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Abstract
Working memory plays a key role in cognition, and yet its mechanisms remain much debat-

ed. Human performance on memory tasks is severely limited; however, the two major clas-

ses of theory explaining the limits leave open questions about key issues such as how

multiple simultaneously-represented items can be distinguished. We propose a palimpsest

model, with the occurrent activity of a single population of neurons coding for several multi-

featured items. Using a probabilistic approach to storage and recall, we show how this

model can account for many qualitative aspects of existing experimental data. In our ac-

count, the underlying nature of a memory item depends entirely on the characteristics of the

population representation, and we provide analytical and numerical insights into critical is-

sues such as multiplicity and binding. We consider representations in which information

about individual feature values is partially separate from the information about binding that

creates single items out of multiple features. An appropriate balance between these two

types of information is required to capture fully the different types of error seen in human ex-

perimental data. Our model provides the first principled account of misbinding errors. We

also suggest a specific set of stimuli designed to elucidate the representations that subjects

actually employ.

Author Summary

Humans can remember several visual items for a few seconds and recall them; however,
performance deteriorates surprisingly quickly with the number of items that must be
stored. Along with increasingly inaccurate recollection, subjects make association errors,
sometimes apparently recalling the wrong item altogether. No current model accounts for
these data fully. We discuss a simple model that focuses attention on the population repre-
sentations that are putatively involved, and thereby on limits to the amount of information
that can be stored and recalled. We use theoretical and numerical methods to examine the
characteristics and performance of our model.
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Introduction
The ability to store information about the world and use it at a later time is a critical aspect of
human cognition, and comes in many different forms. One such is visual short term memory,
which holds visual information for brief intervals, for example to make a decision or complete
a task. Since it is important in many contexts, it has been the subject of a wealth of psychophys-
ical and neurophysiological investigations, and offers constraints on coding and representation
as well as on pure storage.

Here, we consider a paradigmatic visual short-term memory experiment from [1] which is
illustrated in Fig. 1A. Subjects were presented with an array of oriented coloured bars. After a
short presentation time, the array was removed and one of the coloured bars was re-presented
at a random orientation. The subjects had to rotate the bar back to its previously presented ori-
entation (the target orientation) from memory. Thus multiple items must be stored, each hav-
ing two features (colour and orientation). One such feature is cued (here colour), and the
associated other feature (orientation) had to be recalled.

As one might expect, the mean precision of recall (typically defined as the inverse of the
standard deviation of the errors) decreases with the number of items, and does so smoothly.
However, along with small deviations from the target orientation, subjects can sometimes
make large errors. This effect has historically been explained by considering that memory can
only store a small number of items, in a finite number of “slots” [2–5]. Items not allocated a
slot cannot be recalled even approximately, and so are assumed to be guessed (leading to large
errors). The number of slots has been estimated to be fairly low for most individuals (*4
items), although it can be expanded significantly by explicit training [6].

More recently, several groups have proposed alternative mechanisms for storage [1, 7–11]
based on the metaphor of a divisible, but limited resource. This resource is allocated amongst all
the items that are stored, rather than only some being remembered at all. However, as more
items are stored, each receives less of the resource, hence decreasing the precision of storage
and/or recall.

One key battleground for this debate has been the observation of characteristic, so-called mis-
binding errors [7, 8, 12]. These arise when subjects recall the orientation of another item with
which they are presented (that of a “non-target”) instead of that of the target. Fig. 2, reanalysed
from [7] shows this for a task in which colour had to be recalled based on a cued location (items
did not have an orientation in this task). On the upper row, the distribution of errors around the
correct target colour is shown; each plot is for a different number N of items in the array. The re-
sponses are distributed around the correct target colour, with a dispersion increasing withN. A
characteristic baseline error level, increasing with set size, is also visible. This uniform baseline
has been interpreted as the signature of guessing [5]. The lower row of graphs shows how this
dispersion hides misbinding, by indicating the distributions of deviations between the response
and all other non-target items. The presence of a significantly higher proportion of small such
deviations is a sign of responses incorrectly reporting other non-target items. We measured the
significance using a resampling procedure (see Methods and the Misbinding errors section for
details) that ensure that the effect is not just due to the increased probability of being close to an
item when their overall number increases; rather, it arises from biases in the recall process.

Finite resource models provide a more natural account of misbinding than classical slot
models. This is because all items are stored to some fidelity, making it possible that subjects re-
call the wrong item in some circumstances [1, 7, 13]. However, a formal theory of these circum-
stances is presently lacking.

Further, although resource models have been successful in explaining psychophysical data,
there is as yet no canonical implementation, or agreement about what exactly is the limited
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Figure 1. Experimental paradigm and storage process. (A) The experimental paradigm. First, an array of
items was shown for 1000ms, followed by a 1000ms blank screen. Next, a probe with the colour of one of the
items in the array was presented, but at a random orientation. Subjects had to adjust the orientation of the
probe item to match that of the relevant item in the original array. (B) Graphical model of the storage process.
Several items i, each composed of two features (here, orientation fi and colour ψi), eliciting individual
responses xi in a neuronal population code, are combined together additively to form a final memory state yN.

doi:10.1371/journal.pcbi.1004003.g001
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resource. One suggestion is that it is the total number of spikes available in a population of neu-
rons [14, 15], using normalization [15, 16] or by otherwise limiting the number of bits available
to store the items [17]. However, accounts based on versions of this solve in a rather unusual
way the problem of “multiplicity”, i.e., when multiple items need to be represented simulta-
neously. That is, they typically employ distinct and separable storage for each possible item (i.
e., effectively an unbounded number of slots), with the competition coming from restricting
the total amount of activation across all storage units. This leaves unclear the mechanics of allo-
cation of these distinct pools, which is key to misbinding.

Here, we consider a different model in which a single set of storage units is employed, with
different items being overlaid, as in a palimpsest [18–21]. A conventional palimpsest is a manu-
script which has been partly scraped-off or cleaned before being written upon again, allowing
past inscriptions to be recovered along with the most recent content. Similarly, we consider the
case where multiple items are written on top of each other in the same neuronal population.
For a paradigm in which items are presented sequentially, partial erasure would occur between
each presentations. However, for the sake of simplicity, here we only consider paradigms in
which all items are presented simultaneously, and so without erasure of the palimpsest in be-
tween. We will refer to this as a restricted palimpsest storage process. Depending on the repre-
sentations used and how patterns decay and combine, the final memory state of the neuronal
population will retain a trace of all items that have been written onto it. From this final memory

Figure 2. Distribution of errors in human subjects. Top: Probability of errors between recalled and target colour (this particular experiment cued the
location and required colour to be recalled), for 1, 2, 4 and 6 items (shown simultaneously). One can see that the tail of the distribution grows when an
increasing number of items is stored.Bottom: Errors relative to non-target values presented in each array. Any bias towards 0 indicates misbinding. Error
bars show one standard error of the mean, for 8 subjects. A resampling-based estimation of the probability of misbinding error was performed, and the p-
value for a non-zero non-target response component is shown for N = 2, 4 and 6. Misbinding errors are significantly present in all conditions. See Methods for
a description of the resampling analysis. The magenta lines (and outline showing standard error of the mean) show histograms obtained from randomly
sampling frommixture models derived from the resampling analysis, removing inter-item correlations. Recalculated based on [7].

doi:10.1371/journal.pcbi.1004003.g002
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state, we then consider a Bayesian probabilistic recall process starting from the cued feature,
mimicking the experimental paradigm presented above.

Recall performance in our model depends sensitively on the representation used to store dif-
ferent items in the memory. We consider two specific examples that we call “mixed” and “hier-
archical”. These are intended as paradigm cases of a wider range of possibilities, rather than be
fully comprehensive; we analyse their characteristics empirically and theoretically. One partic-
ularly important aspect for both codes is the balance between allocating units to storing infor-
mation about individual feature values, and storing binding information to link each item’s
features together. This translates, through the medium of probabilistic recall, into a balance be-
tween two of the types of experimentally observed error mentioned above: the small displace-
ments from the target item, and the more theoretically elusive misbinding, here rendered as a
(slightly displaced) recall of one of the non-target stored items. The third type of random
guessing errors also arise in the model via probabilistic recall, even though all items are actually
stored. The relative frequencies of these errors varies with the nature of the population code
and the number of items stored.

