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Abstract

Current sequencing methods produce large amounts of data, but genome assemblies based on these data are often
woefully incomplete. These incomplete and error-filled assemblies result in many annotation errors, especially in the
number of genes present in a genome. In this paper we investigate the magnitude of the problem, both in terms of total
gene number and the number of copies of genes in specific families. To do this, we compare multiple draft assemblies
against higher-quality versions of the same genomes, using several new assemblies of the chicken genome based on both
traditional and next-generation sequencing technologies, as well as published draft assemblies of chimpanzee. We find that
upwards of 40% of all gene families are inferred to have the wrong number of genes in draft assemblies, and that these
incorrect assemblies both add and subtract genes. Using simulated genome assemblies of Drosophila melanogaster, we find
that the major cause of increased gene numbers in draft genomes is the fragmentation of genes onto multiple individual
contigs. Finally, we demonstrate the usefulness of RNA-Seq in improving the gene annotation of draft assemblies, largely by
connecting genes that have been fragmented in the assembly process.
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Introduction

Genome comparisons have revealed significant variation in

gene family size, both within and between species, e.g. [1–7]. This

variation can result from either the gain or loss of genes, each of

which in turn may be favored by selection. Variation in the

number of genes may have important consequences for under-

standing differences between species, especially for key morpho-

logical, physiological, and behavioral traits, e.g. [8,9,10].

The observed variation in gene numbers may represent genetic

diversity resulting from the evolution of gene families [11], but

may also have been incorrectly inferred from sequencing and

assembly artifacts. In order to assess the genomic content of a

particular species, current methods rely on published genome

assemblies. Unfortunately, a major problem in genomics is

assembly quality, especially given that it is very difficult to

determine the accuracy of de novo assemblies [12,13] and the fact

that different assembly algorithms may give very different results

[14]. Both computational and experimental methods have been

applied to improve upon an assembly: computational approaches

include innovations in the assembly algorithms themselves, e.g.

[15], as well as methods developed to compare, validate, and

gauge the quality of a particular assembly, e.g. [16–19]. Experi-

mental approaches have been aimed at improving the connectivity

of contigs and scaffolds e.g. [20], assigning and ordering scaffolds

on chromosomes, e.g. [21,22], and validating and refining the

annotated genes using RNA data, e.g. [23,24,25]. Often compu-

tational and experimental methods are used in conjunction to

improve an assembly, as further experimental evidence will be

integrated or reassembled with the original draft assembly, e.g.

[26]. Improvements in sequencing technology do not necessarily

mean that assemblies as a whole have improved; indeed, shorter

reads have increased the computational complexity of the assembly

problem, e.g. [27,28] and have resulted in more fragmented

assemblies (i.e. there are a larger number of contigs). A number of

factors confound accurate assembly, including the presence of

transposable elements and other repetitive sequences [29], and the

allelic variation present when heterozygous individuals are

sequenced, e.g. [30]. Despite these obvious problems the number

of assemblies produced is increasing, and thousands of genome

sequencing projects are planned or in progress [31]. In many cases,

gene annotation from the closest annotated relative will be

transferred to these new genomes, and will further propagate the

annotation problems to many new genome sequences.

Low-quality assemblies result in low-quality annotations [18,27],

and these annotation errors cause both the over- and under-

estimation of gene numbers, e.g. [32,33]. One cause of the over-

estimation of gene numbers is the splitting of allelic variation (i.e.

haplotypes present in heterozygous individuals) into separate loci

(Fig. 1A); we refer to such cases as ‘‘split’’ genes. Split genes appear
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as highly similar duplicated loci within genome assemblies, and are

often placed in tandem to one another or with one copy on a small

scaffold by itself, e.g. [34,35]. A second cause of the over-estimation

of gene numbers is the fragmentation of a single gene onto multiple

contigs or scaffolds (Fig. 1B); we refer to such cases as ‘‘cleaved’’

genes. Because ab initio gene predictors less likely to accurately infer

gene models across sequence gaps, genes fragmented onto multiple

contigs or scaffolds will be predicted as multiple separate genes, e.g.

