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Abstract

Methods for improving microbial strains for metabolite production remain the subject of constant research. Traditionally,
metabolic tuning has been mostly limited to knockouts or overexpression of pathway genes and regulators. In this paper,
we establish a new method to control metabolism by inducing optimally tuned time-oscillations in the levels of selected
clusters of enzymes, as an alternative strategy to increase the production of a desired metabolite. Using an established
kinetic model of the central carbon metabolism of Escherichia coli, we formulate this concept as a dynamic optimization
problem over an extended, but finite time horizon. Total production of a metabolite of interest (in this case,
phosphoenolpyruvate, PEP) is established as the objective function and time-varying concentrations of the cellular enzymes
are used as decision variables. We observe that by varying, in an optimal fashion, levels of key enzymes in time, PEP
production increases significantly compared to the unoptimized system. We demonstrate that oscillations can improve
metabolic output in experimentally feasible synthetic circuits.
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Introduction

A central goal of synthetic biology is to create new tools and

strategies to improve production of metabolites, chemicals and

proteins from microbial sources. A particular focus of this field has

been the advancement of genetic constructs to exquisitely control

gene expression in cells. Traditionally, researchers have modified

microbial production strains in a variety of ways that include gene

knockouts, gene overexpression, and heterologous pathway

expression [1–3]. With expanding availability of genome-wide

datasets and large metabolic models, emphasis has shifted from

single-gene manipulations to genome-wide alterations to improve

microbial production processes [4–7]. Many of these techniques

allow entire clusters of genes to be manipulated simultaneously

and are designed to fine tune metabolic regulators for optimal

production of a desired product. In this study, we propose a novel

method to improve metabolic production of a desired product that

relies on time-periodic oscillations of cellular enzymes.

Natural oscillations have been observed in many biological

systems [8–10]. Early studies have established that oscillations

within cellular circuitry can have profound impact on the behavior

of a culture [11]. In E. coli, oscillations have been studied both

experimentally and computationally. Experimentally, glycolytic

oscillations have traditionally been generated in response to

periodic control of the feed source or external stresses [12–16].

Likewise, Chassagnole et al. demonstrated that oscillations

observed experimentally could be described using a kinetic model

of central carbon metabolism [13,17]. Additionally, several

theoretical studies have shown that oscillations in enzyme levels

could increase intracellular concentrations of metabolites in

simplified biological circuits [18,19]. We consider oscillating

enzymes within the context of E. coli metabolism and suggest

ways that these ideas could be implemented experimentally.

Computationally, our principal contribution is the use of dynamic

optimization to tune these oscillatory responses in a way that

maximizes production of a desired metabolite. This contrasts the

exclusive use of parameter sensitivity to make control decisions, as

used in earlier works [18,19].

In this work, we explore optimized time-periodic oscillations of

a subset of enzymes within a metabolic pathway as a strategy to

increase metabolite production. Our hypothesis is based on well-

established results from the operation of chemical reactors. This

literature shows that the amount of product generated over time

can be increased by operating reactors in a non-steady state, time-

periodic regime [20,21]. As a prototype system, we use a modified

version of a previously published kinetic model of E. coli central

carbon metabolism (Figure 1) [17]. Within this system, we explore

the use of oscillations in enzyme levels to increase intracellular

levels of a key metabolite, phosphoenolpyruvate (PEP). PEP is an

important metabolite both in cellular physiology and a key

precursor for industrially-important compounds [22]. Specifically,

PEP levels control the flow of glucose into the cell and allosterically

regulate enzymes within central carbon metabolism [23,24]. In

addition to its cellular functions, PEP is a limiting precursor for

microbial production of aromatic amino acids [25], which are

important building blocks for products in the chemical, pharma-

ceutical, and food industries [22,26]. In light of these facts, many

metabolic engineering strategies have been employed to improve
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PEP availability for aromatic amino acid production [23,27–29].

These studies provide valuable insights into the changes in levels of

metabolites, like PEP, that can be achieved through genetic

modification.

