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Abstract

The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are
still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not
necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation
selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying
weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent
connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of
integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire
neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky
integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network
topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode,
amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying
nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An
extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual
tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation
selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be
further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth
input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold
equally well for mean-driven and fluctuation-driven regimes of activity.
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Introduction

Orientation selectivity (OS), namely the selectivity of neurons in

primary visual cortex (V1) of mammals to oriented stimuli [1–5], is

the result of a simple computation in an early sensory cortex.

However, thanks to its experimental and theoretical tractability, it

provides a unique window to study the mechanisms underlying

cortical computations [6]. The question of which mechanisms

contribute to the emergence of OS and its contrast invariance (CI)

[3,7,8] was recently revisited in light of new findings in the rodent

visual cortex.

Although lacking smooth orientation maps on the cortical

surface [9], highly selective receptive fields and sharp OS

responses have been reported in these species [3]. It is still

possible, though, that an invisible functional map of OS exists

[10], as a result of the abundance of connections between neurons

with similar OS [11–15], which may amplify OS responses [16–

18]. Alternatively, other mechanisms can be at work already in

networks without feature-specific connections, similar to the state

of rodent visual cortex at the onset of eye opening [14].

It has indeed been shown that contrast invariant OS can emerge

in balanced networks without feature-specific connections [19–21],

and we asked here which mechanisms are essential to this process.

Of special interest is what mechanisms on the level of cells or

networks are responsible for selective attenuation of the baseline,

and for selective amplification of the modulation in the input.

Selective attenuation of the baseline ensures that the untuned

component of the input is effectively suppressed, across different

contrasts. As a result, the modulated component of the input

contributes to reliable output spiking activity, without broadening

the output tuning curves. Independent processing of these two

signal components, baseline and modulation, ensures that the

neurons respond selectively and reliably.

We investigate these mechanisms by studying large scale

networks of perfect integrate-and-fire (PIF) and leaky integrate-

and-fire (LIF) neurons. Our results show that comparable output
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OS, with sharp and CI responses, are obtained in both types of

networks. The absence of a membrane leak in PIF networks,

however, allows us to develop a fully linear, rate-based description

of the network operation. Its analysis accounts for the main

properties of OS – attenuation of the common mode, amplifica-

tion of modulation, and contrast invariance – and explains their

underlying neuronal mechanisms.

An inherent nonlinearity in spiking networks, namely rectifica-

tion of negative ‘‘firing rates’’, adds a distortion to the linear

theory, and leads to new properties like sharpening of tuning

curves and normalization. We further show that it is possible to

account for this nonlinearity by extending the linear analysis in a

straightforward way. In fact, by explicitly computing the exact

shape of individual tuning curves, as well as the distribution of OS

in our networks, and comparing them to the same quantities

extracted from large-scale network simulations, we can safely

exclude major contributions of other effects.

We demonstrate here that a large array of functional properties

reported for biological sensory networks can already arise in

networks without feature-specific connectivity, out of purely linear

processes in the network, accompanied by the nonlinear process of

rectification. The dynamic state of the network, synchronous or

asynchronous, does not change our result, and all conclusions

equally hold for both mean-driven and fluctuation-driven regimes

of activity.

Results

Population tuning curves in recurrent networks
Network responses in the linear regime. We simulate the

spiking activity of a network in response to 8 different stimulus

orientations, one applied after the other, for 30 seconds each. The

spiking activity of all neurons in the network in response to a

stimulus with orientation h~900 at an intermediate contrast

(C~2) is shown in Fig. 1A. The network operates in the

asynchronous-irregular (AI) state, as is evident from the raster

plot and the peri-stimulus time histogram (PSTH) of the

population activity. For the network simulated here, inhibitory

synapses are arranged to be four times stronger than excitatory

ones (g~4); with the parameters used here, the network avoids

rectification altogether (no ‘‘floor effect’’). We have randomly

drawn all the synaptic delays for recurrent connections (a uniform

distribution on the interval ½0:1,3� ms), a choice that puts the

network in the AI state.

If we sort the neurons according to their input POs (Fig. 1B),

the selectivity of neurons becomes visible: Neurons with input POs

far from the stimulus orientation respond with very low firing

rates, and this is consistent across different contrasts. This is also

evident from the distribution of firing rates across all neurons in

the network (Fig. 1C), which has a very prominent peak at zero for

all contrasts. The degree of irregularity of spike trains, quantified

by the coefficient of variation (CV) of inter-spike intervals (ISI),

also remains fairly stable upon stimulation with different contrasts

(Fig. 1C, inset).

To better see the tuning of output responses, we can look at the

tuning curves of all neurons by plotting the mean firing rate of

neurons vs. the stimulus orientation relative to the input PO

(Fig. 1D). The linear input-output response of the neuron model is

visible here. Plotting the mean and standard deviation of the all

tuning curves (Fig. 1E) reveals a robust output tuning for different

contrasts. The large increase in the baseline component for higher

contrasts does not carry over to the output tuning curves. The

stimulus specific component, however, is amplified for all

contrasts, for a range with a three-fold increase in the baseline

intensity of the input. Average tuning curves of all neurons in the

network, therefore, show high selectivity and contrast invariance.
Linear prediction of network responses. The mean

output tuning curve of the network can be well predicted by a

straightforward linear theory. For this stimulus orientation

(h~900), the prediction of Eq. 14 in the Methods is plotted vs.

the result of simulation (Fig. 1F). The two are in a very good

match. The match holds for all contrasts, as shown by the

distribution of the difference of the predicted and simulated firing

rate (Fig. 1F, inset). Note that to account for the refractory time of

the neuron, tref , the final firing rate obtained from the linear rate

model is corrected as~rr0~~rr=(1z~rrtref ) [22].

To better understand the mechanism underlying the operation

of the network, we should look at the operator matrix, ~AA, that

gives the vector of stationary firing rates, as described in Eq. 14.

Knowing the weight matrix, ~WW , one can explicitly compute the

operator matrix as ~AA~( {~WW=Vth){1. The emergence of

selectivity and invariance is, therefore, essentially a linear function

of the external input. As we have already previously discussed [21],

two linear mechanisms are responsible for the emergence of high-

fidelity orientation tuning: First we have a selective attenuation of

the common mode, which means that the baseline component of

the input is suppressed, but the orientation-specific component is

not. In addition, random summation of functionally heterogeneous

connectivity creates a distribution of neuronal tuning, which can

lead to an amplification of neuronal selectivity (for details, see

[21]).
Predicting the rectified responses of PIF net-

works. Increasing inhibition dominance in our networks may

lead to a nonlinear scenario where a part of the population turns

silent. This can be obtained, for instance, by increasing the relative

strength of inhibitory synapses, which is parametrized by g. The

result of the simulation of the same network topology as in Fig. 1,

but with stronger inhibitory synapses (g~8), is shown in Fig. 2.

The dynamic state of the network does not change, but the activity

gets sparser (Figs. 2A–C), a natural consequence of having more

potent inhibition in the network. As a result, now some neuronal

firing rates get rectified, which is evident in the average population

Author Summary

It is not yet fully clear how sensory information is being
processed when it arrives in primary cortical areas. We
studied this general question in the context of rodent
vision. We focused on the example of orientation
selectivity, namely the selectivity of cortical neurons for
specific orientations of an elongated stimulus. Our results
show that a large body of experimental findings regarding
the basic computations performed in early sensory
processing can already be explained by linear processing
of firing rates in neuronal networks with realistic param-
eters. The distribution of selectivity in our networks, as well
as the exact shape of output tuning curves, including all
details and inhomogeneities of structure and function, can
be computed from the known connectivity matrix of the
network and the known gain function of single neurons. A
simple but essential form of nonlinearity, namely rectifica-
tion of firing rates, accounts for sharpening of tuning
curves and leads to some normalization of output
modulation, even in networks without feature-specific
connectivity. Our results and analyses demonstrate that
none of these functional properties depend crucially on a
fluctuation-driven or a mean-driven regime of activity, and
that synchronous and asynchronous states of network
dynamics can equally well serve these functions.

Orientation Selectivity in Inhibition-Dominated Networks
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tuning curves (Fig. 2D): Neurons with input POs far from the

stimulus orientation remain silent across all contrasts. This

outcome corresponds to the prominent peak at zero in the

distribution of firing rates in the network (Fig. 2C).