A classical way to quantify the quality of population codes is the Fisher information (FI).
The FI cannot be used to capture the frequency of misbinding—we therefore provide a thor-
ough empirical characterization of the model’s production of this sort of error. However, the FI
does correctly determine the width of the distribution of responses around either target or
non-target items—the displacements mentioned above.

We show how it may be possible to distinguish between particular population codes based
on available experimental data, and so propose new experiments that focus on the interplay be-
tween simultaneously-stored stimuli, which could shed light on how items interact in human
working memory. Note that the goals of this paper are to introduce and explore population pa-
limpsest memories rather than to fit psychophysical data in quantitative detail.

We start by presenting the three key facets of our model: representation, storage and recall.
We consider its empirical and theoretical properties, relative respectively to data from existing
visual short-term memory experiments and to the Fisher information, which characterizes
memory fidelity. This raises the complex issue of misbinding, which we treat in some detail, for
both a classical feature-based representation, and a hierarchical representation that we then de-
scribe. Finally, we consider specific arrangements of targets in the space of possible memories
that are expected to lead to patterns of errors that can help distinguish between different
representations.

Results
We propose a model of representation, storage and recall in visual working memory. By con-
sidering all aspects together, we show how to accommodate a range of experimental findings
with a small set of assumptions. To be concrete, we consider the experimental paradigm shown
in Fig. 1A (based on [1]), and described above. Here, each item is determined by two features:
angle and colour, both of which are taken as being angular (as the latter can be encoded as an
angle on a colour wheel).

Representation
Consider the case of a population ofM units representing the memory of all items seen in a
trial. The simultaneous population activity of these units is read during recall to infer the fea-
ture of the item of interest. The finiteness of the population, the nature of the representation
employed and the influence of noise jointly constitute the limited resource associated with our
memory.
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In terms of the representation, we assume that units have continuous firing rates, and are
tuned to specific combinations of features. Unit i has a preferred angle and colour, with sepa-
rate tuning widths to each feature, and its mean activity follows a Von Mises curve as shown in
Equation (1). We use Bivariate Von Mises [22, 23] tuning curves as they provide a convenient
parametrisation of the sensitivity to a pair of angular features.

mmðf;cÞ ¼
1

4p2I0ðt1;mÞI0ðt2;mÞ
exp t1;mcos ðf� ymÞ þ t2;mcos ðc� gmÞ

� �
; ð1Þ

Here, f and c are respectively the orientation and colour of the item to be represented. ym
and gm are the preferred angle and colour of unitm. t1,m and t2,m are called concentration pa-
rameters, which control the size of the receptive field, as well as the sensitivity of each unit to
the different features. Units have continuous valued firing-rate responses, and suffer from inde-
pendent Gaussian noise about these mean activities. To examine the scaling behaviour of the
model, we use a normalization scheme that constrains the mean summed overall network ac-
tivity induced by any item to be constant as the receptive field concentrations change (although
the total activity in the memory grows with the number of items stored). We use independent
Gaussian noise for simplicity, although it would be straightforward to examine a more neurally
plausible, Poisson, noise model.

Writing xm as the firing rate of unitm, the population activity x = [x1,. . .,xM]
T is

x j f;c � N ðmðf;cÞ; s2
xIÞ ð2Þ

Depending on the distribution of t1,m and t2,m, several types of population code can be gen-
erated (see Fig. 3 and 10). t1,m = t2,m = t 8i corresponds to a “conjunctive” population code, in
which each unit is sensitive to a combination of the two features. Conversely, a “feature” popu-
lation code employs two subpopulations; one has t1,m = t,t2,m = 0, and is sensitive only to the
first feature; the other has t1,m = 0,t2,m = t, and is only sensitive to the second. We also consider
a “mixed” population code including both conjunctive and feature units, and entertain various
possibilities for the relative proportions of the two types. This “mixed” population code pro-
vides an easy way to parametrise the relative information required to store feature values accu-
rately (these are mostly encoded in the feature sub-population) versus the binding information
required to link features together into item-like representations (only encoded by the conjunc-
tive sub-population). Moreover, the different types of population code will require different
number of neurons to cover the entire stimulus space appropriately. This will become increas-
ingly important as the number of features increases.

We study the effects of different types of representation on the nature and quality of recall,
and show that aspects of human experimental data are better accounted for by population
codes that might at first seem sub-optimal.

Storage and recall process
According to our restricted palimpsest memory process (“restricted”, because, as mentioned in
the introduction, we do not assume erasure of the palimpsest between storage steps), the noisy
population activities associated with all the items are simply summed to produce the final
memory. As can be expected, the characteristics of the representation used will determine how
readily possible it is to extract items when they are overlaid.

The storage process is depicted in Fig. 1B, in which N items are stored simultaneously.
Again, for simplicity, assuming that the final memory suffers from spherical Gaussian noise,
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we derive:

xi jfi;ci � N ðmðfi;ciÞ; s2
xIÞ ð3Þ

yN j x1; ::: ;xN � N
XN

i¼1

bixi; s2
yI

0
@

1
A ð4Þ

Here, fi and ci represent the feature values of item i. xi is the population representation of
item i. Multiple items are then summed to produce the final memory state yN. Extraction of
stored information is based on the memory state yN, along with any prior information. Exam-
ples of memory states for a chosen set of stimuli and population codes are shown in Fig. 4. For
completeness, these expressions include two generalizations that we do not consider further
here: the terms bi allow different items to be stored with different strengths in the memory (to
accommodate tasks involving explicit attentional instructions); however, here we set bi = 1 8i.
The parameter s2

y allows for extra memory noise, but is set to a very small value in our experi-

ments (sy = 10−5).
Having produced this final memory state, the next step is to recall the correct feature based

on the recall cue. Bayes optimal recall would require marginalising over the non-target items
that were simultaneously presented. Given the final memory state yN, and a cued feature value
(e.g. a colour c), this would lead to the posterior distribution over the value of the other feature
of this item. However, this marginalisation would be computationally penal, since it would
likely require explicitly representing and processing all the non-cued items. Instead, we make

Figure 3. Example population codes. Top: Receptive fields of units (one standard deviation), shown for the three different types of population codes:
conjunctive, feature and mixed. Bottom: Activity profile over the entire stimulus space for the two shaded units on the left.

doi:10.1371/journal.pcbi.1004003.g003
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the simplifying assumption that only the item to be recalled is explicitly modelled, with the
non-targets being collapsed together and treated as background noise. Conceptually, this corre-
sponds to extracting a specific item of interest out of irrelevant noise. This approach was
adopted by [21, 24, 25], in the context of retrieval from long-term memory in multistate
synapses.

The algorithm is illustrated in Fig. 4. Given a memory state yN and the cued colour c, we
compute the posterior distribution over f explicitly (Fig. 4B). No closed-form solution exists
for this posterior in general, because of the non-linear transform associated with the population
code m(�). Therefore we sample from it using slice sampling [26]. We treat a single sample as
the output of recalling a feature from our model for this trial. The use of sampling instead of a
maximum likelihood (or MAP) solution has two main consequences: the variance of the poste-
rior has a direct effect on the variance of the recalled orientation, and multi-modal posteriors
will reflect situations in which another orientation may be reported in place of the appropriate
one.

We formalize this process by writingmN–1 as the contribution of the noise process to the
mean of the final memory state and SN as the contribution of the noise to the full memory co-
variance, see Fig. 4C. r is the index of the item to be recalled, which we integrate over, as it is
unknown during recall.

yN j f;c; r � N ðmN�1 þ brmðf;cÞ ; SNÞ ð5Þ

f j yN;c / pðfÞ
Z

dr pðrÞ pðyN j f;c; rÞ ð6Þ

This posterior is usually peaked around the appropriate orientation; however, depending on

Figure 4. Recall model and posterior for different population codes. (A) Example memory states for the different population codes, when three items are
stored. Coloured circles indicate the veridical feature values. Left: Conjunctive population code, involving little interaction even between nearby items.
Middle: Feature population code. Right: Mixed population code— a few conjunctive units provide just enough binding information to recall the features
associated with the appropriate items. (B): Cued posterior probabilities, given the veridical colour to be recalled (the three curves correspond to cueing the
three possible colours; vertical bars indicate the true stored orientations). (C) Graphical model representation of the process of recall. The final memory state
and colour are observed; the orientation must be inferred.

doi:10.1371/journal.pcbi.1004003.g004
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the population code used and the number of stored memories, additional modes can appear
(see Fig. 4B, middle and right). These correspond to the effects of noise and other items on the
recall of the item of interest; the latter allows us to study the question of binding.

