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Abstract
Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a
threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound
influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by
adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and
processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses
recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold
adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not
contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond
to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the
membrane potential captures spike threshold variability in vivo.
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Introduction

Neurons encode information in sequences of stereotypical
action potentials or spikes. Spikes are all-or-none voltage
deflections triggered when the membrane potential of a neuron
crosses a threshold. In vivo, the spiking threshold, as measured as
the voltage at the upstroke of spikes, varies with firing history and
input properties. This phenomenon has been widely observed in
the central nervous system, e.g. visual cortex [1,2], auditory
midbrain [3], hippocampus [4], somatosensory cortex [5]. It has
been proposed that threshold variability measured in vivo reflects
an adaptation of the spike threshold to the membrane potential,
due to the inactivation of sodium channels [6–8] or the activation
of potassium channels [9,10]. Threshold adaptation would have a
profound influence on how the combined input of a neuron is
encoded in the spiking output [5,6,11–14], such as enhancing
coincidence detection [1,2], improving feature selectivity [5] and
temporal coding in sensory neurons [15]. However, previous
studies in vivo only reported correlations suggestive of threshold
adaptation. Other authors have suggested that threshold variabil-
ity observed in vivo could also reflect measurement artifacts because
spikes are initiated at the axon initial segment but measured at the
soma [16]. Threshold variability could also be due to channel
noise [17], slow changes in excitability [18] or modulation by
axonal synapses [19]. More generally the voltage measured at the
upstroke of spikes may be a poor estimate of the actual criterion
for spiking (which could depend on unobserved quantities). The
goal of this study was to determine whether threshold variability

observed in vivo is mainly due to threshold adaptation to the
membrane potential, or to one of the alternative hypotheses.

Unfortunately, this question cannot be entirely addressed in vitro,
where inputs are better controlled. First, there are potential
sources of threshold variability in vivo that do not exist in vitro; in
particular, noise and synaptic inputs to the initial segment. Second,
properties of Na channels are likely to be different in vivo. Indeed,
Na channels can be modulated in various ways, including their
peak conductance and both the time constant and voltage-
dependence of inactivation [20]. Therefore, results in vitro may not
readily extend to in vivo conditions.

In this work we studied the dynamics of the spiking threshold in
neurons of the barn owl’s external nucleus of the inferior colliculus
(ICx) in vivo. While the spatial tuning [21,22] and the underlying
computations in ICx neurons have been investigated [23–25],
previous studies have shown wide variation in spiking threshold
over the stimulus duration [3]. To understand this variability, we
fitted a mechanistic model of spike threshold adaptation that
generalizes a model based on sodium-channel inactivation [26] to
intracellular recordings in vivo. The model is used to test whether it
is possible to accurately predict spiking from the membrane
potential history. If threshold variability is due to noise, then this
prediction should fail; if it is due to factors other than adaptation
(for example phosphorylation of Na channels, or GABA inputs
onto the initial segment), then the parameter values of the fitted
model should depend on the stimulus.

The model was able to predict spikes with high accuracy and to
account for most observed variance in measured threshold. In
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addition, it allowed us to estimate the threshold at all times,
including between spikes. We found that the spike threshold tracks
the membrane potential at a shorter time scale than the
membrane time constant. The ‘‘effective signal’’ for spike initiation
is then best defined as the difference between threshold and
membrane potential. Fast threshold adaptation has two major
functional consequences: 1) the effective signal is less variable than
the membrane potential, because low frequency components of
the input are filtered out; 2) the neuron can only respond to inputs
with dynamics faster than the adaptation timescale, an order of
magnitude lower than the membrane time constant. These
findings show that most threshold variability observed in vivo in
these neurons can be explained by fast adaptation to the
membrane potential.

Results

Spike threshold depends on preceding membrane
potential

Neurons of the barn owl’s ICx are selective to sound direction
[21], by combining tuning to interaural time (ITDs) and intensity
differences (IIDs) [22,23]. We recorded the membrane potential
(Vm) of ICx neurons in vivo while presenting 100 ms broadband
sounds (white noises filtered between 0.5 and 10 kHz) through
earphones, varying either ITD or IID (Fig. 1a). Spike thresholds
(Fig. 1b) were measured using the Vm derivative, a procedure
known to produce reliable estimates [27]. At spike initiation the
derivative increases abruptly and the precise value of the criterion
makes little difference to the estimated voltage (Fig. 1c). The spike
threshold was highly variable, spanning a range of about 8 mV
(s = 3.161.1 mV). In fact, the distribution of spike thresholds was
so large that it overlapped the Vm distribution induced by the
input (Fig. 1d). As previously observed in this [3] and other areas
[1,5,13], spike threshold was positively correlated (r = 0.7560.1,
regression slope = 0.4360.1) with the average Vm preceding spikes
(Fig. 1e), and negatively correlated (r = 0.6160.1, regression
slope = 20.4960.3 ms) with the rate of depolarization before
spikes (Fig. 1f). We did not observe significant correlation between
inter-spike interval (ISI) and spike threshold (r = 0.260.2, regres-
sion slope = 20.0160.03 mV/ms, Fig. 1g), as was observed in a
few other studies [4], indicating that spike refractoriness is shorter
than typical ISIs.

Fitting a spike threshold model
These observations suggest that the spike threshold adapts to the

Vm dynamics. However, what we called ‘‘spike threshold’’ above is
in fact only a measurement of the voltage at the upstroke of spikes.
It could be that the relevant criterion for spiking is a quantity (or
set of quantities) other than somatic voltage, and that the voltage at

the upstroke of spikes is correlated with Vm history but has no
causal relationship therewith.