The straightforward linear theory, obviously, cannot account

for the behavior of the network in this case, as zero-entries in the

vector of firing rates also need to be consistent with the recurrent

network dynamics. Instead, we solve an effective linear-rectified

rate equation to compute the response of the network. A

prediction based on Eq. 9 in the Methods section is plotted in

Fig. 2E, demonstrating a very good match. The evolution of the

firing rates to the final solution and its convergence are shown in

Fig. 2F. Note that the refractory period is corrected for in the same

manner as described in the previous section.

Predicting responses of LIF networks. To compare our

results on networks of PIF neurons with networks of LIF neurons,

we keep all the parameters (in particular the connectivity matrix)

the same as in the previous section (i.e. g~8), and only change the

neuron model. The results are shown in Fig. 3. Again, the network

operates in the AI state, and the LIF responses look indeed very

similar to the PIF case. The only noteworthy differences are

slightly smaller output firing rates and more irregular spike trains

(Fig. 2C vs. Fig. 3C), accompanied by a less prominent rectifica-

tion (compare Fig. 2D and Fig. 3D). This is due to a different

input-output transfer function of the neuron model: Whereas a

PIF neuron responds only to the net mean input current, a LIF

neuron is sensitive to both the mean and the variance of the input

current (see Methods).

The slightly more complicated transfer function of the LIF

neuron makes a prediction of the neuronal responses using the

linear rectified equation in the previous section incomplete. We

therefore resort to an extended version of the equation where the

transfer function of the neuron (an approximate solution of the

first-passage time problem) is explicitly included. We now have to

solve an effectively non-linear fixed-point equation involving the

firing rates of all neurons (see Eq. 13 in Methods). The result of

this is shown in Fig. 3E, and the convergence of the result is

illustrated in Fig. 3F. The excellent match of our results

Fig. 1. Neuronal responses in a network of PIF neurons to an oriented stimulus. (A) Spontaneous activity (A1) and evoked response of a PIF
network to a stimulus of orientation h~00 (A2) at a medium contrast, C~2. Evoked activity is the response of the network to the full external input
(comprising the stimulus-independent background and the stimulus-induced feedforward input), whereas spontaneous activity of the network is the
response to the background input only (for details, see Methods, Sect. Simulation of networks of spiking neurons and Eq. (1)). The network was
arranged to have relatively weak recurrent inhibition, g~4. The spiking activity of the full network is shown for 60 ms out of the full 30 s of
stimulation. At the bottom, temporal population rates, computed in bins of size 5 ms, are shown for excitatory and inhibitory populations separately.
Here and in the remaining text, unless otherwise stated, the colors red and blue are used to represent excitatory and inhibitory neurons, respectively.
(B) Similar raster plot as in (A), top, for three different stimulus contrasts. However, neurons are now sorted according to the preferred orientation of
their input (input PO). (C) Distribution of average firing rates estimated over 30 s, for different contrasts. Inset: Coefficient of variation
(CV~STD=mean) is computed from inter-spike intervals (ISI) of all neurons that emitted more than 10 spikes during 30 s of stimulation at each
contrast, respectively. (D) Average firing rate of neurons are plotted vs. their input PO, at the medium contrast (C~2). The feedforward (stimulus-
induced) input to the network is normalized to the mean (over neurons) firing rate of the network and plotted in green for comparison. Exc.:
Excitatory, Inh.: Inhibitory, Inp.: Input. (E) The mean (solid line) and STD (shading) of the population tuning curves, at each contrast. The range of
input POs is broken into 180 bins, and mean and STD are then computed from all neurons falling into the same bin. The average output tuning width
(TW) at each contrast is computed from the von Mises function best-fitting to the mean output tuning curve (see Methods for details). The input to
the network has a cosine tuning (input TW~450), so any output TW less than this value implies a sharpening of the network tuning curves. The
normalized feedforward input at each contrast is also plotted in green, similar to (D). (F) For each neuron in the network, prediction of the linear
theory (Eq. (14)), is plotted vs. the firing rate obtained from the simulation at the medium contrast. The distributions of the difference between the
actual and the predicted firing rates (rate diff) at this orientation are shown in the inset for all three contrasts, respectively.
doi:10.1371/journal.pcbi.1004045.g001
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PLOS Computational Biology | www.ploscompbiol.org 3 January 2015 | Volume 11 | Issue 1 | e1004045



throughout our study suggests that it is possible to correctly predict

the neuronal responses of the network even for the nonlinear

scenario implied by neurons with a membrane leak. Adding a leak

and keeping the input fixed lead to a minor reduction of the firing

rate of neurons in the network, as described above. One might

therefore ask what happens if the external (feedforward) input is

increased so that neurons in the LIF network have the same firing

rates as in the PIF network. Numerical simulations were

performed to address this question directly. Indeed, very similar

orientation selective responses were also observed in this case, at

all contrasts (S3 Fig.), further underlining the robustness of the

results reported here. A very small difference, however, can be

reported for TW. Whereas a comparable TW was obtained for

PIF and LIF networks at the lowest contrast (*350), a subtle

sharpening of TW for PIF networks was observed at higher

contrasts (S3 Fig.). This is again a result of the sharp onset of

rectification in PIF neurons, in contrast to the somewhat smoother

transfer function of the LIF neuron model (see also below, for

further discussions).

Computing individual tuning curves
To better study the output tuning properties of neurons in the

network, we extract individual tuning curves from simulations.

This is obtained by repeating the previously described procedure

for all 8 different stimulus orientations. The output tuning curve of

a neuron i, ri(h), is then extracted as its stationary firing rate in

response to each orientation. Sample tuning curves for randomly

picked neurons are shown in Fig. 4A, for all three types of

networks discussed before. Similar to average tuning curves,

individual neurons show strong output responses for a narrow

range of orientations, and this selectivity remains stable across

different contrasts.

The tuning curves are similar for the networks of LIF and PIF

neurons with g~8, respectively. Again, the only noteworthy

differences are sharper rectification for orthogonal orientations,

and slightly higher firing rates in networks of PIF neurons. The

PIF network with less inhibition (g~4) shows higher activity and

almost no rectification. These properties are more evident when

we look at more tuning curves from the networks, aligned to their

input POs (Fig. 4B): The smoother input-output function of the

LIF neuron manifests itself in a less abrupt suppression of firing

activity at orthogonal orientations, and the mean output tuning

curve of the network has a slightly lower amplitude than the same

tuning curves in a PIF network with g~8 (Fig. 4B and Fig. 4C,

upper panels). The PIF network with less inhibition again shows

the strongest activity.

However, all the networks show similar properties regarding

OS: Strong and highly selective output responses are obtained as a

result of recurrent network operation, and this has the same profile

for all contrasts considered (Fig. 4C, upper panel). In fact,

normalizing the mean tuning curve of the network across different

contrasts yields virtually indistinguishable tuning curves (Fig. 4C,

lower panels), similar to what is reported in experiments [23]. Note

that the worst contrast invariance is observed for the PIF network

Fig. 2. Population responses of the same PIF network with stronger inhibition. Same format as Fig. 1, for a network of PIF neurons with
more recurrent inhibition (g~8), but otherwise identical parameters. (A, B, C, D) Same as panels (A, B, C, E) in Fig. 1, respectively. (E) The analytical
prediction of the linear rectified model (Eq. (9)) is plotted vs. the results from numerical simulations. Distributions of the difference between the actual
and the predicted firing rates (rate diff) at this orientation are shown in the inset for all three contrasts, respectively. (F) Firing rate of neurons during
the iteration of the linear rectified rate equation Eq. 9. The equation is solved here for h~900 and for the medium contrast, C~2. The x-axis shows
the steps of the iteration (250 in total), for neurons sorted according to their input PO. For clarity, only 250 selected neurons are shown. Pseudo color
indicates the firing rate of each neuron. In the inset, the evolution of the residual error is plotted. Error is defined here as the root mean square (RMS)

of the difference between the actual firing rate vector and the firing rate vector at each step of iteration, i.e. Error(tk)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i~1½rsim

i {rnl
i (tk)�2

q
. Here

rsim
i is the firing rate of neuron i estimated from numerical simulations of spiking networks, and rnl

i (tk) is the predicted firing rate of the same neuron
at the kth step of iteration of the analytical equation.
doi:10.1371/journal.pcbi.1004045.g002

Orientation Selectivity in Inhibition-Dominated Networks

PLOS Computational Biology | www.ploscompbiol.org 4 January 2015 | Volume 11 | Issue 1 | e1004045



with g~4 (the first column). This is the result of a rather high

spontaneous activity level, i.e. the activity of the network to

background input (rbkg), in absence of an orientated stimulus. This

activity is the same for all contrasts, as it is stimulus independent. If

these spontaneous responses are subtracted (similar to the

preprocessing some experimentalists perform [3]), the resulting

normalized tuning curves now show a perfect contrast invariance

(Fig. 4C, Inset).