We now consider various characteristics of our models in the context of visual short-term
memory experiments.

Modelling visual working memory experiments
First, the model reproduces the baseline, apparently uniform, component of the distribution of
errors (see Fig. 5 upper row, compared to Fig. 2). However, this does not arise from pure ran-
dom guessing. Rather, a sample is always taken from the posterior distribution given a memory
state composed after storing all items. Nevertheless, interactions between items and the overall
background noise in the memory imply that the model sometimes samples values away from
the target, so producing output resembling guessing. On the lower row of Fig. 5, we see that
our model can also reproduce misbinding errors, shown by the over-abundance of small errors
towards non-target items values during recall. This central tendency is reduced compared to
the experimental data from Fig. 2B, but is still significantly present. In addition, the magenta
curve and penumbra represent the distribution of samples from the model when inter-items
correlations have been removed.

Figure 5. Distribution of errors of the model. The model is capable of recreating error distributions seen in the literature, such as those shown in Fig. 2.
(Top row) Distribution of errors around the target angle. The central bump is at 0o, showing that recall is normally accurate. The distribution has a non-zero
baseline which combines all sources of error. (Bottom row) Distribution of errors relative to all non-target angles. A central tendency in those plots has been
interpreted as supporting evidence for the presence of misbinding errors in the responses. Histogram computed on 5000 samples of the model (no standard
deviation is shown as all samples are equally probable) The p-values for a resampling analysis of the non-target mixture proportion are shown in each panel.
The null hypothesis of no misbinding error can be significantly rejected for all item numbers. The magenta curves represent the resampling-based histograms
assuming no misbinding error. Mixed population,M = 200, σx = 0.25.

doi:10.1371/journal.pcbi.1004003.g005
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The second experimental observation captured by the model is the decrease in recall preci-
sion as a function of the set size, which is the number of stored items. Here we study the preci-
sion of recall using the procedure defined by [7]. This involves fitting a mixture of Von Mises
components on the recall samples, using a procedure based on the EM algorithm [27]. This
mixture model consists of one Von Mises component per item (target or non-target) and a uni-
form random component. All Von Mises components share a single concentration parameter
k. This mixture model approach turns out to be substantially more robust to outliers than
computing the circular standard deviation of the raw errors directly. We refer to k as the mem-
ory fidelity, and show how it depends on set size. In addition to this memory fidelity, two
other types of errors are specifically captured by this analysis: misbinding errors, the probabili-
ty of recalling from a non-target, and random errors, the probability of recalling from the uni-
form random component. These will be analysed more thoroughly in the Misbinding errors
section.

Fig. 6 shows the fit of our model (in green) to human data (dark blue) from [13], where we
report the memory fidelity. The shaded region indicates one standard deviation, computed
over multiple reruns of the model (or across different subjects for the human data). The
smooth decay in performance as set size increases is appropriately captured by our model. This
decay arises in our model from the increase in recall noise as the number of stored items in-
creases, but also from interference between items in the memory. We report in both cases the
memory fidelity, the concentration k of the Von Mises component obtained from fitting the
mixture model on the responses from human subjects and our model. Here, we used a mixed
population code, optimizing the fit to the experimental curve by adjusting the ratio of conjunc-
tive to feature units and the encoding noise sx, for a population ofM = 200 units (see Methods
for the optimisation procedure). The model does not capture the reduced decay rate for 4 and
6 items to its full extent. However, this is a rather specific characteristic of this dataset. For

Figure 6. Memory curve fit.Mixed population code. This shows a qualitative fit of the model (green; the
shaded area represents one standard deviation) to the human experimental data (blue; data from [7]).
M = 144, conjunctivity ratio = 0.85, σx = 0.1). Inset: similar data fits, for [1] (M = 200, ratio = 0.85, σx = 0.4).
Observe the different decrease in memory fidelity for an increasing number of items.

doi:10.1371/journal.pcbi.1004003.g006
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comparison, the inset in Fig. 6 shows the fit of our model to the data from [1]. In this case, the
model captures the memory fidelity dependence more accurately.

Fisher information analysis
A common theoretical technique used to study the representational capacity of a population
code is the Fisher information (FI), which, via the Cramer-Rao lower bound, limits the preci-
sion of any estimator based on the output of the code [28–30]. If the posterior distribution in
our model can be well approximated as being Gaussian, the FI will accurately characterize
memory fidelity, allowing us to examine the effects of different parameters and
representations.

In our case, the FI should readily be able to characterise the spread of the errors around the
correct target value when a single item is stored (when there is sufficient signal [31, 32]). In this
section (and the Supplementary information), we study this case.

When there are multiple items, complexity arises from the fact that errors are distributed
around both the target feature value and misbound, non-target, features, with the posterior dis-
tribution being multi-modal (and therefore not Gaussian). Nevertheless, as we will see in the
next section, the Fisher information, calculated assuming storage of just a single item, can still
characterise the memory fidelity around each mode.

Assuming a population code with Gaussian noise and signal-independent noise, the Fisher
information is defined as follows:

IFðyÞ½ �ij ¼
@m
@yi

T

C�1 @m
@yj

ð7Þ

where m is the mean response of the population, and C the covariance of the population re-
sponse. In our case, y = [f c]T, so the Fisher information is a 2-by-2 matrix.

We can easily compute it for the single item case (see Methods), obtaining:

) ½IF�ff ¼ t21
s216p4I0ðt1Þ2I0ðt2Þ2

XM
i¼1

sin 2ðf� yiÞ exp 2t1 cos ðf� yiÞ þ 2t2 cos ðc� giÞ½ � ð8Þ

In the large population limit in which preferred values have density r, it is possible to obtain
an analytical closed-form solution for this equation which is easier to interpret, (see Section, 1
in S1 Text for the complete derivation)

lim
M!1

½IF1�ff � f ðt1; t2Þr
s2

ð9Þ

where f(t1,t2) is an increasing, approximately power-law, function of t1 and t2 that is given ex-
plicitly in the Supplementary information. These values depend on the parameters of the code
just as one would expect from classical results for non-circular, uni-dimensional, receptive
fields [31, 33]: Increasing the concentration t increases the Fisher information. This is easy to
interpret, as narrower receptive fields will be more precise in their encoding of the features.
Similarly, increasing the coverage density has the same effect, as more units are available to
store information. Finally, the item encoding noise s decreases the Fisher information, as less
signal can be extracted from the final memory.

The Cramer-Rao lower bound transforms the Fisher information into an estimate of perfor-
mance in the task. Fig. 7 compares the Fisher information for the finite and large population
limit with the curvature of the log-posterior at its maximum value (as in the definition of the
Fisher information); and to the variance of samples given a memory state. We use again the
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memory fidelity, by fitting the mixture model onto model samples. We convert this memory fi-
delity from its units of k into an inverse variance, by converting k to the s2 of the approximated
Wrapped Gaussian (see Methods for details). Note that the latter procedure, reporting the vari-
ance of samples given a memory state, generates a doubly-stochastic process, hence increasing
the variance observed. It can be shown that if the posterior is close to being Gaussian, the vari-
ance from those samples will be twice that of the curvature of the log-posterior considered
above (see Section, 2 in S1 Text). This is shown by the dashed light blue bar.

We see that they are all similar on average; the most important being the match between
samples from our model and the Fisher information analysis.

When more than one item is stored, errors arise from two sources: variance around a mode,
and mistakenly reporting the wrong mode (misbinding error). One can adapt the Fisher infor-
mation analysis to characterize the former, capturing the variability about each mode, condi-
tioned on the fact that the posterior is close to Gaussian. However, it does not capture the
component of variance coming from misbinding errors. Further analysis that quantifies both
sources of variability will be required to account in a theoretical manner for the full distribution
of errors observed in the data.

