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Abstract

Social animals may share information to obtain a more complete and accurate picture of their surroundings. However,
physical constraints on communication limit the flow of information between interacting individuals in a way that can cause
an accumulation of errors and deteriorated collective behaviors. Here, we theoretically study a general model of information
sharing within animal groups. We take an algorithmic perspective to identify efficient communication schemes that are,
nevertheless, economic in terms of communication, memory and individual internal computation. We present a simple and
natural algorithm in which each agent compresses all information it has gathered into a single parameter that represents its
confidence in its behavior. Confidence is communicated between agents by means of active signaling. We motivate this
model by novel and existing empirical evidences for confidence sharing in animal groups. We rigorously show that this
algorithm competes extremely well with the best possible algorithm that operates without any computational constraints.
We also show that this algorithm is minimal, in the sense that further reduction in communication may significantly reduce
performances. Our proofs rely on the Cramér-Rao bound and on our definition of a Fisher Channel Capacity. We use these
concepts to quantify information flows within the group which are then used to obtain lower bounds on collective
performance. The abstract nature of our model makes it rigorously solvable and its conclusions highly general. Indeed, our
results suggest confidence sharing as a central notion in the context of animal communication.
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Introduction

Background and motivation
Animals living in groups sense their surroundings both directly,

by environmental cues, and indirectly, through countless social

interactions. There is an abundance of experimental evidence for

the usefulness of social information in increasing both the range

(the ‘‘many eyes’’ principle) [1–5] and the accuracy (the ‘‘many

wrongs’’ principle) [6–9] at which environmental signals are

perceived. Despite these advantages, there are many scenarios in

which animals tend to prefer personal knowledge and direct

environmental cues to social information [10,11]. Indeed, second

hand information about the environment can become increasingly

obsolete [12,13], distorted [14], and partial [15] as it passes from

one individual to the next and, subsequently, lead to maladaptive

responses [11]. These contradicting evidences call for a more

comprehensive understanding of the usefulness of social informa-

tion exchange and its limitations under noise.

A distinction can be made between passive and active social

messaging [16]. Passive information [17,18] is transferred as

inadvertent cues [19], i.e., with no direct intention of signaling,

evident by the behavior of one animal are perceived by others. As

an example, models of complex flocking behaviors typically rely

exclusively on passive interactions in which animals align their

movements to those performed by their neighbors [6,20].

However, there is evidence that passive information is often

accompanied by active, or intentional, signals that communicate

part of the animal’s internal state. In cooperative situations [21]

active signals may enhance the effectiveness of passive cues and

lead to faster and more accurate performance [13,14].

While elaborate active communication has its advantages,

simplicity is, nonetheless, important. Indeed, it is required that

communication remain energetically cheap [22], cognitively

manageable [23,24] and concise [21]. A main goal of this work

is to identify simple active communication schemes that enhance

the reliability and the benefits of social information.

Animal groups, together with numerous other biological

ensembles, are naturally described as entities that collect, share

and process information. Unfortunately, with the exception of

neuroscience [25], the potential of information theory in providing

rigorous descriptions of such ensembles remains, largely, unreal-

ized [15]. For example, the term ‘‘information flow’’ is often used

to describe the gradual process in which messages are being

relayed between agents [26,27]. Although the speeds and

directionality of information flows have been described for several

systems [1,28–30], it remains unclear how to rigorously analyze

such flows to quantify the amount of transferred information. A

second goal of this paper lies in introducing information

theoretical tools as a means of quantifying information flows

within a group of agents.
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In what follows, we use an algorithmic perspective [31–33] to

tackle the question of information sharing within a population of

cooperative agents. The agents use environmental cues inter-

twined with social interactions to obtain ever refined estimates of

some fixed, unknown environmental target value [34]. Interac-

tions include both passive and active components. A passive

observation amounts to obtaining a noisy measurement of the

observed agent’s behavior. An active signal exposes some part of

the observed agent’s internal state. We are interested in how active

signals may be economically used to best enhance the flow and

benefits of passive communication.

To study this question we compare two models. The non-
restrictive model allows for infinite resources in terms of memory,

active communication and individual computation. On the other

hand, the compact model restricts active communication and

memory to a single parameter and individual computation to a

constant number of the basic arithmetic operations. We present

recent experimental observations [14,35–37] as well as novel

evidence regarding ant interactions that suggest that the commu-

nication of a self-confidence parameter is a relevant process within

animal populations. Inspired by such observations, we propose a

simple and natural algorithm for the compact model that relies on

the sharing of confidence. This model can serve as a basic

representative of the family of confidence-sharing algorithms. We

show that the performances of this algorithm are highly

competitive with those of the best possible algorithm for the

non-restrictive case.

One may be tempted to reduce active communication below

what is permitted by the compact model, but we show that this

may incur a heavy price in performance.