In this study, we expand an established model of E. coli central

carbon metabolism [17,30,31] by adding two gluconeogenesis

reactions from another experimentally-validated model [32] and

incorporate enzyme levels into the model using methods described

previously [33,34]. Addition of the phosphoenolpyruvate synthase

(PPS) and fructose-1,6-bisphosphatase (FBP) reactions is motivated

by previous research results that suggest they are important

controllers of PEP levels [25,35]. Following the incorporation of

these reactions, we used sensitivity analysis to identify several key

enzymes that impact production of PEP. The levels of these

enzymes were then assumed to vary in a periodic fashion, and

were modeled as cosine waves whose amplitude, period, and phase

properties were optimized to maximize metabolite production

(Methods, Optimizations). Finally, we explored the oscillatory

properties of an experimentally feasible small synthetic circuit to

increase PEP production.

Results

Sensitivity analysis identifies key enzymes for PEP
production

A key aspect of this study was to identify appropriate enzyme

candidates that could be periodically varied in time to increase

PEP production. Enzyme levels are incorporated into our model as

an additional term to the reaction rate of each enzyme (Methods,

Kinetic Model). We assumed that the enzyme levels in the original

model were at steady state and arbitrarily set their values to one.

As a result, changes in enzyme levels are defined as deviations

from this nominal value. To identify enzymes that are important

for PEP production, we conducted a sensitivity analysis of the

system using step tests. These consisted of monitoring the

evolution of PEP levels in time after increasing each enzyme level

to be 50% greater than its steady state value (1 to 1.5). Based on

this analysis (Figure 2), nine enzymes appeared to affect PEP levels:

phosphofructokinase (PFK), glyceraldehyde phosphate dehydro-

genase (GAPDH), pyruvate kinase (PK), phosphoenolpyruvate

carboxylase (PEPC), ribose-phosphate pyrophosphokinase

(RPPK), serine synthesis (SER), synthesis 1 (SYN1), 2-Dehydro-

3-deoxyphosphoheptonate aldolase (DAHPS), and glucose-6-

phosphate dehydrogenase (G6PDH). Sensitivity analysis indicated

that increasing the levels of PFK or GAPDH led to increased PEP

levels. This result is somewhat expected, since these two enzymes

represent critical branch points for simultaneously controlling flux

down the main glycolysis pathway and flux returning from the

pentose phosphate pathway.

Individually increasing levels of the remaining seven enzymes

resulted in decreased levels of PEP. Four of these enzymes (PEPC,

SYN1, DAHPS, and PK) catalyze reactions that directly consume

PEP at the PEP node (Figure 1). Two of these enzymes, SER and

RPPK, catalyze reactions that are located upstream of the PEP

node and direct flux out of the model. Finally, G6PDH is one of

the main factors that determines whether the metabolic flux

follows glycolysis or the pentose phosphate pathway [17]. The

latter three enzymes likely reduce PEP production by playing a

more general role in directing metabolic flux out of the boundaries

of the system.

Individual enzyme oscillations result in moderate
increases in PEP production

Practical implementation of enzyme oscillations (further dis-

cussed below) could be achieved through heterologous expression

of an enzyme from a plasmid source. In this scenario, it is typical

that enzyme concentrations would reach much higher levels than

natural expression levels in the cell. To represent the high amount

of expression that can be obtained from inducing strong promoters

[36], we allowed enzyme levels to reach 20 times their nominal

levels in our simulations. With this assumption in place, we first

explored independent oscillations of each of the nine PEP-

influencing enzymes. As shown in Figure 3, a wide range of

increases in total PEP levels (1%–28.3% relative to the case of no

oscillation) is observed across the nine enzymes identified as

sensitive. While individual enzyme oscillations show smaller

improvements than simulated knockouts or over expressions

(Table S1), these results showed the potential of oscillating

intracellular enzyme levels to positively affect PEP levels compared

to the unoptimized case (Figure 3). After examining the benefits of

individual oscillations relative to the base case of no oscillation, we

reasoned that the oscillating multiple metabolic enzymes simulta-

neously could further push PEP gains.

Optimal periodic oscillation of PEP-influencing cluster
enzymes further increases PEP levels

We next analyzed the effect of combined oscillations in our

system. We grouped all nine sensitive enzymes together into a

‘‘PEP-influencing cluster’’ and focused on optimizing collective

expression of this cluster as a unit to mimic natural systems, where

large groups of enzymes are co-regulated to produce a specific

phenotype [37]. This PEP-influencing cluster represents the

theoretical maximum number of enzymes that we hypothesized

would significantly influence PEP levels. We modeled oscillations

of all the enzymes in the PEP-influencing cluster using simple

cosine forcing functions (Methods, Dynamic Optimization). Then,

we optimized properties of the waves (i.e. amplitude, frequency

and phase) for maximum PEP production. Levels of each enzyme

were independently optimized to maximize PEP levels given

constraints on metabolite levels derived from experiments

(Methods, Dynamic Optimization) [38–40].