[30]. Note that gene models may also be cleaved simply because ab
initio predictors have failed to join distant exons together in a single

transcript, e.g. [36,37], though this type of error may be

independent of the underlying assembly quality. A common cause

of the under-estimation of gene number is the collapse of truly

paralogous gene copies into a single locus (Fig. 1C). This occurs

because newly formed duplicates are highly similar in sequence, and

therefore hard to assemble as separate loci, e.g. [30,38]. A second

cause of under-estimation is simply that genes may not be

represented in low-coverage genomes due to a large number of

gaps (Fig. 1D). In such cases both total gene numbers and the size of

individual gene families may be severely underestimated, e.g. [39].

Many genome assemblies and annotations have improved over

time due to further efforts aimed at both increasing sequence

contiguity and adding functional data (e.g. RNA-seq) in order to

correct gene models. Individual researchers may also contribute to

the deconvolution of specific assembly errors, e.g. [27,40] or to the

improvement of specific gene models, e.g. [41,42]. However, it is

often the case that a great deal of research will be based upon the

draft assembly before it has reached a finished state, and erroneous

conclusions may result, e.g. [40]. As an extreme example, the

initial draft human genome contained 223 bacterial genes thought

to have been gained by horizontal gene transfer [43]. Closer

analysis of this result suggested that many of these cases were

simply bacterial contaminants incorrectly assembled into the

human genome [44]. As a less extreme example, the initial human

genome predicted between 30–40,000 protein-coding genes

[43,45]. As the draft assembly was updated and the gene

annotation process was improved, the estimated number of genes

in human has continued to fall, and is 20,805 as of February 2014

according to Ensembl [46]. This pattern repeats itself for nearly

every draft genome, but is especially true of vertebrate genomes

because of their size and complexity [28,40]. The cascading effects

of these errors may affect many downstream conclusions, from

inferences about the evolutionary histories of genes to the ability to

map genes involved in disease.

Although many consequences of low-quality assemblies have

been described, e.g. [27,28,47–49], few analyses have specifically

examined the effect on gene copy-number but see [32,33].

Because many new, next-generation sequencing technologies are

being used to construct genome sequences, we would also like to

know the error-characteristics inherent to different platforms.

Here we examine gene numbers in multiple genome assemblies,

using multiple sequencing technologies, and from multiple species.

Our results suggest that low-quality assemblies can result in huge

numbers of both added and missing genes, and that most of the

additional genes are due to genome fragmentation (‘‘cleaved’’ gene

models). Based on these results we present simulation analyses that

Author Summary

The initial publication of the genome sequence of many
plants, animals, and microbes is often accompanied with
great fanfare. However, these genomes are almost always
first-drafts, with a lot of missing data, many gaps, and
many errors in the published sequences. Compounding
this problem, the genes identified in draft genome
sequences are also affected by incomplete genome
assemblies: the number and exact structure of predicted
genes may be incorrect. Here we quantify the extent of
such errors, by comparing several draft genomes against
completed versions of the same sequences. Surprisingly,
we find huge numbers of errors in the number of genes
predicted from draft assemblies, with more than half of all
genes having the wrong number of copies in the draft
genomes examined. Our investigation also reveals the
major causes of these errors, and further analyses using
additional functional data demonstrate that many of the
gene predictions can be corrected. The results presented
here suggest that many inferences based on published
draft genomes may be erroneous, but offer a way forward
for future analyses.

Figure 1. Examples of missassembly leading to misannotation. Each row shows the true state of the genome on the left (‘‘Expected
assembly’’) and a common misassembly error on the right (‘‘Observed misassembly’’). A) A single gene may be assembled as two apparently
paralogous loci, increasing the predicted gene count. B) A singe gene may be fragmented into multiple pieces, each on different contigs or scaffolds.
This cleavage can increase the number of predicted genes. C) Two paralogous genes may be collapsed into a single gene, decreasing the predicted
gene count. D) A gene may be partially or entirely missing from the assembly, decreasing the number of predicted genes.
doi:10.1371/journal.pcbi.1003998.g001

Error in Draft Assemblies
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suggest that published genomes with surprisingly high numbers of

genes may be in error, and further show how these problems can

be corrected.