The model
Formulation of the problem. We study a simple model for

the sharing and dissemination of information within a population

of anonymous agents (see section 1 in Text S1). Each agent, a, is

associated with an external state xa which represents, for example,

its physical location or direction of motion. The goal of each agent

(following [34]) is to modify this state so as to be as close as possible

to a target value, h�[R. More formally, for each agent a, we view

its external state xa(t) at time t as an estimator of h�. At any given

time, the agent may modify its external state such that it is

maintained as an unbiased estimator with minimal mean square

error (MSE). We stress here that this work is restricted to this

specific cost function and that other estimators require further

study (see, for example, [7,37,38]). For the sake of conciseness,

from here onwards, we refer to xa as ‘‘location’’ and to a change in

xa as a ‘‘move’’.

To initialize the system, the location xa(0) of each agent a is

randomly chosen according to some arbitrary distribution Wa

centered at h�. We assume that the variance of Wa is known to

agent a. The agent may store this and other pieces of information

it collects in its memory.

Agents improve their estimation of h� by relying on both social

interactions and environmental cues, where in-between such

events they are free to perform moves and adjust their memory

state. Technically, environmental cues are included by having a

particular, immobile set of agents represent the environment. For

simplicity of notation, we focus on pair-wise interactions which can

be either uni- or bi-directional (our results transfer to interactions

that involve a larger number of agents in a straightforward

manner). The information transferred in such interactions may

contain both active and passive signals. Passive information is

obtained as agent a measures its current relative distance [39]

from agent b, that is,

~ddab(t)~xb(t){xa(t)zg,

where the additive noise term, g, is chosen from some arbitrary

distribution N(g) whose variance, var(N), is known to the agents.

Active signals are modeled as messages that expose some part of

the internal memory of agent b to the observing agent a.

A remark regarding related problems in other

disciplines. The problem we address is somewhat related to

the Relative Location Estimation problem studied within the

context of sensor networks [39]. There are, however, important

differences of emphasis between these two cases. First, most sensor

localization algorithms are designed for static sensors [39] and are

often, to some extent, centralized [40]. Our setting is inherently

distributed and moreover, mobile; agents continuously update

their location in a way that effects subsequent distance measure-

ment by others. Second, restrictions on internal memory and

computation of sensors are typically not as constraining as those

we consider here (especially in the case of actively mobile sensors

[40]). Finally, while sensor localization algorithms typically focus

on triangulation solutions that rely on fixed communication

networks with unique identities [41], our setting is anonymous and

does not allow agents to control with whom they interact. The

question we face is further related to computer science problems

such as consensus and gossip [42], however these are typically

discrete in nature, and do not take communication noise into

account.

Results

The optimal algorithm
To evaluate the performances of algorithms, we compare them

to Opt (see section 2 in Text S1), the best possible algorithm

operating under the non-restrictive model.

Being as liberal as possible, we further assume that active

communication is completely reliable. This is since any definition

of active noise must depend on a particular choice of a

communication scheme which, in turn, may restrict an optimal

algorithm. Moreover, here, agents are initially provided not only

with the variances of the noise and initial distributions but also

with their full functional forms. That is, the memory of an agent a

initially contains ŴWa~W(x{h�) and N(g). Without loss of

generality, the memory of an agent further includes a vector that

contains all prior moves and distance measurements it took.

Following an interaction, the observing agent adds to its memory

Author Summary

Cooperative groups are abundant on all scales of the
biological world. Despite much empirical evidence on a
wide variety of natural communication schemes, there is
still a growing need for rigorous tools to quantify and
understand the information flows involved. Here, we
borrow techniques from information theory and theoret-
ical distributed computing to study information sharing
within animal groups. We consider a group of individuals
that integrate personal and social information to obtain
improved knowledge of their surroundings. We rigorously
show that communication between such individuals can
be compressed into simple messages that contain an
opinion and a corresponding confidence parameter. While
this algorithm is extremely efficient, further reduction in
communication capacity may greatly hamper collective
performances.
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not only the new noisy distance measurement but also the full

memory content of the observed agent. This leads to the

accumulation of large nested data-structures. The agent may then

perform arbitrarily sophisticated computations over its memory to

adjust its location xa(t) to its best possible estimate of h�.
We stress that none of the proofs in this manuscript rely on the

identification of an optimal algorithm. Nevertheless, for the sake of

completeness, we specify Opt for independent meeting patterns

(section 1.1.3 in Text S1), which are especially meaningful on short

timescales or if the system is highly mixed. Indeed, in such cases,

algorithm Opt can be precisely described (section 2.2 in Text S1).

Specifically, each agent maintains a pdf that represents the

relative positioning of the target value h� with respect to its current

location. The pdf is initialized to be fa,0(x)~ŴWa({x). Upon

observing another agent b at time t, agent a performs the following

operations:

Algorithm Opt

N Compute: normalize the next integral to obtain a pdf (c is a

normalization constant):

ga,b(x)~c:fa,t(x):
ð

fb,t(xz~ddab{g)N(g)dg:

N Update external state: xa(tz1)~xa(t)z
Ð
ga,b(x)xdx:

N Update memory: fa,tz1(x)~ga,b(x{
Ð
ga,b(x)xdx):

In general, as time passes, the description of the stored pdf
requires an increasing number of moments and its communication

a more elaborate encoding scheme. Moreover, the calculations

required for updates become increasingly complex.