Although quite similar in general, the normalized tuning curves

reveal a minor deviation from perfect contrast invariance: the

average tuning curves are slightly broader at the lowest contrast

(see also the results below). Increasing contrast in our networks,

therefore, even leads to a small enhancement of orientation

selectivity (for a similar experimental observations, see [8,24]. Note

that this is the opposite of what is expected from the so-called

‘‘iceberg effect’’, which implies a broadening of tuning curves for

higher contrasts (for a similar observation, see [20]). In our

networks, this is mainly a consequence of potent rectification at

higher contrasts. This is explained in more detail below.

It is important to note that the sharp tuning of inhibition we

observed here (Figs. 1–4) is not a necessary ingredient for the other

results. As we have assumed completely symmetric feedforward

and recurrent properties for excitatory and inhibitory neurons in

our networks, a comparable level of output responses is a necessary

consequence. In biology, however, excitatory and inhibitory

neurons exhibit different responses. This is caused by different

single cell properties, like different spike thresholds and response

patterns, as well as different wiring patterns of feedforward and

recurrent connections. As a result, different tuning properties

would be expected for inhibitory neurons. In fact, different

experimental results have been reported for different subtypes of

inhibitory neurons [25,26]. We therefore tested whether our

general results still hold if inhibitory neurons show broad tuning,

and we found that all results are retained under such conditions

(S1 Fig.). Thus, tuning properties of individual neurons do not

alter our results, and the role of inhibition for the emergence of OS

remains unchanged in our inhibition-dominated networks.

Distribution of orientation selectivity. To study the

degree of OS across the population, we compute the preferred

orientation (PO), orientation selectivity index (OSI) and tuning

width (TW) of tuning curves of individual neurons (see Methods

for details). The distributions of OSI, TW and the difference

between output and input PO (dPO) are shown in Fig. 5 for

different contrasts. In general, a high degree of OS, narrow TW

and a small scatter dPO are obtained across the population, in

accord with our observations documented in Fig. 4. Moreover,

this result is consistent for networks of LIF and PIF neurons, with

and without rectification.

The contrast invariance of all these properties can already be

expected from the stability of the distributions for different

contrasts. Responses to preferred orientations are stronger at

higher contrasts (Fig. 4), and the overall measures of OS are quite

stable. This can be demonstrated further by inspecting OSI, TW

and dPO of individual neurons at high contrasts and low contrasts

(Fig. 5, lower panels). Very low PO scatter in each case

corroborates the visual inspection of contrast invariance. The

strongest deviations are again obtained for the PIF network with

low inhibition (Fig. 5A, the first column). If we again subtract the

spontaneous activity, as described before, perfect contrast invari-

ance is obtained also in this case (Fig. 5A, insets in red color, first

column).

In general, however, the contrast invariance improves for higher

contrasts, i.e. the highest contrast vs. the middle contrast values for

OSI and TW lie closer to the diagonal compared to the middle

contrast values vs. the lowest contrast. This is in line with our

previous observation (see Fig. 4) that the average tuning curves of

the network show better contrast invariance for higher contrasts.

Furthermore, the enhancement of tuning curves for higher

Fig. 3. Population responses of a network of LIF neurons to an oriented stimulus. Same as Fig. 2, for the a network with the same
parameters, but composed of LIF instead of PIF neurons.
doi:10.1371/journal.pcbi.1004045.g003
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contrasts is clearly visible here. The distribution of OSI is shifted

towards smaller values, implying an enhancement of OS for higher

contrasts.

Likewise, the distribution of TW (Fig. 5B, upper panels) is

shifted towards larger values for the lowest contrast, i.e. an overall

— although small — sharpening of tuning curves upon increasing

the contrast is resulting. This effect is mainly visible in the middle

column, i.e. for the PIF network with strong inhibition. This is the

network with the strongest rectification: The PIF network with

g~4 (first column) has a lower inhibition dominance ratio, and as

a result, the high level of spontaneous activity keeps the tuning

curves away from rectification. The network of LIF neurons with

g~8 (third column) is equipped with another mechanism, namely

a smooth transfer function of the LIF neuron due to its general

sensitivity to fluctuations. As a result, with otherwise the same set

of parameters, fewer neurons are strongly rectified.

The size of the peak of the TW at 450 is another indication of

the underlying mechanism in each case: The PIF network with

g~4 has the strongest peak at this value of the TW. This is in fact

a sign of the linear operation of the network, as a purely linear

network does not distort the cosine tuning of the input and

generates a clean cosine output tuning curve. There is no sign of a

significant sharpening of the tuning curves (reducing the TW),

consistent with the linear operation of the network.

For both PIF and LIF networks with g~8, a distribution of TW

results, with tuning curves as sharp as TW~200. There is,

therefore, some nonlinearity in these networks, which sharpens

input cosine tuning curves with TW~450. However, there is still a

residual peak at 450, reflecting the fraction of neurons for which

the contribution of nonlinear mechanisms is very small. Note that

this peak changes differently for networks of PIF and LIF neurons:

For the PIF network, at the lowest contrast, a large number of

tuning curves have TW~450, i.e. they do not get significantly

rectified. This is because the output modulation for a significant

fraction of the population is not yet strong enough to surpass the

output baseline firing rate.

At higher contrasts, this fraction becomes much smaller, since

the strong output tuning curves imply a significant degree of

rectification for the majority of the population. As a result, both a

sharpening of tuning curves and an enhancement of OSI, but not

Fig. 4. Orientation selectivity in networks of PIF and LIF neurons. (A) Sample tuning curves for two excitatory (red) and two inhibitory (blue)
neurons at three different contrasts. For otherwise the same set of parameters, the tuning curves are extracted from neurons in the PIF network with
g~4 (A1; same as Fig. 1), the PIF network with g~8 (A2; same as Fig. 2), and the LIF network with g~8 (A3; same as Fig. 3). Dots are the results from
numerical simulations, and the lines show the best fitting von Mises function (see Methods for details). Lighter colors correspond to lower contrasts in
each case. (B) Data from a sample of 10% of all neurons in the network are aligned to the preferred orientation of the input, respectively, and plotted
for different contrasts. The solid line is the tuning curve obtained from averaging over all 5000 neurons, and the shading shows the standard
deviation. The range of input POs is broken into 180 bins, and mean and STD are then computed from all neurons falling into the same bin. The green
line shows the feedforward input, normalized to have the same mean value as the output tuning curves. The plots corresponding to different
contrasts are shown in separate rows, with the top panel (B1) corresponding to the lowest contrast (C~1), the middle panel (B2) corresponding to
the middle contrast (C~2), and the bottom panel (B3) corresponding to the highest contrast (C~3). (C) Average tuning curves from (B) are shown in
the top panel (C1) for all contrasts, with lighter colors corresponding to lower contrasts. The dashed line shows the level of spontaneous activity, i.e.

the background firing rate in absence of feedforward stimulation (this is the term~rrbkg~~AAJbkg~nnbkg in Eq. 14). In the bottom panels, the tuning curves
are compared after normalization, first by normalizing each tuning curve to its mean (middle row, C2), and then by normalizing it by its maximum
value (bottom row, C3). In the inset of the first column, the normalization is performed after subtracting the spontaneous activity.
doi:10.1371/journal.pcbi.1004045.g004
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a significant change in POs, are obtained. Once the negative

halfwave of the cosine is fully rectified, because the baseline firing

rate is too low, there is no room for even more rectification,

explaining the stability of TW and OSI distributions for higher

contrasts. For LIF networks, however, this transition between low

and high contrasts is smoother. This is again due to a smoother

input-output transfer function of the neuron model, which implies

a less strict rectification.