Results/Discussion

Errors in de novo assemblies of the chicken genome
To determine how total gene numbers are affected by genome

assembly quality we compared predicted gene models in multiple

versions of the chicken genome. We examined five different

assemblies that were based on different sequencing technologies

and sequencing depths. These assemblies vary in size and average

coverage (Table 1; for more details on these assemblies, see [28]).

The 2X fosmid-based assembly (average read length ,950 bp)

may be considered the least complete assembly, as it is the most

fragmented, smallest in size, and has the least coverage of the five

assemblies considered. The 13X 454-based assembly of the

chicken genome was built with 454 single-end reads (average

length ,330 bp), 3 kb mate-pair inserts, and 20 kb mate-pair

inserts using the Newbler assembler. The 82X Illumina-based

assembly was built with high coverage of paired-end short-insert

reads (average length 100 bp) and integrated with inserts of 2 kb in

length using the SOAP assembler. The draft chicken reference

genome (v2.1) was a 6X Sanger-based assembly that was improved

with fosmid and BAC-end sequencing and reassembled with the

PCAP assembler (it is also referred to as Galgal3 in some

repositories). The final assembly used as a reference, the current

chicken reference (v4.0; also referred to as Galgal4 in some

repositories), was a further improvement to version 2.1. This

hybrid assembly, which was already covered to 6X with Sanger

reads, improved to 6.6X with BAC and fosmids, was again

reassembled using the following additional 454 sequences: 10X

fragment reads, 1.7X 3 kb inserts, and 1.2X 20 kb inserts; again,

the PCAP assembler was used to integrate all the data into the

final reference assembly. Although it is of high quality, even this

reference is considered a ‘‘draft’’ genome.

We predicted genes on each of these five assemblies using the ab
initio prediction methods implemented in GENSCAN [50] and

Fgenesh [51]. GENSCAN was used with the ‘‘eukaryotic’’ model

specified, and Fgenesh was used with the specific model for

chicken available in the package. GENSCAN (Table 1) found a

greater number of genes than Fgenesh (S1 Table), which typically

produced more conservative counts but also more complete gene

models. Both gene predictors found tens of thousands of genes for

each assembly, and we found that the assemblies with the most

scaffolds also had the most predicted genes (Table 1). However, a

great many of the predicted genes (often more than 50%; Table 1)

were lacking either a start or stop codon, or both. We suspected

that the enrichment of small scaffolds was increasing the number

of incomplete predictions, and filtered very small scaffolds

(,1000 bp) from the assemblies. This decreased the total number

of predictions while also providing a greater proportion of

complete gene models. We then extracted only complete gene

models—those with both start and stop codons—from each set of

predictions. This yielded a similar number of predictions

(,36,000) for all but one of the assemblies. That particular

assembly was built solely from fosmids and plasmids: it has an

average genome coverage of only 2X and is missing roughly

150 Mb relative to the other assemblies; we were only able to

extract 20,000 complete genes from the predictions on this

assembly. The fosmid assembly also has the most total predicted

genes (when including those without both start and stop codons) as

well as the most scaffolds, though both genes and scaffolds were

shorter on average than in the other chicken assemblies.

As an alternative method to assess assembly quality, we applied

the CEGMA pipeline [52]. CEGMA maps a set of core eukaryotic

genes to assemblies in order to determine their completeness—that

is, how many of them are represented as full-length gene models

[53]. This method has been used by the Assemblathon [14] as one

measure of the quality of different genome assemblies. Table 2

reports the completeness of CEGMA genes in each of the chicken

assemblies analyzed here. The most up-to-date assembly (v4.0)

Table 1. Chicken genome assemblies, predicted partial and full-length GENSCAN genes, and completeness of conserved orthologs
as assessed by CEGMA.