We observed that oscillations of this nine enzyme cluster

(Figure 4A), caused PEP levels to oscillate (Figure 4B). These PEP

oscillations resulted in a 2.2-fold increase in total PEP levels over

an 8 hour time horizon relative to the non-oscillating unopti-

mized system, suggesting that regulating multiple enzymes in a

periodic fashion needed to be further explored as a metabolic

Author Summary

Until recently, engineering of microbial strains has been
heavily focused on removing or overexpressing individual
genes. Although valuable, these efforts do not take into
account the potential benefits of tuning enzymes and,
thus, do not exploit the full diversity of available synthetic
tools to regulate gene expression. Tuning enzyme levels is
a key factor in gene expression because optimal levels for
an enzyme may change over time in living systems. In this
study, we use a kinetic model of Escherichia coli to explore
how to increase metabolite levels by oscillating sets of
enzymes over time. We discover that oscillating relevant
clusters of enzymes can increase metabolite levels. When
combined with recent experimental studies that demon-
strate the ability to build synthetic oscillators and
regulators inside living cells, suggesting that oscillating
enzymes levels could be of practical relevance to meta-
bolic engineering.
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Figure 1. Model system of central carbon metabolism. This kinetic model includes glycolysis, gluconeogenesis, and the pentose phosphate
pathway. The model assumes that glucose is the feed substrate and is catabolized into various smaller compounds. Each node is a single metabolite
(written in lower case) and these nodes are connected by reactions (written in capital letters). Reactions with multiple metabolites leading into the

Optimizing Metabolism Using Periodic Oscillations

PLOS Computational Biology | www.ploscompbiol.org 3 June 2014 | Volume 10 | Issue 6 | e1003658



optimization strategy. We also compared the oscillatory strategy

to a time invariant optimization of the levels of the nine enzymes

(Figure 4B, Table S2). The time invariant optimization calculates

the PEP gain possible by fine tuning enzyme levels at constant

levels. We were encouraged to see that oscillating enzymes

produced more PEP than the unoptimized case (Figure 4B). It is

important to point out that we constrained PEP levels in our

simulations to a 10-fold range (1 mM–10 mM) similar to the total

variability of PEP concentrations reported in the literature

[40,41]. We have also verified that describing the variation of

enzyme levels in terms of square waves in the optimization

calculation leads to a similar increase in the concentration of the

PEP (data not shown).

Our optimization revealed that PEP is able to reach higher

levels by causing a key enzyme that removes PEP from the system

(PEPC) to simultaneously be at low levels while enzymes that help

to produce PEP (GAPDH and PFK) are at high intracellular

levels. To quantify the relationship between changes in enzyme

levels and changes in PEP levels, we calculated correlation

coefficients for the time series data corresponding to enzyme

levels in the PEP-influencing cluster (Figure 4C). Correlation

coefficients indicate how closely changes in one variable (a given

enzyme level) correlate to changes in another variable (PEP

levels). PFK, GAPDH, PEPC, G6PDH, RPPK and DAHPS form

a highly-correlated, synchronized group of enzymes that is

primarily responsible for the changes in PEP levels. PK and

SER form a secondary enzyme group that also tunes PEP levels

(Figure 4C).

A simple oscillatory circuit can improve metabolic output
Up to this point we had considered the theoretical maximum

number of enzymes that could be in our oscillatory circuit to

qualitatively evaluate the potential of synthesizing multi-enzyme

clusters to improve PEP production. However, given the

experimental convenience of manipulating a smaller number of

genes, we tested the impact of constructing an smaller oscillatory

circuit.

To select the enzymes in this circuit, we analyzed all

combinations (of enzymes within the nine enzyme cluster) of

two-enzyme clusters to understand which combinations positively

impacted PEP the most (data not shown). We did not consider all

32 enzymes for this analysis given the weak influence of most

enzymes on PEP levels. We confirmed that individual enzymes

that resulted in the largest PEP gains when oscillated indepen-

dently (i.e. GAPDH, PEPC, or PFK), also produced the largest

PEP gains when oscillated with a second enzyme. In particular we

noted the largest PEP gain from oscillating GAPDH and PFK

simultaneously. To this cluster we added a third enzyme, RPPK

(which is essential for cellular viability), to test for additional PEP

gains from oscillations that would be difficult to obtain through

traditional methods.