This result can be summarized by plotting the distribution of

tuning widths for all three networks considered here, for each

contrast (S2 Fig.). It is clear that the PIF network at g~4 has the

most linear input-output relation, which leads to a low degree of

sharpening of tuning curves (S2A Fig.). PIF and LIF networks with

more inhibition (g~8), in contrast, show a significant amount of

sharpening, and this is a robust phenomenon at all contrasts (S2B,

C Fig.). This phenomenon can be further quantified by a

sharpening coefficient ranging between 0 and 1 (S2D–E Fig.),

where the highest sharpening corresponds to values close to 0. The

stability of the distributions at different contrasts again reveal the

contrast-invariance of tuning widths.

What determines individual tuning curves? In Figs. 1–3,

we analytically computed the population responses of the three

different networks to one specific orientation. If we now repeat the

same procedure for all orientations, we can analytically determine

the shape of each and every individual tuning curve. The

predicted tuning curves for some sample neurons are compared

with the result of numerical simulations in Fig. 6. The shape of the

average tuning curves of the three networks in question is shown in

Fig. 7, A–C, respectively. Again, the result of the analytical theory

matches very well the outcome of numerical simulations,

corroborating the fact that our linear and nonlinear rate models

capture all essential properties of OS in the networks considered

here. When it comes to explaining how OS emerges in these

networks, and which mechanisms determine its properties, we

therefore tend to believe that our analysis is complete.

Mechanisms underlying orientation selectivity. Comparing

the resulting tuning curves in the different networks can cast further

light on the mechanisms underlying OS in each case.

First, from the linear operation of the network, there are already

two properties evident (Fig. 6A): One property is that, while the

baseline component of the tuning curves is selectively suppressed,

the tuned component is maintained or even enhanced; for further

explanation of this process, see [21]. Another important property

is that the tuning curves have essentially the same shape at

different contrasts. In particular, they have their minimum and

their maximum at very similar orientations.

Note that the latter property follows directly from the linearity

of the operator ~AA, if the term ~rrbkg~~AAJbkg~nnbkg in Eq. 14 is

negligible or subtracted (with the parameters used here,~rrbkg&7 or

3spikes=s, for g~4 or 8, respectively).

These linear properties, leading to highly selective and contrast

invariant output responses, are mostly preserved in nonlinear

networks. There are however some additional mechanisms, which

change the shape of output tuning curves, and the processing of

selectivity (Fig. 6B, C). The most immediate consequence of

nonlinear processing is a sharpening of the tuning curves (Fig. 5B),

as discussed before. Another property is a global attenuation of

tuning curves, without distorting them. In fact, the linear theory

overestimates the amplification of tuning curves. This is shown in

Fig. 6B for the PIF network with g~8, where the result of the

linear prediction (obtained from Eq. 14) for this network is

compared with the solution of the linear rectified rate equation

that is directly obtained from Eq. 13.

This discrepancy is further demonstrated in Fig. 7B, where the

average tuning curves of the network at different contrasts are

compared with the predictions by different theories. Although

Fig. 5. Distribution of orientation selectivity in all three networks considered. (A) Distribution of the orientation selectivity index (OSI, see
Methods) for networks of PIF and LIF neurons. Lighter colors indicate lower contrasts, and the distribution for the lowest contrast is filled for better
visibility. For the network of PIF neurons with g~4 (first panel), the distribution of OSI for tuning curves after subtraction of spontaneous activity is
plotted in red in the inset. In the bottom panels, the OSIs of individual tuning curves are compared at different contrasts: The OSI at the middle
contrast is plotted vs. the lowest (middle row), and the OSI at the highest contrast is plotted vs. the middle (bottom row). For the first column, the
same plot is shown for the OSI obtained after subtracting spontaneous activity (inset top left, red). Also shown is the distribution of the difference in
the OSI between the two contrasts in each case (inset bottom right). (B) Distribution of tuning width (TW) in the networks for different contrasts. TW
is computed from the best fitting von Mises function to individual tuning curves (see Methods). The error of this fit is quantified by an error index in
percent (see Methods), the distribution of which is plotted in the inset. In all panels in this figure, only the results from tuning curves with an error
smaller than 15% (at all contrasts) are plotted. The bottom panels show the scatter plot of TW at different contrasts, similar to the bottom panels in
(A). (C) Same as in (A) and (B) for the difference in input PO and output PO of individual neurons (dPO).
doi:10.1371/journal.pcbi.1004045.g005
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linear theory predicts the mean and the standard deviation of

overall tuning curves quite well for the PIF network with g~4
(Fig. 7A), it is generally overestimating the tuned output firing

rates for the PIF network with strong recurrent inhibition (g~8,

Fig. 7B). The discrepancy is strongest for neurons that are

stimulated at their preferred orientations, at higher contrasts,

consistent with the visual inspection of tuning curves (Fig. 6B).

To identify the source of this discrepancy, we consider the

amplification of modulation (F2) component at different contrasts.

In Figs. 7D–F, the F2 components of individual output tuning

curves are extracted. The F2 components at higher contrasts

(C~2,3) is then scattered against the F2 component at the lowest

contrast (C~1). If the network operation was linear, increasing the

contrast should only scale the modulation. This is indeed almost

the case for PIF network with g~4 (Fig. 7D), where most of the

dots lie on the dashed lines, denoting a linear amplification. For

neurons with large F2 components, however, the linear relation

breaks, and a sublinear amplification is observed. This means that

the nonlinearity of rectification is only effective for strongly tuned

inputs: Their F2 components surpass the F0 component, leading

to a partial rectification of tuning curves.

In the PIF network with g~8, in contrast, most of the neurons

deviate from the behavior predicted from linear amplification

(Fig. 7E). This is consistent with our previous observation that a

significant degree of rectification exists here. Interestingly, the LIF

network with g~8 shows the weakest deviation from the linear

behavior (Fig. 7F). This is again in line with our observation that

LIF networks do not exhibit all-or-nothing rectification, as a result

of the smoother input-output transfer function of their neurons. As

all neurons are responsive even to subthreshold input, effectively

very little rectification is observed. This explains the surprisingly

good match of the LIF network with the predictions from a linear

theory.

An explanation for the suppression of the modulation compo-

nent can be given as follows: As a result of rectification of firing

rates, baseline and modulation are not processed independently

any more. In fact, the rectified population tuning curve now

assumes a component that has a non-zero projection in the

direction of the common mode. As a result, the rectified

modulation vector also hits the suppressed mode of the network.

The network does not allow the modulation to grow without

bounds, and a suppressive mechanism controls it by a process

which very much resembles normalization: The stronger the tuned

component is, the stronger is the negative feedback and the

corresponding divisive suppression, which was previously selective

to the untuned component.

In general, the linear theory predicts higher firing rates in

average tuning curves (Fig. 7B), it overestimates the peak of tuning

curves (Fig. 7G), it leads to smaller OSIs (Fig. 7H) and a larger PO

scatter (Fig. 7I). The decrease in the maximum firing rate due to

non-linear processing (Fig. 7G) is a consequence of the suppression

of modulation. The suppression is more prominent for strongly

tuned neurons with more pronounced modulation components.

The deviation in the peak activity is more pronounced for high

amplitudes, and small tuning curves behave almost linearly

(Fig. 7G, Inset). The OSI is enhanced by rectification (Fig. 7H),

as this leads to a complete suppression of responses at non-

preferred orientations. Finally, the rectifying nonlinearity brings

about less deviation of output from input POs. The linear

prediction of neuronal responses deviates more from the input

signal and results in a wider distribution of PO scatter than

observed in simulations (Fig. 7I).

Fig. 6. Analytical computation of individual tuning curves for different networks. Output tuning curves extracted from numerical
simulations (dots) for a sample of 12 excitatory (red) and 12 inhibitory (blue) neurons are compared with the corresponding analytical predictions
(lines), based on the known properties of the neuron model used and the exact network topology. In (A) we used the linear theory (from Eq. (14)), in
(B) the linear rectified model (from Eq. 9), and in (C) the nonlinear input-output rate equation for LIF neurons (from Eq. 13). In panel (B), the result of a
linear prediction (from Eq. (14), assuming no rectification) for g~8 is plotted in black lines, for comparison.
doi:10.1371/journal.pcbi.1004045.g006

Orientation Selectivity in Inhibition-Dominated Networks

PLOS Computational Biology | www.ploscompbiol.org 8 January 2015 | Volume 11 | Issue 1 | e1004045



This result may look counter-intuitive, as the distortions

introduced by a nonlinearity in output tuning curves are in fact

inducing less distortion in feature selectivity, enhancing the fidelity

of the network in representing the input signal. An intuitive

account of this process can be given in terms of the effective

number of active neurons. Rectification of firing rates decreases

the effective population of neurons contributing in the recurrent

network. As the degree of PO scatter in the network depends on

the random summation of presynaptic POs [21], an effectively

smaller population of presynaptic neurons leads, on average, to a

smaller change in output POs, assuming they represent an

independent sample.