Assembly Coverage Contigs Partial genes Full-length genes Completeness

Fosmids 2X 281711 138354 21250 14.1%

454 12X 45554 73262 36210 68.2%

Ref 2.1 6.6X 71609 86543 38199 66.5%

Illumina 82X 27093 64552 33324 74.6%

Ref 4.0 12X 25017 61405 35537 80.7%

doi:10.1371/journal.pcbi.1003998.t001

Table 2. Number of predicted genes in simulated D. melanogaster assemblies.

Number of scaffolds

Annotation software 707 2164 5225 5730 6296 10674 12354 14061 17941

GENSCAN 22679 23654 25413 25413 26370 28328 29225 30073 32025

Fgenesh 17718 18152 18905 18959 19193 19978 20285 21469 24922

AUGUSTUS 14098 14479 15095 15222 15391 16051 16436 17490 20654

MAKER 12687 13872 14931 15761 16059 16903 18231 21340 23916

doi:10.1371/journal.pcbi.1003998.t002

Error in Draft Assemblies
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shows the highest percentage of full-length CEGMA genes

(80.7%), while the fosmid-only assembly shows the lowest

(14.1%). As the average gene length in the current chicken

annotation is 27.8 kb, it is clear that many genes have large pieces

missing or are fragmented onto multiple contigs in these

assemblies.

After clustering the filtered predictions into groups of homol-

ogous genes based on sequence similarity (equivalent to gene

families; see Methods), we were able to compare gene family sizes

in each assembly relative to the predicted sizes in the current

chicken reference assembly (Fig. 2). As expected based on quality

and coverage, the fosmid assembly shows the largest deviation in

terms of gene family size relative to the reference chicken

assembly. For each assembly no more than 60% of all gene

families were the same size as in the reference assembly, meaning

that the remaining 40% or more of families were inferred to have

the wrong size. These gene families were either missing one or

more genes relative to the reference or contained one or more

additional members relative to the size of gene families inferred

from the reference assembly. The fosmid assembly was a clear

outlier, with more than half of all gene families missing gene copies

relative to the reference.

Overall, these results show that different next-generation

sequencing technologies have produced assemblies of largely

equal quality in terms of gene copy-number, though of course

these assemblies have very different coverage levels. For all non-

reference assemblies, a huge number of gene families have an

incorrect number of copies (assuming that the current reference is

correct), which will lead to incorrect inferences about rates of gene

family evolution, and false inferences of specific gene gains and

losses.

Examining the cause of errors in a draft chimpanzee
genome

We performed a similar analysis on the chimpanzee genome,

comparing the original chimpanzee annotation (Pan_troglodytes-

1.0) with an updated version of the same genome (Pan_troglo-

dytes-2.1). This analysis differs from the chicken analysis in that we

relied solely on the published annotations, and therefore

improvements to the predicted gene set may be due to

improvements to the assembly, improvements to the ab initio
gene predictors, and/or additional functional data. However, this

analysis also removes the gene-prediction step from our hands,

allowing us to evaluate predictions done by the Ensembl pipeline

on two different assemblies.

We find a similar result in chimpanzee as to that found in

chicken, with a large proportion of the gene families having

incorrect estimates for the number of genes (Fig. 3). Overall, 74%

of families had the same number of genes in the two annotations,

while 26% had either a greater or smaller number of genes. A

major difference between the chicken analysis and the results

found for chimpanzee is that the most common error in the draft

chimpanzee genome was the addition of a single gene rather than

the loss. The earlier assembly and annotation had predicted almost

1,800 more genes than the updated assembly and annotation.

In order to determine the cause of these additions we asked

whether the genes in the earlier assembly version were full-length

copies of each other (indicative of split alleles; Fig. 1A) or were

instead made up of two non-overlapping fragments of the full-

length gene found in the updated assembly (indicative of cleaved

genes; Fig. 1B). We were able to determine the cause of the

additional gene in 1,693 families (Methods). Of these, 1,279 were

cleaved genes and 414 were split alleles. This was an unexpected

result as the donor chimpanzee, Clint, was heterozygous for over 1

million SNPs [54] and we therefore expected many split alleles;

however, the genome also had many gaps, effectively fragmenting

it into a large number of pieces.