Difficulties towards efficient information fusion
Algorithm Opt relies on the transmission and updates of

probability functions and on relatively complex calculations. We

wish to identify a simple algorithm whose performance is highly

competitive with that of Opt. To do this one faces several

difficulties.

A first difficulty lies in the fact that the partial knowledge held

by each agent is relative (e.g., an estimation to the distance

between this agent and h�) and hence may require the agents to

carefully fuse other perspectives than their own. This difficulty is

enhanced, as the agents are constantly on the move. We have

shown how non-restrictive algorithms may overcome such

difficulties if each agent encodes all its previous moves in memory

and then uses this information to deduce absolute measurements

(section 2.1 in Text S1). In compact models, such tactics lose their

effectiveness and it is not clear how agent a should treat distance

measurements to an agent b whose position constantly changes

over time.

It is known that a reasonable way to combine estimators is to

form linear combinations in which each estimator is weighed by its

inverse variance [43]. Although this is the best estimator that could

be formed as a linear combination it is not overall optimal. Indeed,

maintaining and communicating highly detailed memories can, in

some cases, significantly improve an agent’s assessment of the

target value (for example, see Figure 1).

This problem worsens in the context of an interacting

population. Here, maintaining a high degree of detail requires

storing an arbitrary number of pdf moments which may grow

with every interaction. Discarding this accumulating information

by repeatedly using simple (e.g. linear) estimators could, therefore,

lead to performances that deteriorate with time. Hence, it is not

clear how to compress the information held by agents into few

meaningful parameters while avoiding the accumulation of errors

and runaway behavior.

Another of the analysis difficulties corresponds to the fact that

the pdf held by an agent at time t depends on many previous

deviation measurements in a non-trivial way, and hence the

variance of a realization of the pdf does not necessarily correspond

to the variance of the agents’ opinion, when taking into account all

possible realizations of all measurements. Hence, one must regard

each pdf as a multi-variable distribution. A further problem has to

do with dependencies. The independent meeting pattern guaran-

tees that the memory pdf ’s of two interacting agents are

independent, yet, given the pdf of the observing agent, the pdf
of the observed agent and the deviation measurement become

dependent. Such dependencies make it difficult to track the

evolution of an agent’s accuracy of estimation over time. Indeed,

to tackle this issue, we had to extend the Fisher information

inequality [44,45] to a multi-variable dependent convolution case.

The biological relevance of confidence based algorithms
Internal representations of confidence have been shown to affect

animal behavior over a wide range of species [46–49]. Confidence

as an internal parameter that builds up as a passive agent gathers

external evidence has been measured in pre-decision neuronal

responses (see, for example, [50]). The notion of confidence as an

internal parameter carries over into group contexts wherein

animals were demonstrated to become more responsive to social

information as their own certainty drops [37,51,52].

Furthermore, evidence also suggests that animals are capable of

communicating their confidence as well as assessing that of their

conspecifics [13,14,35,53]. One such example comes in the

context of conflict, where threat behaviors may indicate the

communication of confidence. While no single work directly binds

all elements of confidence sharing many supportive evidences

exist: Dominance hierarchies, like confidence, are constructed

according to the accumulation of evidence [54]. Further, threats

are correlated with large differences in dominance rank [55] and

are often non-deceptive [56–58] and convey the animal’s actual

chances of winning the next fight. Moreover, threats are generated

and perceived at different levels of intensity [55,59] to the extent of

causing an opponent to back away from confrontation [53,60].

Other examples come from more cooperative scenarios such as

house hunting behavior in honeybees (Apis mellifera). It was

shown that swarming bees collectively move towards a new nest

site by communicating two-component messages: The direction in

which bees fly encodes the desired direction towards the new site

while the speed of flight determines the degree of responsiveness

this message will elicit in others [61,62]. Furthermore, it was

shown that high speed is associated with bees that have been to the

new site (streakers) as well as bees that do not have first hand

accounts but whose flight is generally directed towards the desired

site [61]. These evidences are consistent with an analogy between

flight speed and confidence regarding the correct direction to the

new site. Another example occurs earlier in the house-hunting

process. The messages which scouts convey regarding the location

of prospect nest sites contain (at least) two components: While the

direction to the advertised site is encoded by the waggle dance, the

intensity of the message is encoded in the number of times the bee

performs this dance [63,64]. The intensity of the message

correlates with the quality of the advertised site and could be

Confidence Sharing in Animal Groups
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interpreted as the confidence of the bee that the site she advertises

is the best of all options. This interpretation is strengthened if,

similar to what has been shown for ants [65,66], bees have some

internal scale to the quality of a site.

A further example for the role of confidence during interactions

comes from recruitment behavior in the desert ant Cataglyphis
niger [14]. Here, ants within the nest interact with their nest-mates

to accumulate indirect evidence regarding the presence of food

and towards an active decision to exit themselves (recruitment).