Misbinding errors
As noted above, several groups have shown that a significant proportion of the errors made by
humans can be explained as arising from “misbinding”, i.e., recalling (at least approximately)
the appropriate feature of an inappropriate item, i.e., of a non-target item that also formed part
of the array. Such mistakes are shown in Fig. 2B, and could contribute to the appearance of a
baseline of errors seen in experiments (Fig. 2A), since these stimuli are drawn randomly from a
uniform distribution across all possible angles [7].

The proportion of errors classified as misbinding varies between experiments [1, 7, 13, 34–
36]. Although some studies seem to show none at all [37]; in others, they are reported as mak-
ing up to 30% of all errors when the memory load is high. Misbinding has not been well ad-
dressed in the theoretical literature on visual working memory, since current models typically
assume distinct subpopulations storing the different items, hence removing any possibility for
direct misbinding errors.

Our model uses a single population of units for storage, and so can account for misbinding
when the posterior distribution (see Equation 6) becomes multimodal. This usually happens
when there is insufficient information in the representation of items to bind the features to-
gether (i.e., when the codes are insufficiently conjunctive); the different modes arise from the
different items that are stored. The relative heights of the modes of the posterior determine the
frequency of misbinding errors. The classical conjunctive population code represents one ex-
treme, offering near perfect binding information, being limited only by the size of each unit’s
receptive field. Feature-based population codes, on the other hand, constitute the other ex-
treme: they do not perform binding at all.

For a mixed population code, Fig. 8 shows that the proportion of conjunctive units has a
strong effect on misbinding errors and posterior multimodality. We construct a situation with
two possible angles,� 3p

5
, where 3p

5
is to be recalled. In this case, using a mixed population code

with around 40% of conjunctive units dramatically reduces the number of misbinding errors
produced by the model. This proportion will depend on the number of items to be stored, as
more items will require more precise binding information.

The widths of the posterior modes depend directly on the amount of information provided
by feature and conjunctive units. Feature units are more efficient than conjunctive units at rep-
resenting single features, and so the cost of reducing misbinding by increasing the proportion
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of conjunctive units is to increase the width of the posterior over the recalled feature. This can
be seen in Fig. 9, where we fitted the mixture model presented in the Modelling visual working
memory experiments section to the recall samples, we report the concentration (an inverse
width) of the Von Mises component in panel A, and the mixture proportions in panel B.

Fig. 9A confirms the relationships of the width of the posterior mode with the proportion of
conjunctive units. The concentration of the Von Mises component (in blue), closely follows the
theoretical Fisher information (in green), although overestimating it. The Fisher information
provides a good local estimate of the variability around a mode, as can be seen in Fig. 8 on the
right, where we overlap in red a Von Mises PDF with a concentration predicted from the Fisher
information (with a height set to be aligned with the histogram of the right mode).

The mixture proportions corresponding to the target, non-target and random responses are
shown in Fig. 9B as a function of the fraction of conjunctive units. They show that for around
50% or more conjunctive units, more than 75% of responses are on target. The mixture propor-
tion associated with the random component appears to be overestimated, compared visually to
the distribution of the samples of Fig. 8. However, the mixture model well characterizes the
proportion of misbinding errors.

Finally, as a last check, we verified that the mixture model estimates of non-target propor-
tions were reliable. To do this, we performed a resampling-based analysis of the mixture of
non-target responses, by randomizing the assumed locations of non-target angles and re-fitting
the mixture model. Using the empirical cumulative distribution over those samples, we could
then compute a p-value for the null hypothesis that the mixture probability for non-target
would be zero. The results are shown in Fig. 9C, where the p-values as a function of the propor-
tion of conjunctive units in the mixed population code are reported. For proportions of con-
junctive units below 70%, the null hypothesis can be rejected significantly (at a 5% level),
consistent with the presence of misbinding errors.

Figure 7. Fisher information fit for one object.Comparison between similar metrics: the memory fidelity
(fitted κ) of single samples collected for different memory states associated with a single memory state
(double the value is shown in dashed blue to take account of the doubly stochastic nature of single sampling);
the theoretical Fisher information derived in (8); the largeM limit for the Fisher information (35); the average
inverse variance of samples from the posterior distribution; and the average curvature of the log-posterior at
its maximum. This refers to a Conjunctive population code withM = 200, τ = 4, σx = 0.1, σy = 10−5 and 500
samples.

doi:10.1371/journal.pcbi.1004003.g007
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Figure 8. Misbinding errors when varying the proportion of conjunctive units. These plots are based on
a mixed population code recalling the orientation of one of two stored items (the correct value is indicated by
the red vertical bar). There is a fixed total number of 200 units; the ratio of feature to conjunctive units
increases for the graphs going from top to bottom. Left: Average (and standard deviation, shown by the
penumbra) of the log-posterior distributions over orientation, given the stored memory states averaged over
1000 instantiations of the noise. If the population code only consists of feature units, the posterior comprises
two equal modes the incorrect mode disappears as the fraction of conjunctive units increases. However,
feature units improve the localization; as their number decreases, the widths of the posterior modes
increases. Right: Distribution of 1000 sampled responses, showing how misbinding errors tend to disappear
when sufficient conjunctive information is available. The red (respectively green) vertical lines indicate the
target (respectively non-target) item orientation. The red Gaussian curve shows the probabilit distribution of a
Gaussian distribution centred at the correct target value and with a standard deviation derived from the Fisher
information of the associated population code.

doi:10.1371/journal.pcbi.1004003.g008
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We applied this resampling analysis to the human experimental data shown in Fig. 2, as
well as to our model’s fit to these data (Fig. 5). The p-values for the data collapsed across sub-
jects are shown above the histograms of biases towards non-target angles; they all are signifi-
cant. Redoing the analysis per subject indicates that for 2 items, 8 out of 12 subjects show
significant misbinding errors; for 4 items, 7 out of 12 are significant; and finally for, 6 items 10
out of 12 subjects show misbinding errors.

Hierarchical population code
In addition to the “mixed” population code that we have so far described, one might imagine
an “hierarchical” population code, shown in Fig. 10. This uses two layers, the lower of which
can either be a conjunctive or feature population, parametrised as described above. Units in the
higher layer are randomly connected to a subset of the lower layer units, with activities that are
a nonlinear (sigmoidal) function of the weighted sum of the sampled units’ activities. More for-
mally, where m(1) is the mean response of the lower layer, sY the rectified linear function with
thresholdY:

xð2Þ j f;c � N ðsYðW � mð1Þðf;cÞÞ; s2IÞ ð10Þ

sYðxÞ ¼ maxð0; x �YÞ ð11Þ

~Wjk � BernoulliðpÞ � ExpðlÞ ð12Þ

Wjk ¼
~WjkX

j

~Wjk

ð13Þ

Such an hierarchical code can be considered an abstract representation of a layered neural
architecture [38].

The “mixed” and “hierarchical” population codes were specifically introduced to parame-
trise subtly different forms of binding, controlled by the ratio of binding to non-binding units.

Figure 9. Memory fidelity andmixture proportions as a function of the ratio of conjunctive units. (A) Standard deviation of the Von Mises component
(in blue) from the mixture model fitted to samples of the model shown in Fig. 8 as a function of the fraction of conjunctive units. The (theoretically-calculated)
Fisher information is shown in green for the associated population codes. (B) Mixture proportions of the mixture model fitted on the model samples. This
metric is less sensitive to random fluctuations of the samples, and shows that if 50% of the units are conjunctive, then 75% of responses will be correctly
associated with the appropriate target angle. (C) P-value for a resampling-based estimation of the probability of the non-target mixture proportion to be
different than zero. We see that the null hypothesis of the non-target mixture proportion being zero can be rejected from 70% of conjunctive units and less.

doi:10.1371/journal.pcbi.1004003.g009
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In the “mixed” population code, conjunctive units introduce binding information indepen-
dently from the rest of the feature units. In the “hierarchical” population code, the random
layer two units bind together the activity of layer one units, generating seemingly arbitrary
combinations of feature values, yet providing sufficient conjunctive information. It allows us to
check how structured the binding information should be for the results to hold.

