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Abstract: Can biology students
without programming skills solve
problems that require computa-
tional solutions? They can if they
learn to cooperate effectively with
computer science students. The
goal of the in-concert teaching
approach is to introduce biology
students to computational thinking
by engaging them in collaborative
projects structured around the
software development process.
Our approach emphasizes develop-
ment of interdisciplinary communi-
cation and collaboration skills for
both life science and computer
science students.

Introduction

Development of computational skills is

recognized as an important goal for life

science students [1–6]; however, current

biology and biochemistry curricula at most

institutions cannot easily accommodate

additional courses in computing sciences.

Is it possible to teach computational skills

to biologists in a single course? In 2009,

Pevzner and Shamir posed this question as

a pedagogical challenge: ‘‘How should the

research and education community design

a bioinformatics course that (i) assumes

few computational prerequisites, (ii) as-

sumes no knowledge of programming, and

(iii) instills in students a meaningful

understanding of computational ideas

and ensures that they are able to apply

them?’’ [2]

There are two approaches to addressing

this challenge. The first approach involves

building an introductory programming

course into a bioinformatics course, en-

gaging students in the entire process of

computational problem solving: problem

analysis, design, implementation, and

evaluation of the solution. This requires

teaching students a programming lan-

guage (typically Perl or Python) as the

means of expressing their solutions. The

second approach is to focus on a specific

aspect in the problem-solving process,

working with students on developing a

subset of skills.

Each approach has its own advantages

and drawbacks. With the first approach,

the students can go through the entire

problem-solving process, but the scope of

problems they can solve in the confines of

a single course is limited. One example of

successful implementation of this approach

is described by Libeskind-Hadas and Bush

[7]. This approach is best suited for

curricula that expose students to bioinfor-

matics early and provide subsequent

opportunities to advance students’ compu-

tational skills through additional courses.

With the second approach, students go

through the specific stages of the problem-

solving process working on more complex

problems, but they cannot complete the

entire problem-solving process on their

own. We describe in this essay our initial

attempts to implement the second ap-

proach and to introduce computational

thinking to biology students in a course

that does not require any programming

from these students.

Can there be computational thinking

without programming? Yes! There has

been a broad consensus among computer

science education researchers and practi-

tioners that the term ‘‘computational

thinking’’ is distinct from the term ‘‘pro-

gramming’’ [8–11]. Programming is just

one part of the software development

process that can be roughly divided into

four stages: analysis/requirements, design,

implementation (aka programming), and

evaluation. The first and the last stages do

not require any knowledge of program-

ming languages but rely on solid under-

standing of the problem that needs to be

solved. In our course for life science

students, we concentrated on these two

stages. The first stage requires the skill

recently defined as one of the core

competencies for bioinformatics: ‘‘an abil-

ity to analyze a problem and identify and

define the computing requirements appro-

priate to its solution’’ [6].

Since we limit the goals of the life

science students to analyzing problems,

writing program requirements, and evalu-

ating computational solutions and soft-

ware systems, we need to provide the

missing pieces (program design and im-

plementation) in order to complete the

problem-solving process. In our course

design, we bring together students from

two distinct but interconnected courses:

Bioinformatics Applications (life science

curriculum) and Bioinformatics Algo-

rithms (computer science curriculum).

Students in each course are juniors and

seniors who have already attained intro-

ductory or intermediate skills in their

respective disciplines. They attend sepa-

rate lectures focused on discipline-specific

content and then collaborate in the

laboratory to build software for solving

biological problems.

Is this approach consistent with develop-

ment of computational thinking? The

definition developed by Wing with input

from Ato, Cuny, and Snyder refers to

computational thinking as ‘‘the thought

processes involved in formulating a problem

and expressing its solution(s) in such a way

that a computer—human or machine—can

effectively carry out’’ [12]. Our approach

separates the two core components of the

definition from each other. ‘‘Formulating a

problem’’ is carried out by the life science

students, while ‘‘expressing the solution’’ is

the job of the computer science students. By

separating the two components and stress-

ing only one for each group of students, we

Citation: Goodman AL, Dekhtyar A (2014) Teaching Bioinformatics in Concert. PLoS Comput Biol 10(11):
e1003896. doi:10.1371/journal.pcbi.1003896