We optimized periodic expression of RPPK, GAPDH, and PFK

by simulating these genes in a recently described light-inducible

system [42] (Figure 5A). In this circuit, the bacterial two-

component system, YF1 (histidine kinase repressed by light)/FixJ

(response regulator), represses the expression of transcripts from

the FixK2 promoter. A second repressor protein, lambda phage cl,

reaction, such as TKA, TKB, DAHPS, require both substrates for the reaction to occur. Effectors, indicated in white ovals, control the reaction rates of
several of the model reactions. Effectors that upregulate a reaction are marked with a +, whereas those that downregulate the reaction are indicated
by a -. Enzymes that are most influential for PEP production have been grouped together and called the PEP-influencing cluster (orange circles).
doi:10.1371/journal.pcbi.1003658.g001

Figure 2. Sensitivity analysis identifies the enzymes most important for PEP production. The bar graph shows the ratio of PEP levels
when the indicated enzyme level is raised 50% above its normal, steady state level (a value of 1.5 in the simulation). Upregulated enzymes that
caused a change greater than 2% change in PEP levels (black bars) were deemed significant for PEP production.
doi:10.1371/journal.pcbi.1003658.g002
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is expressed from the FixK2 promoter which represses the lambda

phage promoter pR. A reversible physical input (i.e. light)

simultaneously represses production of genes controlled by FixK2,

and cause pR promoter genes to be expressed since the promoter

is no longer being repressed. Importantly, in the presence of light,

GAPDH and PFK genes are expressed and RPPK is suppressed

simultaneously.

The optimized circuit (Figure 5B) showed a significant increase

in PEP levels (1.86-fold increase in total PEP concentration)

relative to the levels observed in the unoptimized case with no

oscillations (Figure 5C). Although oscillating the cluster produced

less PEP than time-invariant optimization of the three enzyme

levels, we were encouraged by the fact that the oscillating three-

enzyme circuit produced far more PEP than the unoptimized case

and 85% as much PEP as the oscillating nine-enzyme circuit

(Figure 5C, Table S3). This data validated the potential of

selecting influential enzyme clusters and of periodically oscillating

them as a way to increase targeted production of a metabolite of

interest.

Discussion

We have shown that tuned periodic oscillations of selected

enzyme levels in a metabolic pathway can have a positive effect on

metabolite production. These findings agree with observations

made in chemical reactors that a higher cumulative yield of

product can be reached by operating the reactor in a periodic

fashion [20,21,43]. In this study, we report an experimentally

viable three enzyme oscillating cluster that can lead to a 1.86-fold

increase in PEP production compared to the original (unopti-

mized) system.

The motivation of this work was to evaluate the tradeoff

between drastic alterations in gene expression and more moderate

metabolic changes (i.e. oscillations) that can lessen metabolic

burden and tune essential genes. A key question was how the levels

of PEP increase obtained by periodic enzyme oscillations compare

to traditional strategies of genetic deletions and enzyme overex-

pression. We expected that constitutive overexpression of enzymes

over time (where levels are always at a maximum) would lead to

higher PEP levels than the periodic oscillation cases (where those

maximum enzyme levels are only periodically achieved). On

average an increase of 32% in PEP levels was observed by deleting

individual genes that were negatively correlated with PEP

production, relative to the oscillation of these same individual

genes. A similar trend was discovered when individual enzymes

that positively correlated with PEP production were constitutively

overexpressed relative to when they were independently oscillated.

To gauge the accuracy of our projections we compared the

results of our simulated knockouts and overexpression to

experimental data on these modifications [2,29,44–46]. This

comparison shows that, while qualitatively correct, our model is

significantly underestimating the metabolite concentration increas-

es gained by mutant strains (i.e. our model projects a PEPC (ppc)

mutant to have a 1.67-fold increase in PEP concentration, but

experimental data shows that the knockout produces a 3-fold

increase [40]). We suspect that, likewise, our model underestimates

the gains in PEP levels obtained from oscillatory simulations.

We believe that oscillatory strategies could prove valuable for

several reasons. First, oscillations provide an additional way to

manipulate expression of essential genes. Second, this approach

can reduce the metabolic burden in cells that is observed as a

result of constitutive overexpression of multiple proteins. Although

our model cannot capture these effects, it has been well established

that consistently overexpressed proteins can become a large

metabolic burden on the cell representing as much as 15–40% of

the total cellular protein produced by recombinant cells [47–49].