Fig. 11 shows the behaviour of recall for a hierarchical population code based on a feature
population code at the lower layer. The total number of units was fixed (atM = 200); the ratio
of upper to lower units was varied. The optimal arrangement changes markedly when multiple
items must be stored. Having few random binding units is very efficient in the single item case,
but this breaks down completely when multiple items are stored and interfere with each other.
The dependence of the memory fidelity on the ratio of upper to lower units is similar for in-
creasing number of items, with the exception of the overall scale. Unsurprisingly, memory fi-
delity is lower when increasing the number of items and conjunctivity, see Fig. 11A. As shown
in Fig. 11B, the probability of the response being related to the correct target changes

Figure 10. Hierarchical population code. The hierarchical code comprises two layers: the lower layer receives the input, and is randomly connected to the
upper one, which provides (possibly additional) binding information. Bottom: layer one consisting of either a feature population code or a conjunctive
population code. Receptive fields of units of a feature population code are shown (one standard deviation). Top: effective receptive fields of three layer two
units are shown. Layer two units randomly sample a subset of the activity of layer one units, and pass a weighted sum of their inputs through a nonlinearity.

doi:10.1371/journal.pcbi.1004003.g010
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completely going from one to many items, with non-target responses becoming prevalent for
small ratios of upper to lower units. Moreover, there is an optimal ratio of upper to lower units
when storing multiple items, if one tries to optimise the proportion of correct target angle
recall.

Fig. 12 shows the fit of the memory fidelity to the experiments in [1, 7], as was done in Fig. 6
for the mixed population code. Despite being drastically different in its implementation of con-
junctivity, it provides a good fit to the experimental data. The hierarchical code is able to cap-
ture the trend of decay in both experiments to a greater extend than the mixed population code
(main plot shows a fit to [7], inset shows a fit to [1]). However, the fit for 4 and 5 items for [1]
does show discrepancies with the experimental data. The optimal parameters obtained for
those fits resemble those for the mixed population code, namely a high ratio of higher-level
binding units and large input noise. These render promising this class of hierarchical codes.

Comparisons of population codes

Effects on experimental data fits
The patterns of errors arising from specific choices of population codes can be used to help dis-
criminate between different representations. Misbinding, which we quantify via the mixture
model approach of [7], is of particular value, since, as observed, it is rare for conjunctive codes;
but ubiquitous for feature codes. We therefore compare the misbinding exhibited by human
subjects with the output of our model based on different population codes (see Methods for de-
tails about the optimisation).

As can be seen in Fig. 13, there are clear differences in the mixture weights associated with
misbinding errors, errors arising from local deviations from the correct feature to be recalled,
and the uniform component.

Figure 11. Memory fidelity andmisbinding errors as function of conjunctivity in hierarchical population code. Left: Memory fidelity based on model
samples, while varying the ratio of lower to upper layer units in a hierarchical population code with a constant number of 200 units. The number of (randomly
placed) items increases from top to bottom. The memory fidelity decays with increasing item number and conjunctivity. Right: Mixture proportions based on
model samples. For a single item, the correct target angle is always retrieved (blue curve). The drop for high ratio of upper to lower layer is expected, as few
units are left in the lower layer to represent the item appropriately. For increasing numbers of items, nontarget responses are prevalent (green curve), but
including a suitable proportion of upper layer units does allow the appropriate angle to be retrieved. Random responses are marginal with the parameters
used here.M = 200, σx = 0.2.

doi:10.1371/journal.pcbi.1004003.g011
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As expected, the feature code makes a large number of misbinding errors when more than
one item is stored. On the other hand, the conjunctive code makes only a few errors that appear
to arise from random guesses. Misbinding errors are highly unlikely in this configuration. In
total, a mixed code provides a better fit to the human data, matching the increase in non-target
responses as well as a baseline random response rate.

The canary
This analysis suggests that stimuli specifically designed to induce patterns of misbinding could
be useful for understanding representations in population codes. Consider three stimuli, ar-
ranged on a diagonal, separated by a variable distance in feature-space (illustrated in Fig. 14).
These create clear interference patterns for feature codes, with multi-modal posteriors and mis-
binding errors. These errors will be expected to change as a function of the characteristics of
the population code. We therefore call this stimuli pattern the “canary” in honour of its capaci-
ty to reveal such characteristics.

In particular, by making the stimuli close to each other in feature space, this pattern allows
intra-receptive field misbinding to be examined. This happens when the pattern lies entirely in
a single receptive field of a conjunctive unit, and can thus provide a somewhat crude and indi-
rect measure of the receptive field size of a mixed conjunctive code. Note, though, that hierar-
chical conjunctive codes cannot be expected to have such a simple signature; and indeed even
mixed codes are ultimately likely to be multi-scale in character.

Figure 12. Memory curve fit for hierarchical population code.Model fit (green; the penumbra represents
one standard deviation) to the human experimental data (blue; data from [7]). These qualitative fits are similar
to those obtained for a mixed population code (see Fig. 6), despite the significantly different implementation.
(M = 200, ratio = 0.9, σx = 0.3). Inset: fit for [1]. Notice the difference in performance for large number of items.
(M = 200, ratio = 0.9, σx = 0.55)

doi:10.1371/journal.pcbi.1004003.g012
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In Fig. 15 (left panels), we show what happens for a mixed population codes. We report
how the parameters of the mixture model we considered before vary with conjunctivity in sev-
eral conditions, using a population code of 200 units, and allowing the ratio of conjunctive to
feature units to vary from 0 to 1 (corresponding to full-feature and full-conjunctive, respective-
ly). We set the item noise sx = 0.25, a level compatible with experimental data fits, and show
two characteristic distances between stimuli, Dx = {0.22,1} rad. The goal is to recall one of the
three items, randomly chosen on different trials. We characterize the errors using the mixture
model presented before and report the mixture proportions and the fitted k from the Von
Mises component.

For the large separation, Dx = 1.0, the mixed population code behaves in a regular manner
as the degree of conjunctivity increases. For a feature-based population, recall suffers from
much misbinding; it is only when more than 50% of the units are conjunctive that correct

Figure 13. Error types for different population codes. The graphs quantify different sorts of error in terms of the weights in a mixture model capturing local
variability around an item, misbinding errors and random choices [7]. Human experimental curves are shown on the bottom right. This shows howmisbinding
errors are crucial components to fit human performance. Conjunctive population code:M = 225 units, σx = 0.3, Feature population code:M = 100 units, σx =
0.08, Mixed population code:M = 144 units, conjunctivity ratio = 0.85, σx = 0.1

doi:10.1371/journal.pcbi.1004003.g013
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binding typically occurs. The mixed population code increases rapidly at around 70% of con-
junctive units and saturates.

The outcome is quite different for the small separation Dx = 0.2. In this case, no amount of
conjunctivity can help the discrimination between the three stimuli. This corresponds to a situ-
ation in which intra-receptive field misbinding occurs. Even for a fully conjunctive population
code, the size of the receptive field is larger than the distance between two items (M = 200,
t = 5.5) width of 0.44 rad for one standard deviation of a receptive field).