Similar to the accumulation of neuronal activity that proceeds a

decision [50], ants were observed to gradually increase their speed

of movement before deciding to exit the nest [14]. Furthermore,

ants which have been in direct contact with the food are certain of

its presence and indeed maintain high speeds for extended periods

of time [14]. These evidences suggest that an analogy between the

speed of an ant and her confidence may be useful. In Figure 2 we

present novel empirical evidence of the way ants update their

speed following an interaction. This data confirms that speed

(confidence under this analogy) is both transmitted and perceived

by the ants. Moreover, the speed of an ant after the interaction is

an increasing function of both her speed and the speed of her

interacting partner prior to the interaction.

A basic confidence-based algorithm
Having identified confidence sharing as a relevant communi-

cation scheme in animal groups, we turn to study the compact

algorithm Conf: a basic representative of the family of algorithms

that rely on the active communication of confidence. This

algorithm is basic in being both simple and natural: It is simple

as it is highly economical in terms of communication, memory

usage and internal computations. It is natural since it relies on

linear combination information fusing techniques. Below, we

describe Conf and show that it displays near optimal performance.

In algorithm Conf each agent, a, stores in its memory a single

parameter ca[R that represents its confidence regarding its current

distance from the target h�. The initial confidence of agent a is set

to ca(0)~1=var(Wa). When agent a observes agent b, it receives

both the passive noisy distance measurement ~ddab(t) and an active

message containing the confidence parameter of b. This informa-

tion will then allow agent a to relocate itself by using a weighted

average procedure [34,43]. Then, a suitable update is made for ca

to reflect a’s confidence of its updated location.

Specifically, upon receiving cb(t) and ~ddab(t), agent a proceeds as

follows:

Algorithm Conf

N Compute: ĉcb(t)~cb(t)=½1zcb(t): var(N)�.
N Update external state: xa(tz1)~xa(t)z

~ddab(t):ĉcb(t)

ca(t)zĉcb(t)
:

N Update confidence: ca(tz1)~ca(t)zĉcb(t):

Competitive analysis
We provide a rigorous proof (section 5 in Text S1) that the

performances of Conf are very close to those of Opt when the

meeting patterns are independent and active communication is

noiseless. Specifically, we first show (section 5.1 in Text S1) that

under these conditions, the rules of Conf guarantee that the

location xa(t) of any agent a serves as an unbiased estimator of h�

and that the confidence ca(t) satisfies:

ca(t)~1=var(xa(t){h�): ð1Þ

We further show (section 5.2 in Text S1) that although

approximation errors that result from the information compres-

sion of Conf are inevitable, they do not accumulate with time and

through repeated interactions. Indeed, the quotient between the

variance of the population under Conf and its variance under Opt

remains bounded, at all times, by the initial Fisher-deviation D0 (as

defined in the Materials and Methods). More specifically, under

algorithm Conf, the variance of any agent a at time t is bounded

by D0 times the corresponding variance under Opt (see

Figure 3A):

var(xa(t){h�)ƒD0
: var(xa(t, Opt){h�), ð2Þ

where xa(t, Opt) denotes the location of agent a at time t under

algorithm Opt.

Figure 1. Storing and communicating detailed assessments of target location is, in some cases, extremely beneficial. A. The
memories of (pink) agent a and (black) agent b are represented by a pdf (capital F’s) that summarizes their full information regarding the target. The
agents locate themselves at the mean of their corresponding pdf (marked by filled diamonds). We consider an interaction in which agent a observes
agent b and updates its position and memory to those depicted in red. B. The agents are initiated as in A. However, before they interact, their
memories are compressed into Gaussians (lowercase f’s) that agree in mean and variance with their previous assessments. Note that since the mean
values have not changed, the initial locations of the agents in both panels are identical. Following the interaction, agent a has moved to a different
location (compare red diamond to red circle) and has gained less information (compare variances of red curves) when compared to the case in which
compression had been avoided. For simplicity, all interactions in this figure were taken to be noiseless.
doi:10.1371/journal.pcbi.1003862.g001
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To prove Equation 2, we relate the variance of Opt to a

measure of information which we call the relative Fisher
information. This measure, denoted Jh

a (t, Opt) (formally defined

in Text S1, section 3.2), quantifies the agent’s current knowledge

regarding h�. Intuitively speaking, this notion can be thought of as

the Fisher information of the pdf family that describes the random

samples held by a under algorithm Opt with respect to the

translational parameter h (see Materials and Methods). We then

use the Cramér-Rao bound to deduce that:

mean((xa(t, Opt){h�)2)§1=Jh
a (t, Opt), ð3Þ

Figure 2. C. niger recruitment behavior exhibits interactions that resemble Conf. The figure summarized the speed change of ants directly
before and after an interaction within the nest. We refer to the two interacting ants as the fast/slow ant according to their speed before the
interaction. Identifying speed with confidence about the presence of a food source [14] reveals an interaction rule similar to that suggested by Conf.
A. Mean speed of the slow ant following an interaction. B. Mean speed of the fast ant following an interaction. The figure summarizes (n = 429)
interactions and demonstrates how the speed of an ant after an interaction increases as either her prior speed or the prior speed of the ant she