Third, oscillations could be valuable in situations where there are

growth tradeoffs in producing the final product. For example, if

the final product is toxic to cell growth [50] or causes cells to form

spores [51], then enzyme oscillations could allow cells some

recovery time and prolong their viability. Finally, oscillatory

strategies could also be valuable if recombinant enzymes are

oscillated synchronously with natural periodic rhythms found in

many cells types [52–54]. We also envision using oscillatory

strategies to tune global regulatory genes resulting in the

simultaneous coordination of many genes and pathways. For

these reasons, a dynamic strategy can provide a complementary

approach to current methods depending on the particular

Figure 3. PEP concentration gains by oscillating individual enzymes. A comparison of the increase in total PEP concentration as a result of
oscillating each of the indicated enzymes. The enzymes were oscillated by describing their levels as a cosine function and optimizing the properties
of each wave. Gain in PEP levels is measured as a ratio of the total PEP concentration in the oscillating case over the total PEP concentration in the
time invariant case. All optimizations were run over an 8 hour time horizon.
doi:10.1371/journal.pcbi.1003658.g003
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metabolic optimization problem. The method outlined here is

generally applicable to any organism that is genetically pliable and

for which a kinetic model can be constructed.

Oscillating enzyme levels inside cells requires (1) a method to

induce periodic changes in vivo and (2) the ability to create and

manipulate regulatory clusters. Since the creation of the Goodwin

Figure 4. Optimization of PEP-influencing cluster increases intracellular PEP concentration. A. Resulting profiles from an optimization of
enzyme levels with an eight hour time horizon. PFK (black dashes) overlaps with GAPDH (red line), and all the other enzymes appear distinctly within
the plot. Enzyme levels are measured as deviations from steady state (1.0). B. Oscillations in PEP levels (black line) resulting from oscillations in
enzyme levels. The line with smaller dashes represents the PEP levels without inducing oscillations (unoptimized case). The third line with larger
dashes indicates the PEP levels when the levels of enzymes are optimized for PEP production without any oscillations (PEP time invariant enzyme
levels). PEP levels are in millimolar. C. Correlation coefficients for the oscillating case shown above. The coefficients are colored using a gray scale with
the strongest positive (1) and negative (21) correlations being darkest and weakest correlations colored lightest.
doi:10.1371/journal.pcbi.1003658.g004

Optimizing Metabolism Using Periodic Oscillations

PLOS Computational Biology | www.ploscompbiol.org 6 June 2014 | Volume 10 | Issue 6 | e1003658



oscillator [55] in the 1960s, researchers have been creating more

robust and sophisticated synthetic oscillators [56]. The Repressi-

lator, is another created by Elowitz and Leibler, is a good example

of a synthetic oscillator, where each of the three genes inhibit

transcription of its successor and cause sustained oscillations to

form [57]. These simple oscillators have led to the development of

a fast, robust tunable synthetic oscillator inside living cells [56]. In

addition to these oscillators, light inducible systems have shown the

potential to modulate gene expression in a highly controllable

fashion [58,59]. While many synthetic oscillatory systems have

been rigorously tested computationally and validated experimen-

tally, their incorporation into larger regulatory circuitry has been

less explored. The number of innovations in the engineering of

synthetic circuits to control gene expression in vivo is expected to

continue to rise.

Manipulation of regulatory clusters, whether naturally occur-

ring or rationally designed, has already proven to be an effective

method to improve metabolite production [4,27]. Changes in

system and flux profiles can be achieved by altering global

regulatory systems, including methods such as knocking out

transcriptional regulators [60], tuning promoters [5], and altering

post transcriptional regulatory systems [4]. Some of these methods

have already been applied to increase carbon flow through the

PEP node. For instance, by manipulating the Carbon Storage

Regulator system using overexpression and knockouts, intracellu-

lar PEP levels can be increased 2 to 3-fold [27,61]. Oscillating

components of regulatory circuits, like parts of the Carbon Storage

Regulator system, provides the potential additional advantage of

bypassing the negative impact of multiple gene deletions and/or

gene overexpression on cell growth that has been widely reported

in the literature.