To address this issue and demonstrate that the spiking criterion
(and not just the measured voltage at the upstroke of spikes) adapts
to the membrane potential, we used a generalization of a model of
threshold adaptation based on sodium channel inactivation [8] to
predict the occurrence and timing of spikes. Our goal was to
predict spike trains, not the voltage at the upstroke of spikes.

Although the model was derived from properties of sodium
channels, we used it here as a phenomenological model of
threshold adaptation, which may also be consistent with other
intrinsic mechanisms (see Discussion). This model consists of a
differential equation describing the adaptation of the threshold h
to a function of Vm, h?(Vm), with a time constant th:

th
dh
dt

~h?(Vm){h

A spike is predicted to occur when Vm~h. More generally, the
spike threshold is defined as the voltage value at which the neuron
would spike if its membrane potential were instantaneously
brought above it. Thus it is a threshold in the sense of an explicit
spiking criterion, unlike the empirical measurements. The function
h?(Vm), called the steady-state threshold, represents the value of
the spike threshold when Vm is clamped at a fixed value. This can
be considered as a general first-order model of threshold
adaptation. Theory based on the properties of sodium channels
predicts that the steady-state threshold is constant below the half-
inactivation voltage Vi, and increases approximately linearly
above it [8]. However, threshold adaptation can also result from
activation of voltage-gated potassium channels [9]. Therefore, to
be more general, we did not impose a constant threshold below Vi.
Instead, we used a smooth function with a different slope below
and above the critical voltage Vi, and a parameterized curvature
(Fig. 2a). Parameters characterizing the two slopes, the connecting
point and the curvature were constrained by the data. Some
threshold adaptation models also include an explicit effect of spikes
on threshold [26,28] (the threshold increases after each spike), but
it did not appear useful in our case, as we observed no correlation
between ISI and spike threshold.

A straightforward approach would be to use this model to
predict the value of spike threshold measured in the intracellular
traces. However, as argued above, the measured somatic voltage at
the upstroke of spikes may not correspond to the spike threshold,
in the sense of a criterion for triggering a spike. For example, it has
been argued that the relevant criterion should in fact be the
voltage value at spike onset in the axon initial segment (AIS),
where spikes are initiated [16,29]. Even if the somatic voltage at
the upstroke of spikes truly corresponded to the spike threshold,
there would still be a methodological issue with optimizing the
threshold model to predict that voltage. Indeed a trivial solution to
the fitting problem is the threshold model defined by
h?(Vm)~Vm and th~0 ms: the ‘‘spike threshold’’ always equals
the membrane potential, in particular at the upstroke of spikes.

To avoid these problems, we instead used the threshold model
to predict the occurrence of spikes and their precise timing based
only on Vm. The trivial solution mentioned above is a poor
predictor of spikes since it would predict too many spikes. The
voltage trace was thus passed through the model equation to
produce a dynamic spike threshold (Fig. 2b). Theory predicts that
a spike should be produced when the voltage trace crosses
threshold. The model can fail by producing spikes at the wrong
time or by producing extra spikes. To account for both types of
errors, we defined a stringent coincidence window (d = 84 ms) and

Author Summary

Neurons spike when their membrane potential exceeds a
threshold value, but this value has been shown to be
variable in the same neuron recorded in vivo. This
variability could reflect noise, or deterministic processes
that make the threshold vary with the membrane
potential. The second alternative would have important
functional consequences. Here, we show that threshold
variability is a genuine feature of neurons, which reflects
adaptation to the membrane potential at a short
timescale, with little contribution from noise. This demon-
strates that a deterministic model can predict spikes based
only on the membrane potential.

Spike-Threshold Adaptation In Vivo
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calculated the proportion of coincident spikes in both the recorded
and predicted spike trains. We used the gamma factor C, a
normalized coincidence measure that has been used in a number
of studies [30–32]. We optimized the model parameters to
maximize C on a given recording, and the model performance
was then tested on different recordings in the same cell.

We first checked that this optimization strategy was correct on
different neuron models with an explicit adaptive threshold with a
time constant of 3–5 ms (Fig. 2c–e; see Materials and Methods).
The first model had a fixed threshold (Fig. 2c), the second an
adaptive threshold with rectified-linear characteristics (only adapts
above Vi~{67mV ; Fig. 2d) and the third a threshold that
adapted linearly in the entire voltage range (Fig. 2e). Note that
there is a constant bias in the predicted threshold, corresponding
to the sharpness of spike initiation in these neuron models (i.e.,
spikes start slightly above the threshold value because sodium
channels open gradually) [8]. Apart from this bias, both the steady-
state threshold curve and the adaptation time constant were
correctly estimated by the optimization procedure (Fig. 2c–e,

bottom curves). We also confirmed that the fitting procedure
yielded expected results when the threshold time constant was an
order of magnitude shorter than the membrane time constant
(Fig. 2f). Finally, we checked that the resulting parameters did not
depend on the input statistics, by running the optimization
procedure with input currents of different means and standard
deviations on models with a short threshold time constant (Fig. 2g)
and a short input autocorrelation time constant (Fig. 2h).