interacts with are larger. For example, we find that the mean speed at which an initially slow ant (vslow[f0:9,2:5g cm

sec
) exits an interaction with a

relatively fast faster ant (vfast[f4:2,5:9g cm

sec
) is higher than the her speed after an interaction with a relatively slow faster ant (vfast[f1:7,2:5g cm

sec
),

2:7
cm

sec
w2:1

cm

sec
, pv1:10{3 by the one-sided two-sample Kolmogorov-Smironov test. Similarly, the mean speed of a fast ant (vfast[f4:2,5:9g cm

sec
)

increases more after encountering a relatively fast slower ant (vslow[f4:2,5:9g cm

sec
) than a relatively slow slower ant (vslow[f1:7,2:5g cm

sec
):

5:7
cm

sec
w4:2

cm

sec
, pv0:002. Using the same speed ranges we also find that the mean speed of a slow ant after an interaction is an increasing function

of her speed prior to the meeting: 4:3
cm

sec
w2:7

cm

sec
, pv1:10{6 and that the same holds for fast ants: 4:2

cm

sec
w2:9

cm

sec
, pv0:003. For further details

regarding a general slow-down in speed evident after each interactions see [14].
doi:10.1371/journal.pcbi.1003862.g002

Figure 3. Comparing the performances of the confidence based algorithm, Conf, to those of other algorithms. A. Optimal algorithms.
We look at the convergence of an optimal algorithm for two different initial distributions. Double Gaussian initial conditions (D0~50) possess higher
Fisher information than Gaussian initial conditions with the same variance (D0~1) and thus converge faster. As the Conf algorithm uses only
variances it performs equally well under the two conditions. Note that for Gaussian initial conditions, Conf is optimal while, for the double Gaussian
case, the competitiveness of Conf is, at any time, much smaller than the theoretically predicted upper bound of D0~50. B. When compared to Conf,
linear combination algorithms exhibit a large deterioration in performances and a speed-accuracy tradeoff: The simple average algorithm (c~ 1

2
)

converges relatively fast but to a steady state that is dominated by the amplitude of the communication noise. The linear combination algorithm with

c~cE~
1

E2zvg
=(

1

E2
z

1

E2zvg
) (where Ew0 can be taken to be arbitrarily small) reaches a tight steady state at the cost of long convergence time.

doi:10.1371/journal.pcbi.1003862.g003
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where the mean is taken over all possible random initial locations

and communication noises, as well as, possibly, over all random

choices made by the agents themselves.

We then show that the confidence of an agent a under

algorithm Conf satisfies: ca(t)§Jh
a (t, Opt)=D0, which establishes

Equation 2 and proves that the competitiveness of Conf with

respect to Opt is, at most, the initial Fisher deviation D0.

Note that for D0w1, the optimal algorithm Opt cannot, in fact,

achieve the Cramér-Rao bound at all times (t = 0 being a trivial

example). Therefore the competitiveness of Conf with respect to

Opt can be expected to be even tighter than D0. This is indeed

verified by simulation (see Figure 3A). Moreover, we show that in

the case of Gaussian noise, and regardless of D0, the performance

of Conf will approach that of Opt at large times (section 5.2.3 in

Text S1 and Figure 3A). Note that in the case in which the noise

and initial distributions are all Gaussian, the Fisher deviation

satisfies D0~1 so that Conf is optimal (Figure 3A).

Algorithms without active communication
We next compare the Conf algorithm to even simpler

algorithms that rely solely on passive communication.

We first consider algorithms in which the interaction update

rule is a simple linear combination of the observing agent’s

location, and the estimated location of the observed agent:

xa(tz1)~xa(t)zc:~ddab,

for some constant c (note that in algorithm Conf, c is not constant

and is set according to the active message and a’s current

confidence). A simple average algorithm is obtained by setting

c~
1

2
.

The performance of constant linear combination algorithms is of

interest since they require minimal resources: agents are not

required to store any memory of their current internal state. We find

that, in general, when communication noise is substantial, linear

combination algorithms do not perform well. They exhibit a speed

accuracy tradeoff converging within a time scale of

t1=2~1=( log (1{2czc2){1) (which diverges for small values of

c) to a steady state with a variance that scales as var(?)~c=(1{c)
(section 7 in Text S1 and Figure 3B). On the other hand, in the case

of uniformly informed populations and negligible communication

noise, the performances of the simple average algorithm (c~
1

2
)

approach those of Conf in terms of both convergence rate and

steady state variance. Intuitively, simple averaging functions well

under these circumstances since the information held by two

interacting agents, at any time, is of equal quality.