Oscillating enzymes levels could be a useful strategy for

improving production of metabolites in conjunction with tradi-

tional methods. Oscillations would be ideal when controlling the

levels of genes that hinder or completely impair cellular growth,

including many genes in central carbon metabolism [62]. These

oscillatory clusters can tune and coordinate expression of multiple

cellular enzymes. It is important to note that oscillations of

individual proteins could be further customized by tuning the

promoters, altering ribosome binding sites, and using different

protein degradation tags to change the rate of degradation for

each protein. Exploiting customized regulatory ‘‘parts’’ to

creatively control gene expression has become common in the

construction of synthetic genetic circuits [63].While initial

synthetic oscillatory circuits may take the simpler form similar to

the RPPK-GAPDH-PFK circuit, our future research will also

consider larger circuits that tune multiple genes directly from the

chromosome.

Methods

Kinetic model
The kinetic model used in this study is an adaptation of the

model created by Chassagnole et al. [17] (Figure 1). The

metabolite concentrations are modeled by dynamic mass balance

equations, resulting in a set of ordinary differential equations of the

form:

dC

dt
~S:r(e,C,P){mC ð1Þ

where S is the n x m dimensional stoichiometric matrix, r is an m-

dimensional vector of reaction rates, C is an n-dimensional vector

of metabolite concentrations, P is a k-dimensional parameter

Figure 5. Oscillating the RPPK-GAPDH-PFK cluster resulted in a
significant increase in the concentration of PEP. A. An illustration
of a light-inducible regulatory cluster that could be built for oscillating
enzymes. The light-repressed two component system, YF-1/FixJ,
expressed constitutively from the promoter IQ, controls gene expression
from the FixK2 promoter. The lambda repressor protein, Cl, can repress
expression from the lambda phage promoter, pR. When the absence of
light activates this system, the response regulator, FixJ, is phosphor-
ylated and represses expression of Cl and RPPK, simultaneously
increasing expression of GAPDH and PFK. B. Resulting enzyme profiles
from oscillating RPPK-GAPDH-PFK circuit for 8 hours. Each enzyme was
allowed to reach a maximum of 20 times its steady state levels. C. PEP
levels over 8 hours in response to the oscillating enzymes in B. The line
with smaller dashes represents PEP levels without oscillating any
enzymes (unoptimized case). The line with larger dashes shows the PEP
from optimizing the levels of the three enzymes rather than oscillating
(PEP time invariant enzyme levels).
doi:10.1371/journal.pcbi.1003658.g005
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vector, and e is an m-dimensional vector of enzyme levels. The

second term is a dilution factor that accounts for biomass

generation demands on that metabolite (m= specific growth rate).

One of the drawbacks of the original model [17] is that the

accumulation of co-metabolites (ATP, NAD, etc.) is expressed as

explicit time dependent functions rather than as mass balance

equations. Since we ran simulations over a significantly longer

time frame than originally modeled, we removed the time-

dependent descriptions of the co-metabolites and replaced them

with constant values following the approach taken in other studies

[32,34].

Enzyme levels were added to the originally published model

[17] by introducing an additional term, �EE, into the reaction rate

(renz) equations:

�EE~
e

êe

renz~�EE:rmax
:reactionkinetics

ð2Þ

Where rmax is the maximum reaction rate, ê is the steady state

enzyme concentration (arbitrarily set to equal one) and e is the

current enzyme concentration, such that enzyme levels (�EE) are

observed as deviations from their steady state values similar to

previous studies [33,34].

Incorporating gluconeogenic reactions
The model contains mass balance equations for 18 metabolites

in the glycolysis, gluconeogenesis, and pentose phosphate path-

ways. It contains 32 reactions, including two gluconeogenic

reactions catalyzed by phosphoenolpyruvate synthase (PPS) and

fructose-1,6-bisphosphatase (FBP), which were taken from a

previous study [32]. The parameters for these equations were

taken directly from the aforementioned work of Usuda et al.[32]

with the exception of the rmax values which were recalculated using

the top-down approach previously described by Rizzi et al. [64]. A

table of all parameters, equations and modified mass balance

equations is provided in the supplementary materials (Text S1).

Optimizations
A sensitivity analysis of enzyme levels on PEP levels was carried

out by performing a battery of step tests on the dynamic model.