We then applied the fitting procedure to a biophysically detailed
neuron model, in which spikes are initiated in the AIS and Na
channel densities in the axon were measured with immunochem-
istry [7]. In this multicompartmental model, the value of the spike
threshold measured at the soma can be accurately predicted from
the value of ionic channel gating variables at the AIS [26]. We
stimulated the model with fluctuating current, and we observed
that there was a linear dependence between the measured value of
the spike threshold and the logarithm of the Na inactivation
variable h at the AIS (Fig. 3a; slope 23.2 mV; r = 20.98). We
then fitted the threshold model to the voltage response of the

Figure 1. In vivo intracellular recordings. a, Intracellular recordings (Vm) in the owl’s ICx, with binaural stimuli (L: left, R: right). Either ITD is varied
at best IID (top) or IID is varied at best ITD (bottom). Owl picture source: http://openclipart.org/detail/17566/cartoon-owl-by-lemmling. b, Two spikes
from the traces in (a); red dots indicate the estimated spiking threshold. c, Trace from (a) shown in phase space: dVm=dt vs. Vm . Spike threshold is
detected when dVm=dt exceeds a fixed value (red dashed line). d, Distribution of subthreshold membrane potential (blue) and spike threshold
(green). e, Spike threshold vs. average Vm before spike. f, Spike threshold vs. depolarization slope before spike. g, Spike threshold vs. preceding
interspike interval. Red lines are linear regressions.
doi:10.1371/journal.pcbi.1003560.g001
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model (Fig. 3b). After optimization, we observed that the time-
varying threshold of the fitted model closely tracked the spike
threshold estimated from ionic channel gating variables (which
were hidden to the fitting procedure). At the spike times predicted
by the fitted model, the corresponding predicted threshold was
very close to the actual measured threshold (Fig. 3c). The steady-
state threshold curve matched the curve calculated from the Na
inactivation function [8], especially near the spike initiation region
(Fig. 3d). In the multicompartmental model, the time constant of
Na inactivation is voltage-dependent, unlike in our simple
threshold model (Fig. 3e, green). However, the fitted threshold
time constant matched the value of the inactivation time constant
in the spike initiation region (250 to 240 mV; Fig. 3e, red).
Finally, we found that the value of the Na inactivation variable h
at the AIS could be estimated between spikes from the value of the

spike threshold in the fitted model (Fig. 3f; slope 20.22 mV21;
r = 20.97). Those results show that our method can successfully
predict the spike threshold and characterize the sodium inactiva-
tion properties at the AIS of a complex multicompartmental
neuron model containing an axon and an extended dendritic tree.

Taken together, these results show that our optimization
strategy can indeed accurately characterize the properties of spike
threshold adaptation. We then applied this technique on our
recordings, where spike times were accurately predicted, with few
false alarms and typical rectified-linear curves for the estimated
steady-state threshold (Fig. 4a). To emphasize the fact that we
predict the threshold for spike initiation, and not simply the
voltage at the upstroke of spikes, we show the voltage trace vs.
dynamic threshold h in Fig. 4b, where it can be seen that a spike is
produced as soon as the identity line is crossed. Also, there are no

Figure 2. Model fitting approach. a, Steady-state threshold function, defined by 5 parameters. b, Illustration of the model fitness computation,
Voltage trace (blue) and the corresponding dynamic threshold in the model (red). A spike is predicted when the curves cross, and a refractory period
follows (grey). Prediction is considered correct when the actual and predicted spikes are within a fixed coincidence window (green). Left: incorrect
predictions, right: correct prediction. Note that for the sake of illustration the coincidence window is drawn larger than what it is in reality. c–f, Top:
output of the fitting procedure on neuron models with explicit dynamic threshold (green: actual dynamic threshold, red: model prediction), with four
different steady-state threshold functions and threshold time constants (bottom). g, The fitting procedure was run for the same model shown in f,
but with input currents varying in mean (20–200 pA) and standard deviation (50–400 pA). The shaded area shows the mean and standard deviation
of the fitted steady-state threshold function: optimization results were not strongly dependent on the input current used for training. h, Same as g,
but with th~3 ms and input current with short autocorrelation time constant (0.5 ms).
doi:10.1371/journal.pcbi.1003560.g002

Spike-Threshold Adaptation In Vivo
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crossings of the identity line between spikes. The absence of
threshold crossings between spikes can be related to the sharpness
of spike initiation [33], due to the compartmentalization of spike
initiation in the AIS [34]. This observation means that the value of
h in the model predicts whether a spike is initiated, rather than
simply predicting the somatic voltage at spike onset. This implies
that it is indeed possible to predict spikes using only the membrane
potential at the soma, even though spikes are initiated in the axon
initial segment.

Fitted parameters are consistent among conditions
If threshold variability is due to ionic channel properties, then

threshold parameters should depend on the cell and not on the
experimental condition. On the contrary, if threshold variability
were due to other factors such as synaptic input onto the axonal
initial segment, we would expect these parameters values to be
variable across conditions. Therefore we optimized the model
parameters separately on each cell and sound-stimulation condi-
tion (e.g., one condition is varying the ITD with a fixed IID) to
check for stimulus dependency. As an additional check of

robustness, we divided the entire set of recordings into subsets
(2–8) with different Vm ranges, and optimized the model
parameters separately in each set. We then compared the
parameter values obtained for the same cell but different
recordings. We found little variation in the results across
conditions in the same cell (Fig. 5 and Figs. 6a, b, c). Consistent
with theoretical predictions for Na channel inactivation [8], the
steady-state threshold was near-constant at low voltages and
increased linearly with slope near 1 at high voltages (Fig. 5). The
fact that the steady-threshold curve does not cross the diagonal
(Fig. 5, dashed lines) is consistent with large threshold variability
[8].