Orientation selectivity is robust across different regimes
Asynchronous vs. synchronous network dynamics. We

have shown that OS emerges robustly in networks of both PIF and

LIF neurons, with and without rectification. We also have shown

that the firing rate of every individual neuron, along with all

properties of OS, can actually be analytically computed in these

model networks. We now ask the question, if these results and their

Fig. 7. Average tuning curves in different networks. For the network of PIF neurons with g~4 (A) and g~8 (B), and for the network of LIF
neurons with g~8 (C), the average tuning curves are shown for comparison. Individual tuning curves are aligned to their Input PO, and the mean and
standard deviation of all data points falling in bins of size 10 are computed, separately for each contrast. The average tuning curves extracted from
simulations are plotted as solid lines (cyan), and the dashed line (magenta) shows the average tuning curve from analytical predictions. The shading
indicates the standard deviation, in respective colors. In (B), the average aligned tuning curve from a linear prediction is also plotted for comparison
(black dashed lines). Lighter colors correspond to lower contrasts. (D, E, F) For each neuron, the modulation (F2) component of the tuning curve is
computed at each contrast. This value for higher contrasts (C~2,3) is then scattered against the lowest (C~1), respectively. The dashed lines denote

the result of linear amplification of modulation, F2(C’)~
C’
C

F2(C). The distributions of the respective modulation (F2) ratio F2(C’)=F2(C) are

plotted in the inset, respectively. (G) In PIF networks with g~8, the maximum firing rates of individual tuning curves, rmax, are computed. The

difference of this maximum value from the simulated results (Diff Max Rate) is then computed (Drmax~rPredicted
max {rSimulated

max ). The distribution of this
difference is plotted for different contrasts, for the linear rectified prediction (NLin. Pred.) and for the linear prediction (Lin. Pred.). Inset: For the

middle contrast (C~2), rPredicted
max is plotted vs. rSimulated

max , for both predictions. (H, I) For the PIF network with g~8 and for different contrasts, the
distributions of OSI and dPO (output PO - input PO) are plotted, respectively. For the simulated results and for the linear rectified prediction, the
distributions show almost a perfect match. This is compared with the linear prediction (in black).
doi:10.1371/journal.pcbi.1004045.g007
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underlying mechanisms are robust across different regimes of

network dynamics. In particular, is the state of network dynamics

crucial for OS and CI to emerge in our networks?

Recurrent networks of excitatory and inhibitory spiking neurons

are known to exhibit a rich dynamic repertoire, ranging from

asynchronous to synchronous states, a property that they share

with the mammalian neocortex [27]. One may therefore ask, if the

state of neuronal network dynamics influences its function in a

crucial way. For instance, is it necessary for the networks studied

here to operate in the AI regime?

In fact, with the constellation of parameters we work here, with

strong external input and inhibition dominating the recurrent

network, we may easily end up in a highly synchronous state with

fast oscillations, if we do not impose a broad distribution of

synaptic transmission delays, for instance. A raster plot of activity

for a LIF network with identical connectivity, and with g~8, but

with a delay of 3 ms for all synapses is shown in Fig. 8A. Although

the activity state looks very different, the orientation tuning looks

very similar to what we obtained for the AI network, shown in

Fig. 3. In both cases, exactly the same nonlinear input-output

transfer function predicts the feature specific responses quite well

(compare Fig. 3F with Fig. 8F).

Consistent with the similarity of population tuning curves,

tuning of individual neurons also shows a very similar behavior

across regimes (Fig. 9). Strong responses at orientations close to

the input PO are obtained at all contrasts, indicating the emergence

of highly selective and contrast invariant output tuning curves.

The dynamic state of the network, thus, does not compromise

OS and CI of output responses, and leads only to very subtle

differences. This outcome could have been expected, as it is based

on average firing rates and, as such, does not depend on the details

of temporal dynamics in the network.

Mean-driven vs. fluctuation-driven activity. Balanced

networks with strong synapses are known to settle in a

fluctuation-driven regime of activity, where the mean input to

neurons remains below threshold on average, and only temporal

fluctuations lead to spiking activity [28]. It is therefore important

to ask to which degree such a regime of activity is necessary for the

network to maintain its highly selective output responses, with

contrast invariant tuning curves.

Considering PIF neurons here helps to elucidate the contribu-

tion of mean and fluctuations. As opposed to LIF neurons the

firing rate response of which depends on the first two moments of

the total input to the neuron, the firing rate of PIF neurons only

depends on the mean input. In fact, we used this property to derive

a linear rate equation (Eq. 6), which describes the operation of the

network merely in terms of the mean values of (excitatory and

inhibitory) input and output firing rates. All the results that we

have presented here for networks of PIF neurons are therefore

valid for a mean-driven regime of activity as well.

We conclude that fluctuation-driven activity is not a prerequisite

to obtain strongly tuned and contrast invariant neuronal

responses. Likewise, all the linear mechanisms of the network,

like selective suppression of the common-mode and selective

amplification of modulation, as well as nonlinear ones, like

sharpening and normalization, are perfectly compatible with both

fluctuation-driven and mean-driven activity.

This can be investigated further by analyzing the LIF

simulations in more detail. In fact, the mean membrane potential

of LIF neurons remains always below threshold (Fig. 10). Neurons

in the LIF network, for all contrasts and at all orientations, are

therefore operating in the fluctuation-driven regime. Nevertheless,

the properties of OS in these networks were pretty much the same

as mean-driven PIF networks. The results and the analysis we

Fig. 8. Population responses of the network of LIF neurons in a synchronous state. All panels and conventions are the same as Fig. 1. The
network parameters are the same as Fig. 3 (network of LIF neurons with g~8). Only the transmission delays of recurrent synapses are now all the
identical, drec~3 ms, in contrast to the random distribution of delays used in Figs. 1–3. Simulation of each stimulus orientation is run for a shorter
time of 3 s, leading to a somewhat larger scatter in panel (F).
doi:10.1371/journal.pcbi.1004045.g008
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provided here are therefore general, and do not depend on a

specific dynamic regime of activity.

Discussion

We studied the mechanisms contributing to the emergence of

orientation selectivity in randomly connected networks of spiking

neurons that lack any feature specific connectivity. The OS of

neurons in rodent primary visual cortex is very similar to what we

see in numerical simulations of networks of integrate-and-fire

neurons, and our subsequent analysis revealed both linear and

nonlinear mechanisms underlying these properties. Our linear

rate-based account of the emergent properties of such sensory

networks captured two essential mechanisms: selective suppression

of the common mode, and selective amplification of the feature

specific component. Together these two yielded highly selective

output responses of most neurons in the network, and it fully

accounted for the contrast invariance of the tuning curves.

According to our analysis, rectification of negative firing rates

was the single most important source of nonlinearity in our system.

An extended linear theory was able to fully account for the

distortions introduced by this nonlinearity in output tuning curves.

Interestingly, this nonlinearity also lead to a reduced distortion in

the representation of the feedforward signal, i.e. the output POs of

neurons differ less from their input POs. Moreover, a general

sharpening of tuning curves was induced by this nonlinearity. This

is consistent with experimental findings on the role of the spiking

nonlinearity in sharpening the membrane potential tuning [29].

Another consequence of the nonlinearity was a suppression of

the feature specific component, which was more effective for

neurons with higher output modulation. The suppressive mech-

anism of the network, which was selective to the common mode in

the linear regime, is now controlling also the modulated

component, provided the nonlinearity is strong. In this scenario

the tuned component cannot grow beyond all bounds. If the

suppressive mechanism is the same as the divisive attenuation of

the common mode [21], it should in fact act as a divisive

normalization of the modulation. Computational analysis of this

mechanism is beyond the scope of the current article and needs

further study.