Specifically, with the model initially at its nominal steady state, the

concentration of each enzyme was increased to 1.5 times its steady

state value; the model was subsequently simulated for a sufficiently

long period of time for a new steady state to be reached. The

subset of enzymes that led to more than a 2% change in PEP levels

became the targets of the optimization. For the optimization

calculations, it was assumed that the levels of each key enzyme

vary in time following a simple sinusoidal function,

�EEi~Ai
: cos (vitzQi)zh ð3Þ

Where A is the amplitude, t is time, v is the frequency, Q is the

phase, and h is a constant bias (h = 1).

gPROMs [65] was used to determine the optimal values of these

parameters. The optimization was formulated as:

max
Ai ,Qi ,vi

ð28800

t~0

Cpepdt

Subject to:

Process model equations 0:02ƒAiƒ20

0:0005ƒviƒ0:0032

{pƒQiƒp

1:28ƒCpyrƒ5:58

1:0ƒCpepƒ10:0

0:15ƒCrib5pƒ0:9

0:005ƒCe4pƒ0:18

1:36ƒCg6pƒ8:87

ð4Þ

Where Cmetabolite represents the concentration of metabolites in

millimoles/liter, v in radians/second, Q in radians.

Constraints on the amplitudes of the enzyme level waves allow

enzymes to have a maximum of 20 times their steady state

concentration (Lower bound: 1/20th). We assumed that enzymes

that improve PEP production (GAPDH and PFK) would be added

to the oscillatory circuit on a plasmid without modifying the

genomic copies of the gene. To model this assumption, the levels

of GAPDH and PFK were not allowed to pass below their original

steady state levels of 1.0. The constraints were within the fold

changes in enzyme levels described in experimental studies

[39,66].

Constraints for metabolite concentrations (i.e. Cpyr, Cpep, Crib5p,

Ce4p, and Cg6p) were set using the fold change observed in

experimental studies as constraints [38,40]. These studies were

chosen because they consider large scale E. coli responses to

perturbations and metabolic profile changes that could be

achieved by manipulating artificial regulatory systems.

As a control to compare the performance of the dynamic

optimizations, time invariant optimizations were also run by

replacing the time dependent enzyme level descriptions (Equation

3) with a constant term for the enzyme level (h). These constant

levels were then used as the optimization variables to maximize

PEP production. In these optimizations, all enzymes were allowed

to vary between 0 and 20 except for essential enzymes which were

allowed to vary between 0.25 and 20. With these exceptions all

other constraints and conditions controlling the dynamic optimi-

zation were applied to the static optimizations.

Correlation coefficients
Correlation coefficients for the time series corresponding to

enzyme and metabolite levels were calculated in MATLAB based

on the Pearson product moment correlation coefficient formula:

r~
n
P

xiyj(
P

xi)(
P

yi)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(
P

x2
i ){(

P
xi)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n(
P

y2
j ){(

P
yj)

2
q ð5Þ

Where x is a matrix of the time-dependent enzyme levels of

enzyme i and y is a matrix of the time-dependent enzyme levels of

enzyme j. The resulting matrix was then colored using a grayscale

to indicate the highest and lowest correlation values. A correlation

coefficient close to one indicates a strong correlation.

Supporting Information

Table S1 Table containing increases in PEP levels
obtained by knocking out or overexpressing individual
genes. The increase in PEP levels is measured as the ratio of the

total PEP produced in the simulated knockout or overexpression

over 8 hours divided by the total PEP in the unoptimized system.
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Individual gene knockouts were simulated by setting the

corresponding enzyme level to zero for the course of the

simulation. Knockouts of essential genes were not simulated.

Over expressions were simulated by setting the enzyme level to

100 times its nominal value for 8 hours.

(XLSX)

Table S2 Table containing the optimal enzyme levels
for the nine enzyme circuit computed assuming that the
levels are constant in time. Enzymes were allowed to vary

between the levels of 0 to 20 (except for essential enzymes which

varied between 0.25 to 20) in order to maximize PEP production.

The PEP levels over the course of this optimization are shown as a

long-dashed line in Figure 4B.

(XLSX)

Table S3 Table containing the optimal enzyme levels
for the three enzyme circuit assuming the levels are
constant in time. A steady state optimization was used to

maximize PEP production by varying the levels of each enzyme

between 0 and 20 (except for essential enzymes which varied

between 0.25 and 20). The PEP produced from this optimization

in indicated by a long-dashed line in Figure 5C.

(XLSX)

Text S1 Docx file of parameters, equations and mass
balance equations used in this work.

(DOCX)
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