For the single-scale receptive fields that we employed to create the mixed population code, it
is possible to recover the scale from the error patterns as a function of the separation between
the stimuli. This is shown in Fig. 16 for two mixed population, with 50% and 98% of conjunc-
tive units. This plots the target (blue) and non-target (green) mixture probabilities (normalized
by their joint sum). These start at the same value, but diverge after the point when conjunctive
information becomes available and hence when intra-receptive field misbinding become less
prevalent. The black vertical dotted line indicates half the size of the receptive field for the con-
junctive subpopulation—misbindings stop being prevalent once the stimuli covers multiple re-
ceptive fields. The red line for the case of 98% conjunctive units corresponds to two times the
size of the receptive field for the conjunctive subpopulation. Once this point is reached, each

Figure 14. Stimulus pattern to inducemisbinding. Feature-space representation of three stimuli used to
study misbinding errors and characteristics of the population codes. Three items are separated by a distance
Δx. This set of items will generate interference patterns as shown by the dotted lines. The circles represent
one standard deviation of the receptive field response levels. The green circles represent a population code
in which the three stimuli are well separated. The blue circle represents a code for which all the stimuli lie
inside a single receptive field and would generate misbinding errors. The target is randomly chosen on each
trial as one of the three items.

doi:10.1371/journal.pcbi.1004003.g014

A Probabilistic Palimpsest Model of Visual Short-termMemory

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004003 January 22, 2015 20 / 33



Figure 15. Recall of stimuli shown in Fig. 14. 100 individual samples from the model are generated for specific parameters (M = 200, σx = 0.25), mixed
(left) or hierarchical (right) population codes and inter-stimulus distances Δx = {0.22, 1} rad. Shaded regions correspond to one standard deviation around the
mean over 10 repetitions. Top row: Fitted mixture proportions from a mixture model (with one Von Mises component per target/non-target and a random
uniform component, similar to [7]). For small Δx, no amount of conjunctivity can improve the results, indicating intra-receptive field misbinding. For large Δx,
there is a change from non-target to target responses as the proportion of conjunctive units increases. The target is randomly chosen for each trial.. Second
row: Width of the Von Mises component of the mixture model (represented as the standard deviation corresponding to the fitted concentration κ). The dotted
black line corresponds to the distance Δx between items in the stimuli pattern.

doi:10.1371/journal.pcbi.1004003.g015

Figure 16. Patterns of errors as a function of stimulus separation for different proportions of conjunctive units. This shows data as in Fig. 15, but as
a function of the varying distances in radians between stimuli in the diagonal pattern, for two mixed populations with 50% and 98% conjunctivity. We compute
the ratio between the target mixture proportion and the sum of the target and non-target mixture proportions (in blue). We do the same for a non-target
mixture proportion (in green). The black vertical bars show half the size of a conjunctive receptive for each population. We see that for separations smaller
than the size of a receptive field, misbinding errors are prevalent. This changes as soon as the pattern of stimuli covers more than one receptive field. The
vertical red dashed bar shows twice the size of a receptive field. In this situation, each stimulus occupies one receptive field, and misbinding should rarely
occur.

doi:10.1371/journal.pcbi.1004003.g016
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stimulus lies in its own receptive field, so misbinding should not happen. This is again in agree-
ment with the results, with very few non-target responses in this regime.

We originally expected a hierarchical population code to perform differently, since it en-
codes binding information in a quite different manner. However, surprisingly, we find consis-
tent results, as can be seen in Fig. 15 (right panels). Again, we show two characteristic distances
between stimuli in the canary pattern, Dx = {0.15,0.8} rad (we chose different values than in the
mixed code situation, as the population codes behave slightly differently).

When the separation is large, the hierarchical code also behaves in a regular fashion similar
to that of the mixed code as the degree of conjunctivity increases. When conjunctivity is low,
the memory performs poorly, as no binding information is present. However, as conjunctivity
increases, performance does as well. Interestingly, performance with a hierarchical code in-
creases monotonically with conjunctivity (before dropping sharply when the input lower layer
population decreases past the required precision needed to discriminate the stimuli). This ar-
chitecture uses conjunctive information quite effectively, but does not attain the same maxi-
mum performance.

The situation is less clear for a small distance between stimuli. Having a large proportion
of conjunctive units is actually detrimental in this case, as the input lower layer decreases in
size, and thus the encoding precision decreases with it. Hence there is an optimal proportion of
conjunctive units for a given required minimum discrimination. The smallest distance for
which the target and non-target responses can be discriminated when analysing the results is
Dx ≈ 0.30, using a hierarchical code with a conjunctivity of 80% (see Section 3 in S1 Text).
Hence the hierarchical code seems to discriminate smaller patterns for a given population size,
which is surprising for such a crude representation of a hierarchical representation.

Thus we find that even this simple stimulus pattern can provide something of a formal win-
dow into misbinding and the structure of receptive fields.

Discussion
We built a model of short-term visual working memory, assuming a single population of units,
an additive, palimpsest, storage scheme and sample-based probabilistic recall. We showed how
this model could qualitatively reproduce key aspects of human experimental data, including
the decrease in performance with memory load, and also error distributions, including mis-
binding errors, which have not previously been the focus of theoretical study. It is the next
phase of this work to fit human data quantitatively, looking in detail at individual differences
in performance and patterns of errors.

We studied several different sorts of population code. The most critical question concerns
binding, which in our case is performed by conjunctive units that are sensitive to specific com-
binations of two or more features. Non-conjunctive, feature-based codes, can be more efficient
at storing single items, but fail catastrophically whenever multiple items are stored simulta-
neously. We considered including both single-feature and conjunctive units, and showed that a
combination is likely to offer a better characterization of experimental data than either alone.
Finally, we considered experiments that would offer useful guidance to discriminating theories.

The original such model of this class of experiments was formalised by Wilken &Ma [39],
based on experiments and arguments from Pashler and Luck & Vogel [4, 40]. This includes a
finite set of “slots”; items that are not allocated a slot are therefore not remembered at all (re-
quiring pure guessing for recall). The assumed error distribution was thus a mixture model
with two components: a Von Mises centred around the target item, and a random uniform
component. The alternative models are based on the notion of a finite resource [1, 7–11],
arguing against a fixed number of slots, but rather that there is a constraint on the whole
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collection, such that storage of multiple items leads to interference. More recently, intermediate
accounts have been suggested, such as a “slots and averaging”model [5], letting individual
items be stored in more than one slot, with the outputs of all the slots concerned being
averaged.

By comparison, our model, as a palimpsest, can best be seen as abandoning the notion of
slots altogether—be they finite or infinite—and so does not need a mechanism for allocating
the slots. There is a finite resource—the population of units that can be active—but this leads
to two resource-like limitations on storage, rather than one. The first limitation is noise—this
acts just like some of the resource limits in previous models. The second limitation is represen-
tational—the fact that the items overlap in the palimpsest in a way that depends on how they
are encoded in the population implies a form of interference and interaction that leads to mis-
binding. This explicit element has been missing in previous treatments. Along with the vari-
ability in the process of sampling, it is key to the model’s account of the pattern of errors of
human subjects, with heavier tails than a Gaussian/Von Mises distribution. Other factors have
also been implicated in this pattern, such as different memory encoding precision on different
trials [10, 41], or the limited width of neuronal tuning functions [15]. It would be straightfor-
ward to extend our scheme to allow for partial information about which item will have to be
recalled.

We have shown how our model can encode information about each feature separately, with
the binding information being provided by another subpopulation. A model along related lines
was recently proposed by Swan and Wyble [42]. In this, an associative network, which they call
the “binding pool”, provides binding information. However, one could think of other ways to
encode and store this binding information, for example by using object-files. If one were to
limit how many object-files could be used at a given time, and if object-files made errors in
binding the features together, this would provide an hybrid slot-based treatment of the
problem.

Another related model has been suggested in the context of dynamic field theory [43, 44].
These authors consider a population of rate-based units with temporal dynamics governed by
first order differential equations. Given specific layers and connectivity patterns, they simulate
the evolution of bumps of activity through time, which can be used to store information for
later recall. In their model, feature binding is completely linked to space in that each feature is
stored in different feature-space population bound only to location. A separate working memo-
ry population stores the locations of all items seen. Recall relies on using location to couple and
constrain the possible features to their original values. This idea resembles “feature integration
theory”, proposed by [45] as a model for attention.

That the dynamical (e.g., drifting) behaviour of the bumps is the critical focus of the model
sits a little uneasily with the observation that performance in visual short-term memory experi-
ments does not drop significantly when recall is delayed [1, 46]. Further, location cannot be the
only variable determining binding given experiments in which items are presented at the same
location but at different times. Our model is agnostic about the source of binding in its input,
lending itself to the study of different representations. Nevertheless, it would be interesting to
model richer aspects of the temporal evolution of the memory state.

Here, we assumed that only two features were stored per item, namely colour and angle.
However, we report in Section, 5 in S1 Text the effect of using more than two features. One fea-
ture that is particularly important is spatial location. In the actual experiments in [7], space
(which, for simplicity and consistency with [1], we treated as another angular variable) was
used as the cueing feature, with colour being recalled. It is possible, given the importance of
space for object recognition, that spatial tuning has quite different characteristics from that of
other cues. Hints of this are apparent in the properties of early visual neurons. This could make
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it a stronger cue for recall and recognition, something that it would be interesting to examine
systematically through experiment and the model.