Active communication can also become redundant when

passive communication noise is very large with respect to the

uncertainty of the agents. Indeed, in this case, a ‘‘passive’’

algorithm is obtained by translating the rules Conf into a high

noise regime. The effective confidence of any observed agent

becomes ĉcb(t)~cb(t)=(1zcb(t): var(N))&cb(t)=(cb(t):var(N))~
1=var(N) which is independent of its actual internal state.

Conversely, ‘‘passive’’ algorithms are expected to fail in situations

where noise levels are comparable to agent uncertainty and knowledge

is non-uniformity distributed among the agents. In this case, the

assumption that an observed agent’s confidence is 1=var(N) fails and

could lead to irreparable mistakes in the observing agent’s position and

confidence after the interaction. For intuition, consider the extreme

case in which a single agent has very accurate knowledge of the target

value while all other agents have no information at all. In this case,

Conf would allow for very fast convergence typical of rumor spread:

roughly within log n rounds, where n is the number of agents. On the

other hand, if no active communication is allowed, it becomes difficult

to distinguish the knowledgeable agent within a large population of

anonymous agents (see section 7.1 in Text S1).

Generalizations
Information flows, Fisher capacity and convergence

times. We now set to find lower bounds on the convergence

time of a group of agents applying an arbitrary algorithm. First, we

note that an agent’s relative Fisher information, Jh
a t,Að Þ, any

interaction pattern and any noise in either active or passive

communication (section 3 in Text S1). An inequality similar to that

formulated for Opt (equation 3) also holds for this, more general,

case:

mean((xa(t,A){h�)2)§1=Jh
a (t,A): ð4Þ

Next, we combine equation 4 and a bound on the relative Fisher

information an agent can gain through an interaction to produce

lower bounds on collective convergence times.

By generalizing the Fisher information inequality [44,45], we

prove (section 4 in Text S1) that, under an independent meeting

pattern, when agent a observes agent b at time t then:

Jh
a (t,A)ƒJh

a (t{1,A)z
1

1

Jh
b (t{1,A)

z
1

Jg

, ð5Þ

where Jg is the Fisher Information of the noise distribution family

N(g{h) (see, also, Figure 4) In particular, this implies that:

Jh
a (t,A){Jh

a (t{1,A)ƒ min (Jg,Jh
b (t{1,A)): ð6Þ

Intuitively speaking, agent a cannot obtain more information

than that stored in b or a measurement more precise than allowed

by communication noise. This equation holds with respect to any

level of noise in active communication, and in particular, when

active communication is noiseless. The bound of Jg on informa-

tion increase holds with respect to any algorithm A, hence, we can

view it as a property of the information channel itself. In analogy

to Channel Capacity as defined by Shannon [67] we term Jg as

the Fisher Channel Capacity. This definition is not to be confused

with the notion of ‘‘Channel Capacity’’ previously used by Frieden

et al., in a different, non-distributed context. Figure 4 illustrates

and summarizes the above stated ideas.

These restrictions on information flow can be translated into

lower bounds for convergence times, i.e. the time in takes the

whole population of agents to enter a certain tight window E
around h�. Convergence requires that the estimator applied by a

typical agent have a variance that is on the order of E2. As this

variance must comply with the Cramér-Rao bound, the Fisher

information of the typical agent in the system has to exceed

1=E2.

To get some intuition on the convergence time, let J0 denote the

median initial Fisher information of an agent (this is the median

Fisher information over the distributions fWaga), and assume

J0ƒ1=E2. Equation 6 implies (section 6 in Text S1) a bound for

the best possible convergence time T(E):

Confidence Sharing in Animal Groups
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T(E)ƒ1=E2Jg: ð7Þ
Let ĴJ0 denote the maximal initial Fisher information over all

agents. In the case where ĴJ0%Jg, one can obtain a tighter upper

bound for T(E). Note that the Fisher information at an agent is

always at most the corresponding Fisher information in the

analogue scenario where there is no noise in both passive and

active communication. For this noiseless scenario, the additive

property of Fisher information implies that the maximum Fisher

information over all agents grows by, at most, a factor of 2 in each

round. This leads to the following bound:

T(E)ƒ log2 Jg=ĴJ0

� �
z1=E2Jg:

Dependent interaction patterns. Our proofs pertain to an

independent interaction regime which, in the strict sense,

restricts our analysis to highly connected interaction graphs or

short enough times. We used simulations to test the effective-

ness of Conf on small populations that may better capture a

natural settings where interactions are spatially constrained.

This was done by comparing the MSE achieved by an agent

employing Conf to the reciprocal of the Fisher information of

this agent’s under algorithm Opt. For simplicity, we considered

a noiseless scenario; this allowed us to precisely calculate the

corresponding Fisher information. We found that, on average,

algorithm Conf remains extremely efficient for dependent

meeting patterns that result from small population sizes.

Deviations from optimality are both extremely small and

transient (Figure 5A).