In the entire set of cells (n = 21), we consistently found that the
slope of the steady-state threshold curve was small at voltage
smaller than Vi (Figs. 6a, mean b&0:3) and near 1 above Vi
(Figs. 6b, mean a&1:1), which is consistent with predictions based
on sodium channel inactivation [8]. The mean critical voltage, Vi,
was 25966 mV and the minimum threshold was VT = 2
6166 mV. Although there is some uncertainty about absolute
voltage in intracellular recordings with sharp electrodes, the Vi
values are within the range of half-inactivation voltages of Na

Figure 3. Fitting procedure applied on a multicompartmental
model of a cortical neuron [7]. a, Spike threshold measured at the
soma vs. logarithm of the sodium inactivation variable h at the axonal
initiation site. The dashed line shows the linear regression (slope
3.2 mV). b, The fitting procedure is run on the somatic voltage trace
(blue), and the predicted threshold (red) is compared to the threshold
calculated from the value of ionic channel variables (green; as in [26]). c,
Predicted threshold resulting from the fitting procedure vs. measured
threshold for all spikes. The dashed line is the identity. d, Steady-state
threshold function of the optimized model (red) compared to the
corresponding function calculated from the properties of sodium
channel inactivation. e, Estimated time constant of threshold adapta-
tion (red) vs. time constant of sodium inactivation. The estimation is
correct in the spike initiation zone (250 to 240 mV). f, Logarithm of the
sodium inactivation variable h at the axonal initiation site plotted
against predicted threshold for the entire simulation, excluding spikes.
doi:10.1371/journal.pcbi.1003560.g003

Figure 4. Fitting procedure applied on an intracellular voltage
trace. a, Top: voltage trace (top, black) and predicted threshold (red).
Bottom: steady-state threshold in the fitted model. b, Vm vs. predicted
threshold for the trace in (a). The identity line (red) sharply separates
subthreshold fluctuations from spikes.
doi:10.1371/journal.pcbi.1003560.g004

Figure 5. Steady-state threshold curves. Threshold curves
resulting from optimizing the threshold model to recordings in 16
cells. The dashed line is the diagonal h~Vm and the shaded area
represents the average 6 standard deviation over all recording
conditions in each cell.
doi:10.1371/journal.pcbi.1003560.g005
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channels [35]. The curvature of the steady-state threshold is
determined by the model parameter ka = 762 mV, which is in the
range of measured Na activation slopes [35]. Finally, the
threshold-adaptation time constant was th~260+122ms (Fig. 6c).
Although this may seem small, time constants tend to be short in
the barn owl’s auditory brainstem, which is specialized for fast
temporal processing [6,13], as also seen in the timescale of spikes
in Fig. 1 (see Discussion). In addition to the fact that threshold-
adaptation time constants were similar across cells and recording
conditions, the precise value of the model time constant was also
important for predicting spikes. Fixing the time constant to a
shorter or larger value than the optimal one significantly degraded
the fitting quality (Fig. 7). A consistent observation is that above
Vi, the steady-state threshold always lies just a few mV above Vm
(Fig. 5, distance between solid curve and dashed line). Thus the
condition for triggering spikes is not Vm exceeding a fixed
threshold, but rather a fast depolarization of a few mV. This
property implies that when the neuron is slowly depolarized, it
does not spike because the threshold increases at the same time. It
can contribute in making the neuron respond with a single spike at
the onset of a current step – but not necessarily because the reset
may introduce fast variations in membrane potential. Electro-
physiological properties of IC neurons are not known in the barn
owl, but onset electrophysiological behavior has been observed in

IC neurons of rodents, although not all neurons [36]. In the chick,
neurons in Nucleus Laminaris, which project to IC, also respond
to current steps by firing a single spike [37].

The optimized parameters varied across cells but not across
stimulation protocols or Vm ranges in the same cell (Fig. 6a–c, blue
error bars). The average distance between steady-state threshold
curves obtained in the same cell for different conditions was an
order of magnitude smaller than the average distance between
steady-state threshold curves and the diagonal (Fig. 6d). These
findings indicate that there is little threshold adaptation acting on a
slow timescale in these neurons.

We then tested the optimized threshold models on recordings in
the same cell that were not used for fitting the parameters, whether
a different stimulation protocol or a different Vm range, and we
found that the models produced few false alarms (6.8%, Fig. 6e).
Finally we tested whether at spike times, the value of the spike
threshold variable in the model corresponded to the measured
somatic voltage at the upstroke of spikes. We found that the model
threshold could account for 89% of experimentally measured
‘‘spike threshold’’ variance on average (Fig. 6f). This means that
the measured somatic voltage at spike onset does in fact
correspond to the spike threshold, in the sense of a criterion for
triggering a spike. In addition, since this value can be accurately
predicted by our model, this result implies that the measured spike
threshold is in fact determined by the Vm dynamics at the soma,
rather than noise or external factors. Finally, it also implies that if
there was stimulus-specific adaptation in these neurons as found in
rats [38], it did not act on spike threshold, since we did not include
such phenomena in the model.