The results were robust across different states of network

dynamics, different regimes of activity, and for different neuron

models. Networks operating in the AI state, as well as in a

synchronous state with fast oscillations, showed the same degree of

OS. Mean-driven PIF networks exhibited essentially the same

neuronal tuning as networks of LIF neurons settled in a

fluctuation-driven regime of activity. We could also rule out a

significant contribution of the leak in networks of LIF neurons,

another nonlinear mechanism described in more detail in a

previous study [21].

We expect that the same mechanisms are at work, and hence a

similar analysis would predict the emergence of OS and its

Fig. 9. Orientation selectivity in a synchronous state of network dynamics. Same as Fig. 4, for the networks of LIF neurons with a fixed
transmission delay of recurrent synapses, drec~3 ms. This brings the networks to operate in a fast-oscillating synchronous state.
doi:10.1371/journal.pcbi.1004045.g009
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properties, in models with more heterogeneous connectivity, and

with more complex neurons (as in [19]). It is, however, possible

that additional nonlinear mechanisms, like a power-law transfer

function [30,31], play an additional role in other networks. It may,

however, be quite difficult to tease apart the contribution of each

of the underlying mechanisms. By predicting the exact output

tuning curves in our networks, composed of different flavors of

integrate-and-fire neurons operating in very different regimes of

inhibition dominance, dynamics and activity, we were able to

pinpoint the main contributing mechanisms to OS. Pursuing the

same analysis strategy for other networks could help to elucidate

the exact nature of underlying mechanisms in each case.

Our rate-based description of network dynamics here com-

pletely ignored a possible contribution of pairwise correlations

across neurons. This was in spite of a not particularly sparse

connectivity of excitatory neurons, and an even denser connec-

tivity of inhibitory neurons. The effect of the shared input,

however, did not manifest itself in the firing rates, and in fact our

predictions worked quite well. A possible additional contribution

comes from the fact that the network is dynamically decorrelating

itself, as a result of balance of excitation and inhibition, as has been

demonstrated before [32,33]. Dense pattern of inhibitory connec-

tivity in local networks, as we have used here and has been

reported experimentally in different cortices [12,34,35], might

therefore further enhance this decorrelation.

Inhibition dominance was also crucial for an optimal operation

of our networks in achieving highly selective and contrast-invariant

orientation-specific responses. Note that this inhibition was

provided by recurrent inhibition in our model networks, and

purely feedforward inhibitory circuitry would not support the

mechanisms we described here (for a more elaborate discussion, see

[21]). It has been reported in experiments that broadly tuned

inhibitory input contributes to sharpening and contrast-dependence

of OS responses in mouse visual cortex [24,36], and it has been

suggested that the feedforward inhibition resulting from broadly

tuned PV expressing interneurons is the underlying mechanism

[24,36]. Our explanation here suggests instead that the resulting

contrast-dependent, untuned inhibition is an emergent property of

the network, and not of individual neurons. That is, even if

individual inhibitory neurons are themselves sharply tuned (as

illustrated e.g. in Fig. 4), the resulting recurrent inhibitory input

each neuron receives within the network can be untuned.

Note that this does not mean either that tuned inhibition is

necessary, as our model behaves essentially the same way when

inhibitory neurons are only poorly selective (S1 Fig.). Strongly

tuned as well as weakly tuned inhibitory neurons [25,26] can

equally well serve the role of recurrent inhibition in shaping OS

responses and leading to contrast-invariance. What matters is that

in both cases the net inhibitory input, as a result of recurrent

interactions within the network, becomes untuned and propor-

tional to the average activity of the excitatory population, such that

a contrast-dependent untuned inhibition results as an aggregate

property of the network dynamics, irrespective of sharp or broad

tuning of its inhibitory neurons.

The above scenario can also explain why dark-reared mice,

which lack a broadening of PV+ responses, still operate with

untuned aggregate inhibitory input from the network and hence

show highly selective responses [36]. As we demonstrated with our

simulations and analyses here, selectivity of output responses does

not depend on the (un)selectivity of individual inhibitory neurons.

Rather, it is the interaction of excitation and inhibition in the

recurrent network that determines the output selectivity. Our

model is, therefore, fully consistent with the findings by [36], who

demonstrated experimentally that ‘‘blocking the broadening of

output responses of individual inhibitory neurons does not block

the broadening of the aggregate inhibitory input to excitatory

Fig. 10. LIF networks operating in a fluctuation-driven regime of activity. Tuning of the membrane potential for neurons in the LIF network
shown in Fig. 3. (A) The time-averaged membrane potential is shown for a sample excitatory neuron with input PO h�~90 0 , at different orientations
and different contrasts of the stimulus. Lighter colors correspond to lower contrasts, respectively. Vm (red lines) is the actual membrane potential,
and Vfm (black dots) is the free membrane potential. The free membrane potential is obtained by correcting for the net hyperpolarization resulting
from voltage reset after each spike, i.e. Vfm~VmztmrVrest. The reconstructed free membrane potential (black lines) is the prediction from the net

input to the neuron, including the background input, tmJbkg~nnbkg, the feedforward input, tmJffwCnb½~11zm cos (2(h{~hh�))�, and the recurrent input,

tm
~WWr. (B) Average free membrane potential for more sample neurons, 12 excitatory and 12 inhibitory, with different input POs. All tuning curves are

aligned and averaged across bins of size 10 . The mean tuning curve is plotted as solid lines, and the shading shows the standard deviation across
neurons.
doi:10.1371/journal.pcbi.1004045.g010
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neurons’’. Our model also explains the results of a previous

experimental report demonstrating that ‘‘broad inhibitory tuning’’

of fast spiking cells is ‘‘not required for developmental sharpening

of excitatory tuning’’ [37]. Based on these convergent results, we

therefore hypothesize that untuned inhibition is an emergent

property of an inhibition-dominated network, and not necessarily

a result of the feedforward action of broadly-tuned fast spiking

interneurons.

Our simulations demonstrated that the LIF network showed the

‘‘best’’ contrast-invariant behavior (see Fig. 5) and may thus

provide a particularly good match with biology. This observation

is, in fact, consistent with previous experimental observations on

the role of noise for contrast-invariance of orientation tuning [23]. In

contrast to the PIF neuron model, the LIF neuron model has a smooth

input-output transfer function, which in turn seems to enhance the

contrast-invariance of output responses [23]. That is, as opposed to the

PIF model with a sharp all-or-none threshold, in the LIF model even

‘‘subthreshold’’ inputs can elicit some low-rate spiking activity. Our

use of PIF and LIF neuron models in different operating regimes,

therefore, also sheds light on this aspect of orientation selectivity, in a

realistic network model showing OS responses.

The contrast-dependence of OS responses that we observed in

our networks (see Fig. 5) can also be linked with experimental

findings. In fact, in layer 4 of mouse visual cortex, such contrast-

dependence of OS has recently been reported [24], with a decrease

in TW and an increase in OSI upon increasing the contrast. This is in

line with our results, illustrated in Fig. 5. Such a contrast-dependence

of OS was also reported previously in ferret primary visual cortex [8],

where an inverse relation between the circular variance (that is

1 { OSI) and stimulus contrast was reported.

Our results and analyses here suggest a satisfactory explanation

for this puzzling combination of contrast-invariance and contrast-

dependence of OS. First, the general invariance with regard to

contrast is a natural consequence of the fact that OS is processed

by inhibition-dominated networks. This is a result of the linear

recurrent network operation, which suppresses the baseline and

counteracts the iceberg effect, thus generating neuronal selectivity

across different contrasts. The nonlinear properties of single-

neuron transfer functions can now act on top of this and even enhance

OS further when contrast increases. Contrast-invariance is primarily

the result of linear network operation, whereas the subtle contrast-

dependence came as a consequence of nonlinear neurons.

To zoom in on the role of single-neuron properties and different

regimes of network dynamics, we intentionally neglected the role

of specific structure in network here and rather confined our study

to random networks without any specific connections. A more

realistic assumption would be to consider networks with distance-

dependent connectivity, which is what we find in the biological

cortex. Notably, the same results as those obtained for totally

structureless random networks have also been reported in

networks with some structure, given certain conditions on the

stability of the balanced state [19,38,39]. Specifically, it has been

shown that the same kind of analysis we performed here can be

extended to account for all properties of OS in such networks, as

long as the extent of recurrent inhibition is more local than that of

excitation [38]. This condition has in fact been derived analytically

in [39], demonstrating that models of OS based on a sharper

tuning of recurrent excitatory input (as e.g. considered in [40,41])

cannot be consistent with the stability of the AI state. Remarkably,

in the latter models a high level of pairwise correlations also arises

[42,43], which is not consistent with the generally low pairwise

correlations reported in the input layers of visual cortex [43,44].