Noisy transmissions of confidence. The continuous nature

of algorithm Conf suggests that it may also be robust under noise

in confidence transmission. We therefore used simulations to test

the effects of noisy active communication. Noise was realized as a

multiplicative Gaussian term to maintain the non-negativity of

confidence. Figure 5B agrees with our hypothesis showing that

Conf is highly robust to communication noise. Note that for all

levels of noise, Conf still outperforms the simple average

algorithm. The robustness of Conf further implies that the

Figure 4. Information flow. The table on the left hand side relates the terms used, their notations in the text, and their graphic representation per
panels A–C. In A–C the pink agent observes the black agent and updates its state (dashed arrow) to be the one depicted by red. A. An agent with
high Fisher information effectively ignores one with less knowledge. B. A weighted average. Following this interaction, the observing agent updates
its orientation and increases its Fisher information. C. Although the information held by the black agent is much higher than in panel B, its effect does
not grow. This is a consequence of the restricted Fisher Channel Capacity.
doi:10.1371/journal.pcbi.1003862.g004

Figure 5. Performance of Conf under general conditions. A. Dependent interaction patterns. Quality of the convergence for small populations
as depicted by the population variance normalized by the optimal variance allowed by the Cramér-Rao bound. A ratio of 1 implies optimality. The
inset shows the MSE of Conf (red curve) and lower bound (black curve) for the case N~91. B. Convergence performance of Conf for different levels
of noise in the active communication. The x-axis specifies the variance of the random Gaussian term that multiplies confidence transmissions. The
dashed line signifies the performance of a simple-average algorithm.
doi:10.1371/journal.pcbi.1003862.g005
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transmission of confidence is not required to be analog but could

be binned into a restricted number of bits.

Dynamic environments. We have proven that algorithm

Conf is highly competitive in static environments. However, it

cannot be expected to perform well in dynamic environments.

This is due, for example, to an erroneous buildup in

confidence amongst interacting agents with similar opinions

[13]. In this case, agents may ignore subsequent environmental

changes due to over-confidence. Alternative, more complex

algorithms that rectify this phenomenon have previously been

suggested [7].

To resolve such issues, we present two extensions of Conf (see

section 8 in Text S1). The first algorithm, fully described in Text

S1 section 8.1, relies on a single extra bit that is stored in the

agents’ memory and is turned ‘‘on’’ if an agent is updated. The

agents are further required to be able to measure time in a way

that allows them set this extra bit to zero when their information

becomes obsolete. In figure S1A, we show that while this algorithm

coincides with Conf in periods where the environment is stable it

also allows very rapid population shifts that track a sudden change

in environmental conditions.

A second algorithm relies on a weighted-average rule that is

corrected for non-independent observations (see Oruç et al.
[68]). This algorithm assures, for example, that confidence will

only marginally increase following an interaction between

agents with highly correlated information. We ran a simulation

that uses this rule in an interacting population of uniformly

informed agents. Indeed, we found that at steady state, the

Fisher information in each agent exactly equals the initial

Fisher information of the entire population (see section 8.2 in

Text S1 and figure S1B). In other words, all initial information

has disseminated between the agents while over-confidence has

been avoided. Since the agents are not over confident, they

remain responsive to environmental changes which they

quickly track (see section 8.2 in Text S1 and figure S1C).

Thus, this algorithm improves on the flexibility of Conf.

However, this extended algorithm cannot function, as is, in

non-uniform populations as two interacting agents have no

simple method for assessing the correlation between their

estimates prior to an interaction.

Heterogeneous populations. Experiments have demon-

strated how, when two humans make a joint decision, they weigh

their opinions not by the variance of their uncertainty (as could be

expected for optimality) but by its standard-deviation [69]. A

possible explanation for this was suggested by Ernst [70] who

noted that dividing a measurement by its standard deviation yields

a unit-less quantity that may facilitate communication between

people who may differ in their perception of distance or happen to

be using different units of measurement.

As differences in perception are also bound to occur in animal

populations it is interesting to test how Conf, which uses inverse-

variance weights, performs in this setting. For this, we simulated

heterogeneous populations in which each individual perceives

distance differently, for example a 1.5-biased individual will

measure a distance to be 50% larger than it actually is while a 1/3-

biased individuals will perceive distances to be smaller by a factor

of 3. Simulating algorithm Conf on such populations, we found

(see section 9 in Text S1 and figure S2) that it continues to perform

well in populations with a perception heterogeneity that goes as

high as a factor of 2 (implying differences of up to a factor of 4
between the perception of different individuals). When biases

bypass the order of the signal itself Conf starts to lose its absolute

advantage over an algorithm that does not communicate

confidence at all.

Discussion

In this work we theoretically studied an abstract model of

animal communication within a group which generalizes the work

of McNamara and Houston [34]. Similar to their approach, we

considered a basic model which enabled us to perform rigorous

analysis, often impossible in more complex scenarios. We have

shown that weighted averaging algorithms, previously known to be

efficient for fusing multiple pieces of evidence [43], naturally carry

over to a scenario in which a group of agents share and aggregate

information. The weights used may be interpreted as the agents’

confidence in their opinion.