Functional consequences
We finally turn to the functional implications of spike-threshold

adaptation. Since the spike threshold adapts to Vm, any voltage
fluctuations that are slower than threshold adaptation should not

Figure 6. Fitting results. The optimization results for all cells are
shown for three parameters: high voltage slope b (a), low voltage slope
a (b) and time constant th (c). Blue bars correspond to mean 6
standard deviation over all recordings categorized by average
membrane potential, and red bars (when available) correspond to
mean 6 standard deviation over all recordings categorized by stimulus
condition (e.g. varying ITD with fixed IID). d, Distribution of average
distance within cells between steady-state threshold functions (grey)
and between steady-state threshold functions and the diagonal (green).
e, Distribution of false alarm rates when the models are tested against
recordings with a different mean Vm (blue) and with different sound
stimulation (red) than used for fitting. f, Same as (d) for the explained
variance of measured spike threshold.
doi:10.1371/journal.pcbi.1003560.g006

Figure 7. Fit quality vs. threshold time constant. To show that the
optimized threshold time constant (about 260 ms on average) is
accurate, we fitted the threshold model to the recordings while setting
the time constant to a fixed value, i.e., the time constant is no longer a
parameter to be optimized. The plots show the resulting gamma factor
(in black, right ordinate) and explained variance (in red, left ordinate) as
a function of threshold time constant for 9 cells. Moving the time
constant away from its optimal value results in large increases in the
fitting error.
doi:10.1371/journal.pcbi.1003560.g007
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have an impact on output spiking. This is captured by the concept
of ‘effective signal’ (ES) illustrated in Fig. 8. The ES is the
difference between the Vm and the dynamic spike threshold
(Fig. 8a). A spike is produced when the ES exceeds a fixed
threshold (0 mV). Therefore, the Vm dynamics with threshold
adaptation is equivalent to the ES dynamics with a fixed threshold.
In the ES, voltage variability is greatly reduced, dropping from
s = 4.4 mV in the Vm to s = 1.6 mV in the ES for this recording
(Fig. 8b). This occurs because slow voltage fluctuations are filtered
out by threshold adaptation. This becomes clear when we
compute the autocorrelation of the voltage traces (Fig. 8c). We
found that the half-height width (HHW) of the Vm autocorrelation
was 4.6 ms. This value corresponds to a membrane time constant
of 3.3 ms for white noise input (HHW/(2.log 2)); in this case it may
also reflect the timescale of synaptic currents. In contrast, the
HHW of the autocorrelation of the ES is only 0.5 ms, which is in
the order of magnitude of the threshold time constant. Because of
threshold adaptation, postsynaptic potentials (PSPs) are effectively
shortened. Specifically, the exponential decay of PSPs disappears
from the ES, making the effective PSP shorter (Fig. 8d). In all cells,
voltage variability is greatly reduced by threshold adaptation: from
about s = 5.161.0 mV in the Vm to s = 2.260.8 mV in the ES
(Fig. 8e). Since threshold adaptation has little effect on the peak
size of a fast PSP (Fig. 8d), the ratio between PSP size and
background voltage variability is effectively increased. In the same
way, HHW is reduced from 4.761.4 ms to 1.761.5 ms (Fig. 8f).
This means that the integration time window of these neurons is
about three times shorter than inferred from the membrane
potential alone, making the neuron sensitive to input coincidences
at a millisecond timescale.

Discussion

Origin of threshold variability
In vivo, the spiking threshold is highly variable, typically

spanning a range of about 10 mV. This phenomenon has been
observed in many areas of the nervous system: visual cortex [1,2],
auditory midbrain [3], hippocampus [4], somatosensory cortex
[5], neocortex [10], and prefrontal cortex [7]. Spike threshold has
been found positively correlated with average membrane potential
[2,7] and inversely correlated with the preceding rate of
depolarization [1,2,5,12]. These observations are consistent with
the hypothesis that the spike threshold adapts to the membrane
potential, because of inactivation of sodium channels [1,2,5,8,26]
and/or activation of low-voltage activated potassium channels
(Kv1) [9,10,26]. However, these observations could also result in
part or entirely from one or several of the following alternative
causes:

a) spike threshold variability resulting from ion channel
stochasticity [17], or other independent sources of noise;

b) experimental artifact where threshold appears variable at the
soma but it is not at the spike-initiation zone in the axon
[16,39];

c) spike threshold modulation by processes not directly
dependent on Vm, such as synaptic inputs to the axon initial
segment (AIS) [19], intrinsic plasticity [18] or variations in
total synaptic conductance [26].

Empirical support for threshold adaptation and for these
alternative hypotheses comes from in vitro studies, and therefore
it is not known whether and to what extent they may explain in vivo
observations. Indeed, there are potential sources of threshold
variability in vivo that do not exist in vitro (noise, synaptic inputs to
the initial segment), and Na channels can be modulated in various
ways, including their peak conductance and both the time constant
and voltage-dependence of inactivation [20].

To distinguish between these hypotheses, we applied a
predictive approach to in vivo recordings, which does not rely on
measuring the somatic voltage at spike onset. Instead, the
threshold model is evaluated on the basis of its ability to predict
the occurrence of spikes from the previous membrane potential.
This approach addresses the concern that criteria based on spike
shape at the soma to measure ‘‘threshold’’ might inaccurately
assess the actual criterion for triggering a spike.

In these data, the threshold model accounted for 89% of
measured spike threshold variance. Therefore, most observed
variability was due to deterministic processes, which ruled out
hypothesis (a). It confirms theoretical considerations showing that
ion channel stochasticity should imply a positive correlation
between rate of depolarization and spike threshold, contrary to our
and previous experimental observations [8].

