defined the width of the wave. An illustration of the wave width
determination is shown in Fig. 14. We note that if no electrode along the one-dimensional path
transitioned to below the threshold, then the wave covered the entire spatial extent of the path,
and the width of the wave indicates a lower bound. For each wave, the width refers to the mean
widths obtained from all one-dimensional paths. To obtain the reverberation time we first de-
termined the time at which the large amplitude wave of activity fell below a threshold of 0.5 of
the LFP z-scored signal; we consider this time as the “end” of the primary traveling wave. Start-
ing from this time point, we then determined the time for the activity to first exceed a reverber-
ation threshold, defined as 0.5 of the LFP z-scored signal, and then for the activity to decrease
again below this threshold. This decrease below the reverberation threshold defined the rever-
beration time. For an illustration of the reverberation time, see Fig. 15. We computed the rever-
beration time for each electrode along the one-dimensional path. The mean among the
different one-dimensional paths gave the reverberation time of each wave. Using a t-test for
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Figure 15. lllustration of the measurement of the “reverberation” time. (a) For each electrode along a one-dimensional path we compute the time at
which the activity decreases below an activity threshold (marked in the LFP colorbar) after a wave of large amplitude activity. (b) A depression of activity
follows a wave of high activity. (c) A reverberation of activity follows the depressed state. (d) We compute the reverberation time as the duration between the
activity at the center of the path decreasing below an activity threshold (a), and then the activity first increasing above - and then receding below - a
reverberation threshold (marked in the LFP colorbar). We compute this time difference for each of the electrodes along the one-dimensional paths.

doi:10.1371/journal.pcbi.1004065.9015

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004065 February 17,2015 22/34



©PLOS

COMPUTATIONAL

BIOLOGY

A Mathematical Model of Cortical Waves Preceding Seizure Termination

small samples we computed a 90% confidence interval for the mean speed and mean width of
each wave (Fig. 3), where the number of samples was given by the number of one-dimensional
paths existent for each wave.

Mathematical Model

In the section, we describe in detail the mathematical analysis of the model (1). We note that
the model (1) supports traveling front solutions when the adaptation term is removed. Howev-
er, these front solutions are not consistent with observed LFP activity, and therefore not exam-
ined here.

As mentioned in Results, we use the moving frame z = x—ct and identify stationary solutions
in this frame. These solutions will be of the form u(x, t) = u(x—ct, t) = u(z, t) and q(x, t) =
q(x—ct, t) = q(z, t), such that u,(z, t) = 0 and g,(z, t) = 0. We use the connectivity function

w(z) = & e, By making this change of variables, we obtain the system of differential-integral
equations

o0

—cu'(z) = —ow(z) + oH </

—cq'(z) = ou(z) — dq(2),

which can be rewritten in the form

(w(z)) . ( u/c ﬁ/c> (u(z)) . _‘:H</z w(z_z)u(z)dz—k> .

q(z) —o/c d/c )\ q(z)

w(z — z)u(z)dz — k) — pq(z)

We assume ¢ > 0 which corresponds to a rightward moving wave. An analogous consider-
ation holds for leftward moving waves (¢ < 0). We note that the nonlinear part of system (3)
will be either zero or nonzero depending on the Heaviside function. For that reason the system
can be analyzed by considering when the Heaviside function is zero (Case 1), and when the
Heaviside function is non-zero (Case 2). We consider both cases below.

Case 1. Heaviside function is zero

o0

This occurs when w(Z — z)u(z)dz < k. In this case we obtain the following linear system:

(u/(z)) _ ( oc{c ﬁ/c) (u(z)) @
q(z) —d/c d/c )\ al2)

Depending on the parameters of the model, we will obtain real eigenvalues or complex eigen-
values for the system (4). We consider each scenario in turn:

Real eigenvalues when the Heaviside function is zero

[
40

This scenario occurs when f§ < . Solving for the eigenvalues of system (4) we find,

c

/li;((5+a)ﬁ:\/(5+rx)245(oc+ﬁ))
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with corresponding eigenvectors

5—0(21:\/(54—01)2—45(0(-1-[3)
20

V, =

Consider

Then the solution of system (4) with real eigenvalues will have the form U(z) = a, V, A
a, V_e**. We note that A, > 0.