We also ignored feature-specific connectivity [11–15], another

biologically reported structure which arises later during development,

and which should be considered in future modeling studies. Linear

amplification of feedforward tuning has, for instance, been recently

reported in rodents [16–18], presumably as a result of such feature-

specific connectivity. In such a case, the above-mentioned issues with

regard to the stability of the balanced state as well as the emergence of

large pairwise correlations will be again posed, as now the same

structure would exist in a functional space (rather than in the physical

space of neuronal connectivity). How those issues could be dealt with

by the cortex in the functional domain, and what further functional

properties are resulting from such a structure, are interesting

questions that ask for further investigations.

We conclude with a note on the solution of nonlinear rate

equations in the network. To obtain the activity of each neuron in

the network in the presence of a nonlinearity (rectifying

nonlinearity for PIF, and nonlinear transfer function for LIF

neurons), we needed to numerically solve a very high-dimensional

nonlinear equation. We resorted to the iterative process described

in Eq. (9) and Eq. (13), respectively. Although this yielded robustly

converging results in all cases without exception, it was not a very

fast, sometimes an extremely slow procedure. The spiking

network, in contrast, reaches to the solution much faster, i.e. as

soon as the onset transient is over and stationary spiking is reached

(ttrans~150 ms in all our simulations); it is only necessary to

record enough spikes to reliably estimate the firing rate, especially

if the activity is very sparse. It might therefore be interesting to see

if the spiking network dynamics can be exploited to efficiently solve

high-dimensional nonlinear equations numerically, especially as

the nonlinear solver becomes very slow for high dimensions.

Methods

Neuron model
The sub-threshold dynamics of the membrane potential V (t) of

LIF neurons is described by the leaky integrator equation

C _VVz
1

R
V (t)~I(t) ð1Þ

where the resting membrane potential Vrest is set to 0 mV. The

current I(t) represents the total input to the neuron, the integration

of which is governed by the leak resistance R, the membrane

capacitance C, and the resulting membrane time constant tm~RC.

When the voltage reaches the threshold at Vth, a spike is generated

and transmitted to all postsynaptic neurons, and the membrane

potential is reset to rest. It remains at this level for a brief absolute

refractory period, tref , during which all synaptic currents are shunted.

The PIF neuron model lacks the leak term in Eq. 1, which is

equivalent to an infinitely large leak resistance, or zero leak

conductivity,
1

R
~0. The dynamics of the membrane potential

then amounts to

C _VV~I(t): ð2Þ

This is the perfect integrator equation.

In a recurrent network of integrate-and-fire neurons (e.g., PIF

or LIF), the total input current I(t) is a linear superposition of all

individual post-synaptic currents (PSC). Here, we consider the case

where the total charge Q transmitted to the post-synaptic neuron is

delivered instantaneously during a pulse-like post-synaptic current.

As a consequence, the post-synaptic potential (PSP) induced by

each incoming spike has an amplitude of J~
Q

C
. For a LIF neuron,
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it then decays exponentially with a time constant tm. For a PIF

neuron, the post-synaptic potential does not decay, but remains at

the level reached until another input event changes it.

Note that the absence of a leak term in the PIF model is

practically equivalent to having a very large membrane time

constant, tm??, a property that we have exploited in our

numerical simulations. The implementation of both LIF and PIF

neuron models is based on a numerical method known as ‘‘exact

integration’’ [45,46]. Numerical simulations of all networks were

performed using the neuronal simulation environment NEST [47].

Firing rate model
The net change in the membrane potential of a PIF neuron can

be expressed in terms of all incoming spikes. After each output

spike, the membrane potential is reset to rest, so we also need to

account for the size of this voltage jump Vreset~Vth{Vrest, which

effectively hyperpolarizes the neuron. If tk
i is the time of the k-th

spike elicited by neuron i, we use a Dirac delta-function d(t{tk
i ) to

represent it as a temporal signal. The sum Yi(t)~
P

k d(t{tk
i )

then stands for the spike train of neuron i. We use Xi(t) to denote

the spike train corresponding to the external stimulus and obtain

the following equation to describe the dynamics of a network with

synaptic couplings encoded in the connectivity matrix Wij

_VV (t)~½{VresetYi(t)z
X

j

WijYj(t{D)zJsXi(t)�: ð3Þ

Assuming stationarity, there can be no drift of the time averaged

membrane potential, and we have S _VViTt~0. We write ri~SYiTt

for the mean firing rate of neuron i in the network, and si~SXiTt

for the mean firing rate of its external input (stimulus), respectively.

Under these conditions, we therefore obtain an equation that

relates the stationary firing rates of all neurons in the network to

their input firing rates

0~{Vresetriz
X

j

WijrjzJssi, ð4Þ

Observe that transmission delays are irrelevant for temporal

averages, and that the above equation holds for networks with

arbitrary connectivity.

For a network of N neurons, the recurrent synaptic connectivity

is encoded by a fixed N|N coupling matrix ~WW~(Wij). The external

inputs and the firing rates of all neurons are represented by the N-

dimensional vectors ~ss~(si) and ~rr~(ri), respectively. The time

averaged equation above then reads, in matrix-vector notation

~00~{Vreset~rrz~WW~rrzJs~ss: ð5Þ

If all firing rates are non-negative, this equation can be solved

for the vector~rr of recurrent firing rates by linear methods

~rr~(~11{
~WW

Vreset
){1 Js

Vreset

~ss~~AA
Js

Vreset

~ss: ð6Þ

The only difference in the case of LIF neurons is the additional

leak term, which after time averaging leads to a term proportional

to the mean membrane potential (see [21,30,48]). Eq. 4 should

now be written as

ui~tm½{Vresetriz
X

j

WijrjzJssi�, ð7Þ

where ui~SViTt is the time averaged membrane potential of

neuron i. Similarly, instead of Eq. 6, one now obtains

~rr~~AA
1

Vreset
(Js~ss{~uu=tm): ð8Þ

A PIF network is therefore equivalent to a LIF network with a

mean membrane potential clamped at 0 mV.

Nonlinear firing rate equation
In this section, we extend our linear analysis to account for the

nonlinearity of rectification. To obtain the linear rectified tuning

curves in Fig. 5B, we artificially applied the rectification on the

output of the linear prediction. This is obviously not an exact

solution. To improve the result, the effect of silent neurons with

rectified firing rates must be considered in the dynamics of

network, as their contributions to network dynamics are effectively

shunted.

To obtain this, we should solve instead the nonlinear firing rate

equation:

tsim
_~rr~rr~{~rrz

1

Vreset
½~WW~rrz~ss�z: ð9Þ

In order to obtain the population response of the network to

each orientation, we solved this equation iteratively for T~5 s
and dt~0:02 s, and chose tsim~1 s.

The nonlinear analysis provided here became possible since a

linear rectified response function could be attributed to PIF

neurons. How could this strategy be extended to networks of LIF

neurons? This is more challenging since the output firing rate of

LIF neurons is known to depend on both the mean and the

standard deviation of the input, and hence they show a more

complicated nonlinear input-output curve. This is in contrast to

PIF neurons, which are only sensitive to the mean net input.

In fact, equation Eq. 9 can be written in its general form for any

nonlinear input-output transfer function. Let F be a nonlinear

transfer function which determines the response of an arbitrary

neuron model to its dynamic input, as a function of r and s. Eq. 9

can now be rewritten as

tsim
_~rr~rr~{~rrzF (r,s): ð10Þ

In case of a network of LIF neurons, this function is explicitly

known, given the first two moments of the input, the mean m and

standard deviation s

r~W(m,s)~ trefztm

ffiffiffi
p
p ð ~VV th

~VV0

eu2
(1zerf(u))du

" #{1

ð11Þ

with ~VVth~(Vth{m)=s and ~VV0~(Vrest{m)=s. Here Vrest, is the

resting voltage, to which the neuron is reset after each spike, and

tm is the membrane time constant.
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The mean input can be expressed as~mm~tm(~WW~rrz~ss). Under the

assumption of uncorrelated, Poissonian incoming spike trains, we

can write the variance explicitly as

~ss2~tm(~VV~rrzJ2
s~ss): ð12Þ

Here ~VV is a matrix obtained by taking the square of each entry

in ~WW , i.e. Vij~W 2
ij . Now, Eq. 9 can be written as

tsim
_~rr~rr~{~rrzW½tm(~WW~rrz~ss),tm(~VV~rrzJ2

s~ss)�, ð13Þ

and solved iteratively, as before. To perform this computation

more effectively, we have interpolated the firing rates from

precomputed combinations of m and s.