According to hypothesis (b), spikes are actually initiated at a
fixed voltage threshold, but it appears variable because it is not
measured at the initiation site (in the axon). Our results discard
this possibility because the threshold model is optimized to
predict the occurrence of spikes, not the measured voltage at
spike onset at the soma. It indeed predicts the occurrence and
precise timing of spikes very accurately, and with very few false
alarms. Therefore, the variability of measured somatic voltage at
spike onset did reflect the variability of spike threshold in these
recordings (see also Fig. 4b). It confirms theoretical considerations
showing that variability due to hypothesis (b) should also imply a
positive correlation between rate of depolarization and spike
threshold [8].

Figure 8. Effective signal. a, Top: voltage trace Vm (black) and the
corresponding fitted threshold (red). Bottom: the effective signal (black)
is the difference. A spike occurs when it crosses 0 mV (red). b,
Distribution of Vm (top) and of the effective signal (bottom). c,
Autocorrelogram of Vm (top) and of the effective signal (bottom),
showing the half-height width (HHW). d, Top: postsynaptic potential
(PSP, black) and its effect on the threshold (red). Bottom: effective PSP.
e, Standard deviation of the effective signal vs. standard deviation of
Vm (line: identity). f, HHW of the effective signal’s autocorrelogram vs.
HHW of Vm ’s autocorrelogram.
doi:10.1371/journal.pcbi.1003560.g008
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To address hypothesis (c), we fitted the threshold model in
the same cell but in different experimental conditions (either
different ranges of Vm or different stimulus conditions). If
threshold variability were due to other processes that are not
directly determined by Vm (e.g. synaptic input to the AIS or
intrinsic plasticity), then we would expect the fitting process to
yield different parameters values depending on context. In
contrast, parameter values of the model were very robust across
different conditions for the same cell, and variable between
cells. These results make hypothesis (c) implausible in our
recordings. On the basis of single-compartment biophysical
models, it has been proposed that the total synaptic conduc-
tance may also modulate the spike threshold in a logarithmic
way, by opposing the Na current [26]. Our results would only
be consistent with this hypothesis if total synaptic conductance
were constant in all conditions (all stimuli and all mean Vm).
Although it seems unlikely, we cannot entirely rule out this
possibility. Recent theoretical analysis taking into account the
axonal initiation of spikes indicates that the total synaptic
conductance at the soma should have negligible impact on spike
threshold because spike initiation is compartmentalized [34]
(i.e., only channels expressed at the AIS can directly modulate
the spike threshold).

Therefore, our results discard all the alternative hypotheses
mentioned above, and demonstrate that threshold variability
reflects deterministic adaptation of the spike threshold to the
somatic membrane potential.

Biophysical mechanisms
Adaptation of spike threshold points to voltage-gated ion

channels expressed in the AIS. Spike initiation is due to Na
channels of the Nav1.6 subtype expressed in the distal part of the
AIS [40]. These channels are partially inactivated at rest, and
therefore voltage changes should substantially modulate the spike
threshold by changing the proportion of available channels for
spike initiation. The threshold model used in this study derives
from a theoretical analysis of the biophysical properties of Na
channels [8,26]. This analysis accurately predicted the spike
threshold in a multicompartmental model of a cortical neuron
with measured channel densities in the AIS [26]. The theory
predicts that 1) the spike threshold is constant in the hyperpo-
larized range because Na channels are not inactivated, 2) the
spike threshold follows the membrane potential in the depolar-
ized range because activation and inactivation curves have similar
slopes [8], 3) the transition between the two regimes occurs at
around half-inactivation voltage. Our results confirm these
predictions.

The time constant of threshold adaptation may seem surpris-
ingly low, about 250 ms. In Hodgkin-Huxley models, this
adaptation time constant reflects the time constant of the
underlying ionic channel mechanism (inactivation of Na channels
or activation of K channels). Na channel inactivation time
constants for subthreshold voltages are generally found to be on
the order of the ms in vitro, in the cortex and hippocampus [41].
However, there is evidence that the time constant of inactivation
can be modulated [20], and that it depends on functional
constraints, such as energetic efficiency [41]. In the electric organ
of the electric fish, it has been found the inactivation time
constants of Na and K channels are co-regulated, and correlate
with the frequency of electrical discharges [42]. In this particular
context, Na inactivation time constant varied between 500 ms and
3 ms (Fig. 7). Therefore it seems possible that this time constant is
also short in a nucleus involved in the processing of sounds with
frequencies of several kHz. The fact that spikes are shorter than

500 ms (Fig. 1b) in our recordings is an indication that it may
indeed be the case.

Low-voltage activated potassium channels (Kv1) are also
expressed at high density in the AIS [43,44]. Activation of Kv1
channels by depolarization can also raise the threshold, and
therefore, Kv1 channels can produce threshold adaptation with
similar qualitative properties as Na channel inactivation [26]. A
few in vitro studies show that pharmacologically blocking Kv1
channels can abolish threshold variability [9]. This could be
because Kv1 channels are responsible for threshold adaptation, or
because blocking these channels lowers the spike threshold so that
spikes are initiated before Na channels can inactivate (this happens
in Fig. 3 if threshold curves are shifted down and intersect the
diagonal). It is possible that the residual threshold adaptation seen
in the hyperpolarized range (Fig. 5) is due to Kv1 channels.
Clearly distinguishing between Na inactivation and Kv1 activation
might require dual recordings in the soma and AIS, sodium
imaging or pharmacological manipulations.