Complex eigenvalues when the Heaviside function is zero

(0-2)*

This scenario occurs when 8 > *==

. The complex eigenvalues are given by

Xi:2%{(5+oc)j:i\/45(oc+ﬁ)—(5+oc)2}

It is only necessary to solve for the eigenvector associated with A, to obtain the general solu-
tion of the linear system. Solving for the complex eigenvector associated with A, we find:

v (2 . 0
Too) T\ Y@ p - 0ra)

With this eigenvector we can obtain the imaginary solution. This solution can be simplified
and we can obtain from it two linearly independent eigenvectors V; and V,. To simplify the
computations we do not show this term and instead focus on constructing the traveling wave
solution.

Case 2. Heaviside function is nonzero

00

This scenario occurs when w(z — z)u(z)dz > k. In this case, system (3) simplifies to:

(u’(z)) x( o/c ﬁ/c) (u(z)) (—a/c)
= + . (5)
q(z) —o/c d/c )\ q(2) 0

We note that the analysis of system (5) applies to the homogeneous part of (4). In particular we
obtain the same eigenvalues (either purely real or complex) and eigenvectors. We only need to
obtain a particular solution for the inhomogeneous part of the system in order to obtain the
complete solution of (5). A particular solution of the inhomogeneous system is:

o
o+
o

=

o+ p
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Traveling Wave Solutions

Our goal is to obtain a traveling wave solution using the properties we found for the two cases
(Case 1 and Case 2) described above. Special care must be taken at the point where the system
changes from Case 1 to Case 2. Biologically, this corresponds to the point where the system
passes through the synaptic threshold. In looking for a wave-type solution, we assume that the
input from the activity crosses a threshold k two times. We also assume that the traveling wave
solution is continuous. Using these assumptions we are able to solve for all of the unknown
coefficients.

Traveling Wave Solution - Real Eigenvalues

Using the results for the two cases of the Heaviside function (Case 1 and Case 2, described
above), we now focus on establishing a traveling wave solution of (1). In particular, we look for
a traveling pulse that transitions from a state of rest to an excited state, and then returns to rest.
To do so, the interaction term must cross the synaptic threshold k at exactly two points. For
simplicity, and without loss of generality, we assume that these points are 0 and w, where w is
the width of the wave. We then obtain a traveling wave solution of the form:

a, V. e +a,V e ifz>w
o
_ . atf
U(z) = a,V.e*+a,V e+ ., ifo<z<w
o+ f
a;V. e  +aV e if z<0.

We use the condition u(z) — 0 as z — oo to determine that activity u(z) = 0 for z > w. Also, by
the assumption that the traveling wave solutions are continuous, and the assumption that the
wave passes through the threshold at z = 0 and z = w, we can solve for the rest of the unknown
coefficients in the above system of equations and obtain the traveling wave solution of the ac-
tivity in the real eigenvalue case:

" ifz>w
o 2{ (Z*W) _ _ /i,(sz) o B
S+, — ) [4_e (0—ch,)— e (06—l )+ 6(A, —2)]
"= ifo0<z<w
o

ST B e DB DS kL6 - e )

ifz<0

c

where/Ii:21 [oc+5i\/(oc—|—5)2—45(oc+[3) .
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Traveling Wave Solution - Complex Eigenvalues
The analysis of the traveling wave solution in the complex eigenvalue case is similar to the real
eigenvalue case, we find that the traveling wave solution has the form:

0
exp(a;c z)[b1V1+b2V2] ifz<0
o
U(z) = 5 ot p
(2) exp((xJr z)[b3V1+b4V2]—|— ifo<z<w
2c o
o+ f
0 ifz>w.

By assuming that the solution at the points 0 and w is continuous, we deduce two systems of
equations that can be solved to obtain corresponding coefficients. The resulting traveling wave
solution for the activity is:

0 ifz>w

o+ 0 _ -
p(; <Z*W)> CfCOS<Z\/45(°‘+ﬂ)—(5+oc)2>+Csm(z\/45(d+ﬁ)—(5+fx)2) .