We have theoretically shown, that, remembering and actively
communicating confidence is, in fact, sufficient for near-optimal

decisions in cooperative group contexts. Using the confidence

measure is straightforward: individuals with high confidence are

more persuasive while those with low confidence more fickle.

Finally, the fundamental nature of our model makes our results

potentially relevant to a large number of natural systems.

We have used the framework of Fisher information to study

information flows within cooperative groups. In particular, we

have defined the Fisher Channel Capacity and demonstrated how

it bounds collective reaction times. This opens the door for further

rigorous quantifications of information flows within animal groups.

We introduced Conf, a simple weighted-average based

algorithm that uses compact memory and communication in a

way that overcomes the anticipated shortcomings of information

compression (e.g., see Figure 1). We have shown that Conf is

highly competitive when compared to an optimal algorithm that

utilizes maximal memory, communication capacity, and compu-

tational resources. In fact, we bound the difference in performance

by a constant factor - the initial Fisher-deviation.

We have presented evidence that supports the relevance of Conf

to actual biological groups and turn to suggest how this may be

helpful for analyzing experimental data. A most intriguing result

would be to utilize Equation 7 to obtain a lower bound on

communication noise levels. Indeed, Equation 7 holds with respect

to any algorithm operating in the corresponding setting, and with

respect to any level of noise in active communication. If the setting

is matched in an experiment, the initial variance is large, and the

convergence time fast, Equation 7 would yield a lower bound on

Jg, the Fisher information in the noise corresponding to the

passive communication. Such a result would demonstrate the

usefulness of the indirect methodology, based on algorithmic lower

bounds as suggested in [71]. Moreover, such a lower bound on the

amount of noise seems to be difficult to obtain by other, more

direct, methodologies.

Further practical implications of our results include the

identification of scenarios in which active communication is

likely to be employed. These include cases in which the noise

level is intermediate and situations of populations that are

variable in terms of initial knowledge as is the case in effective

leadership scenarios [36,38]. In such cases, our results suggest

that it may be useful to search for the active transmission of

‘‘confidence’’ signals, which can be encoded e.g., in the speed of

agents [14,61].

Our analysis for the performances of Conf assumes independent

meeting patterns. Such patterns are especially meaningful when

agents rely on few interactions each, or when the system is highly

mixed. We have used simulation to demonstrate that algorithm

Conf continues to perform well for small groups in which

interaction patterns are no longer independent. In addition, our

simulations show that Conf is robust under active communication

noise, heterogenic populations, and that simple extensions of this

Confidence Sharing in Animal Groups
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algorithm may be expected to perform well in dynamic

environments.

It is interesting to identify those scenarios in which active

communication appears to be of lesser importance. When personal

information is reliable and frequently updated there is, trivially, no

requirement for any sort of communication. It is when personal

information is less accurate that social information becomes useful.

We have shown that simple averaging algorithms (operating

without long term memory) behave well in uniform populations

with communication noise that is negligible in comparison to the

desired convergence state. We further showed that when

communication noise is very large then an algorithm in which

each agent maintains an internal confidence measure but does not

communicate it [38,72] performs extremely well. This implies that

in such cases, the system can perform well without resorting to

active communication.

Although our results were formulated in the language of animal

group behavior they can readily be generalized to a large range of

cooperative biological ensembles. For example, bacterial quorum

sensing is mediated by both passive cues (e.g. one cell senses

another’s waste products) and active signaling mediated by

designated quorum-sensing molecules [73].

Materials and Methods

Fisher information, and the Cramér-Rao bound
We consider parameterized probability density function (pdf )

families f(W; h)gh[R where W is the functional form and h is a

translation parameter [45]. The Fisher information of a pdf family

is defined as:

Jf(W;h)g~

ð
1

W(x̂x,h)

dW(x̂x,h)

dh

� �2

dx̂x,

where x̂x denotes all variables on which (W; h) depends. Note, that

since h is a translational parameter, the Fisher information is both

unique (there is no freedom in choosing the parametrization) and

independent of h [45]. The Cramér-Rao inequality sets a lower

bound on the variance of any unbiased estimator, T̂T based on a

random sample taken from (W; h�)[f(W; h)g, for the parameter h�:

var(T̂T{h�)§1=Jf(W;h)g:

Initial Fisher-deviation
To define the initial Fisher-deviation, denoted D0, we first define

the Fisher-deviation of a distribution f as

D0(f )~var(f ):Jf(f ;h)g:

Note that, by the Cramér-Rao bound, D0(f )§1 for any

unbiased distribution f .

The initial Fisher-deviation D0 is the supremum of the Fisher-

deviations over all the (unbiased) distributions involved, namely,

the Wa distributions governing the initial locations and the noise

distribution N(g). Specifically, let

D’0~ supfD0(Wa)Da is an agentg,

and finally define

D0~ maxfD’0,D0(N)g:

Observe that if the distributions Wa and N(g) are all Gaussians

then D0~1.

Supporting Information
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