Threshold variability in other areas
Our results were obtained with in vivo intracellular recordings in

the barn owl’s inferior colliculus, and one may wonder to what
extent they may generalize to other areas. The detailed statistics of
threshold variability are similar to previous observations in cortical
neurons [1,5], both qualitatively and quantitatively, except
perhaps for the depolarization rates, which tend to be larger in
our recordings (Fig. 1f). The mechanisms of spike initiation are
also widely shared across the nervous system [40,44]. Therefore it
is reasonable to expect that our findings are generally valid.
However, it is likely that the time constant of threshold adaptation
(which was only a few hundred of microseconds in our study) is
larger in other areas. Indeed auditory neurons in subcortical areas
are known to display faster kinetics than in other areas, not only in
the barn owl but also in mammals [45,46].

Another likely difference is that in some in vivo studies, spike
threshold was found to strongly depend on the time since the
previous spike [4,28]. This is not contradictory with the model,
which displays this phenomenon when the adaptation time
constant is larger than the typical interspike-interval. Finally, in
pyramidal cells of the cortex, and also in hippocampus neurons,
the AIS is targeted by GABAergic neurons named Chandelier cells
[19]. Their action could potentially modulate the spike threshold
depending on local network activity (for instance on the phase
relative to theta oscillations in the hippocampus [47]), in a way
that is not determined by the cell’s Vm at the soma (hypothesis (c)).

Signals that elicit spikes
Our results show that threshold variability is mainly due to

deterministic features of the input, rather than noise. Given the
extent of this variability (more than 10 mV), this finding has major
implications for the input-output properties of neurons. It implies
that the relevant time-dependent variable is not so much the
membrane potential, but rather its distance to a dynamic
threshold, which we called the ‘‘effective signal’’.

Our method allowed us to estimate the spike threshold not only
at spike times but also continuously between spikes, and thus to
estimate the effective signal. We found that a large part of the
variability appearing in the voltage trace vanishes in the effective
signal, because slow variations of the membrane potential are
filtered out by threshold adaptation, leaving only variations that
are faster than threshold adaptation. Secondly, we found that the
effective signal varies on a shorter timescale than the membrane
potential. It implies that the temporal window of integration is
shorter than expected from the membrane time constant, and
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closer to the threshold time constant. These findings confirm
previous suggestions that threshold variability enhances coinci-
dence detection properties of cortical neurons [1,5], and corrob-
orate observations that spikes tend to be preceded by fast
depolarizations in cortical neurons in vivo [48].

Taken together, these findings demonstrate the causal link
between membrane potential dynamics and spike threshold
variability in vivo. In elucidating the deterministic nature of
threshold, this work shows that threshold adaptation makes
neurons selective to fast input variations and remarkably
insensitive to slow ones.

Materials and Methods

Ethics statement
The protocol # 20110502 for this study followed the National

Institutes for Health Guide for the Care and Use of Laboratory
Animals and was approved by the Institutional Animal Care and
Use Committee of California Institute of Technology.

Experimental methods
Data were obtained from in vivo intracellular recordings of 21

ICx neurons in 14 anesthetized adult barn owls, as described
previously [24,24,49]. Sharp glass electrodes (40–80 MV) filled
with 2M potassium acetate were used for recording. All
experiments were performed in a double-walled sound-attenuating
chamber. Acoustic stimuli were digitally synthesized and delivered
through earphones. Sound stimuli consisted of broadband-noise
bursts (0.5 to 10 kHz, 100 ms in duration and 5 ms linear rise/fall
times, 30 dB above threshold) presented once per second.
Earphone assemblies containing a speaker and a calibrated
microphone were inserted into the ears and gaps were sealed
with silicone material. The earphones were calibrated at the
beginning of each experiment to correct for speaker irregularities.
Intracellular recordings were stored at 24 kHz sampling rate.

Spike threshold measurement
Measured spike threshold is defined as the voltage at the onset

of action potentials. For each spike, the onset is defined as the first
time preceding the peak when the first derivative dVm=dt crosses a
fixed criterion, 25 mV/ms. On the phase plot (Fig. 1c), it
corresponds to a voltage value that is only crossed when a spike
is produced. The precise value is not critical for model fitting
because we predict the timing of spikes rather than the voltage at
spike onset. Fig. 1e shows the mean v Vmw computed in 5-ms
window preceding a spike. Fig. 1d shows the rate of depolarization
over 1.5 ms preceding a spike.

Adaptive threshold model
The dynamic threshold depends only on Vm, and is determined

by [26]:

th
dh
dt

~h?(Vm){h

Where th is the time constant of the threshold dynamics. h?(Vm)
is the steady-state threshold (Fig. 2a):

h?(Vm)~a(Vm{Vi)zVT zka log 1zexp
Vm{Vi

ki

� �� �

where a is the slope on the left side of the knee. The slope b on the
right side is ka

ki
za. The curvature C (Fig. 2a) is indirectly

determined by ka, th, a, b, ka, ki, Vi, VT were the parameters to
optimize. A spike is produced when Vm exceeds h and is followed
by a refractory period of 0.5 ms. If threshold modulation is due to
sodium channel inactivation, the theoretical prediction [8]
corresponds to a~0.

Model fitting procedure
Given a Vm trace and its corresponding spike onsets (described

above), we want to find the parameter values of the adaptive
threshold model that maximize the similarity between predicted
and recorded spike trains. This similarity is quantified using the
gamma factor (C) [30,31], a normalized measure of coincidence
between spike trains within a temporal window d:

C~
1

1{2drrec

� �
Ncoinc{2Nrecdrrec

NreczNpred

rrec is the mean firing rate of the experimental recording, Ncoinc is
the number of coincidences between the predicted and recorded
spike trains computed within a time window d~0:84ms, Nrec and
Npred denote the number of spikes in the recorded and predicted
spike train, respectively. 2Nrecdrrec is the expected number of
coincidences generated by a Poisson process with rate rrec. The
first term in brackets is a normalization factor so that the
maximum of C is 1. C~0 means that there are no more
coincidences than expected by chance whereas C~1 means that
the model prediction is perfect, at temporal resolution d.