With more features, we could address directly one of the key findings that led support to the
slot models, namely the observation of an object benefit in recalling features. That is, despite
the sometime fragility of episodic memory [47], which this functionally resembles, remember-
ing a fixed number of features is easier when those features are parts of fewer conjunctive
items. The magnitude of that effect has been the subject of intense debate, but there is broad
agreement about a significant object benefit [48–52]. In our model, such effects arise through
two mechanisms: first, having fewer items will add less encoding noise to the final memory
state, which will directly reduce the overall noise level in recall. Second, the conjunctive units
also directly contribute to the storage precision for bound items. Our model would thus also
show an object benefit without additional machinery.

Our model treats storage as a bottom-up, feedforward process. However certain top-down
effects are known, such as directed forgetting [53, 54]. Such an effect could be accommodated
in the model by considering a multiple step process in which following regular storage, recall
would be executed based on the cue for the to-be-forgotten item, with the representation of
whatever is retrieved being subtracted from the previous memory state. As this would still be a
noisy process, the resulting precision for the other items would be less than if the forgotten
item had never been stored at all, albeit still greater than if its main influence over the memory
state remained.

We made a number of simplifying assumptions, notably to do with the noise model and the
sampling process. For the former, we only considered additive isotropic Gaussian noise cor-
rupting the encoding. This could be readily extended to more complex noise models, for exam-
ple to a more neurally plausible Poisson noise model. The key difference from using Poisson
noise would be its signal-dependence—storing larger numbers of items would lead to greater
activities and thus a higher variance. Signal-dependent Gaussian noise is a related modelling
choice [30, 31, 55]. Amongst other differences, this would reintroduce the second term in the
equation for the Fisher information (Equation 30). This term can be large compared to the first
[55] and it adds extra inferential complexity [56], hence fully accounting for it can be
complicated.

We considered a process of recall that involves the full posterior distribution over the re-
sponses. Determining how the brain would use and represent distributional information has
been an active recent research topic. One set of ideas considers what amounts to a deterministic
treatment (albeit corrupted by noise) [57–62]. However, there is a growing body of research
showing how the brain might instead use samples [63–66], and we adopted this approach. In-
ference might involve combining together larger numbers of samples, and thus reporting some
(noisy) function of the posterior other than just the samples. However, such operations are cur-
rently underdetermined by the experimental data, as they would interact with other sources of
noise. Sampling from the posterior instead of simply reporting the maximum a-posteriori
mode value has the additional benefits of capturing variability around the mode itself, which
varies depending on the representation used. Nevertheless, it is important to stress that this
sampling scheme is not the main bottleneck in our model. Rather, it is the representation that
constrains the nature and magnitude of the errors in recall. The sampling scheme simply pro-
vides a mechanism for reporting on the ultimate posterior distribution. A more limited report,
such as the MAP value, would likely lack the appropriate characteristics by reflecting too little
of this distribution.

One of the major tools that we used to analyse the population codes was the Fisher informa-
tion (and the associated Cramer-Rao lower bound). However, this is only useful if the posterior
distribution is close to being Gaussian, and, in particular, unimodal. This will almost always be
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true for a single item; and often be true when there are multiple items and a conjunctive popu-
lation code that solves the binding problem. However, as we saw, feature codes lead to multi-
modality, rendering a direct application of the Cramer-Rao lower bound useless. What is still
possible is to use the Fisher information as an indication for the variability around one of the
mode. We have shown how it still produces a good approximation to the width of a mode,
even in the presence of misbinding errors.

We characterized misbinding errors through a mixture model and a resampling-based esti-
mator. It is also possible to assess the multimodality of the posterior itself directly, for example
by fitting a parametric mixture model on the posterior. This analysis leads to similar results.
But it would then be possible to analyse this multi-modality analytically, and perhaps obtain a
closed form expression for the proportion of misbinding errors expected from a given
posterior.

We considered a case of recalling only a single item given a memory. It would be possible to
treat recall differently, with a mixture model, estimating the features associated with all items,
and thereby answering the memory query directly. Total recall could be performed using a
fixed finite mixture model, e.g. a Gaussian Mixture model, but lends itself well to a nonpara-
metric extension, characterizing the whole collection of elements in an array. Approaches of
this sort have been pursued by various recent authors [67–71]. For instance [71] considered
both the encoding and recall to be implemented with a Dirichlet process mixture model. They
show how this provides a natural account of ensemble statistics effects that can be seen in some
experiments, such as regression to the mean of the presented samples. By contrast, our ap-
proach is closer to the experimental paradigm, as there is no evidence that subjects recall all
features of all items when asked to recall an unique item. Regression to the mean still arises,
but from local interactions between items in the representation. Indeed, even for a conjunctive
code, when items are close-by the recalled angle will be biased towards the mean of all items, as
bumps of activity merge together. There is substantial precedence for the approximation of fo-
cusing on a single item, ignoring some or all of the statistical structure associated with other ac-
tual or potential items [72–75].

Our results depend crucially on the nature of the underlying population code. As a proof of
principle, we tested two schemes—one mixing feature-based and conjunctive codes; the other
building a hierarchy on top of feature codes. However, many more sophisticated representa-
tions would also be possible—studies of population coding suggest that using multiple scales is
particularly beneficial [76, 77], and it would be interesting to test these.

For our single-scale case, we suggested a particular pattern of three stimuli that we expect to
be of particular value in discriminating between different population coding schemes. The pat-
tern was designed to promote misbinding in a way that would also be revealing about the size
of the receptive fields. We also expect there to be a strong effect of distance in stimulus space
on misbinding probability, if a mixed-like representation is used. On the other hand, by the
very nature of our hierarchical population code, it is harder to make specific predictions about
the dependence of proximity and other features on misbinding probability. If subjects were too
proficient at recall from this pattern, as might be the case for just three items [1], it would be
straightforward to complicate the scheme to include a larger number of items.

An interesting extension to this analysis would be to introduce an asymmetry in the pattern
of stimuli, in order to displace the mean of the stimuli from the centre stimulus. This would in
turn introduce asymmetric biases and deviations for the different items depending on the
sources of the errors. Indeed, as briefly mentioned above, it has been shown that the mean sta-
tistics of the stimuli have an effect in determining responses characteristics. Such an asymmet-
ric pattern would indicate if the variability is biased towards the mean of the stimuli or to
close-by items only.
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Although our proposal has primarily been grounded on the psychophysical literature, the
use of population representations, and the abandonment of anatomical “slots”, makes it ap-
pealing to consider the neural basis of the memory. There is substantial work on population-
based working memory with a foundation in persistent activity [78], and even in the gating of
storage necessary to make such memories work efficiently [79, 80]. It would be interesting to
study the extra constraints that come from a more realistic neural implementation.

In conclusion, we proposed a model which accounts for errors in working memory by con-
sidering explicitly the link between storage and representation. We showed it can successfully
account for key aspects of the psychophysical data on visual short term memory, and allows for
a better understanding of the relationship between being precise in the representation of single
features and the representation of binding information across all the features of a single pattern
to be able to handle cued recall. Based on observations on the form of the errors arising when
recalling information from a palimpsest memory, we proposed a specific stimulus template
that would produce different error patterns depending on characteristics of the underlying re-
presentation, and so we suggest as an attractive target for psychophysical investigation.

Methods
Here, we provide a complete description of the processes of storage and recall, repeating mate-
rial from the main text as appropriate for convenience.

Representation
We assume continuous firing-rate style units. They have Bivariate Von Mises tuning curves,
corrupted by isotropic additive Gaussian noise:

mmðf;cÞ ¼
1

4p2I0ðt1;mÞI0ðt2;mÞ
exp t1;mcos ðf� ymÞ þ t2;mcos ðc� gmÞ

� �
; ð14Þ

f and c are respectively the orientation and colour of the item to be represented. ym and gm
identify the preferred angle and colour of unit i. t1,m and t2,m control the size of the receptive
field, as well as the sensitivity of each unit to the different features.

Let the population firing rate state be x = [x1,. . .,xM]
T, xm. The firing rate of unitm is:

x j f;c � N ðmðf;cÞ; s2
xIÞ ð15Þ

Differences in the choices of t1,m and t2,m across the population will generate different types
of representation.