+
o+~ 16+ pa+p | = 2 ot h
u(z) = ifo<z<w
o+0 _ » ;
ocexp( o Z) V46 + ) — (5+ )" {1t p) -6+
- ccos|z % +csin| z 9%
\/(5+az) —4(a+p)(a+p) | |
ifz<0
where
2 5t et~ Gty - Aot p) - 5+
clz\/45(a+/3)7(5+1) +exp<7w7> (2B + o —d)sin| w 2 f\/45(oc+ﬂ)f((5+a) cos [ w 5
o+ 0 48(a+ ) — (6 + )’ 5 48(a+ ) — (0 + o)’
cZ:(2ﬁ+oc—5)+exp(—w2LCa> l:—(2ﬁ+oc—5)cos<w\/ ( ﬁ2)c ( )> —\/45(1+ﬁ)_(5+oc) Sin(w\/ ( ﬂQ)C ( ))‘|
¢; = (2f 4+ o — d)sin (w \/45(“ - /32)57 — ) - \/45(“ +B) — (6 + )’ cos (W \/45((1 : ﬂQ)ci S )
48(o+ B) — (0 +)* ‘ 48(o+ B) — (0 + )
c,,1—(2ﬁ+oc—5)cos<w\/ ( +ﬁ2)c 0+ )) —\/45(a+ﬁ)_(5+oc)zsin(w\/ ( +[2)c 0+ )>

Recall the identity asinx + bcosx = v/a? + b?sinx + @, where

b 0 ifa>0
=tan -+
¢ a n ifa<0.
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Using the previous identity we can further simplify the traveling wave solution to obtain:

0 ifz>w
0
Zaﬂexp(“;c (z—w)> 16p — (o — 5’
+ﬁ+ = sin 5 z+@, | if0<z<w
)= 2T e paps - 6 -ap)
0
Qa\/ﬁexp(a;rc z) 16f — (o — )’
{ Dcos 5 zZ+ @, if z <0,
Vo Baps — (65— a)?) ‘
where D = ¢ 1= 2exp(-w 2t cos L0 4 eptd)

1<A1> n ifdy <0
=tan " (— | +
& Ay 0 ifd; >0
n n ifd, <0
¢y = tan"! <—) + _
Ay 0 ifdy>0
= (2ﬁ+oc—5)sin( 45/3 ) \/45/3 0— ) COS(MW)
AQ:—(2ﬁ+oc—5)cos< Sl (“ o) ) \/45[3 ) sin(%ﬁw)

As = /46 — (o — 8)* + exp (a2—+5w>A1
c

A4 = (2ﬁ + o — 5) + CXp(—O(Q—_‘;(SW>A2.

We note that the period of the damped solution is (47) /1/40f — (ot — 5)*.

Matching Conditions

In order to ensure the continuity of the solutions, we look at the change points from Case 1 to
el
Case 2. In particular, k = - / e’Tyu(y, t)dy at the points x = 0 and x = w. This assumption

gives rise to the matching conditions. Once the explicit traveling wave solutions are obtained, it
is possible to solve for the exact value of the threshold k given by the matching conditions. We
list below the solutions for the matching conditions in the case of real eigenvalues and complex
eigenvalues.

Matching Conditions: Real Eigenvalues
The matching conditions at points 0 and w for the real eigenvalue case are:

k, = 1 - e’%u(y t)d
s . yr)ay
w w
. oclj#aexp(— E) (exp (E) - 1) (c+ da)
! 20(+ B)(A_o+1)(A,o+1)
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and
1% bw
k, =50 ﬂoe T u(y, t)dy
= o 2 (0 —cl) JrL(/L —A.)A,0(00 —¢)
P20(4, — A ) (a+p) le-(ho—1)  (Ao—1)(A,0—1)e
B o [A_[cA (=, o€ (" — 1) — " + &) — det-" (e — 1)]
2002, =2 )(a+p) | eV-tw(j_o+1)(A0+1)
B o (72 ae" (e — 1)(6 — ch,) + 04, (e~ — 1)e*" (A, o + 1)
204, —2A)(a+p) | e-tiw(i g+ 1)(A,0+1)
o [ 2_(0—ch,)
BTG e e )

Fig. 7 gives the solution curve for the intersection of the curves such that k; = k,. The real ei-
genvalue case corresponds to the blue curve in Fig. 7.