Editor: Joanne A. Fox, University of British Columbia, Canada

Published November 20, 2014

Copyright: � 2014 Goodman, Dekhtyar. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: This work was partially supported by NSF grant 1140828. Genomics Education Partnership (GEP) is
supported by HHMI grant #52007051 to and by Washington University in St. Louis. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: agoodman@calpoly.edu (ALG); dekhtyar@calpoly.edu (AD)

PLOS Computational Biology | www.ploscompbiol.org 1 November 2014 | Volume 10 | Issue 11 | e1003896

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003896&domain=pdf


are able to significantly increase the com-

plexity of problems that our multidisciplin-

ary student teams can solve. In addition,

students practice collaboration and com-

munication skills. Below, we discuss the key

features of our approach.

In-Concert Teaching

In-concert teaching is the approach of

teaching two distinct courses in a concerted

way. The courses include separate disci-

pline-specific lectures and a shared labora-

tory component. Each course is taught by

the instructor from its respective field and

targets distinct audiences of students, but the

course materials are developed by two

instructors jointly in a coordinated way.

Students from both classes form interdisci-

plinary teams for the duration of the course

and work together on laboratory assign-

ments, contributing their discipline-specific

knowledge and skills. We call this approach

‘‘in-concert’’ teaching to emphasize the

concerted efforts of students and instructors

from different disciplines who are working

towards accomplishing a common goal [13].

Distinct and Shared Learning
Objectives

Our approach recognizes distinct goals

of the life science (BIO) and computer

science (CS) courses. We identified distinct,

discipline-specific learning objectives, as

well as those that are shared. CS students

need to learn algorithms and use them for

practical problem-solving, while BIO stu-

dents need to learn to use bioinformatics

tools in research. The discipline-specific

learning objectives do not require interac-

tions with experts from another discipline,

but we believe that cross-disciplinary inter-

actions promote and facilitate student

learning within each discipline. In-concert

teaching allowed us to expand the list of

learning objectives for each group of

students to include interdisciplinary collab-

oration and communication. CS students

learn to work with clients who are not

programmers, and by the end of the course,

they should be able to

(1) elicit requirements for new programs,

(2) communicate during the software

development process to make sure

the software meets the needs of the

clients, and

(3) maintain/modify the delivered soft-

ware.

Biology students should be able to

(1) convert a biological question into a

computational one,

(2) write program requirements describ-

ing the function of the software

needed to answer the question, and

(3) design test cases to verify that the

program developed by their CS

partners is working correctly.

Both groups also have shared learning

objectives:

(1) communicate relevant discipline-spe-

cific issues to their partners and

(2) cooperate effectively with colleagues

within and outside their own disci-

pline on a project.

Research Problems That
Require Collaborative Effort

To create the need for collaboration,

instructors of in-concert courses need to

identify problems that align with the

learning objectives and fall within the

scope of each course. The problems have

to be complex and interdisciplinary, so

that neither group of students can solve

them on their own, but also be amenable

to analysis by undergraduate students in a

fairly short amount of time. Based on our

participation in the Genomics Education

Partnership (GEP, http://gep.wustl.edu,

[14–16]), we chose problems related to

annotation and comparative analysis of

fruit fly genomes. In a set of joint lab

assignments distributed over a ten-week

quarter, students studied primarily hetero-

chromatic dot/fourth chromosome and a

euchromatic region on chromosome 3L.

They compared the two regions based on

guanine-cytosine (GC) content, gene char-

acteristics, and repetitive sequences. They

also developed a program for manipulat-

ing GEP data and checking the quality of

student-submitted annotations. BIO stu-

dents also worked on genome annotation

projects, which required the following

research skills: gathering evidence using

bioinformatics tools, analyzing data, and

formulating conclusions. In contrast to

annotation, comparative genome analysis

problems were intentionally poorly de-

fined (more open ended) and gave students

an opportunity to practice a complemen-

tary set of research skills: defining research

questions and developing new tools for

answering these questions.

The challenge of comparative genome

analysis aligned well with the core content of

the CS course, which included simple DNA

analysis techniques and measures (GC

content, codon bias, and gene content),

string comparison (longest common sub-

string, repeat detection, and palindrome

discovery), and local and global alignment.

CS students built research tools that required

the implementation of the data structures,

algorithms, and techniques studied in class

while also tailoring their implementation to

the actual specifics of the problems.