The hierarchical population code is defined as follows, with m(1) being the mean response of
the lower layer.

xð2Þ j f;c � N ðsYðW � mð1Þðf;cÞÞ; s2IÞ ð16Þ

sYðxÞ ¼ maxð0; x �YÞ ð17Þ

~Wjk � BernoulliðpÞ � ExpðlÞ ð18Þ

Wjk ¼
~WjkX

j

~Wjk

ð19Þ

The receptive field sizes were set automatically to achieve maximum coverage given a
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population ofM units. Given a fixed number of units with preferred stimuli arranged uniform-
ly over the feature space, the receptive field sizes were modified such that one standard devia-
tion of the receptive field would cover the space uniformly without redundancy.

In the case of a conjunctive code, we have:

t ¼ gs!t

2pffiffiffiffiffi
M

p
� �

where gs ! t converts the standard deviation of a Wrapped Gaussian into the t of a Von Mises.
No closed-form solution of gs ! t exists; it can be computed numerically by finding the arg-

mint ðexpð� s2

2
Þ � I1ðtÞ

I0ðtÞÞ
2 .

For a feature code, we set:

t1 ¼ gs!t

2p
M=2

� �
ð20Þ

t2 ¼ gs!tð2pÞ ð21Þ

Where t1 and t2 correspond to the two receptive field sizes of one subpopulations (here as-
sumed to be sensitive along the t1 direction).

Storage and recall process
The storage process for N items is probabilistic and follows the following model:

xi j fi;ci � N ðmðfi;ciÞ; s2
xIÞ ð22Þ

yN j x1; ::: ;xN � N
XN

i¼1

bixi; s2
yI

0
@

1
A ð23Þ

xi is the representation of item i by the population code. fi and ci represent the feature val-
ues of item i. Multiple items are summed to produce the final memory state yN, which is, in
turn, corrupted by additional, independent, Gaussian, noise. bi models different strengths of
storage in the memory (to accommodate tasks involving explicit attentional instructions).

Recall is based on the simplifying assumption that a single item is modelled, while others
are collapsed into a single source of noise.mN-1 is the contribution of the noise process to the
mean of the final memory state and SN is the contribution of the noise to the full memory co-
variance. r is the index of the item to be recalled, which we integrate over as it is unknown dur-
ing recall. The posterior over the feature f to be recalled is defined as follows:

yN j f;c; r � N ðmN�1 þ brmðf;cÞ ; SNÞ ð24Þ

f j yN;c �
Z

dr pðrÞpðfÞ pðyN j f;c; rÞ ð25Þ

We use uniform prior distributions over r and f (circularly uniform for f).
The collapsed noise meanmN-1 and covariance SN can be estimated from random samples

of the storage process.mN-1 is the mean memory built from N−1, marginalising over feature
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values:

mN�1 ¼ E½yN�1� ð26Þ

yN�1 �
Z

:::

Z
f1 ;c1 :::fN�1 ;cN�1

PðyN�1jf1;c1; � � �fN�1;cN�1Þdf1dc1 � � � dfN�1cN�1 ð27Þ

Similarly, SN is the covariance of N items, marginalising over feature values. We obtain esti-
mates by sampling 5000 memory items from the storage process before estimating those two
empirical estimates.

We use a slice sampling scheme to obtain samples of f given a memory state. In addition to
the classical slice sampling algorithm, we introduce Metropolis-Hastings jumps, which can
randomly set the sampler in another part of the state space. This allows to jump between
modes in a multi-modal posterior setting. The jump probability is set to 10% and a jump is ac-
cepted depending on a Metropolis-Hastings acceptance ratio. We discard the first 500 samples
as burn-in steps for the slice sampler. We perform step-out and shrinkage to determine the
slice width (initially set to w ¼ p

40
) [26]. We constrain the sampler to the [−p,p] interval. This

allows us to sample appropriately from the full posterior.

Mixture model fitting
We use the mixture model of [7], allowing for a mixture of target, non-target and random re-
sponses. We fit the following mixture component, using the expectation-maximization algo-
rithm:

PðyÞ ¼ ptVMðy; mt; kÞ þ
XN�1

k

pntVMðy; mk; kÞ þ pr
1

2p
ð28Þ

pt þ pr þ pnt ¼ 1 ð29Þ

where pt is the mixture proportion associated with the target, pr the random mixture pro-
portion and pnt the non-target mixture proportion. mt and mk are the true locations of the target
and non-targets. All Von Mises share the same k; this is because the concentrations (though
not the mixing proportions) of the posterior modes around each target are determined by
the Cramer-Rao lower bound associated with the local Fisher information, which are all identi-
cal. The values of pt,pr,pnt and k are fit during the EM procedure; the m’s are assumed to be
known.

To check for the significance of non-zero mixture proportion pnt, associated with non-target
responses, we perform a resampling analysis. Given a set of responses, targets and non-target
angles, we randomly resample the non-target angles and refit the mixture model. We perform
this procedure K times and obtain K samples of pnt (K = 1000). We then construct the empirical
cumulative distribution function F(pnt) for pnt given those samples. Finally, we compare the
mixture proportion p�nt obtained given the original non-target angles, and reject the null hy-
pothesis “pnt = 0” when p ¼ 1� Fðp�ntÞ < 0:01 .
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Fisher information derivation
The Fisher information for a population code with Gaussian noise is:

IFðyÞ½ �ij ¼
@f

@yi

T

C�1ðyÞ @f
@yj

þ 1

2
tr C�1ðyÞ @C

�1ðyÞ
@yi

;C�1ðyÞ @C
�1ðyÞ
@yi

� �
ð30Þ

where f is the mean response of the population, and C the covariance of the population re-
sponse. In our case, y = [f c]T, so the Fisher information is a 2-by-2 matrix.

Consider the case that the memory only contains a single item, with b = 1. Then

yN j f;c � N mðf;cÞ ; ~SN

� � ð31Þ

where we assume ~SN ¼ s2
xI . Since the covariance ~SN does not depend on y, the trace term in

the Fisher information is 0.
The FI about the angle is given by

½IFðyÞ�ff ¼ @m
@f

T 1

s2
I

@m
@f

ð32Þ

@m
@f

� �
i

¼ � t1sinðf� yiÞ
4p2I0ðt1ÞI0ðt2Þ

exp½t1cosðf� yiÞ þ t2cosðc� giÞ� ð33Þ

) ½IF�ff ¼ t21
s216p4I0ðt1Þ2I0ðt2Þ2

XM

i¼1

sin2ðf� yiÞ exp½2t1 cosðf� yiÞ

þ 2t2 cosðc� giÞ� ð34Þ

The other components of the Fisher information matrix can be derived similarly.
By taking a large population limit in which preferred values have density r, we obtain a

closed-form approximation to the Fisher information (see Section, 1 in S1 Text for the com-
plete derivation):

lim
M!1

½IF1�ff � t21r

s28p2I0ðt1Þ2I0ðt2Þ2
I0ð2t2ÞðI0ð2t1Þ � I2ð2t1ÞÞ ð35Þ

Parameter optimization
We perform a grid search over several population code parameters to provide a qualitative fit
to human experiments. For the mixed population code, we varied sx and the ratio of conjunc-
tivity, as b, sy were kept fixed. For the hierarchical code, we set p = 1, l = 1 andY = 1 and var-

ied sx and the ratio of conjunctivity (defined as
M2

M1þM2
, whereM1 (respectivelyM2) is the size of

the layer one subpopulation (respectively layer two)). A full fit, which is the subject of future
work, would require at least the consideration of heterogeneous and multi-scale population
representations.

Supporting Information
S1 Text. Supplementary Material. Additional derivations and results omitted from main
manuscript. Derivations include the computation of the large population limit for Fisher
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information and the relation between the memory fidelity and the Fisher information. We
report the stimuli separation analysis for the hierarchical code, analogous to the analysis of
Fig. 16 in the manuscript. Following the comments of a reviewer, we studied the relationship
between the conjunctivity ratio and the population size in a mixed population code, as our
parametrisation creates a dependence between them. Finally, we show how increasing the
number of features affects the ratio of conjunctivity for a fixed population size.
(PDF)
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