Matching Conditions: Complex Eigenvalues
The matching conditions at the points 0 and w for the complex eigenvalues case are:

i I

k, =% e 7 u(y, t)dy

—e 7+ 1+

r[4(cfo + c)2 + r207]

) _26C36Xp (—w(% +f)> [efw (2c(fa — 1) cos (%/) + msin(gl:)) —2¢(fo — 1)6%}
* 2(a+ p) rldc(fo — 1)° + 1267

'2Cc4 exp(—w(i_ +f> [efw <2c(fa — 1)sin (;L:) — rgcos (g)) + rge%:|
+2(o¢+ﬂ) rldc(fo — 1)2 o]

2¢c[2¢(c,fo+¢,) — cya]]

o _QC[QC(CL](O' +¢,) —¢,ra]
200+ p) | rld(cfo+ ¢)’ + 1207
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and
=50 | urnay
PR (—e 7+ 1)[2ce 7 (2¢(c, fo + ¢,) — c,ra)]
2+ B) rld(cfo + c)* + r2a?] ]

o 2cc3ew(’(é+f)) [ew(%f) (2C(f0 +1)cos ;LZ) + rasin(%)) —2c(fo+ 1)]

2(a+B) r[4(cfo + )’ + r2a?]
o 2cc4ew(7(%+f)) [e w5+ )( c(fo+1)sin 2—) - racos( )) + ra]

WCTCEY)) r4(cfo + o) + r2o?] ’

where r = \/40 — (6 — @)%, g = 2B + o — 3,/ = % and
¢ = exp(—fw)[gsin(5) — rcos(5%)] +r
co = exp(—fw)[—gcos(5) — rsin(3Y)] + g
c3 = gsin(5Y) — reos(%)
cy = —gcos(g‘Z) — rsm(Qc)
The part of the curve in Fig. 7 that corresponds to the complex eigenvalue case (red curve in
Fig. 7) solves the equality with k; = k,.

Linear stability of traveling wave solutions

The linear stability of the traveling wave solutions was analyzed in detail in [97]; here, we sum-
marize these results. To study the linear stability of the traveling wave solutions we construct a
complex-valued Evans functions whose zeros determine the eigenvalues associated with the
stability of the wave [98]. By obtaining the eigenvalues it is possible to determine stability (or
instability) of the linearized wave. Using the Evans functions, we explore the stability of wave
solutions for parameter choices restricted by the LFP data. We have shown that for some pa-
rameter settings two wave solutions exist (e.g., Fig. 6). We note that one of these wave solutions
is slow and narrow, whereas the other solution is fast and wide. Moreover, the fast and wide
wave has speed and width consistent with the LFP data (as illustrated in Fig. 11). Using the
Evans function we find that, in the case of the fast and wide wave, the associated eigenvalues
consist of eigenvalues with negative real part and the trivial zero eigenvalue (due to the transla-
tion invariance of the wave solution); this implies linear stability of the fast and wide wave. In
the slow and narrow wave case, we find a positive eigenvalue (purely real) in addition to the
zero eigenvalue, implying linear instability of the wave solution. For more details, please see S3
Text of Supporting Information.

Simulations

Space was discretized using 2000 points, to represent the length of a one-dimensional path. To
each of these points the differential equation system (1) was associated. Numerical simulations
were written to solve these systems using a Runge-Kutta method of order four with At = 0.005
ms. Convolutions integrals were approximated by assuming the activity was fixed within a Ax
interval, where Ax represented a distance of 40 um. Smaller grids were also examined of Ax =
20 um, and Ax = 10 um, and similar results found (not shown). The waves were created by
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applying a 5 ms input to points in space representing 10 um. Both time and space were rescaled
in order to have units of distance x in microns and time ¢ in milliseconds.

Supporting Information

S1 Text. Activity-based model with adaptation inside of the nonlinearity.
(PDF)

$2 Text. Comparison of single-channel in vivo and model dynamics.
(PDF)

S3 Text. Linear stability of the traveling wave solutions.
(PDF)
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