To perform the optimization, an evolution algorithm (CMAES)
[50] was implemented on Graphical Processing Units (GPU)
[32,51] using the Playdoh optimization toolbox [52].

Neuron models
A spiking neuron model with an adaptive threshold was used to

generate the membrane voltages of Fig. 2c–h. All other voltage
traces are intracellular recordings. The model is based on the
exponential integrate and fire [53]. Vm is governed by a
differential equation that includes a leak current and an
exponential term describing sodium current activation at spike
initiation:

tm
dVm

dt
~ EL{Vmð ÞzD exp

(Vm{h)
D

� �
zRmI

where tm~5ms is the membrane time constant, El~{70mV is
the reversal potential of the leak current, D characterizes the
sharpness of the initiation. D~1mV except in Fig. 2 f., g. and h.
where D~0:3mV . Rm~100MV is the membrane resistance.
The membrane voltage diverges quickly once it exceeds the
threshold h, it is then reset to 270 mV, and a refractory period of
0.8 ms follows (in practice, spikes are detected when
Vmw hz3mV ). In Fig. 2c–f, the input current I is an Ornstein-
Uhlenbeck process with mean 40 pA, standard deviation 120 pA,
and time constant 3 ms. In Fig. 2g–h, the optimization is
performed on a set of currents with mean between 20 and
200 pA and standard deviation between 50 and 400 pA, selecting
those eliciting at least 20 spikes and a firing rate lower than
200 Hz. Current time constant was 3 ms in Fig. 2g and 0.5 ms in
Fig. 2h. The exponential model accurately captures the dynamics
of the sodium current near spike initiation [28], while allowing
sharp spike initiation. We used this, rather than a Hodgkin-
Huxley model, because spike initiation is unrealistically shallow in
a single-compartment Hodgkin-Huxley model and spike onsets
are not well defined [33,34]. Multicompartmental models can
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display sharp spike initiation [7] but the threshold is not explicitly
defined, a problem to test the predictive power of a threshold
model.

We assume that threshold dynamics are governed by the
differential equation given in section ‘‘Adaptive threshold model’’.
The model has a constant threshold in Fig. 2c (a~0, ka~0,
VT ~{63 mV, Vi~{67 mV and th~5 ms), rectified threshold
in Fig. 2d (same except ka~5 mV), linear threshold in Fig. 2e
(a~1, ka~0, VT ~{63 mV, Vi~{66 mV and th~3 ms),
rectified threshold in Fig. 2f, but with fast threshold adaptation
(th~0:5 ms).

In Fig. 3, we used a biophysically detailed multicompartmental
model of a cortical neuron based on immunochemistry measure-
ments, in which spikes are initiated in the axonal initial segment
[7]. It was stimulated at the soma with fluctuating current as
described above, with mean 0.7 nA, standard deviation 0.2 nA
and time constant 10 ms. The spike threshold is estimated from
ionic channel gating variables as described in [26] (Fig. 3b, green).

All simulations except for the multicompartmental model were
performed using the Brian simulator [54] with a sampling
frequency of 42 kHz. The multicompartmental model was
simulated with Neuron [55].

Training and testing the threshold model
For each cell, the voltage traces were grouped in subsets. A

subset is a set of traces sharing common conditions. The first type
of condition used to characterize subsets is the binaural protocol
used. For instance, the first subset can be the set of traces recorded
when varying the ITD, another when varying IID, and another
when varying average binaural intensity (ABI). Depending on the
cell, there were two or three recording protocols used, resulting in
two or three subsets. The second type of condition is the mean Vm
during stimulation. For each cell, responses to all sounds are
ordered by mean Vm. Each subset is then constructed incremen-
tally by adding consecutive traces until there are at least 120 spikes
in the subset. This makes 2–8 subsets per cell.

The prediction performance is quantified using two metrics.
The false alarm rate (FA), reported as a percentage, is defined as
the number estimated spikes that are not coincident with recorded
spikes divided by the total number of recorded spikes. The
explained variance (EV) quantifies the prediction quality of the
voltage at spike onset:

EV~1{
P

i (hi{ĥhi)2

P
i (hi{ĥh)2

with

ĥh~
1
n

X

i
hi

where hi is the voltage at spike onset in the recorded trace and ĥhi is
the predicted voltage at spike onset. These two metrics were
always used on recordings not used for fitting the model (different
binaural protocol or different mean Vm).

For each cell, we calculate the average distance between steady-
state functions hi

?(Vm) obtained for different conditions (Fig. 6d)
using the following formula:

D(h?)~
2

n(n{1)

Xn

i~1

Xi{1

j~1

�������������������������������������������������������ðVmax

Vmin

hi
?(Vm){hj

?(Vm)
� � 2

s

Where Vmax and Vmin are respectively the maximum and
minimum sub-threshold voltages in the trace under consideration,
and n is the number of conditions. For comparison, we also report
the average distance to the diagonal h~Vm:

D(h?,I)~
1
n

Xn

i~1

����������������������������������������������ðVmax

Vmin
hi

?(Vm){Vm
� � 2

s
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