Does fragmentation of assemblies lead to higher gene
numbers?

Our results from chimpanzee and chicken suggest that the

fragmentation of genomes into thousands of contigs may play a

large role in falsely increasing predicted gene numbers. Such

assembly fragmentation may have played a part in the extremely

large number of genes predicted in several published genomes. For

example, the crustacean, Daphnia pulex, has 30,907 predicted

Figure 2. Differences in gene family size when comparing annotated draft genomes (see Table 1 for individual descriptions) to the
chicken reference assembly (v4.0). For each gene family, the size (in total number of genes predicted) was compared to the chicken reference;
positive numbers indicate an excess number of genes in the draft genome annotations, while negative numbers indicate a deficit of genes. The small
number of gene families with more than +/23 differences from the reference are not shown. Gene models were predicted using GENSCAN.
doi:10.1371/journal.pcbi.1003998.g002

Error in Draft Assemblies
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genes [55]. However, the first draft assembly available for this

species is extremely fragmented, with a very low N50 scaffold size

(,400 kb), over 5,000 scaffolds, and over 19,000 contigs [55]. We

suspected that the fragmented nature of the draft assembly, in

conjunction with the lack of a high-quality genome annotation

from a closely related species, was inflating the gene counts. To

indirectly test this hypothesis—and to directly examine the effect

of fragmentation on predicted gene numbers—we developed a

method to produce increasingly fragmented assemblies of the high-

quality Drosophila melanogaster genome (Methods). Comparing

the genes predicted from these simulated assemblies should reveal

the effect of fragmentation.

We produced nine simulated D. melanogaster assemblies with

between 707 and 17,941 contigs, and compared the number of

predicted gene models in each. We again applied the GENSCAN

and Fgenesh gene predictors, as well as the AUGUSTUS

predictor [56] and the MAKER gene prediction pipeline [57].

As expected if fragmentation is a cause of increased gene number,

the number of predicted genes in each simulated D. melanogaster
assembly increased as the genomes become more fragmented

(Table 2). Strikingly, in the simulated genome with 17,941

contigs—each of which has a length drawn from the distribution

of contig lengths in the Daphnia pulex genome (Methods)—we

find 32,025 GENSCAN-predicted genes with start and stop

codons, a handful more than are present in the published Daphnia
pulex genome (Fig. 4). Although the other predictors all give more

modest increases in gene number with increasing fragmentation,

they all predict 6,000–10,000 additional genes on the most

fragmented assemblies (Table 2).

When we examined specific genes in our prediction sets we

often found them to be cleaved, sometimes into multiple pieces,

with single exons or groups of exons isolated on individual contigs.

Gene prediction software will often call these exons as genes, and

the process of gene prediction in these highly fragmented genomes

has essentially become one of exon prediction. Zhang et al. [40]

found similar instances of spurious gene calls from cleaved or

isolated exons when looking at the draft rhesus macaque assembly

and annotation (see [58] for examples from the pig genome).

Although these random cleavages of the Drosophila genome may

not be a perfect approximation of fragmentation in real

Figure 3. Differences in gene family size when comparing the initial chimpanzee assembly (Pan_troglodytes-1.0) to an updated
version (Pan_troglodytes-2.1). Positive numbers indicate an excess number of genes in v1.0, while negative numbers indicate an excess. The
small number of gene families with more than +/23 differences from the reference are not shown.
doi:10.1371/journal.pcbi.1003998.g003

Figure 4. Number of predicted genes increases with increasing genome fragmentation. Starting with the D. melanogaster reference
genome (release 5.41), the sequence was cut into increasing numbers of ‘‘contigs.’’ GENSCAN gene predictions for each assembly are shown.
doi:10.1371/journal.pcbi.1003998.g004