Interdependent Roles and Peer
Instruction

Recognizing the distinct learning objec-

tives for members of the interdisciplinary

teams, we structured teamwork around the

software development process and ex-

plained to students their distinct and

interdependent roles (Figure 1). Biology

students worked in groups of two or three

to discuss a problem and write a formal

program requirements document specify-

ing input, output, and processing needs.

During the joint laboratory, BIO students

presented these documents to their CS

partners and discussed them in detail.

While CS students built software, BIO

students prepared test cases for evaluation

of the software. BIO and CS students

worked together on testing the software.

Ultimately, biology students were respon-

sible for answering the original question

and compiling data from several lab

assignments into a final research paper,

while CS students supported the delivered

software for the remainder of the quarter,

providing, upon request, bug fixes, as well

as improvements to the tools.

Cross-disciplinary peer instruction was an

important component of the course, and we

provided students with many opportunities

to teach each other. The instruction of CS

students in biology was done mainly by their

biology partners. Aside from an introductory

lecture taught by the BIO course instructor

in the CS class, the life science students

decided what information was relevant and

how to explain concepts of molecular

biology to colleagues from a different field.

In the BIO class, the CS instructor intro-

duced stages of the software engineering

process and explained the role of BIO

students in the process, focusing on the

development of program requirements.

During software testing, which resembles

troubleshooting experimental procedures,

BIO and CS students learned from each

other by contributing different types of tests.

BIO students designed small-scale tests and

provided expected results based on their

knowledge of real data and existing software.

Student Perception of Working
on the Interdisciplinary Teams

We implemented in-concert teaching in

our bioinformatics courses in the spring
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quarter of 2012 (24 BIO and 35 CS

students) and 2013 (23 BIO and 26 CS

students; course syllabi are provided as

Text S1). BIO students included mostly

junior- and senior-level students majoring

in molecular and cell biology, biochemistry,

agriculture, and biomedical engineering.

Some of the BIO students completed a

prior course in statistics, and only one

student in 2013 had programming experi-

ence. Most students taking the CS course

were in their senior year and came with a

considerable computer science background

that included the introductory CS sequence

(taught in C and Java), data structures,

systems programming, and algorithms.

Each course included three hours of lecture

and three hours of lab per week. The

lectures were discipline-specific and were

taught separately. The lab sessions took

place in two adjacent computer classrooms

where students spent most of their time

working on joint activities.

We asked students to share their

experiences and perceptions of our courses

via a voluntary exit survey. Selected quotes

in Table 1 are representative examples of

student responses to questions regarding

teamwork. Communication was listed

most prominently both as the benefit and

the challenge of working across disciplin-

ary boundaries. When students were asked

what they liked the most about the course,

the majority of responses fit into three

categories: (1) working with partners, (2)

working on meaningful projects/real re-

search, and (3) learning specific content

from their own discipline. For CS stu-

dents, the most frequently mentioned

category was ‘‘working with partners’’

(15/28 or 53% in 2012, 10/18 or 55%

in 2013), while for BIO students, the

responses were fairly equally distributed

between the three categories (,30% for

each category). We also asked students about

challenges and changes they could suggest

for the course. These are discussed below.

Overall, exit surveys and informal discus-

sions with students after the course suggest

that students perceive our bioinformatics

courses taught in concert as an extremely

challenging but equally worthy experience.

Challenges

The main pedagogical challenges of the

in-concert teaching model are (a) the need

to align the content of the two courses and

to create a meaningful interdisciplinary

experience through the shared laboratory

assignments and (b) the need for students

to function as experts in their discipline on

an interdisciplinary team. We addressed

the first challenge by careful planning and

preparation, which resulted in developing

syllabi for both classes that linked specific

lecture topics to laboratory assignments.

The second set of challenges is more

difficult to overcome. No single member of

the interdisciplinary team has sufficient

knowledge/skills to complete a joint lab

assignment independently. Rather, the

assignments rely on the ability of students

to understand ‘‘their’’ parts of the problem

and contribute their expertise to the

Figure 1. In-concert teaching approach: Clearly defined and interdependent student roles in the joint laboratory are built around
software development process.
doi:10.1371/journal.pcbi.1003896.g001
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solution (Figure 1). BIO students are

expected to understand the nature of the

assignment. CS students are expected to

be proficient software developers who

understand the software requirements for

each assignment and build the software. In

addition, team members have to get

information efficiently across disciplinary

boundaries: biologists must put together

requirements that CS students can use,

while CS students must train biologists in

how to use the software. We are address-

ing this set of challenges by tightening

course prerequisites to ensure that only

students with appropriate expertise in their

discipline are enrolled and by adjusting the

lab workflow to require more interdisci-

plinary interactions.