Simulation of networks of spiking neurons
We simulate a network of Nexc~fN excitatory and Nexc~

(1{f )N inhibitory neurons. Each neuron in the network receives

(1) background input from remote sources, (2) recurrent input from

other neurons in the same network, and (3) feedforward sensory input

from thalamic neurons in the lateral geniculate nucleus (LGN):

1. The background input consists of input from Nbkg~5000
remote neurons, each firing with a spontaneous rate of

n0
bkg~1 spikes=s, with the synaptic strength of Jbkg~

0:2 mV. In our simulations, we assume these neurons to fire

independently of each other and, therefore, emulate the total input

as a homogeneous Poisson process with total rate of nbkg~5 kHz.

2. The recurrent input is the input that each neuron, be it

excitatory or inhibitory, receives from EexcNexc excitatory and

EinhNinh inhibitory neurons randomly sampled from the local

network. That is, for all network connectivities, we fix the in-

degree, separately for the excitatory and the inhibitory

population, with Eexc and Einh denoting the probability of

excitatory and inhibitory connections, respectively. Multiple

synaptic contacts and self-contacts are excluded, and the

connectivity matrix respects ‘‘Dale’s rule’’ [48]. The weight

matrix ~WW encodes the exact configuration of connections

within the local network. The total recurrent input, ~WW~rr, that is

received by each neuron depends on the firing rates of all

neurons in the network.

3. The feedforward input is modeled as a result of the

convergence of Nffw~50 thalamic neurons. The response of

each thalamic neuron to the stimulus, n0
ffw, depends on the

stimulus contrast, C, which is a measure of the difference

between the stimulus luminance and the background. We take

the firing rate to be n0
ffw~C|20 spikes=s, and we simulate

the network in response to three different contrasts (C~1,2,3).

The whole input is again emulated as a Poisson process with

Table 1. Table of default parameters.

Neuron model

membrane time constant tm~RC 20 ms (LIF); R?? (PIF)

resting potential Vrest 0 mV

threshold voltage Vth 20 mV

reset voltage Vreset 20mV

refractory period tref 2 ms

Synapse model

EPSP Jexc 0:1 mV

IPSP Jinh~{gJexc g~8 (or 4)

feedforward (ffw) EPSP Jffw 1 mV

background (bkg) EPSP Jbkg 0:2 mV

ffw and bkg delays dffw , dbkg 1 ms

local recurrent delays drec ½0:1, . . . ,3� or 3 ms

Network connectivity

# neurons N 5000

fraction of excitatory neurons f 80 %

fraction of inhibitory neurons 1{f 20 %

# excitatory inputs Cexc~EexcfN Eexc~20%

# inhibitory inputs Cinh~Einh(1{f )N Eexc~50%

Simulation

stimulus orientation h 00,150, . . . ,1650

preferred orientation (PO) h� ½00,1800)

background input rate nbkg 5 kHz

contrast C 1,2,3

ffw baseline rate nffw~C|nb nb~1 kHz

modulation ratio m 20%

doi:10.1371/journal.pcbi.1004045.t001
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total rate nffw~C|nb, with nb~1 kHz. We take the

feedforward efficacy to be Jffw~1 mV.

An oriented stimulus is assumed to induce a weak modulation in

the total feedforward input each neuron receives. The modulation

is given as a cosine function of the orientation of the stimulus, h,

relative to the input preferred orientation (PO) of the neuron, h�.
Neuron i with the input PO of h�i receives a feedforward input of

rate ni
ffw(h,h�i )~nffw½1zm cos (2(h{h�i ))�. Here, m is the input

modulation ratio, and determines which fraction of the feedfor-

ward input is tuned. The input POs of all neurons are randomly and

independently drawn from a uniform distribution on ½00,1800). The

default parameters of our simulations are summarized in Table 1.

If we denote the vector of input POs by ~hh�, the feedforward

input at stimulus orientation h is formed from the components

ni
ffw(h,h�i ). If the background input is added to this input, the

output firing rate can be computed from Eq. 6 as:

~rr(h)~
1

Vreset

~AA½Jbkg~nnbkgzJffw~nnffw(h)�

~
1

Vreset

~AA½Jbkg~nnbkgzJffwCnb½~11zm cos (2(h{~hh�))��:
ð14Þ

Data analysis
To quantify orientation selectivity, we compute the Preferred

Orientation, PO, and the Orientation Selectivity Index, OSI, of

each neuron from its output tuning curve, r(h), obtained in

numerical simulations. We first compute the circular mean [49] of

the firing rate measured at each orientation

R~

P
h r(h) exp (2pih=1800)P

h r(h)
,

where h is the stimulus orientation given in degrees. The output PO

is extracted as the angle of the resultant, arg (R), and the length of it,

DRD, yields a global measure of orientation selectivity, OSI [50].

To each output tuning curve, r(h), we fit a von Mises function

rvM(h)~r1zr2 exp k cos (2(h{w)){1½ �, ð15Þ

using a nonlinear least squares method. The normalized error of fit

is computed from the squared error of the fit

Error~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
h

(r(h){rvM(h))2

P
h

r2(h)

vuuuut :

From the best fitting function, the tuning width is extracted as

TW~
1

2
arccos 1z

1

k
log

1z exp ({2k)

2

� �� �
: ð16Þ

For each output tuning curve, r(h), we also compute the

baseline (F0) and the modulation (F2) component. The baseline is

obtained by averaging the tuning curve over all orientations, and

the modulation is obtained from the second Fourier component of

the tuning curve.

Supporting Information

S1 Fig Orientation tuning in recurrent networks of
either PIF or LIF neurons with broad inhibitory
selectivity. Same as Fig. 4, but inhibitory neurons have broader

output tuning curves. All the parameters are the same as before,

only the modulation ratio of the input to inhibitory neurons is

reduced to minh~2:5%. The modulation ratio of the input to

excitatory neurons is kept the same as before, i.e. mexc~20%.

Very similar output excitatory tuning curves are obtained for all

three network configurations, only the output tuning curves of

inhibitory neurons are broadly tuned now, as a result of receiving a

more broadly tuned input. To speed up the simulations, response

of each network to each orientation is simulated for 3 s.

(TIF)

S2 Fig Sharpening of output tuning curves in different
networks. (A–C) Distribution the output tuning width (TW) is

compared among the three networks we considered in Figs. 1–7 at

different contrasts. Whereas the PIF network with g~4 almost

preserves the cosine tuning of the input (TW~45 0) also in its

output tuning curves, sharpening is much more prevalent in PIF

and LIF networks with g~8, at all contrasts. (D–E) The

sharpening of tuning curves is quantified by a sharpening

coefficient, SC, which is the ratio of the TW of an output tuning

curve and the TW of the corresponding input tuning curve: any

value less than 1 indicates some degree of sharpening. While most

of the neurons return a SC close to unity for PIF networks with

g~4 at all contrasts (D), the distribution of SC for PIF and LIF

networks with g~8 reveals a significant degree of sharpening over

the population. The y-axis in all panels is cut at 1000 for

illustrative purposes.

(TIF)

S3 Fig Comparison of orientation selectivity in PIF and
LIF networks with comparable levels of output firing
rates. (A–C) Average output tuning curves of the PIF and LIF

networks (same as in Fig. 2 and Fig. 3, respectively) are

superimposed for comparison, at different contrasts. The network

tuning curves are the same as Fig. 2D and Fig. 3D, and the tuning

width (TW) is computed similarly from the best fitted von Mises

function. (D–E) To compare the tuning curves in networks with a

comparable level of output firing rates, the strength of the

feedforward input in the LIF network has been increased. That is,

all the parameters are kept fixed as in (A–C), only Jffw is increased

from 1 to 1:25, at all contrasts.

(TIF)
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