Error in Draft Assemblies

PLOS Computational Biology | www.ploscompbiol.org 5 December 2014 | Volume 10 | Issue 12 | e1003998



assemblies, the increasing fragmentation causes the number of

exons per gene in the predicted sets to decline. Comparing the

number of exons per gene in the simulated dataset to the number

in the reference D. melanogaster genome, we see a huge

enrichment for single-exon genes and a general decline in the

average number of exons (Fig. 5). Due to the highly fragmented

nature of this assembly almost none of the genes with over a dozen

exons have remained full-length, and the longest genes have often

been cleaved into more than two predicted genes.

While the results of our simulated genomes do not directly

demonstrate the causes of the over-prediction of genes in

published genomes, they do strongly indicate that genome

fragmentation can play an outsized role in this problem. However,

although many new genomes are highly fragmented, most do not

have such large numbers of predicted genes. So why are there

differences in predicted gene numbers? For many newly sequenced

genomes, high-quality genomes from closely related species can be

used to improve the assembly [59,60], or to directly improve gene

models [61]. In the case of Daphnia pulex there are no closely

related complete genomes, and therefore little comparative data

for improvement; as expected from severe fragmentation, 22% of

annotated Daphnia genes do not have both a start and stop codon.

Other data and methods can be used to improve gene annotations,

however, and in the next section we show how one such method

can be utilized.

Improving fragmented assemblies using RNA-seq
In addition to data from closely related species and genomes,

RNA-seq data (or any kind of transcript sequencing data) has been

used to improve both genome assemblies [62,63] and gene

annotations, e.g. [23,24,25]. RNA-seq offers an effective method

for improving an annotation set, especially when a single gene may

span multiple contigs [24]. The sequencing of mRNAs is

equivalent to sequencing reads with an insert size of the order of

intron sizes—because these regions are removed from mRNAs,

even large gaps can be crossed if they coincide with introns. In

terms of fragmented genome assemblies, the sequencing of

mRNAs allows genes cleaved onto multiple contigs to be identified

as a single locus, and therefore for inflated gene numbers to be

reduced. While gene models from related species offer an

alternative method for identifying fragmented genes [61], RNA-

seq can be used for any species, regardless of whether there is a

genome with a high-quality annotation that is closely related.

To determine the effectiveness of RNA-seq data in restoring

fragmented gene models we obtained reads from 11 published

experiments in D. melanogaster (Table 2). After mapping paired-

end reads from these experiments back to our simulated assembly

with 17,941 contigs, we asked whether there were any cases in

which two different predicted gene models were uniquely hit by a

connected pair of reads. In other words, we looked for pairs of

reads for which one hit one predicted gene and the other read hit

another predicted gene on a different contig. Even with a single

RNA-seq experiment, thousands of predicted genes could be

linked by paired-end evidence (Table 3). Although on average

only 2% of paired-ends per experiment met our conditions for

connecting genes on different contigs, this small percentage

represents hundreds of thousands of total connections. As more

RNA-seq datasets were analyzed, many of the same connected

exons were identified, but each new dataset also added a

significant number of novel connections (Table 3; this analysis

was only carried out once, with individual datasets added in a

random order).

If we require only a single RNA-seq read as evidence of

connected exons, almost 12,000 predicted genes were removed by

combining them with other genes, and the remaining estimate of

,20,000 predicted genes closely resembles the number predicted

from the uncut D. melanogaster reference genome (Fig. 4).