Finally, assessment presents a major

challenge for any educational innovation.

It is particularly difficult for us because, to

our knowledge, assessment tools for mea-

suring computational thinking skills inde-

pendently of programming skills are not

available. We do use student artifacts

(requirements and code) to assess the

success of each team. In grading the labs,

both artifacts were evaluated, and separate

scores were assigned to each. The require-

ments document score evaluates how well

BIO students understood the initial prob-

lem they were asked to solve and how well

they were able to translate their under-

standing into a software specification. The

software score evaluates the entirety of the

process concentrating on the work of CS

students. In the 2013 version of the

courses, BIO students could request fur-

ther improvements in the programs

throughout the quarter; we collected and

evaluated all requests and the modified

programs. We are able to assess teams’

success in the software development pro-

cess, and preliminary results of this

assessment are described in [13]. The next

challenge is to develop tools for assessing

computational thinking skills of individual

students without relying on the use of any

programming language.

Conclusions

As students advance through their

education, they focus more and more on

their specific discipline and rarely interact

with students in other disciplines in a

professional capacity. In most endeavors

outside of academia, professionals rarely

work in isolation. Anytime a diverse group

of professionals is presented with a goal,

their success depends on their ability to

cooperate effectively across disciplinary

boundaries. While this skill is often learned

by trial and error on the job, it can also be

learned in the classroom. The difference in

our approach is that we use a well-

established process (software engineering

lifecycle) and specifically defined interde-

pendent roles for students in different

disciplines to structure collaborative work.

We believe that in addition to acquiring

communication skills, students deepen

knowledge in their own discipline by

acting in the roles of experts. In addition,

life sciences students are exposed to

computational thinking related to require-

ments specification and software evalua-

tion. The key to our approach is instructor

collaboration and identification of a suit-

able problem: one that is relevant to the

learning objectives of each group of

students, requires expertise from multiple

disciplines, and cannot be solved by either

group on their own.

Table 1. Selected student responses to questions about cross-disciplinary teamwork from a voluntary exit survey.

Question Examples of BIO Answer Examples of CS Answer

What were the benefits of working with
[partners from the other discipline]?

‘‘Learning how differently we think from each other
and how to communicate more effectively.’’

‘‘Having real, nontechnical customers helps you understand the
nature of tasks outside the classroom: collaborating with
nonsoftware people is unique, their needs are sometimes
ambiguous, and there’s a frightening but eye-opening reliance
on them for domain-specific information. You also get to learn
about an interesting field of study that you may have never
considered working in before.’’

‘‘Learned to communicate more effectively with
people who don’t have as [much] of a background
in science as we do. We were more able to
appreciate what CS people do, and it was fun to
work together designing software.’’

What were the challenges/drawbacks of
working with [partners from the other
discipline]?

‘‘Really the same as the benefits…differences in
background knowledge and communication.’’

‘‘They struggled tremendously to convey what they wanted the
software to do. A lot of the time, also, they didn’t have a clear
idea of the data they were looking for. Because of that, we were
often lost in our job as programmers.…when doing
implementation, we usually had to guess their eventual needs or
grill them for better details—their written specifications were
never enough. This added extra time pressure too, because we’d
spend a substantial portion of each lab attempting to work those
things out…’’

‘‘When…program functions were not working as
expected, that was frustrating. It required patience
for all to discuss as a group what was incorrect+
brainstorm why.’’

‘‘They did not know what we wanted, and we did
not know what they could do.’’

How did you overcome the challenges? ‘‘Learning to speak up when something is not
correct on either side of the team and trying to
teach each other bits of background info.’’

‘‘We overcame the challenges by talking about the problem and
teaching each other things that the other majors did not
know…’’

‘‘We had to discuss frequently and rewind our
explanations until they made sense.’’

doi:10.1371/journal.pcbi.1003896.t001
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