Increasing the number of reads required to connect exons before

considering them to be in the same gene resulted in a linear

decrease in the number corrected (Table 4). This is to be expected,

as even a very large RNA-seq dataset may not have many reads

covering the same exon-exon junction; however, increasing the

number of required reads may also increase accuracy of inferences

[63]. These results demonstrate that RNA-seq can be used

effectively to improve gene annotations in highly fragmented

genomes. This result is in contrast to the use of microarrays in

improving gene annotations, as arrays will only establish that

predicted exons are parts of genes, and not unique genes

Figure 5. Number of predicted exons per gene decreases with increased genome fragmentation. A comparison of the number of
predicted exons per gene in the uncut D. melanogaster reference genome to the fragmented version of this genome that contains 17,941 contigs
(the right-most point in Fig. 4). Gene models were predicted using GENSCAN.
doi:10.1371/journal.pcbi.1003998.g005

Error in Draft Assemblies
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themselves, cf. [55]. It must also be noted that RNA-seq cannot

help to improve cases of split alleles (Fig. 1A)—in these cases both

of the predicted gene models will be full-length, and the RNA-seq

data will not contain any information about the nature of the

misassembly.

Conclusions
Our results suggest that low-quality assemblies may contain a

great many added or missing genes, especially as cleavage and

separation of genes across multiple contigs hinders the ability of

gene predictors to correctly identify genes. We have shown that

most additional genes are due to such cleavage, and specific cases

examined in the chicken and chimpanzee genomes support this

finding. Our simulation analyses of fragmented Drosophila
assemblies indicate that published genomes with surprisingly high

numbers of genes may be in error, and simply a result of severe

fragmentation. Finally, we have found that RNA-seq offers the

ability to correct annotation errors that result from such

fragmentation, as fragmented predicted genes can be collapsed

with paired end information.

Methods

Analysis of the chicken genome
Four chicken assemblies of varying quality (Table 1) were

obtained from The Genome Institute at Washington University;

they are partially described in [28,64]. A fifth chicken assembly,

the current reference genome (v4.0), was obtained from Ensembl

[46]. For each of these assemblies, we first filtered out short

scaffolds (,1000 bp) before predicting genes using GENSCAN

and Fgenesh. We extracted all predicted genes that were

considered complete: that is, their sequence contained both a

start and stop codon. After using BLAST [65] to compare all

GENSCAN genes from all assemblies to one another, the graph

clustering algorithm MCL [66,67] was used with default

parameters to cluster genes into gene families based on these

similarity scores. The 29,763 gene families resulting from this

procedure contained differing numbers of genes from each

assembly, including from the current reference assembly. For

each gene family the number of genes in each assembly was

compared to the number in the reference chicken assembly.

Examining the cause of errors in a draft chimpanzee genome
Two assemblies and annotations of chimpanzee, Pan_troglo-

dytes-1.0 and an updated version of the same genome,

Pan_troglodytes-2.1, were obtained from Ensembl (versions 35

and 56, respectively). The first version was sequenced to 4X using

the PCAP assembler [54]; the second version represents an

additional 2X coverage from plasmid reads, and reassembly using

PCAP. Following the methods described above for chicken, but

with the annotated gene models from Ensembl, we again clustered

genes from both assemblies into 11,959 gene families. For all

families with a larger number of members in the low-coverage

assembly and annotation, we used BLAST to search full-length

gene models from the high-coverage against the predicted set of

genes in the family. In order to classify genes as ‘‘cleaved’’ we

required that there be at least two complementary gene models in

the low-coverage set. That is, we required that genes in the low-

coverage annotation be non-overlapping, but to match comple-

mentary parts of the full-length models. Multiple genes from the

low-coverage annotation that matched both the full-length gene

model and each other (i.e. were overlapping with .95% similarity

over 80% of their length) were classified as ‘‘allelic splits.’’

Table 4. Number of GENSCAN gene models connected
through RNA-seq alignments, with increasing requirements
for the number of connecting reads.

Number of Reads Number of Models Collapsed

1 20094 11931

2 23987 8038

3 25492 6533

4 26775 5250

5 27844 4181

6 28745 3280

7 29481 2544

8 29992 2033

9 30493 1532

10 30845 1180

doi:10.1371/journal.pcbi.1003998.t004

Table 3. RNA-seq reads mapped to a simulated Drosophila assembly allows correction of the original 32,025 predicted GENSCAN
gene models.

No. of datasets No. of reads Revised gene count Reduction Cumulative reduction

1 6.93E+06 27064 4961 4961

2 1.64E+07 24769 2295 7256

3 2.33E+07 23511 1258 8514

4 3.06E+07 22645 866 9380

5 3.94E+07 21895 750 10130

6 4.86E+07 21413 482 10612

7 5.54E+07 21113 300 10912

8 6.22E+07 20974 139 11051

9 7.06E+07 20853 121 11172

10 8.01E+07 20467 386 11558

11 1.06E+08 20094 373 11931

doi:10.1371/journal.pcbi.1003998.t003
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Generating simulated Drosophila assemblies
We attempted to transform the high-quality, near-complete D.

melanogaster assembly into one resembling the Daphnia pulex
assembly. In order to do this, we first collected information about

the Daphnia pulex assembly from wFleabase ([68], http://

wfleabase.org/), specifically, the scaffold lengths as well as

positions and lengths of all gaps within those scaffolds. This

filtered scaffold set contained 5,191 scaffolds [68]. However, when

we examined the assembled scaffolds we found that nearly 25% of

bases were gaps, represented by stretches of N’s in the sequence.

To understand how gene prediction software would handle such

gaps, we manually inserted stretches of N’s into the sequence of

known D. melanogaster genes, and then predicted genes on the

artificially created sequence. We found a limitation in the length of

a gap that the gene prediction software could span and still predict

a single gene. GENSCAN, for instance, could not predict a single

full-length gene across a gap of length 50 or greater. This implies

that individual contigs are the fundamental unit useful for

predicting genes, and that even individual large scaffolds

fragmented into many contigs may result in the over-prediction

of genes. We therefore chose 50 bp as a minimum cutoff length for

the length of gaps, separating scaffolds into individual contigs

when stretches of N’s longer than fifty characters were found.

Applying this cutoff to the Daphnia pulex assembly revealed

17,924 ‘‘contigs’’ useful for gene prediction.

Drosophila melanogaster assembly release 5.44 was obtained

from Flybase [69], in the form of six chromosome files. Using the

distribution of contig sizes found in the Daphnia pulex assembly,

we generated 10 simulated D. melanogaster assemblies with

different numbers of contigs (Table 4). To do this, for any specified

number, x, of contigs needed for the simulated D. melanogaster
genome we took the longest x contigs from the Daphnia pulex
assembly. The reference D. melanogaster genome was then

fragmented into x pieces by randomly cutting contigs of the

lengths drawn from the Daphnia pulex assembly, while ensuring

that the entire D. melanogaster sequence was included in each

simulated dataset. Because the Daphnia pulex genome is roughly

170 Mb in length (not including N’s) while the D. melanogaster
genome is 138 Mb, we are conservatively excluding the class of

extremely small scaffolds found in Daphnia pulex from our

simulated genomes. We predicted genes on each simulated

assembly using GENSCAN, Fgenesh, AUGUSTUS, and MAK-

ER. Although GENSCAN was used with a pre-specified human

model, this has been shown to be sufficient for most eukaryotes e.g.

[51]. Fgenesh has a specific Drosophila model, and as a

consequence produced much lower gene counts.

RNA-seq analysis
Paired-end RNA-seq data from an experiment by the Berkeley

Drosophila Genome Project [70], was obtained from the public

database ENA ([71], http://www.ebi.ac.uk/ena/). These paired

end reads were mapped against the simulated D. melanogaster
assembly that had ,18,000 contigs using the software BWA [72]

with default parameters. Additional processing of the alignment

was performed using samtools [73]. We filtered by read quality

and mapping quality, and sought connecting paired-end reads

where each end mapped to different scaffold. We used the

positions of every exon in the predicted gene set for our simulated

assembly to determine which exons were associated by the

connecting paired-end reads. A set-merging algorithm was applied

to chain together connected exons before the resulting gene set

was analyzed.

Supporting Information

S1 Table Assembly statistics and gene models predicted by

Fgenesh for chicken genome assemblies.
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